Home | History | Annotate | Download | only in Utils
      1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file promotes memory references to be register references.  It promotes
     11 // alloca instructions which only have loads and stores as uses.  An alloca is
     12 // transformed by using iterated dominator frontiers to place PHI nodes, then
     13 // traversing the function in depth-first order to rewrite loads and stores as
     14 // appropriate.
     15 //
     16 // The algorithm used here is based on:
     17 //
     18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
     19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
     20 //   Programming Languages
     21 //   POPL '95. ACM, New York, NY, 62-73.
     22 //
     23 // It has been modified to not explicitly use the DJ graph data structure and to
     24 // directly compute pruned SSA using per-variable liveness information.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #define DEBUG_TYPE "mem2reg"
     29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     30 #include "llvm/Constants.h"
     31 #include "llvm/DerivedTypes.h"
     32 #include "llvm/Function.h"
     33 #include "llvm/Instructions.h"
     34 #include "llvm/IntrinsicInst.h"
     35 #include "llvm/Metadata.h"
     36 #include "llvm/Analysis/AliasSetTracker.h"
     37 #include "llvm/Analysis/DebugInfo.h"
     38 #include "llvm/Analysis/DIBuilder.h"
     39 #include "llvm/Analysis/Dominators.h"
     40 #include "llvm/Analysis/InstructionSimplify.h"
     41 #include "llvm/Analysis/ValueTracking.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include "llvm/ADT/DenseMap.h"
     44 #include "llvm/ADT/SmallPtrSet.h"
     45 #include "llvm/ADT/SmallVector.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/ADT/STLExtras.h"
     48 #include "llvm/Support/CFG.h"
     49 #include <algorithm>
     50 #include <queue>
     51 using namespace llvm;
     52 
     53 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
     54 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
     55 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
     56 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
     57 
     58 namespace llvm {
     59 template<>
     60 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
     61   typedef std::pair<BasicBlock*, unsigned> EltTy;
     62   static inline EltTy getEmptyKey() {
     63     return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
     64   }
     65   static inline EltTy getTombstoneKey() {
     66     return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
     67   }
     68   static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
     69     return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
     70   }
     71   static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
     72     return LHS == RHS;
     73   }
     74 };
     75 }
     76 
     77 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
     78 /// This is true if there are only loads and stores to the alloca.
     79 ///
     80 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
     81   // FIXME: If the memory unit is of pointer or integer type, we can permit
     82   // assignments to subsections of the memory unit.
     83 
     84   // Only allow direct and non-volatile loads and stores...
     85   for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
     86        UI != UE; ++UI) {   // Loop over all of the uses of the alloca
     87     const User *U = *UI;
     88     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
     89       if (LI->isVolatile())
     90         return false;
     91     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
     92       if (SI->getOperand(0) == AI)
     93         return false;   // Don't allow a store OF the AI, only INTO the AI.
     94       if (SI->isVolatile())
     95         return false;
     96     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
     97       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
     98           II->getIntrinsicID() != Intrinsic::lifetime_end)
     99         return false;
    100     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
    101       if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
    102         return false;
    103       if (!onlyUsedByLifetimeMarkers(BCI))
    104         return false;
    105     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    106       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
    107         return false;
    108       if (!GEPI->hasAllZeroIndices())
    109         return false;
    110       if (!onlyUsedByLifetimeMarkers(GEPI))
    111         return false;
    112     } else {
    113       return false;
    114     }
    115   }
    116 
    117   return true;
    118 }
    119 
    120 namespace {
    121   struct AllocaInfo;
    122 
    123   // Data package used by RenamePass()
    124   class RenamePassData {
    125   public:
    126     typedef std::vector<Value *> ValVector;
    127 
    128     RenamePassData() : BB(NULL), Pred(NULL), Values() {}
    129     RenamePassData(BasicBlock *B, BasicBlock *P,
    130                    const ValVector &V) : BB(B), Pred(P), Values(V) {}
    131     BasicBlock *BB;
    132     BasicBlock *Pred;
    133     ValVector Values;
    134 
    135     void swap(RenamePassData &RHS) {
    136       std::swap(BB, RHS.BB);
    137       std::swap(Pred, RHS.Pred);
    138       Values.swap(RHS.Values);
    139     }
    140   };
    141 
    142   /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
    143   /// load/store instructions in the block that directly load or store an alloca.
    144   ///
    145   /// This functionality is important because it avoids scanning large basic
    146   /// blocks multiple times when promoting many allocas in the same block.
    147   class LargeBlockInfo {
    148     /// InstNumbers - For each instruction that we track, keep the index of the
    149     /// instruction.  The index starts out as the number of the instruction from
    150     /// the start of the block.
