Home | History | Annotate | Download | only in AST
      1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "clang/AST/Attr.h"
     11 #include "clang/AST/CXXInheritance.h"
     12 #include "clang/AST/Decl.h"
     13 #include "clang/AST/DeclCXX.h"
     14 #include "clang/AST/DeclObjC.h"
     15 #include "clang/AST/Expr.h"
     16 #include "clang/AST/RecordLayout.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Sema/SemaDiagnostic.h"
     19 #include "llvm/Support/Format.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/Support/MathExtras.h"
     22 #include "llvm/Support/CrashRecoveryContext.h"
     23 
     24 using namespace clang;
     25 
     26 namespace {
     27 
     28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
     29 /// For a class hierarchy like
     30 ///
     31 /// class A { };
     32 /// class B : A { };
     33 /// class C : A, B { };
     34 ///
     35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
     36 /// instances, one for B and two for A.
     37 ///
     38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
     39 struct BaseSubobjectInfo {
     40   /// Class - The class for this base info.
     41   const CXXRecordDecl *Class;
     42 
     43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
     44   bool IsVirtual;
     45 
     46   /// Bases - Information about the base subobjects.
     47   llvm::SmallVector<BaseSubobjectInfo*, 4> Bases;
     48 
     49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
     50   /// of this base info (if one exists).
     51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
     52 
     53   // FIXME: Document.
     54   const BaseSubobjectInfo *Derived;
     55 };
     56 
     57 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
     58 /// offsets while laying out a C++ class.
     59 class EmptySubobjectMap {
     60   const ASTContext &Context;
     61   uint64_t CharWidth;
     62 
     63   /// Class - The class whose empty entries we're keeping track of.
     64   const CXXRecordDecl *Class;
     65 
     66   /// EmptyClassOffsets - A map from offsets to empty record decls.
     67   typedef llvm::SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
     68   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
     69   EmptyClassOffsetsMapTy EmptyClassOffsets;
     70 
     71   /// MaxEmptyClassOffset - The highest offset known to contain an empty
     72   /// base subobject.
     73   CharUnits MaxEmptyClassOffset;
     74 
     75   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
     76   /// member subobject that is empty.
     77   void ComputeEmptySubobjectSizes();
     78 
     79   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
     80 
     81   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
     82                                  CharUnits Offset, bool PlacingEmptyBase);
     83 
     84   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
     85                                   const CXXRecordDecl *Class,
     86                                   CharUnits Offset);
     87   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
     88 
     89   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
     90   /// subobjects beyond the given offset.
     91   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
     92     return Offset <= MaxEmptyClassOffset;
     93   }
     94 
     95   CharUnits
     96   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
     97     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
     98     assert(FieldOffset % CharWidth == 0 &&
     99            "Field offset not at char boundary!");
    100 
    101     return Context.toCharUnitsFromBits(FieldOffset);
    102   }
    103 
    104 protected:
    105   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    106                                  CharUnits Offset) const;
    107 
    108   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    109                                      CharUnits Offset);
    110 
    111   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    112                                       const CXXRecordDecl *Class,
    113                                       CharUnits Offset) const;
    114   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    115                                       CharUnits Offset) const;
    116 
    117 public:
    118   /// This holds the size of the largest empty subobject (either a base
    119   /// or a member). Will be zero if the record being built doesn't contain
    120   /// any empty classes.
    121   CharUnits SizeOfLargestEmptySubobject;
    122 
    123   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
    124   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
    125       ComputeEmptySubobjectSizes();
    126   }
    127 
    128   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
    129   /// at the given offset.
    130   /// Returns false if placing the record will result in two components
    131   /// (direct or indirect) of the same type having the same offset.
    132   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    133                             CharUnits Offset);
    134 
    135   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
    136   /// offset.
    137   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
    138 };
    139 
    140 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
    141   // Check the bases.
    142   for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
    143        E = Class->bases_end(); I != E; ++I) {
    144     const CXXRecordDecl *BaseDecl =
    145       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    146 
    147     CharUnits EmptySize;
    148     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
    149     if (BaseDecl->isEmpty()) {
    150       // If the class decl is empty, get its size.
    151       EmptySize = Layout.getSize();
    152     } else {
    153       // Otherwise, we get the largest empty subobject for the decl.
    154       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    155     }
    156 
    157     if (EmptySize > SizeOfLargestEmptySubobject)
    158       SizeOfLargestEmptySubobject = EmptySize;
    159   }
    160 
    161   // Check the fields.
    162   for (CXXRecordDecl::field_iterator I = Class->field_begin(),
    163        E = Class->field_end(); I != E; ++I) {
    164     const FieldDecl *FD = *I;
    165 
    166     const RecordType *RT =
    167       Context.getBaseElementType(FD->getType())->getAs<RecordType>();
    168 
    169     // We only care about record types.
    170     if (!RT)
    171       continue;
    172 
    173     CharUnits EmptySize;
    174     const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
    175     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
    176     if (MemberDecl->isEmpty()) {
    177       // If the class decl is empty, get its size.
    178       EmptySize = Layout.getSize();
    179     } else {
    180       // Otherwise, we get the largest empty subobject for the decl.
    181       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    182     }
    183 
    184     if (EmptySize > SizeOfLargestEmptySubobject)
    185       SizeOfLargestEmptySubobject = EmptySize;
    186   }
    187 }
    188 
    189 bool
    190 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    191                                              CharUnits Offset) const {
    192   // We only need to check empty bases.
    193   if (!RD->isEmpty())
    194     return true;
    195 
    196   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
    197   if (I == EmptyClassOffsets.end())
    198     return true;
    199 
    200   const ClassVectorTy& Classes = I->second;
    201   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
    202     return true;
    203 
    204   // There is already an empty class of the same type at this offset.
    205   return false;
    206 }
    207 
    208 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
    209                                              CharUnits Offset) {
    210   // We only care about empty bases.
    211   if (!RD->isEmpty())
    212     return;
    213 
    214   // If we have empty structures inside an union, we can assign both
    215   // the same offset. Just avoid pushing them twice in the list.
    216   ClassVectorTy& Classes = EmptyClassOffsets[Offset];
    217   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
    218     return;
    219 
    220   Classes.push_back(RD);
    221 
    222   // Update the empty class offset.
    223   if (Offset > MaxEmptyClassOffset)
    224     MaxEmptyClassOffset = Offset;
    225 }
    226 
    227 bool
    228 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    229                                                  CharUnits Offset) {
    230   // We don't have to keep looking past the maximum offset that's known to
    231   // contain an empty class.
    232   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    233     return true;
    234 
    235   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
    236     return false;
    237 
    238   // Traverse all non-virtual bases.
    239   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    240   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    241     BaseSubobjectInfo* Base = Info->Bases[I];
    242     if (Base->IsVirtual)
    243       continue;
    244 
    245     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    246 
    247     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
    248       return false;
    249   }
    250 
    251   if (Info->PrimaryVirtualBaseInfo) {
    252     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    253 
    254     if (Info == PrimaryVirtualBaseInfo->Derived) {
    255       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
    256         return false;
    257     }
    258   }
    259 
    260   // Traverse all member variables.
    261   unsigned FieldNo = 0;
    262   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    263        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    264     const FieldDecl *FD = *I;
    265     if (FD->isBitField())
    266       continue;
    267 
    268     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    269     if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
    270       return false;
    271   }
    272 
    273   return true;
    274 }
    275 
    276 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
    277                                                   CharUnits Offset,
    278                                                   bool PlacingEmptyBase) {
    279   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
    280     // We know that the only empty subobjects that can conflict with empty
    281     // subobject of non-empty bases, are empty bases that can be placed at
    282     // offset zero. Because of this, we only need to keep track of empty base
    283     // subobjects with offsets less than the size of the largest empty
    284     // subobject for our class.
    285     return;
    286   }
    287 
    288   AddSubobjectAtOffset(Info->Class, Offset);
    289 
    290   // Traverse all non-virtual bases.
    291   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    292   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    293     BaseSubobjectInfo* Base = Info->Bases[I];
    294     if (Base->IsVirtual)
    295       continue;
    296 
    297     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    298     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
    299   }
    300 
    301   if (Info->PrimaryVirtualBaseInfo) {
    302     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    303 
    304     if (Info == PrimaryVirtualBaseInfo->Derived)
    305       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
    306                                 PlacingEmptyBase);
    307   }
    308 
    309   // Traverse all member variables.
    310   unsigned FieldNo = 0;
    311   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    312        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    313     const FieldDecl *FD = *I;
    314     if (FD->isBitField())
    315       continue;
    316 
    317     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    318     UpdateEmptyFieldSubobjects(FD, FieldOffset);
    319   }
    320 }
    321 
    322 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    323                                              CharUnits Offset) {
    324   // If we know this class doesn't have any empty subobjects we don't need to
    325   // bother checking.