    151     DenseMap<const Instruction *, unsigned> InstNumbers;
    152   public:
    153 
    154     /// isInterestingInstruction - This code only looks at accesses to allocas.
    155     static bool isInterestingInstruction(const Instruction *I) {
    156       return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
    157              (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
    158     }
    159 
    160     /// getInstructionIndex - Get or calculate the index of the specified
    161     /// instruction.
    162     unsigned getInstructionIndex(const Instruction *I) {
    163       assert(isInterestingInstruction(I) &&
    164              "Not a load/store to/from an alloca?");
    165 
    166       // If we already have this instruction number, return it.
    167       DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    168       if (It != InstNumbers.end()) return It->second;
    169 
    170       // Scan the whole block to get the instruction.  This accumulates
    171       // information for every interesting instruction in the block, in order to
    172       // avoid gratuitus rescans.
    173       const BasicBlock *BB = I->getParent();
    174       unsigned InstNo = 0;
    175       for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
    176            BBI != E; ++BBI)
    177         if (isInterestingInstruction(BBI))
    178           InstNumbers[BBI] = InstNo++;
    179       It = InstNumbers.find(I);
    180 
    181       assert(It != InstNumbers.end() && "Didn't insert instruction?");
    182       return It->second;
    183     }
    184 
    185     void deleteValue(const Instruction *I) {
    186       InstNumbers.erase(I);
    187     }
    188 
    189     void clear() {
    190       InstNumbers.clear();
    191     }
    192   };
    193 
    194   struct PromoteMem2Reg {
    195     /// Allocas - The alloca instructions being promoted.
    196     ///
    197     std::vector<AllocaInst*> Allocas;
    198     DominatorTree &DT;
    199     DIBuilder *DIB;
    200 
    201     /// AST - An AliasSetTracker object to update.  If null, don't update it.
    202     ///
    203     AliasSetTracker *AST;
    204 
    205     /// AllocaLookup - Reverse mapping of Allocas.
    206     ///
    207     DenseMap<AllocaInst*, unsigned>  AllocaLookup;
    208 
    209     /// NewPhiNodes - The PhiNodes we're adding.
    210     ///
    211     DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
    212 
    213     /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
    214     /// it corresponds to.
    215     DenseMap<PHINode*, unsigned> PhiToAllocaMap;
    216 
    217     /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
    218     /// each alloca that is of pointer type, we keep track of what to copyValue
    219     /// to the inserted PHI nodes here.
    220     ///
    221     std::vector<Value*> PointerAllocaValues;
    222 
    223     /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
    224     /// intrinsic that describes it, if any, so that we can convert it to a
    225     /// dbg.value intrinsic if the alloca gets promoted.
    226     SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
    227 
    228     /// Visited - The set of basic blocks the renamer has already visited.
    229     ///
    230     SmallPtrSet<BasicBlock*, 16> Visited;
    231 
    232     /// BBNumbers - Contains a stable numbering of basic blocks to avoid
    233     /// non-determinstic behavior.
    234     DenseMap<BasicBlock*, unsigned> BBNumbers;
    235 
    236     /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
    237     DenseMap<DomTreeNode*, unsigned> DomLevels;
    238 
    239     /// BBNumPreds - Lazily compute the number of predecessors a block has.
    240     DenseMap<const BasicBlock*, unsigned> BBNumPreds;
    241   public:
    242     PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
    243                    AliasSetTracker *ast)
    244       : Allocas(A), DT(dt), DIB(0), AST(ast) {}
    245     ~PromoteMem2Reg() {
    246       delete DIB;
    247     }
    248 
    249     void run();
    250 
    251     /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
    252     ///
    253     bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
    254       return DT.dominates(BB1, BB2);
    255     }
    256 
    257   private:
    258     void RemoveFromAllocasList(unsigned &AllocaIdx) {
    259       Allocas[AllocaIdx] = Allocas.back();
    260       Allocas.pop_back();
    261       --AllocaIdx;
    262     }
    263 
    264     unsigned getNumPreds(const BasicBlock *BB) {
    265       unsigned &NP = BBNumPreds[BB];
    266       if (NP == 0)
    267         NP = std::distance(pred_begin(BB), pred_end(BB))+1;
    268       return NP-1;
    269     }
    270 
    271     void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    272                                  AllocaInfo &Info);
    273     void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    274                              const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
    275                              SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
    276 
    277     void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
    278                                   LargeBlockInfo &LBI);
    279     void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
    280                                   LargeBlockInfo &LBI);
    281 
    282     void RenamePass(BasicBlock *BB, BasicBlock *Pred,
    283                     RenamePassData::ValVector &IncVals,
    284                     std::vector<RenamePassData> &Worklist);
    285     bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
    286   };
    287 
    288   struct AllocaInfo {
    289     SmallVector<BasicBlock*, 32> DefiningBlocks;
    290     SmallVector<BasicBlock*, 32> UsingBlocks;
    291 
    292     StoreInst  *OnlyStore;
    293     BasicBlock *OnlyBlock;
    294     bool OnlyUsedInOneBlock;
    295 
    296     Value *AllocaPointerVal;
    297     DbgDeclareInst *DbgDeclare;
    298 
    299     void clear() {
    300       DefiningBlocks.clear();
    301       UsingBlocks.clear();
    302       OnlyStore = 0;
    303       OnlyBlock = 0;
    304       OnlyUsedInOneBlock = true;
    305       AllocaPointerVal = 0;
    306       DbgDeclare = 0;
    307     }
    308 
    309     /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
    310     /// ivars.
    311     void AnalyzeAlloca(AllocaInst *AI) {
    312       clear();
    313 
    314       // As we scan the uses of the alloca instruction, keep track of stores,
    315       // and decide whether all of the loads and stores to the alloca are within
    316       // the same basic block.
    317       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    318            UI != E;)  {
    319         Instruction *User = cast<Instruction>(*UI++);
    320 
    321         if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    322           // Remember the basic blocks which define new values for the alloca
    323           DefiningBlocks.push_back(SI->getParent());
    324           AllocaPointerVal = SI->getOperand(0);
    325           OnlyStore = SI;
    326         } else {
    327           LoadInst *LI = cast<LoadInst>(User);
    328           // Otherwise it must be a load instruction, keep track of variable
    329           // reads.
    330           UsingBlocks.push_back(LI->getParent());
    331           AllocaPointerVal = LI;
    332         }
    333 
    334         if (OnlyUsedInOneBlock) {
    335           if (OnlyBlock == 0)
    336             OnlyBlock = User->getParent();
    337           else if (OnlyBlock != User->getParent())
    338             OnlyUsedInOneBlock = false;
    339         }
    340       }
    341 
    342       DbgDeclare = FindAllocaDbgDeclare(AI);
    343     }
    344   };
    345 
    346   typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
    347 
    348   struct DomTreeNodeCompare {
    349     bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
    350       return LHS.second < RHS.second;
    351     }
    352   };
    353 }  // end of anonymous namespace
    354 
    355 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
    356   // Knowing that this alloca is promotable, we know that it's safe to kill all
    357   // instructions except for load and store.
    358 
    359   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
    360        UI != UE;) {
    361     Instruction *I = cast<Instruction>(*UI);
    362     ++UI;
    363     if (isa<LoadInst>(I) || isa<StoreInst>(I))
    364       continue;
    365 
    366     if (!I->getType()->isVoidTy()) {
    367       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
    368       // Follow the use/def chain to erase them now instead of leaving it for
    369       // dead code elimination later.
    370       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
    371            UI != UE;) {
    372         Instruction *Inst = cast<Instruction>(*UI);
    373         ++UI;
    374         Inst->eraseFromParent();
    375       }
    376     }
    377     I->eraseFromParent();
    378   }
    379 }
    380 
    381 void PromoteMem2Reg::run() {
    382   Function &F = *DT.getRoot()->getParent();
    383 
    384   if (AST) PointerAllocaValues.resize(Allocas.size());
    385   AllocaDbgDeclares.resize(Allocas.size());
    386 
    387   AllocaInfo Info;
    388   LargeBlockInfo LBI;
    389 
    390   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    391     AllocaInst *AI = Allocas[AllocaNum];
    392 
    393     assert(isAllocaPromotable(AI) &&
    394            "Cannot promote non-promotable alloca!");
    395     assert(AI->getParent()->getParent() == &F &&
    396            "All allocas should be in the same function, which is same as DF!");
    397 
    398     removeLifetimeIntrinsicUsers(AI);
    399 
    400     if (AI->use_empty()) {
    401       // If there are no uses of the alloca, just delete it now.
    402       if (AST) AST->deleteValue(AI);
    403       AI->eraseFromParent();
    404 
    405       // Remove the alloca from the Allocas list, since it has been processed
    406       RemoveFromAllocasList(AllocaNum);
    407       ++NumDeadAlloca;
    408       continue;
    409     }
    410 
    411     // Calculate the set of read and write-locations for each alloca.  This is
    412     // analogous to finding the 'uses' and 'definitions' of each variable.