    326   if (SizeOfLargestEmptySubobject.isZero())
    327     return true;
    328 
    329   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
    330     return false;
    331 
    332   // We are able to place the base at this offset. Make sure to update the
    333   // empty base subobject map.
    334   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
    335   return true;
    336 }
    337 
    338 bool
    339 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    340                                                   const CXXRecordDecl *Class,
    341                                                   CharUnits Offset) const {
    342   // We don't have to keep looking past the maximum offset that's known to
    343   // contain an empty class.
    344   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    345     return true;
    346 
    347   if (!CanPlaceSubobjectAtOffset(RD, Offset))
    348     return false;
    349 
    350   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    351 
    352   // Traverse all non-virtual bases.
    353   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    354        E = RD->bases_end(); I != E; ++I) {
    355     if (I->isVirtual())
    356       continue;
    357 
    358     const CXXRecordDecl *BaseDecl =
    359       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    360 
    361     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    362     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
    363       return false;
    364   }
    365 
    366   if (RD == Class) {
    367     // This is the most derived class, traverse virtual bases as well.
    368     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    369          E = RD->vbases_end(); I != E; ++I) {
    370       const CXXRecordDecl *VBaseDecl =
    371         cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    372 
    373       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    374       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
    375         return false;
    376     }
    377   }
    378 
    379   // Traverse all member variables.
    380   unsigned FieldNo = 0;
    381   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    382        I != E; ++I, ++FieldNo) {
    383     const FieldDecl *FD = *I;
    384     if (FD->isBitField())
    385       continue;
    386 
    387     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    388 
    389     if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
    390       return false;
    391   }
    392 
    393   return true;
    394 }
    395 
    396 bool
    397 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    398                                                   CharUnits Offset) const {
    399   // We don't have to keep looking past the maximum offset that's known to
    400   // contain an empty class.
    401   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    402     return true;
    403 
    404   QualType T = FD->getType();
    405   if (const RecordType *RT = T->getAs<RecordType>()) {
    406     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    407     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
    408   }
    409 
    410   // If we have an array type we need to look at every element.
    411   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    412     QualType ElemTy = Context.getBaseElementType(AT);
    413     const RecordType *RT = ElemTy->getAs<RecordType>();
    414     if (!RT)
    415       return true;
    416 
    417     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    418     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    419 
    420     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    421     CharUnits ElementOffset = Offset;
    422     for (uint64_t I = 0; I != NumElements; ++I) {
    423       // We don't have to keep looking past the maximum offset that's known to
    424       // contain an empty class.
    425       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
    426         return true;
    427 
    428       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
    429         return false;
    430 
    431       ElementOffset += Layout.getSize();
    432     }
    433   }
    434 
    435   return true;
    436 }
    437 
    438 bool
    439 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
    440                                          CharUnits Offset) {
    441   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
    442     return false;
    443 
    444   // We are able to place the member variable at this offset.
    445   // Make sure to update the empty base subobject map.
    446   UpdateEmptyFieldSubobjects(FD, Offset);
    447   return true;
    448 }
    449 
    450 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
    451                                                    const CXXRecordDecl *Class,
    452                                                    CharUnits Offset) {
    453   // We know that the only empty subobjects that can conflict with empty
    454   // field subobjects are subobjects of empty bases that can be placed at offset
    455   // zero. Because of this, we only need to keep track of empty field
    456   // subobjects with offsets less than the size of the largest empty
    457   // subobject for our class.
    458   if (Offset >= SizeOfLargestEmptySubobject)
    459     return;
    460 
    461   AddSubobjectAtOffset(RD, Offset);
    462 
    463   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    464 
    465   // Traverse all non-virtual bases.
    466   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    467        E = RD->bases_end(); I != E; ++I) {
    468     if (I->isVirtual())
    469       continue;
    470 
    471     const CXXRecordDecl *BaseDecl =
    472       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    473 
    474     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    475     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
    476   }
    477 
    478   if (RD == Class) {
    479     // This is the most derived class, traverse virtual bases as well.
    480     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    481          E = RD->vbases_end(); I != E; ++I) {
    482       const CXXRecordDecl *VBaseDecl =
    483       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    484 
    485       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    486       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
    487     }
    488   }
    489 
    490   // Traverse all member variables.
    491   unsigned FieldNo = 0;
    492   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    493        I != E; ++I, ++FieldNo) {
    494     const FieldDecl *FD = *I;
    495     if (FD->isBitField())
    496       continue;
    497 
    498     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    499 
    500     UpdateEmptyFieldSubobjects(FD, FieldOffset);
    501   }
    502 }
    503 
    504 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
    505                                                    CharUnits Offset) {
    506   QualType T = FD->getType();
    507   if (const RecordType *RT = T->getAs<RecordType>()) {
    508     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    509     UpdateEmptyFieldSubobjects(RD, RD, Offset);
    510     return;
    511   }
    512 
    513   // If we have an array type we need to update every element.
    514   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    515     QualType ElemTy = Context.getBaseElementType(AT);
    516     const RecordType *RT = ElemTy->getAs<RecordType>();
    517     if (!RT)
    518       return;
    519 
    520     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    521     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    522 
    523     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    524     CharUnits ElementOffset = Offset;
    525 
    526     for (uint64_t I = 0; I != NumElements; ++I) {
    527       // We know that the only empty subobjects that can conflict with empty
    528       // field subobjects are subobjects of empty bases that can be placed at
    529       // offset zero. Because of this, we only need to keep track of empty field
    530       // subobjects with offsets less than the size of the largest empty
    531       // subobject for our class.
    532       if (ElementOffset >= SizeOfLargestEmptySubobject)
    533         return;
    534 
    535       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
    536       ElementOffset += Layout.getSize();
    537     }
    538   }
    539 }
    540 
    541 class RecordLayoutBuilder {
    542 protected:
    543   // FIXME: Remove this and make the appropriate fields public.
    544   friend class clang::ASTContext;
    545 
    546   const ASTContext &Context;
    547 
    548   EmptySubobjectMap *EmptySubobjects;
    549 
    550   /// Size - The current size of the record layout.
    551   uint64_t Size;
    552 
    553   /// Alignment - The current alignment of the record layout.
    554   CharUnits Alignment;
    555 
    556   /// \brief The alignment if attribute packed is not used.
    557   CharUnits UnpackedAlignment;
    558 
    559   llvm::SmallVector<uint64_t, 16> FieldOffsets;
    560 
    561   /// Packed - Whether the record is packed or not.
    562   unsigned Packed : 1;
    563 
    564   unsigned IsUnion : 1;
    565 
    566   unsigned IsMac68kAlign : 1;
    567 
    568   unsigned IsMsStruct : 1;
    569 
    570   /// UnfilledBitsInLastByte - If the last field laid out was a bitfield,
    571   /// this contains the number of bits in the last byte that can be used for
    572   /// an adjacent bitfield if necessary.
    573   unsigned char UnfilledBitsInLastByte;
    574 
    575   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
    576   /// #pragma pack.
    577   CharUnits MaxFieldAlignment;
    578 
    579   /// DataSize - The data size of the record being laid out.
    580   uint64_t DataSize;
    581 
    582   CharUnits NonVirtualSize;
    583   CharUnits NonVirtualAlignment;
    584 
    585   FieldDecl *ZeroLengthBitfield;
    586 
    587   /// PrimaryBase - the primary base class (if one exists) of the class
    588   /// we're laying out.
    589   const CXXRecordDecl *PrimaryBase;
    590 
    591   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
    592   /// out is virtual.
    593   bool PrimaryBaseIsVirtual;
    594 
    595   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
    596 
    597   /// Bases - base classes and their offsets in the record.
    598   BaseOffsetsMapTy Bases;
    599 
    600   // VBases - virtual base classes and their offsets in the record.
    601   BaseOffsetsMapTy VBases;
    602 
    603   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
    604   /// primary base classes for some other direct or indirect base class.
    605   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
    606 
    607   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
    608   /// inheritance graph order. Used for determining the primary base class.
    609   const CXXRecordDecl *FirstNearlyEmptyVBase;
    610 
    611   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
    612   /// avoid visiting virtual bases more than once.
    613   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
    614 
    615   RecordLayoutBuilder(const ASTContext &Context, EmptySubobjectMap
    616                       *EmptySubobjects)
    617     : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
    618       Alignment(CharUnits::One()), UnpackedAlignment(Alignment),
    619       Packed(false), IsUnion(false),
    620       IsMac68kAlign(false), IsMsStruct(false),
    621       UnfilledBitsInLastByte(0), MaxFieldAlignment(CharUnits::Zero()),
    622       DataSize(0), NonVirtualSize(CharUnits::Zero()),
    623       NonVirtualAlignment(CharUnits::One()),
    624       ZeroLengthBitfield(0), PrimaryBase(0),
    625       PrimaryBaseIsVirtual(false), FirstNearlyEmptyVBase(0) { }
    626 
    627   void Layout(const RecordDecl *D);
    628   void Layout(const CXXRecordDecl *D);
    629   void Layout(const ObjCInterfaceDecl *D);
    630 
    631   void LayoutFields(const RecordDecl *D);
    632   void LayoutField(const FieldDecl *D);
    633   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
    634                           bool FieldPacked, const FieldDecl *D);
    635   void LayoutBitField(const FieldDecl *D);
    636 
    637   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
    638   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
    639 
    640   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
    641     BaseSubobjectInfoMapTy;
    642 
    643   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
    644   /// of the class we're laying out to their base subobject info.
    645   BaseSubobjectInfoMapTy VirtualBaseInfo;
    646 
    647   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
    648   /// class we're laying out to their base subobject info.
    649   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
    650 
    651   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
    652   /// bases of the given class.
    653   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
    654 
    655   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
    656   /// single class and all of its base classes.
    657   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    658                                               bool IsVirtual,
    659                                               BaseSubobjectInfo *Derived);
    660 
    661   /// DeterminePrimaryBase - Determine the primary base of the given class.
    662   void DeterminePrimaryBase(const CXXRecordDecl *RD);
    663 
    664   void SelectPrimaryVBase(const CXXRecordDecl *RD);
    665 
    666   virtual CharUnits GetVirtualPointersSize(const CXXRecordDecl *RD) const;
    667 
    668   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
    669   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
    670   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
    671 
    672   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
    673   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
    674 
    675   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
    676                                     CharUnits Offset);
    677 
    678   /// LayoutVirtualBases - Lays out all the virtual bases.
    679   void LayoutVirtualBases(const CXXRecordDecl *RD,
    680                           const CXXRecordDecl *MostDerivedClass);
    681 
    682   /// LayoutVirtualBase - Lays out a single virtual base.
    683   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
    684 
    685   /// LayoutBase - Will lay out a base and return the offset where it was
    686   /// placed, in chars.
    687   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
    688 
    689   /// InitializeLayout - Initialize record layout for the given record decl.
    690   void InitializeLayout(const Decl *D);
    691 
    692   /// FinishLayout - Finalize record layout. Adjust record size based on the
    693   /// alignment.
    694   void FinishLayout(const NamedDecl *D);
    695 
    696   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
    697   void UpdateAlignment(CharUnits NewAlignment) {
    698     UpdateAlignment(NewAlignment, NewAlignment);
    699   }
    700 
    701   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
    702                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
    703                           bool isPacked, const FieldDecl *D);
    704 
    705   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
    706 
    707   CharUnits getSize() const {
    708     assert(Size % Context.getCharWidth() == 0);
    709     return Context.toCharUnitsFromBits(Size);
    710   }
    711   uint64_t getSizeInBits() const { return Size; }
    712 
    713   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
    714   void setSize(uint64_t NewSize) { Size = NewSize; }
    715 
    716   CharUnits getDataSize() const {
    717     assert(DataSize % Context.getCharWidth() == 0);
    718     return Context.toCharUnitsFromBits(DataSize);
    719   }
    720   uint64_t getDataSizeInBits() const { return DataSize; }
    721 
    722   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
    723   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
    724 
    725 
    726   RecordLayoutBuilder(const RecordLayoutBuilder&);   // DO NOT IMPLEMENT
    727   void operator=(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
    728 public:
    729   static const CXXMethodDecl *ComputeKeyFunction(const CXXRecordDecl *RD);
    730 
    731   virtual ~RecordLayoutBuilder() { }
    732 };
    733 } // end anonymous namespace
    734 
    735 void
    736 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
    737   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    738          E = RD->bases_end(); I != E; ++I) {
    739     assert(!I->getType()->isDependentType() &&
    740            "Cannot layout class with dependent bases.");
    741 
    742     const CXXRecordDecl *Base =
    743       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    744 
    745     // Check if this is a nearly empty virtual base.
    746     if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
    747       // If it's not an indirect primary base, then we've found our primary
    748       // base.
    749       if (!IndirectPrimaryBases.count(Base)) {
    750         PrimaryBase = Base;
    751         PrimaryBaseIsVirtual = true;
    752         return;
    753       }
    754 
    755       // Is this the first nearly empty virtual base?
    756       if (!FirstNearlyEmptyVBase)
    757         FirstNearlyEmptyVBase = Base;
    758     }
    759 
    760     SelectPrimaryVBase(Base);
    761     if (PrimaryBase)
    762       return;
    763   }
    764 }
    765 
    766 CharUnits
    767 RecordLayoutBuilder::GetVirtualPointersSize(const CXXRecordDecl *RD) const {
    768   return Context.toCharUnitsFromBits(Context.Target.getPointerWidth(0));
    769 }
    770 
    771 /// DeterminePrimaryBase - Determine the primary base of the given class.
    772 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
    773   // If the class isn't dynamic, it won't have a primary base.
    774   if (!RD->isDynamicClass())
    775     return;
    776 
    777   // Compute all the primary virtual bases for all of our direct and
    778   // indirect bases, and record all their primary virtual base classes.
    779   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    780 
    781   // If the record has a dynamic base class, attempt to choose a primary base
    782   // class. It is the first (in direct base class order) non-virtual dynamic
    783   // base class, if one exists.
    784   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
    785          e = RD->bases_end(); i != e; ++i) {
    786     // Ignore virtual bases.
    787     if (i->isVirtual())
    788       continue;
    789 
    790     const CXXRecordDecl *Base =
    791       cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
    792 
    793     if (Base->isDynamicClass()) {
    794       // We found it.
    795       PrimaryBase = Base;
    796       PrimaryBaseIsVirtual = false;
    797       return;
    798     }
    799   }
    800 
    801   // Otherwise, it is the first nearly empty virtual base that is not an
    802   // indirect primary virtual base class, if one exists.
    803   if (RD->getNumVBases() != 0) {
    804     SelectPrimaryVBase(RD);
    805     if (PrimaryBase)
    806       return;
    807   }
    808 
    809   // Otherwise, it is the first nearly empty virtual base that is not an
    810   // indirect primary virtual base class, if one exists.
    811   if (FirstNearlyEmptyVBase) {
    812     PrimaryBase = FirstNearlyEmptyVBase;
    813     PrimaryBaseIsVirtual = true;
    814     return;
    815   }
    816 
    817   // Otherwise there is no primary base class.
    818   assert(!PrimaryBase && "Should not get here with a primary base!");
    819 
    820   // Allocate the virtual table pointer at offset zero.
    821   assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
    822 
    823   // Update the size.
    824   setSize(getSize() + GetVirtualPointersSize(RD));
    825   setDataSize(getSize());
    826 
    827   CharUnits UnpackedBaseAlign =
    828     Context.toCharUnitsFromBits(Context.Target.getPointerAlign(0));
    829   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
    830 
    831   // The maximum field alignment overrides base align.
    832   if (!MaxFieldAlignment.isZero()) {
    833     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
    834     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
    835   }
    836 
    837   // Update the alignment.
    838   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
    839 }
    840 
    841 BaseSubobjectInfo *
    842 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    843                                               bool IsVirtual,
    844                                               BaseSubobjectInfo *Derived) {
    845   BaseSubobjectInfo *Info;
    846 
    847   if (IsVirtual) {
    848     // Check if we already have info about this virtual base.
    849     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
    850     if (InfoSlot) {
    851       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
    852       return InfoSlot;
    853     }
    854 
    855     // We don't, create it.
    856     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    857     Info = InfoSlot;
    858   } else {
    859     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    860   }
    861 
    862   Info->Class = RD;
    863   Info->IsVirtual = IsVirtual;
    864   Info->Derived = 0;
    865   Info->PrimaryVirtualBaseInfo = 0;
    866 
    867   const CXXRecordDecl *PrimaryVirtualBase = 0;
    868   BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
    869 
    870   // Check if this base has a primary virtual base.
    871   if (RD->getNumVBases()) {
    872     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    873     if (Layout.isPrimaryBaseVirtual()) {
    874       // This base does have a primary virtual base.
    875       PrimaryVirtualBase = Layout.getPrimaryBase();
    876       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
    877 
    878       // Now check if we have base subobject info about this primary base.
    879       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    880 
    881       if (PrimaryVirtualBaseInfo) {
    882         if (PrimaryVirtualBaseInfo->Derived) {
    883           // We did have info about this primary base, and it turns out that it
    884           // has already been claimed as a primary virtual base for another
    885           // base.
    886           PrimaryVirtualBase = 0;
    887         } else {
    888           // We can claim this base as our primary base.
    889           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    890           PrimaryVirtualBaseInfo->Derived = Info;
    891         }
    892       }
    893     }
    894   }
    895 
    896   // Now go through all direct bases.