    413     Info.AnalyzeAlloca(AI);
    414 
    415     // If there is only a single store to this value, replace any loads of
    416     // it that are directly dominated by the definition with the value stored.
    417     if (Info.DefiningBlocks.size() == 1) {
    418       RewriteSingleStoreAlloca(AI, Info, LBI);
    419 
    420       // Finally, after the scan, check to see if the store is all that is left.
    421       if (Info.UsingBlocks.empty()) {
    422         // Record debuginfo for the store and remove the declaration's debuginfo.
    423         if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    424           if (!DIB)
    425             DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
    426           ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
    427           DDI->eraseFromParent();
    428         }
    429         // Remove the (now dead) store and alloca.
    430         Info.OnlyStore->eraseFromParent();
    431         LBI.deleteValue(Info.OnlyStore);
    432 
    433         if (AST) AST->deleteValue(AI);
    434         AI->eraseFromParent();
    435         LBI.deleteValue(AI);
    436 
    437         // The alloca has been processed, move on.
    438         RemoveFromAllocasList(AllocaNum);
    439 
    440         ++NumSingleStore;
    441         continue;
    442       }
    443     }
    444 
    445     // If the alloca is only read and written in one basic block, just perform a
    446     // linear sweep over the block to eliminate it.
    447     if (Info.OnlyUsedInOneBlock) {
    448       PromoteSingleBlockAlloca(AI, Info, LBI);
    449 
    450       // Finally, after the scan, check to see if the stores are all that is
    451       // left.
    452       if (Info.UsingBlocks.empty()) {
    453 
    454         // Remove the (now dead) stores and alloca.
    455         while (!AI->use_empty()) {
    456           StoreInst *SI = cast<StoreInst>(AI->use_back());
    457           // Record debuginfo for the store before removing it.
    458           if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    459             if (!DIB)
    460               DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
    461             ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
    462           }
    463           SI->eraseFromParent();
    464           LBI.deleteValue(SI);
    465         }
    466 
    467         if (AST) AST->deleteValue(AI);
    468         AI->eraseFromParent();
    469         LBI.deleteValue(AI);
    470 
    471         // The alloca has been processed, move on.
    472         RemoveFromAllocasList(AllocaNum);
    473 
    474         // The alloca's debuginfo can be removed as well.
    475         if (DbgDeclareInst *DDI = Info.DbgDeclare)
    476           DDI->eraseFromParent();
    477 
    478         ++NumLocalPromoted;
    479         continue;
    480       }
    481     }
    482 
    483     // If we haven't computed dominator tree levels, do so now.
    484     if (DomLevels.empty()) {
    485       SmallVector<DomTreeNode*, 32> Worklist;
    486 
    487       DomTreeNode *Root = DT.getRootNode();
    488       DomLevels[Root] = 0;
    489       Worklist.push_back(Root);
    490 
    491       while (!Worklist.empty()) {
    492         DomTreeNode *Node = Worklist.pop_back_val();
    493         unsigned ChildLevel = DomLevels[Node] + 1;
    494         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
    495              CI != CE; ++CI) {
    496           DomLevels[*CI] = ChildLevel;
    497           Worklist.push_back(*CI);
    498         }
    499       }
    500     }
    501 
    502     // If we haven't computed a numbering for the BB's in the function, do so
    503     // now.
    504     if (BBNumbers.empty()) {
    505       unsigned ID = 0;
    506       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    507         BBNumbers[I] = ID++;
    508     }
    509 
    510     // If we have an AST to keep updated, remember some pointer value that is
    511     // stored into the alloca.
    512     if (AST)
    513       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
    514 
    515     // Remember the dbg.declare intrinsic describing this alloca, if any.
    516     if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
    517 
    518     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    519     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
    520 
    521     // At this point, we're committed to promoting the alloca using IDF's, and
    522     // the standard SSA construction algorithm.  Determine which blocks need PHI
    523     // nodes and see if we can optimize out some work by avoiding insertion of
    524     // dead phi nodes.
    525     DetermineInsertionPoint(AI, AllocaNum, Info);
    526   }
    527 
    528   if (Allocas.empty())
    529     return; // All of the allocas must have been trivial!
    530 
    531   LBI.clear();
    532 
    533 
    534   // Set the incoming values for the basic block to be null values for all of
    535   // the alloca's.  We do this in case there is a load of a value that has not
    536   // been stored yet.  In this case, it will get this null value.
    537   //
    538   RenamePassData::ValVector Values(Allocas.size());
    539   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    540     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
    541 
    542   // Walks all basic blocks in the function performing the SSA rename algorithm
    543   // and inserting the phi nodes we marked as necessary
    544   //
    545   std::vector<RenamePassData> RenamePassWorkList;
    546   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
    547   do {
    548     RenamePassData RPD;
    549     RPD.swap(RenamePassWorkList.back());
    550     RenamePassWorkList.pop_back();
    551     // RenamePass may add new worklist entries.