    897   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    898        E = RD->bases_end(); I != E; ++I) {
    899     bool IsVirtual = I->isVirtual();
    900 
    901     const CXXRecordDecl *BaseDecl =
    902       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    903 
    904     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
    905   }
    906 
    907   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
    908     // Traversing the bases must have created the base info for our primary
    909     // virtual base.
    910     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    911     assert(PrimaryVirtualBaseInfo &&
    912            "Did not create a primary virtual base!");
    913 
    914     // Claim the primary virtual base as our primary virtual base.
    915     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    916     PrimaryVirtualBaseInfo->Derived = Info;
    917   }
    918 
    919   return Info;
    920 }
    921 
    922 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
    923   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    924        E = RD->bases_end(); I != E; ++I) {
    925     bool IsVirtual = I->isVirtual();
    926 
    927     const CXXRecordDecl *BaseDecl =
    928       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    929 
    930     // Compute the base subobject info for this base.
    931     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
    932 
    933     if (IsVirtual) {
    934       // ComputeBaseInfo has already added this base for us.
    935       assert(VirtualBaseInfo.count(BaseDecl) &&
    936              "Did not add virtual base!");
    937     } else {
    938       // Add the base info to the map of non-virtual bases.
    939       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
    940              "Non-virtual base already exists!");
    941       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
    942     }
    943   }
    944 }
    945 
    946 void
    947 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
    948   // Then, determine the primary base class.
    949   DeterminePrimaryBase(RD);
    950 
    951   // Compute base subobject info.
    952   ComputeBaseSubobjectInfo(RD);
    953 
    954   // If we have a primary base class, lay it out.
    955   if (PrimaryBase) {
    956     if (PrimaryBaseIsVirtual) {
    957       // If the primary virtual base was a primary virtual base of some other
    958       // base class we'll have to steal it.
    959       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
    960       PrimaryBaseInfo->Derived = 0;
    961 
    962       // We have a virtual primary base, insert it as an indirect primary base.
    963       IndirectPrimaryBases.insert(PrimaryBase);
    964 
    965       assert(!VisitedVirtualBases.count(PrimaryBase) &&
    966              "vbase already visited!");
    967       VisitedVirtualBases.insert(PrimaryBase);
    968 
    969       LayoutVirtualBase(PrimaryBaseInfo);
    970     } else {
    971       BaseSubobjectInfo *PrimaryBaseInfo =
    972         NonVirtualBaseInfo.lookup(PrimaryBase);
    973       assert(PrimaryBaseInfo &&
    974              "Did not find base info for non-virtual primary base!");
    975 
    976       LayoutNonVirtualBase(PrimaryBaseInfo);
    977     }
    978   }
    979 
    980   // Now lay out the non-virtual bases.
    981   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    982          E = RD->bases_end(); I != E; ++I) {
    983 
    984     // Ignore virtual bases.
    985     if (I->isVirtual())
    986       continue;
    987 
    988     const CXXRecordDecl *BaseDecl =
    989       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    990 
    991     // Skip the primary base.
    992     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
    993       continue;
    994 
    995     // Lay out the base.
    996     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
    997     assert(BaseInfo && "Did not find base info for non-virtual base!");
    998 
    999     LayoutNonVirtualBase(BaseInfo);
   1000   }
   1001 }
   1002 
   1003 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
   1004   // Layout the base.
   1005   CharUnits Offset = LayoutBase(Base);
   1006 
   1007   // Add its base class offset.
   1008   assert(!Bases.count(Base->Class) && "base offset already exists!");
   1009   Bases.insert(std::make_pair(Base->Class, Offset));
   1010 
   1011   AddPrimaryVirtualBaseOffsets(Base, Offset);
   1012 }
   1013 
   1014 void
   1015 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
   1016                                                   CharUnits Offset) {
   1017   // This base isn't interesting, it has no virtual bases.
   1018   if (!Info->Class->getNumVBases())
   1019     return;
   1020 
   1021   // First, check if we have a virtual primary base to add offsets for.
   1022   if (Info->PrimaryVirtualBaseInfo) {
   1023     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
   1024            "Primary virtual base is not virtual!");
   1025     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
   1026       // Add the offset.
   1027       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
   1028              "primary vbase offset already exists!");
   1029       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
   1030                                    Offset));
   1031 
   1032       // Traverse the primary virtual base.
   1033       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
   1034     }
   1035   }
   1036 
   1037   // Now go through all direct non-virtual bases.
   1038   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
   1039   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
   1040     const BaseSubobjectInfo *Base = Info->Bases[I];
   1041     if (Base->IsVirtual)
   1042       continue;
   1043 
   1044     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
   1045     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
   1046   }
   1047 }
   1048 
   1049 void
   1050 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
   1051                                         const CXXRecordDecl *MostDerivedClass) {
   1052   const CXXRecordDecl *PrimaryBase;
   1053   bool PrimaryBaseIsVirtual;
   1054 
   1055   if (MostDerivedClass == RD) {
   1056     PrimaryBase = this->PrimaryBase;
   1057     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
   1058   } else {
   1059     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1060     PrimaryBase = Layout.getPrimaryBase();
   1061     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
   1062   }
   1063 
   1064   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1065          E = RD->bases_end(); I != E; ++I) {
   1066     assert(!I->getType()->isDependentType() &&
   1067            "Cannot layout class with dependent bases.");
   1068 
   1069     const CXXRecordDecl *BaseDecl =
   1070       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1071 
   1072     if (I->isVirtual()) {
   1073       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
   1074         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
   1075 
   1076         // Only lay out the virtual base if it's not an indirect primary base.
   1077         if (!IndirectPrimaryBase) {
   1078           // Only visit virtual bases once.
   1079           if (!VisitedVirtualBases.insert(BaseDecl))
   1080             continue;
   1081 
   1082           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
   1083           assert(BaseInfo && "Did not find virtual base info!");
   1084           LayoutVirtualBase(BaseInfo);
   1085         }
   1086       }
   1087     }
   1088 
   1089     if (!BaseDecl->getNumVBases()) {
   1090       // This base isn't interesting since it doesn't have any virtual bases.
   1091       continue;
   1092     }
   1093 
   1094     LayoutVirtualBases(BaseDecl, MostDerivedClass);
   1095   }
   1096 }
   1097 
   1098 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
   1099   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
   1100 
   1101   // Layout the base.
   1102   CharUnits Offset = LayoutBase(Base);
   1103 
   1104   // Add its base class offset.
   1105   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
   1106   VBases.insert(std::make_pair(Base->Class, Offset));
   1107 
   1108   AddPrimaryVirtualBaseOffsets(Base, Offset);
   1109 }
   1110 
   1111 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
   1112   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
   1113 
   1114   // If we have an empty base class, try to place it at offset 0.
   1115   if (Base->Class->isEmpty() &&
   1116       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
   1117     setSize(std::max(getSize(), Layout.getSize()));
   1118 
   1119     return CharUnits::Zero();
   1120   }
   1121 
   1122   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
   1123   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
   1124 
   1125   // The maximum field alignment overrides base align.
   1126   if (!MaxFieldAlignment.isZero()) {
   1127     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
   1128     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
   1129   }
   1130 
   1131   // Round up the current record size to the base's alignment boundary.
   1132   CharUnits Offset = getDataSize().RoundUpToAlignment(BaseAlign);
   1133 
   1134   // Try to place the base.
   1135   while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
   1136     Offset += BaseAlign;
   1137 
   1138   if (!Base->Class->isEmpty()) {
   1139     // Update the data size.
   1140     setDataSize(Offset + Layout.getNonVirtualSize());
   1141 
   1142     setSize(std::max(getSize(), getDataSize()));
   1143   } else
   1144     setSize(std::max(getSize(), Offset + Layout.getSize()));
   1145 
   1146   // Remember max struct/class alignment.
   1147   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1148 
   1149   return Offset;
   1150 }
   1151 
   1152 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
   1153   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
   1154     IsUnion = RD->isUnion();
   1155 
   1156   Packed = D->hasAttr<PackedAttr>();
   1157 
   1158   IsMsStruct = D->hasAttr<MsStructAttr>();
   1159 
   1160   // mac68k alignment supersedes maximum field alignment and attribute aligned,
   1161   // and forces all structures to have 2-byte alignment. The IBM docs on it
   1162   // allude to additional (more complicated) semantics, especially with regard
   1163   // to bit-fields, but gcc appears not to follow that.
   1164   if (D->hasAttr<AlignMac68kAttr>()) {
   1165     IsMac68kAlign = true;
   1166     MaxFieldAlignment = CharUnits::fromQuantity(2);
   1167     Alignment = CharUnits::fromQuantity(2);
   1168   } else {
   1169     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
   1170       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
   1171 
   1172     if (unsigned MaxAlign = D->getMaxAlignment())
   1173       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
   1174   }
   1175 }
   1176 
   1177 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
   1178   InitializeLayout(D);
   1179   LayoutFields(D);
   1180 
   1181   // Finally, round the size of the total struct up to the alignment of the
   1182   // struct itself.
   1183   FinishLayout(D);
   1184 }
   1185 
   1186 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
   1187   InitializeLayout(RD);
   1188 
   1189   // Lay out the vtable and the non-virtual bases.
   1190   LayoutNonVirtualBases(RD);
   1191 
   1192   LayoutFields(RD);
   1193 
   1194   NonVirtualSize = Context.toCharUnitsFromBits(
   1195         llvm::RoundUpToAlignment(getSizeInBits(),
   1196                                  Context.Target.getCharAlign()));
   1197   NonVirtualAlignment = Alignment;
   1198 
   1199   // Lay out the virtual bases and add the primary virtual base offsets.
   1200   LayoutVirtualBases(RD, RD);
   1201 
   1202   VisitedVirtualBases.clear();
   1203 
   1204   // Finally, round the size of the total struct up to the alignment of the
   1205   // struct itself.
   1206   FinishLayout(RD);
   1207 
   1208 #ifndef NDEBUG
   1209   // Check that we have base offsets for all bases.
   1210   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1211        E = RD->bases_end(); I != E; ++I) {
   1212     if (I->isVirtual())
   1213       continue;
   1214 
   1215     const CXXRecordDecl *BaseDecl =
   1216       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1217 
   1218     assert(Bases.count(BaseDecl) && "Did not find base offset!");
   1219   }
   1220 
   1221   // And all virtual bases.
   1222   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   1223        E = RD->vbases_end(); I != E; ++I) {
   1224     const CXXRecordDecl *BaseDecl =
   1225       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1226 
   1227     assert(VBases.count(BaseDecl) && "Did not find base offset!");
   1228   }
   1229 #endif
   1230 }
   1231 
   1232 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
   1233   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
   1234     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
   1235 
   1236     UpdateAlignment(SL.getAlignment());
   1237 
   1238     // We start laying out ivars not at the end of the superclass
   1239     // structure, but at the next byte following the last field.
   1240     setSize(SL.getDataSize());
   1241     setDataSize(getSize());
   1242   }
   1243 
   1244   InitializeLayout(D);
   1245   ObjCInterfaceDecl *OI = const_cast<ObjCInterfaceDecl*>(D);
   1246   // Layout each ivar sequentially.
   1247   for (ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
   1248        IVD; IVD = IVD->getNextIvar())
   1249     LayoutField(IVD);
   1250 
   1251   // Finally, round the size of the total struct up to the alignment of the
   1252   // struct itself.
   1253   FinishLayout(D);
   1254 }
   1255 
   1256 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
   1257   // Layout each field, for now, just sequentially, respecting alignment.  In
   1258   // the future, this will need to be tweakable by targets.
   1259   const FieldDecl *LastFD = 0;
   1260   ZeroLengthBitfield = 0;
   1261   unsigned RemainingInAlignment = 0;
   1262   for (RecordDecl::field_iterator Field = D->field_begin(),
   1263        FieldEnd = D->field_end(); Field != FieldEnd; ++Field) {
   1264     if (IsMsStruct) {
   1265       FieldDecl *FD =  (*Field);
   1266       if (Context.ZeroBitfieldFollowsBitfield(FD, LastFD))
   1267         ZeroLengthBitfield = FD;
   1268       // Zero-length bitfields following non-bitfield members are
   1269       // ignored:
   1270       else if (Context.ZeroBitfieldFollowsNonBitfield(FD, LastFD))
   1271         continue;
   1272       // FIXME. streamline these conditions into a simple one.
   1273       else if (Context.BitfieldFollowsBitfield(FD, LastFD) ||
   1274                Context.BitfieldFollowsNoneBitfield(FD, LastFD) ||
   1275                Context.NoneBitfieldFollowsBitfield(FD, LastFD)) {
   1276         // 1) Adjacent bit fields are packed into the same 1-, 2-, or
   1277         // 4-byte allocation unit if the integral types are the same
   1278         // size and if the next bit field fits into the current
   1279         // allocation unit without crossing the boundary imposed by the
   1280         // common alignment requirements of the bit fields.
   1281         // 2) Establish a new alignment for a bitfield following
   1282         // a non-bitfield if size of their types differ.
   1283         // 3) Establish a new alignment for a non-bitfield following
   1284         // a bitfield if size of their types differ.
   1285         std::pair<uint64_t, unsigned> FieldInfo =
   1286           Context.getTypeInfo(FD->getType());
   1287         uint64_t TypeSize = FieldInfo.first;
   1288         unsigned FieldAlign = FieldInfo.second;
   1289         // This check is needed for 'long long' in -m32 mode.
   1290         if (TypeSize > FieldAlign)
   1291           FieldAlign = TypeSize;
   1292         FieldInfo = Context.getTypeInfo(LastFD->getType());
   1293         uint64_t TypeSizeLastFD = FieldInfo.first;
   1294         unsigned FieldAlignLastFD = FieldInfo.second;
   1295         // This check is needed for 'long long' in -m32 mode.
   1296         if (TypeSizeLastFD > FieldAlignLastFD)
   1297           FieldAlignLastFD = TypeSizeLastFD;
   1298 
   1299         if (TypeSizeLastFD != TypeSize) {
   1300           if (RemainingInAlignment &&
   1301               LastFD && LastFD->isBitField() &&
   1302               LastFD->getBitWidth()->EvaluateAsInt(Context).getZExtValue()) {
   1303             // If previous field was a bitfield with some remaining unfilled
   1304             // bits, pad the field so current field starts on its type boundary.
   1305             uint64_t FieldOffset =
   1306             getDataSizeInBits() - UnfilledBitsInLastByte;
   1307             uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
   1308             setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1309                                                  Context.Target.getCharAlign()));
   1310             setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1311             RemainingInAlignment = 0;
   1312           }
   1313 
   1314           uint64_t UnpaddedFieldOffset =
   1315             getDataSizeInBits() - UnfilledBitsInLastByte;
   1316           FieldAlign = std::max(FieldAlign, FieldAlignLastFD);
   1317 
   1318           // The maximum field alignment overrides the aligned attribute.
   1319           if (!MaxFieldAlignment.isZero()) {
   1320             unsigned MaxFieldAlignmentInBits =
   1321               Context.toBits(MaxFieldAlignment);
   1322             FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
   1323           }
   1324 
   1325           uint64_t NewSizeInBits =
   1326             llvm::RoundUpToAlignment(UnpaddedFieldOffset, FieldAlign);
   1327           setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1328                                                Context.Target.getCharAlign()));
   1329           UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
   1330           setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1331         }
   1332         if (FD->isBitField()) {
   1333           uint64_t FieldSize =
   1334             FD->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
   1335           assert (FieldSize > 0 && "LayoutFields - ms_struct layout");
   1336           if (RemainingInAlignment < FieldSize)
   1337             RemainingInAlignment = TypeSize - FieldSize;
   1338           else
   1339             RemainingInAlignment -= FieldSize;
   1340         }
   1341       }
   1342       else if (FD->isBitField()) {
   1343         uint64_t FieldSize =
   1344           FD->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
   1345         std::pair<uint64_t, unsigned> FieldInfo =
   1346           Context.getTypeInfo(FD->getType());
   1347         uint64_t TypeSize = FieldInfo.first;
   1348         RemainingInAlignment = TypeSize - FieldSize;
   1349       }
   1350       LastFD = FD;
   1351     }
   1352     LayoutField(*Field);
   1353   }
   1354   if (IsMsStruct && RemainingInAlignment &&
   1355       LastFD && LastFD->isBitField() &&
   1356       LastFD->getBitWidth()->EvaluateAsInt(Context).getZExtValue()) {
   1357     // If we ended a bitfield before the full length of the type then
   1358     // pad the struct out to the full length of the last type.
   1359     uint64_t FieldOffset =
   1360       getDataSizeInBits() - UnfilledBitsInLastByte;
   1361     uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
   1362     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1363                                          Context.Target.getCharAlign()));
   1364     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1365   }
   1366 }
   1367 
   1368 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
   1369                                              uint64_t TypeSize,
   1370                                              bool FieldPacked,
   1371                                              const FieldDecl *D) {
   1372   assert(Context.getLangOptions().CPlusPlus &&
   1373          "Can only have wide bit-fields in C++!");
   1374 
   1375   // Itanium C++ ABI 2.4:
   1376   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
   1377   //   sizeof(T')*8 <= n.