    552     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
    553   } while (!RenamePassWorkList.empty());
    554 
    555   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
    556   Visited.clear();
    557 
    558   // Remove the allocas themselves from the function.
    559   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
    560     Instruction *A = Allocas[i];
    561 
    562     // If there are any uses of the alloca instructions left, they must be in
    563     // unreachable basic blocks that were not processed by walking the dominator
    564     // tree. Just delete the users now.
    565     if (!A->use_empty())
    566       A->replaceAllUsesWith(UndefValue::get(A->getType()));
    567     if (AST) AST->deleteValue(A);
    568     A->eraseFromParent();
    569   }
    570 
    571   // Remove alloca's dbg.declare instrinsics from the function.
    572   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
    573     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
    574       DDI->eraseFromParent();
    575 
    576   // Loop over all of the PHI nodes and see if there are any that we can get
    577   // rid of because they merge all of the same incoming values.  This can
    578   // happen due to undef values coming into the PHI nodes.  This process is
    579   // iterative, because eliminating one PHI node can cause others to be removed.
    580   bool EliminatedAPHI = true;
    581   while (EliminatedAPHI) {
    582     EliminatedAPHI = false;
    583 
    584     for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
    585            NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
    586       PHINode *PN = I->second;
    587 
    588       // If this PHI node merges one value and/or undefs, get the value.
    589       if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
    590         if (AST && PN->getType()->isPointerTy())
    591           AST->deleteValue(PN);
    592         PN->replaceAllUsesWith(V);
    593         PN->eraseFromParent();
    594         NewPhiNodes.erase(I++);
    595         EliminatedAPHI = true;
    596         continue;
    597       }
    598       ++I;
    599     }
    600   }
    601 
    602   // At this point, the renamer has added entries to PHI nodes for all reachable
    603   // code.  Unfortunately, there may be unreachable blocks which the renamer
    604   // hasn't traversed.  If this is the case, the PHI nodes may not
    605   // have incoming values for all predecessors.  Loop over all PHI nodes we have
    606   // created, inserting undef values if they are missing any incoming values.
    607   //
    608   for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
    609          NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
    610     // We want to do this once per basic block.  As such, only process a block
    611     // when we find the PHI that is the first entry in the block.
    612     PHINode *SomePHI = I->second;
    613     BasicBlock *BB = SomePHI->getParent();
    614     if (&BB->front() != SomePHI)
    615       continue;
    616 
    617     // Only do work here if there the PHI nodes are missing incoming values.  We
    618     // know that all PHI nodes that were inserted in a block will have the same
    619     // number of incoming values, so we can just check any of them.
    620     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
    621       continue;
    622 
    623     // Get the preds for BB.
    624     SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    625 
    626     // Ok, now we know that all of the PHI nodes are missing entries for some
    627     // basic blocks.  Start by sorting the incoming predecessors for efficient
    628     // access.
    629     std::sort(Preds.begin(), Preds.end());
    630 
    631     // Now we loop through all BB's which have entries in SomePHI and remove
    632     // them from the Preds list.
    633     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
    634       // Do a log(n) search of the Preds list for the entry we want.
    635       SmallVector<BasicBlock*, 16>::iterator EntIt =
    636         std::lower_bound(Preds.begin(), Preds.end(),
    637                          SomePHI->getIncomingBlock(i));
    638       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
    639              "PHI node has entry for a block which is not a predecessor!");
    640 
    641       // Remove the entry
    642       Preds.erase(EntIt);
    643     }
    644 
    645     // At this point, the blocks left in the preds list must have dummy
    646     // entries inserted into every PHI nodes for the block.  Update all the phi
    647     // nodes in this block that we are inserting (there could be phis before
    648     // mem2reg runs).
    649     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    650     BasicBlock::iterator BBI = BB->begin();
    651     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
    652            SomePHI->getNumIncomingValues() == NumBadPreds) {
    653       Value *UndefVal = UndefValue::get(SomePHI->getType());
    654       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
    655         SomePHI->addIncoming(UndefVal, Preds[pred]);
    656     }
    657   }
    658 
    659   NewPhiNodes.clear();
    660 }
    661 
    662 
    663 /// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
    664 /// are blocks which lead to uses.  Knowing this allows us to avoid inserting
    665 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
    666 /// would be dead).