   1378 
   1379   QualType IntegralPODTypes[] = {
   1380     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
   1381     Context.UnsignedLongTy, Context.UnsignedLongLongTy
   1382   };
   1383 
   1384   QualType Type;
   1385   for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
   1386        I != E; ++I) {
   1387     uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
   1388 
   1389     if (Size > FieldSize)
   1390       break;
   1391 
   1392     Type = IntegralPODTypes[I];
   1393   }
   1394   assert(!Type.isNull() && "Did not find a type!");
   1395 
   1396   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
   1397 
   1398   // We're not going to use any of the unfilled bits in the last byte.
   1399   UnfilledBitsInLastByte = 0;
   1400 
   1401   uint64_t FieldOffset;
   1402   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
   1403 
   1404   if (IsUnion) {
   1405     setDataSize(std::max(getDataSizeInBits(), FieldSize));
   1406     FieldOffset = 0;
   1407   } else {
   1408     // The bitfield is allocated starting at the next offset aligned appropriately
   1409     // for T', with length n bits.
   1410     FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
   1411                                            Context.toBits(TypeAlign));
   1412 
   1413     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1414 
   1415     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1416                                          Context.Target.getCharAlign()));
   1417     UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
   1418   }
   1419 
   1420   // Place this field at the current location.
   1421   FieldOffsets.push_back(FieldOffset);
   1422 
   1423   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
   1424                     Context.toBits(TypeAlign), FieldPacked, D);
   1425 
   1426   // Update the size.
   1427   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1428 
   1429   // Remember max struct/class alignment.
   1430   UpdateAlignment(TypeAlign);
   1431 }
   1432 
   1433 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
   1434   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1435   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
   1436   uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
   1437   uint64_t FieldSize = D->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
   1438 
   1439   std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
   1440   uint64_t TypeSize = FieldInfo.first;
   1441   unsigned FieldAlign = FieldInfo.second;
   1442 
   1443   // This check is needed for 'long long' in -m32 mode.
   1444   if (IsMsStruct && (TypeSize > FieldAlign))
   1445     FieldAlign = TypeSize;
   1446 
   1447   if (ZeroLengthBitfield) {
   1448     // If a zero-length bitfield is inserted after a bitfield,
   1449     // and the alignment of the zero-length bitfield is
   1450     // greater than the member that follows it, `bar', `bar'
   1451     // will be aligned as the type of the zero-length bitfield.
   1452     if (ZeroLengthBitfield != D) {
   1453       std::pair<uint64_t, unsigned> FieldInfo =
   1454         Context.getTypeInfo(ZeroLengthBitfield->getType());
   1455       unsigned ZeroLengthBitfieldAlignment = FieldInfo.second;
   1456       // Ignore alignment of subsequent zero-length bitfields.
   1457       if ((ZeroLengthBitfieldAlignment > FieldAlign) || (FieldSize == 0))
   1458         FieldAlign = ZeroLengthBitfieldAlignment;
   1459       if (FieldSize)
   1460         ZeroLengthBitfield = 0;
   1461     }
   1462   }
   1463 
   1464   if (FieldSize > TypeSize) {
   1465     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
   1466     return;
   1467   }
   1468 
   1469   // The align if the field is not packed. This is to check if the attribute
   1470   // was unnecessary (-Wpacked).
   1471   unsigned UnpackedFieldAlign = FieldAlign;
   1472   uint64_t UnpackedFieldOffset = FieldOffset;
   1473   if (!Context.Target.useBitFieldTypeAlignment())
   1474     UnpackedFieldAlign = 1;
   1475 
   1476   if (FieldPacked || !Context.Target.useBitFieldTypeAlignment())
   1477     FieldAlign = 1;
   1478   FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
   1479   UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
   1480 
   1481   // The maximum field alignment overrides the aligned attribute.
   1482   if (!MaxFieldAlignment.isZero()) {
   1483     unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
   1484     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
   1485     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
   1486   }
   1487 
   1488   // Check if we need to add padding to give the field the correct alignment.
   1489   if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
   1490     FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
   1491 
   1492   if (FieldSize == 0 ||
   1493       (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize)
   1494     UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
   1495                                                    UnpackedFieldAlign);
   1496 
   1497   // Padding members don't affect overall alignment.
   1498   if (!D->getIdentifier())
   1499     FieldAlign = UnpackedFieldAlign = 1;
   1500 
   1501   // Place this field at the current location.
   1502   FieldOffsets.push_back(FieldOffset);
   1503 
   1504   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
   1505                     UnpackedFieldAlign, FieldPacked, D);
   1506 
   1507   // Update DataSize to include the last byte containing (part of) the bitfield.
   1508   if (IsUnion) {
   1509     // FIXME: I think FieldSize should be TypeSize here.
   1510     setDataSize(std::max(getDataSizeInBits(), FieldSize));
   1511   } else {
   1512     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1513 
   1514     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1515                                          Context.Target.getCharAlign()));
   1516     UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
   1517   }
   1518 
   1519   // Update the size.
   1520   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1521 
   1522   // Remember max struct/class alignment.
   1523   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
   1524                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
   1525 }
   1526 
   1527 void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
   1528   if (D->isBitField()) {
   1529     LayoutBitField(D);
   1530     return;
   1531   }
   1532 
   1533   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
   1534 
   1535   // Reset the unfilled bits.
   1536   UnfilledBitsInLastByte = 0;
   1537 
   1538   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1539   CharUnits FieldOffset =
   1540     IsUnion ? CharUnits::Zero() : getDataSize();
   1541   CharUnits FieldSize;
   1542   CharUnits FieldAlign;
   1543 
   1544   if (D->getType()->isIncompleteArrayType()) {
   1545     // This is a flexible array member; we can't directly
   1546     // query getTypeInfo about these, so we figure it out here.
   1547     // Flexible array members don't have any size, but they
   1548     // have to be aligned appropriately for their element type.
   1549     FieldSize = CharUnits::Zero();
   1550     const ArrayType* ATy = Context.getAsArrayType(D->getType());
   1551     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
   1552   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
   1553     unsigned AS = RT->getPointeeType().getAddressSpace();
   1554     FieldSize =
   1555       Context.toCharUnitsFromBits(Context.Target.getPointerWidth(AS));
   1556     FieldAlign =
   1557       Context.toCharUnitsFromBits(Context.Target.getPointerAlign(AS));
   1558   } else {
   1559     std::pair<CharUnits, CharUnits> FieldInfo =
   1560       Context.getTypeInfoInChars(D->getType());
   1561     FieldSize = FieldInfo.first;
   1562     FieldAlign = FieldInfo.second;
   1563 
   1564     if (ZeroLengthBitfield) {
   1565       // If a zero-length bitfield is inserted after a bitfield,
   1566       // and the alignment of the zero-length bitfield is
   1567       // greater than the member that follows it, `bar', `bar'
   1568       // will be aligned as the type of the zero-length bitfield.
   1569       std::pair<CharUnits, CharUnits> FieldInfo =
   1570         Context.getTypeInfoInChars(ZeroLengthBitfield->getType());
   1571       CharUnits ZeroLengthBitfieldAlignment = FieldInfo.second;
   1572       if (ZeroLengthBitfieldAlignment > FieldAlign)
   1573         FieldAlign = ZeroLengthBitfieldAlignment;
   1574       ZeroLengthBitfield = 0;
   1575     }
   1576 
   1577     if (Context.getLangOptions().MSBitfields || IsMsStruct) {
   1578       // If MS bitfield layout is required, figure out what type is being
   1579       // laid out and align the field to the width of that type.
   1580 
   1581       // Resolve all typedefs down to their base type and round up the field
   1582       // alignment if necessary.
   1583       QualType T = Context.getBaseElementType(D->getType());
   1584       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
   1585         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
   1586         if (TypeSize > FieldAlign)
   1587           FieldAlign = TypeSize;
   1588       }
   1589     }
   1590   }
   1591 
   1592   // The align if the field is not packed. This is to check if the attribute
   1593   // was unnecessary (-Wpacked).
   1594   CharUnits UnpackedFieldAlign = FieldAlign;
   1595   CharUnits UnpackedFieldOffset = FieldOffset;
   1596 
   1597   if (FieldPacked)
   1598     FieldAlign = CharUnits::One();
   1599   CharUnits MaxAlignmentInChars =
   1600     Context.toCharUnitsFromBits(D->getMaxAlignment());
   1601   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
   1602   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
   1603 
   1604   // The maximum field alignment overrides the aligned attribute.
   1605   if (!MaxFieldAlignment.isZero()) {
   1606     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
   1607     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
   1608   }
   1609 
   1610   // Round up the current record size to the field's alignment boundary.
   1611   FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
   1612   UnpackedFieldOffset =
   1613     UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
   1614 
   1615   if (!IsUnion && EmptySubobjects) {
   1616     // Check if we can place the field at this offset.
   1617     while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
   1618       // We couldn't place the field at the offset. Try again at a new offset.
   1619       FieldOffset += FieldAlign;
   1620     }
   1621   }
   1622 
   1623   // Place this field at the current location.
   1624   FieldOffsets.push_back(Context.toBits(FieldOffset));
   1625 
   1626   CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
   1627                     Context.toBits(UnpackedFieldOffset),
   1628                     Context.toBits(UnpackedFieldAlign), FieldPacked, D);
   1629 
   1630   // Reserve space for this field.
   1631   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
   1632   if (IsUnion)
   1633     setSize(std::max(getSizeInBits(), FieldSizeInBits));
   1634   else
   1635     setSize(FieldOffset + FieldSize);
   1636 
   1637   // Update the data size.
   1638   setDataSize(getSizeInBits());
   1639 
   1640   // Remember max struct/class alignment.
   1641   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
   1642 }
   1643 
   1644 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
   1645   // In C++, records cannot be of size 0.
   1646   if (Context.getLangOptions().CPlusPlus && getSizeInBits() == 0) {
   1647     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   1648       // Compatibility with gcc requires a class (pod or non-pod)
   1649       // which is not empty but of size 0; such as having fields of
   1650       // array of zero-length, remains of Size 0
   1651       if (RD->isEmpty())
   1652         setSize(CharUnits::One());
   1653     }
   1654     else
   1655       setSize(CharUnits::One());
   1656   }
   1657   // Finally, round the size of the record up to the alignment of the
   1658   // record itself.
   1659   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastByte;
   1660   uint64_t UnpackedSizeInBits =
   1661     llvm::RoundUpToAlignment(getSizeInBits(),
   1662                              Context.toBits(UnpackedAlignment));
   1663   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
   1664   setSize(llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment)));
   1665 
   1666   unsigned CharBitNum = Context.Target.getCharWidth();
   1667   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   1668     // Warn if padding was introduced to the struct/class/union.
   1669     if (getSizeInBits() > UnpaddedSize) {
   1670       unsigned PadSize = getSizeInBits() - UnpaddedSize;
   1671       bool InBits = true;
   1672       if (PadSize % CharBitNum == 0) {
   1673         PadSize = PadSize / CharBitNum;
   1674         InBits = false;
   1675       }
   1676       Diag(RD->getLocation(), diag::warn_padded_struct_size)
   1677           << Context.getTypeDeclType(RD)
   1678           << PadSize
   1679           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
   1680     }
   1681 
   1682     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   1683     // bother since there won't be alignment issues.
   1684     if (Packed && UnpackedAlignment > CharUnits::One() &&
   1685         getSize() == UnpackedSize)
   1686       Diag(D->getLocation(), diag::warn_unnecessary_packed)
   1687           << Context.getTypeDeclType(RD);
   1688   }
   1689 }
   1690 
   1691 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
   1692                                           CharUnits UnpackedNewAlignment) {
   1693   // The alignment is not modified when using 'mac68k' alignment.
   1694   if (IsMac68kAlign)
   1695     return;
   1696 
   1697   if (NewAlignment > Alignment) {
   1698     assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
   1699            "Alignment not a power of 2"));
   1700     Alignment = NewAlignment;
   1701   }
   1702 
   1703   if (UnpackedNewAlignment > UnpackedAlignment) {
   1704     assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
   1705            "Alignment not a power of 2"));
   1706     UnpackedAlignment = UnpackedNewAlignment;
   1707   }
   1708 }
   1709 
   1710 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
   1711                                             uint64_t UnpaddedOffset,
   1712                                             uint64_t UnpackedOffset,
   1713                                             unsigned UnpackedAlign,
   1714                                             bool isPacked,
   1715                                             const FieldDecl *D) {
   1716   // We let objc ivars without warning, objc interfaces generally are not used
   1717   // for padding tricks.
   1718   if (isa<ObjCIvarDecl>(D))
   1719     return;
   1720 
   1721   unsigned CharBitNum = Context.Target.getCharWidth();
   1722 
   1723   // Warn if padding was introduced to the struct/class.
   1724   if (!IsUnion && Offset > UnpaddedOffset) {
   1725     unsigned PadSize = Offset - UnpaddedOffset;
   1726     bool InBits = true;
   1727     if (PadSize % CharBitNum == 0) {
   1728       PadSize = PadSize / CharBitNum;
   1729       InBits = false;
   1730     }
   1731     if (D->getIdentifier())
   1732       Diag(D->getLocation(), diag::warn_padded_struct_field)
   1733           << (D->getParent()->isStruct() ? 0 : 1) // struct|class
   1734           << Context.getTypeDeclType(D->getParent())
   1735           << PadSize
   1736           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
   1737           << D->getIdentifier();
   1738     else
   1739       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
   1740           << (D->getParent()->isStruct() ? 0 : 1) // struct|class
   1741           << Context.getTypeDeclType(D->getParent())
   1742           << PadSize
   1743           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
   1744   }
   1745 
   1746   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   1747   // bother since there won't be alignment issues.
   1748   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
   1749     Diag(D->getLocation(), diag::warn_unnecessary_packed)
   1750         << D->getIdentifier();
   1751 }
   1752 
   1753 const CXXMethodDecl *
   1754 RecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) {
   1755   // If a class isn't polymorphic it doesn't have a key function.
   1756   if (!RD->isPolymorphic())
   1757     return 0;
   1758 
   1759   // A class that is not externally visible doesn't have a key function. (Or
   1760   // at least, there's no point to assigning a key function to such a class;
   1761   // this doesn't affect the ABI.)
   1762   if (RD->getLinkage() != ExternalLinkage)
   1763     return 0;
   1764 
   1765   // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
   1766   // Same behavior as GCC.
   1767   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
   1768   if (TSK == TSK_ImplicitInstantiation ||
   1769       TSK == TSK_ExplicitInstantiationDefinition)
   1770     return 0;
   1771 
   1772   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
   1773          E = RD->method_end(); I != E; ++I) {
   1774     const CXXMethodDecl *MD = *I;
   1775 
   1776     if (!MD->isVirtual())
   1777       continue;
   1778 
   1779     if (MD->isPure())
   1780       continue;
   1781 
   1782     // Ignore implicit member functions, they are always marked as inline, but
   1783     // they don't have a body until they're defined.
   1784     if (MD->isImplicit())
   1785       continue;
   1786 
   1787     if (MD->isInlineSpecified())
   1788       continue;
   1789 
   1790     if (MD->hasInlineBody())
   1791       continue;
   1792 
   1793     // We found it.
   1794     return MD;
   1795   }
   1796 
   1797   return 0;
   1798 }
   1799 
   1800 DiagnosticBuilder
   1801 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
   1802   return Context.getDiagnostics().Report(Loc, DiagID);
   1803 }
   1804 
   1805 namespace {
   1806   // This class implements layout specific to the Microsoft ABI.
   1807   class MSRecordLayoutBuilder : public RecordLayoutBuilder {
   1808   public:
   1809     MSRecordLayoutBuilder(const ASTContext& Ctx,
   1810                           EmptySubobjectMap *EmptySubobjects) :
   1811       RecordLayoutBuilder(Ctx, EmptySubobjects) {}
   1812 
   1813     virtual CharUnits GetVirtualPointersSize(const CXXRecordDecl *RD) const;
   1814   };
   1815 }
   1816 
   1817 CharUnits
   1818 MSRecordLayoutBuilder::GetVirtualPointersSize(const CXXRecordDecl *RD) const {
   1819   // We should reserve space for two pointers if the class has both
   1820   // virtual functions and virtual bases.
   1821   CharUnits PointerWidth =
   1822     Context.toCharUnitsFromBits(Context.Target.getPointerWidth(0));
   1823   if (RD->isPolymorphic() && RD->getNumVBases() > 0)
   1824     return 2 * PointerWidth;
   1825   return PointerWidth;
   1826 }
   1827 
   1828 /// getASTRecordLayout - Get or compute information about the layout of the
   1829 /// specified record (struct/union/class), which indicates its size and field
   1830 /// position information.
   1831 const ASTRecordLayout &
   1832 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
   1833   D = D->getDefinition();
   1834   assert(D && "Cannot get layout of forward declarations!");
   1835 
   1836   // Look up this layout, if already laid out, return what we have.
   1837   // Note that we can't save a reference to the entry because this function
   1838   // is recursive.
   1839   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
   1840   if (Entry) return *Entry;
   1841 
   1842   const ASTRecordLayout *NewEntry;
   1843 
   1844   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   1845     EmptySubobjectMap EmptySubobjects(*this, RD);
   1846 
   1847     // When compiling for Microsoft, use the special MS builder.