    667 void PromoteMem2Reg::
    668 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    669                     const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
    670                     SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
    671 
    672   // To determine liveness, we must iterate through the predecessors of blocks
    673   // where the def is live.  Blocks are added to the worklist if we need to
    674   // check their predecessors.  Start with all the using blocks.
    675   SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
    676                                                    Info.UsingBlocks.end());
    677 
    678   // If any of the using blocks is also a definition block, check to see if the
    679   // definition occurs before or after the use.  If it happens before the use,
    680   // the value isn't really live-in.
    681   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    682     BasicBlock *BB = LiveInBlockWorklist[i];
    683     if (!DefBlocks.count(BB)) continue;
    684 
    685     // Okay, this is a block that both uses and defines the value.  If the first
    686     // reference to the alloca is a def (store), then we know it isn't live-in.
    687     for (BasicBlock::iterator I = BB->begin(); ; ++I) {
    688       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    689         if (SI->getOperand(1) != AI) continue;
    690 
    691         // We found a store to the alloca before a load.  The alloca is not
    692         // actually live-in here.
    693         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
    694         LiveInBlockWorklist.pop_back();
    695         --i, --e;
    696         break;
    697       }
    698 
    699       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    700         if (LI->getOperand(0) != AI) continue;
    701 
    702         // Okay, we found a load before a store to the alloca.  It is actually
    703         // live into this block.
    704         break;
    705       }
    706     }
    707   }
    708 
    709   // Now that we have a set of blocks where the phi is live-in, recursively add
    710   // their predecessors until we find the full region the value is live.
    711   while (!LiveInBlockWorklist.empty()) {
    712     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
    713 
    714     // The block really is live in here, insert it into the set.  If already in
    715     // the set, then it has already been processed.
    716     if (!LiveInBlocks.insert(BB))
    717       continue;
    718 
    719     // Since the value is live into BB, it is either defined in a predecessor or
    720     // live into it to.  Add the preds to the worklist unless they are a
    721     // defining block.
    722     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    723       BasicBlock *P = *PI;
    724 
    725       // The value is not live into a predecessor if it defines the value.
    726       if (DefBlocks.count(P))
    727         continue;
    728 
    729       // Otherwise it is, add to the worklist.
    730       LiveInBlockWorklist.push_back(P);
    731     }
    732   }
    733 }
    734 
    735 /// DetermineInsertionPoint - At this point, we're committed to promoting the
    736 /// alloca using IDF's, and the standard SSA construction algorithm.  Determine
    737 /// which blocks need phi nodes and see if we can optimize out some work by
    738 /// avoiding insertion of dead phi nodes.
    739 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    740                                              AllocaInfo &Info) {
    741   // Unique the set of defining blocks for efficient lookup.
    742   SmallPtrSet<BasicBlock*, 32> DefBlocks;
    743   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
    744 
    745   // Determine which blocks the value is live in.  These are blocks which lead
    746   // to uses.
    747   SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
    748   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
    749 
    750   // Use a priority queue keyed on dominator tree level so that inserted nodes
    751   // are handled from the bottom of the dominator tree upwards.
    752   typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
    753                               DomTreeNodeCompare> IDFPriorityQueue;
    754   IDFPriorityQueue PQ;
    755 
    756   for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
    757        E = DefBlocks.end(); I != E; ++I) {
    758     if (DomTreeNode *Node = DT.getNode(*I))
    759       PQ.push(std::make_pair(Node, DomLevels[Node]));
    760   }
    761 
    762   SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
    763   SmallPtrSet<DomTreeNode*, 32> Visited;
    764   SmallVector<DomTreeNode*, 32> Worklist;
    765   while (!PQ.empty()) {
    766     DomTreeNodePair RootPair = PQ.top();
    767     PQ.pop();
    768     DomTreeNode *Root = RootPair.first;
    769     unsigned RootLevel = RootPair.second;
    770 
    771     // Walk all dominator tree children of Root, inspecting their CFG edges with
    772     // targets elsewhere on the dominator tree. Only targets whose level is at
    773     // most Root's level are added to the iterated dominance frontier of the
    774     // definition set.
    775 
    776     Worklist.clear();
    777     Worklist.push_back(Root);
    778 
    779     while (!Worklist.empty()) {
    780       DomTreeNode *Node = Worklist.pop_back_val();
    781       BasicBlock *BB = Node->getBlock();
    782 
    783       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
    784            ++SI) {
    785         DomTreeNode *SuccNode = DT.getNode(*SI);
    786 
    787         // Quickly skip all CFG edges that are also dominator tree edges instead
    788         // of catching them below.