   1848     llvm::OwningPtr<RecordLayoutBuilder> Builder;
   1849     switch (Target.getCXXABI()) {
   1850     default:
   1851       Builder.reset(new RecordLayoutBuilder(*this, &EmptySubobjects));
   1852       break;
   1853     case CXXABI_Microsoft:
   1854       Builder.reset(new MSRecordLayoutBuilder(*this, &EmptySubobjects));
   1855     }
   1856     // Recover resources if we crash before exiting this method.
   1857     llvm::CrashRecoveryContextCleanupRegistrar<RecordLayoutBuilder>
   1858       RecordBuilderCleanup(Builder.get());
   1859 
   1860     Builder->Layout(RD);
   1861 
   1862     // FIXME: This is not always correct. See the part about bitfields at
   1863     // http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
   1864     // FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
   1865     bool IsPODForThePurposeOfLayout = cast<CXXRecordDecl>(D)->isPOD();
   1866 
   1867     // FIXME: This should be done in FinalizeLayout.
   1868     CharUnits DataSize =
   1869       IsPODForThePurposeOfLayout ? Builder->getSize() : Builder->getDataSize();
   1870     CharUnits NonVirtualSize =
   1871       IsPODForThePurposeOfLayout ? DataSize : Builder->NonVirtualSize;
   1872 
   1873     NewEntry =
   1874       new (*this) ASTRecordLayout(*this, Builder->getSize(),
   1875                                   Builder->Alignment,
   1876                                   DataSize,
   1877                                   Builder->FieldOffsets.data(),
   1878                                   Builder->FieldOffsets.size(),
   1879                                   NonVirtualSize,
   1880                                   Builder->NonVirtualAlignment,
   1881                                   EmptySubobjects.SizeOfLargestEmptySubobject,
   1882                                   Builder->PrimaryBase,
   1883                                   Builder->PrimaryBaseIsVirtual,
   1884                                   Builder->Bases, Builder->VBases);
   1885   } else {
   1886     RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
   1887     Builder.Layout(D);
   1888 
   1889     NewEntry =
   1890       new (*this) ASTRecordLayout(*this, Builder.getSize(),
   1891                                   Builder.Alignment,
   1892                                   Builder.getSize(),
   1893                                   Builder.FieldOffsets.data(),
   1894                                   Builder.FieldOffsets.size());
   1895   }
   1896 
   1897   ASTRecordLayouts[D] = NewEntry;
   1898 
   1899   if (getLangOptions().DumpRecordLayouts) {
   1900     llvm::errs() << "\n*** Dumping AST Record Layout\n";
   1901     DumpRecordLayout(D, llvm::errs());
   1902   }
   1903 
   1904   return *NewEntry;
   1905 }
   1906 
   1907 const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
   1908   RD = cast<CXXRecordDecl>(RD->getDefinition());
   1909   assert(RD && "Cannot get key function for forward declarations!");
   1910 
   1911   const CXXMethodDecl *&Entry = KeyFunctions[RD];
   1912   if (!Entry)
   1913     Entry = RecordLayoutBuilder::ComputeKeyFunction(RD);
   1914 
   1915   return Entry;
   1916 }
   1917 
   1918 /// getInterfaceLayoutImpl - Get or compute information about the
   1919 /// layout of the given interface.
   1920 ///
   1921 /// \param Impl - If given, also include the layout of the interface's
   1922 /// implementation. This may differ by including synthesized ivars.
   1923 const ASTRecordLayout &
   1924 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
   1925                           const ObjCImplementationDecl *Impl) const {
   1926   assert(!D->isForwardDecl() && "Invalid interface decl!");
   1927 
   1928   // Look up this layout, if already laid out, return what we have.
   1929   ObjCContainerDecl *Key =
   1930     Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
   1931   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
   1932     return *Entry;
   1933 
   1934   // Add in synthesized ivar count if laying out an implementation.
   1935   if (Impl) {
   1936     unsigned SynthCount = CountNonClassIvars(D);
   1937     // If there aren't any sythesized ivars then reuse the interface
   1938     // entry. Note we can't cache this because we simply free all
   1939     // entries later; however we shouldn't look up implementations
   1940     // frequently.
   1941     if (SynthCount == 0)
   1942       return getObjCLayout(D, 0);
   1943   }
   1944 
   1945   RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
   1946   Builder.Layout(D);
   1947 
   1948   const ASTRecordLayout *NewEntry =
   1949     new (*this) ASTRecordLayout(*this, Builder.getSize(),
   1950                                 Builder.Alignment,
   1951                                 Builder.getDataSize(),
   1952                                 Builder.FieldOffsets.data(),
   1953                                 Builder.FieldOffsets.size());
   1954 
   1955   ObjCLayouts[Key] = NewEntry;
   1956 
   1957   return *NewEntry;
   1958 }
   1959 
   1960 static void PrintOffset(llvm::raw_ostream &OS,
   1961                         CharUnits Offset, unsigned IndentLevel) {
   1962   OS << llvm::format("%4d | ", Offset.getQuantity());
   1963   OS.indent(IndentLevel * 2);
   1964 }
   1965 
   1966 static void DumpCXXRecordLayout(llvm::raw_ostream &OS,
   1967                                 const CXXRecordDecl *RD, const ASTContext &C,
   1968                                 CharUnits Offset,
   1969                                 unsigned IndentLevel,
   1970                                 const char* Description,
   1971                                 bool IncludeVirtualBases) {
   1972   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
   1973 
   1974   PrintOffset(OS, Offset, IndentLevel);
   1975   OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
   1976   if (Description)
   1977     OS << ' ' << Description;
   1978   if (RD->isEmpty())
   1979     OS << " (empty)";
   1980   OS << '\n';
   1981 
   1982   IndentLevel++;
   1983 
   1984   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
   1985 
   1986   // Vtable pointer.
   1987   if (RD->isDynamicClass() && !PrimaryBase) {
   1988     PrintOffset(OS, Offset, IndentLevel);
   1989     OS << '(' << RD << " vtable pointer)\n";
   1990   }
   1991   // Dump (non-virtual) bases
   1992   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1993          E = RD->bases_end(); I != E; ++I) {
   1994     assert(!I->getType()->isDependentType() &&
   1995            "Cannot layout class with dependent bases.");
   1996     if (I->isVirtual())
   1997       continue;
   1998 
   1999     const CXXRecordDecl *Base =
   2000       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   2001 
   2002     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
   2003 
   2004     DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
   2005                         Base == PrimaryBase ? "(primary base)" : "(base)",
   2006                         /*IncludeVirtualBases=*/false);
   2007   }
   2008 
   2009   // Dump fields.
   2010   uint64_t FieldNo = 0;
   2011   for (CXXRecordDecl::field_iterator I = RD->field_begin(),
   2012          E = RD->field_end(); I != E; ++I, ++FieldNo) {
   2013     const FieldDecl *Field = *I;
   2014     CharUnits FieldOffset = Offset +
   2015       C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
   2016 
   2017     if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
   2018       if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   2019         DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
   2020                             Field->getName().data(),
   2021                             /*IncludeVirtualBases=*/true);
   2022         continue;
   2023       }
   2024     }
   2025 
   2026     PrintOffset(OS, FieldOffset, IndentLevel);
   2027     OS << Field->getType().getAsString() << ' ' << Field << '\n';
   2028   }
   2029 
   2030   if (!IncludeVirtualBases)
   2031     return;
   2032 
   2033   // Dump virtual bases.
   2034   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   2035          E = RD->vbases_end(); I != E; ++I) {
   2036     assert(I->isVirtual() && "Found non-virtual class!");
   2037     const CXXRecordDecl *VBase =
   2038       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   2039 
   2040     CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
   2041     DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
   2042                         VBase == PrimaryBase ?
   2043                         "(primary virtual base)" : "(virtual base)",
   2044                         /*IncludeVirtualBases=*/false);
   2045   }
   2046 
   2047   OS << "  sizeof=" << Layout.getSize().getQuantity();
   2048   OS << ", dsize=" << Layout.getDataSize().getQuantity();
   2049   OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
   2050   OS << "  nvsize=" << Layout.getNonVirtualSize().getQuantity();
   2051   OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << '\n';
   2052   OS << '\n';
   2053 }
   2054 
   2055 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
   2056                                   llvm::raw_ostream &OS) const {
   2057   const ASTRecordLayout &Info = getASTRecordLayout(RD);
   2058 
   2059   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
   2060     return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
   2061                                /*IncludeVirtualBases=*/true);
   2062 
   2063   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
   2064   OS << "Record: ";
   2065   RD->dump();
   2066   OS << "\nLayout: ";
   2067   OS << "<ASTRecordLayout\n";
   2068   OS << "  Size:" << toBits(Info.getSize()) << "\n";
   2069   OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
   2070   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
   2071   OS << "  FieldOffsets: [";
   2072   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
   2073     if (i) OS << ", ";
   2074     OS << Info.getFieldOffset(i);
   2075   }
   2076   OS << "]>\n";
   2077 }
   2078