    789         if (SuccNode->getIDom() == Node)
    790           continue;
    791 
    792         unsigned SuccLevel = DomLevels[SuccNode];
    793         if (SuccLevel > RootLevel)
    794           continue;
    795 
    796         if (!Visited.insert(SuccNode))
    797           continue;
    798 
    799         BasicBlock *SuccBB = SuccNode->getBlock();
    800         if (!LiveInBlocks.count(SuccBB))
    801           continue;
    802 
    803         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
    804         if (!DefBlocks.count(SuccBB))
    805           PQ.push(std::make_pair(SuccNode, SuccLevel));
    806       }
    807 
    808       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
    809            ++CI) {
    810         if (!Visited.count(*CI))
    811           Worklist.push_back(*CI);
    812       }
    813     }
    814   }
    815 
    816   if (DFBlocks.size() > 1)
    817     std::sort(DFBlocks.begin(), DFBlocks.end());
    818 
    819   unsigned CurrentVersion = 0;
    820   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
    821     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
    822 }
    823 
    824 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
    825 /// replace any loads of it that are directly dominated by the definition with
    826 /// the value stored.
    827 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
    828                                               AllocaInfo &Info,
    829                                               LargeBlockInfo &LBI) {
    830   StoreInst *OnlyStore = Info.OnlyStore;
    831   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
    832   BasicBlock *StoreBB = OnlyStore->getParent();
    833   int StoreIndex = -1;
    834 
    835   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    836   Info.UsingBlocks.clear();
    837 
    838   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
    839     Instruction *UserInst = cast<Instruction>(*UI++);
    840     if (!isa<LoadInst>(UserInst)) {
    841       assert(UserInst == OnlyStore && "Should only have load/stores");
    842       continue;
    843     }
    844     LoadInst *LI = cast<LoadInst>(UserInst);
    845 
    846     // Okay, if we have a load from the alloca, we want to replace it with the
    847     // only value stored to the alloca.  We can do this if the value is
    848     // dominated by the store.  If not, we use the rest of the mem2reg machinery
    849     // to insert the phi nodes as needed.
    850     if (!StoringGlobalVal) {  // Non-instructions are always dominated.
    851       if (LI->getParent() == StoreBB) {
    852         // If we have a use that is in the same block as the store, compare the
    853         // indices of the two instructions to see which one came first.  If the
    854         // load came before the store, we can't handle it.
    855         if (StoreIndex == -1)
    856           StoreIndex = LBI.getInstructionIndex(OnlyStore);
    857 
    858         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
    859           // Can't handle this load, bail out.
    860           Info.UsingBlocks.push_back(StoreBB);
    861           continue;
    862         }
    863 
    864       } else if (LI->getParent() != StoreBB &&
    865                  !dominates(StoreBB, LI->getParent())) {
    866         // If the load and store are in different blocks, use BB dominance to
    867         // check their relationships.  If the store doesn't dom the use, bail
    868         // out.
    869         Info.UsingBlocks.push_back(LI->getParent());
    870         continue;
    871       }
    872     }
    873 
    874     // Otherwise, we *can* safely rewrite this load.
    875     Value *ReplVal = OnlyStore->getOperand(0);
    876     // If the replacement value is the load, this must occur in unreachable
    877     // code.
    878     if (ReplVal == LI)
    879       ReplVal = UndefValue::get(LI->getType());
    880     LI->replaceAllUsesWith(ReplVal);
    881     if (AST && LI->getType()->isPointerTy())
    882       AST->deleteValue(LI);
    883     LI->eraseFromParent();
    884     LBI.deleteValue(LI);
    885   }
    886 }
    887 
    888 namespace {
    889 
    890 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
    891 /// first element of a pair.
    892 struct StoreIndexSearchPredicate {
    893   bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
    894                   const std::pair<unsigned, StoreInst*> &RHS) {
    895     return LHS.first < RHS.first;
    896   }
    897 };
    898 
    899 }
    900 
    901 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
    902 /// block.  If this is the case, avoid traversing the CFG and inserting a lot of
    903 /// potentially useless PHI nodes by just performing a single linear pass over
    904 /// the basic block using the Alloca.
    905 ///
    906 /// If we cannot promote this alloca (because it is read before it is written),
    907 /// return true.  This is necessary in cases where, due to control flow, the
    908 /// alloca is potentially undefined on some control flow paths.  e.g. code like
    909 /// this is potentially correct:
    910 ///
    911 ///   for (...) { if (c) { A = undef; undef = B; } }
    912 ///
    913 /// ... so long as A is not used before undef is set.
    914 ///
    915 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
    916                                               LargeBlockInfo &LBI) {
    917   // The trickiest case to handle is when we have large blocks. Because of this,
    918   // this code is optimized assuming that large blocks happen.  This does not
    919   // significantly pessimize the small block case.  This uses LargeBlockInfo to
    920   // make it efficient to get the index of various operations in the block.
    921 
    922   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    923   Info.UsingBlocks.clear();
    924 
    925   // Walk the use-def list of the alloca, getting the locations of all stores.
    926   typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
    927   StoresByIndexTy StoresByIndex;
    928 
    929   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    930        UI != E; ++UI)
    931     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
    932       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
    933 
    934   // If there are no stores to the alloca, just replace any loads with undef.
    935   if (StoresByIndex.empty()) {
    936     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
    937       if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
    938         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    939         if (AST && LI->getType()->isPointerTy())
    940           AST->deleteValue(LI);
    941         LBI.deleteValue(LI);
    942         LI->eraseFromParent();
    943       }
    944     return;
    945   }
    946 
    947   // Sort the stores by their index, making it efficient to do a lookup with a
    948   // binary search.
    949   std::sort(StoresByIndex.begin(), StoresByIndex.end());
    950 
    951   // Walk all of the loads from this alloca, replacing them with the nearest
    952   // store above them, if any.
    953   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    954     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    955     if (!LI) continue;
    956 
    957     unsigned LoadIdx = LBI.getInstructionIndex(LI);
    958 
    959     // Find the nearest store that has a lower than this load.
    960     StoresByIndexTy::iterator I =
    961       std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
    962                        std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
    963                        StoreIndexSearchPredicate());
    964 
    965     // If there is no store before this load, then we can't promote this load.
    966     if (I == StoresByIndex.begin()) {
    967       // Can't handle this load, bail out.
    968       Info.UsingBlocks.push_back(LI->getParent());
    969       continue;
    970     }
    971 
    972     // Otherwise, there was a store before this load, the load takes its value.
    973     --I;
    974     LI->replaceAllUsesWith(I->second->getOperand(0));
    975     if (AST && LI->getType()->isPointerTy())
    976       AST->deleteValue(LI);
    977     LI->eraseFromParent();
    978     LBI.deleteValue(LI);
    979   }
    980 }
    981 
    982 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
    983 // Alloca returns true if there wasn't already a phi-node for that variable
    984 //
    985 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
    986                                   unsigned &Version) {
    987   // Look up the basic-block in question.
    988   PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
    989 
    990   // If the BB already has a phi node added for the i'th alloca then we're done!
    991   if (PN) return false;
    992 
    993   // Create a PhiNode using the dereferenced type... and add the phi-node to the
    994   // BasicBlock.
    995   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
    996                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
    997                        BB->begin());
    998   ++NumPHIInsert;
    999   PhiToAllocaMap[PN] = AllocaNo;
   1000 
   1001   if (AST && PN->getType()->isPointerTy())
   1002     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
   1003 
   1004   return true;
   1005 }
   1006 
   1007 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
   1008 // stores to the allocas which we are promoting.  IncomingVals indicates what
   1009 // value each Alloca contains on exit from the predecessor block Pred.
   1010 //
   1011 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
   1012                                 RenamePassData::ValVector &IncomingVals,
   1013                                 std::vector<RenamePassData> &Worklist) {
   1014 NextIteration:
   1015   // If we are inserting any phi nodes into this BB, they will already be in the
   1016   // block.
   1017   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
   1018     // If we have PHI nodes to update, compute the number of edges from Pred to
   1019     // BB.
   1020     if (PhiToAllocaMap.count(APN)) {
   1021       // We want to be able to distinguish between PHI nodes being inserted by
   1022       // this invocation of mem2reg from those phi nodes that already existed in
   1023       // the IR before mem2reg was run.  We determine that APN is being inserted
   1024       // because it is missing incoming edges.  All other PHI nodes being
   1025       // inserted by this pass of mem2reg will have the same number of incoming
   1026       // operands so far.  Remember this count.
   1027       unsigned NewPHINumOperands = APN->getNumOperands();
   1028 
   1029       unsigned NumEdges = 0;
   1030       for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
   1031         if (*I == BB)
   1032           ++NumEdges;
   1033       assert(NumEdges && "Must be at least one edge from Pred to BB!");
   1034 
   1035       // Add entries for all the phis.
   1036       BasicBlock::iterator PNI = BB->begin();
   1037       do {
   1038         unsigned AllocaNo = PhiToAllocaMap[APN];
   1039 
   1040         // Add N incoming values to the PHI node.
   1041         for (unsigned i = 0; i != NumEdges; ++i)
   1042           APN->addIncoming(IncomingVals[AllocaNo], Pred);
   1043 
   1044         // The currently active variable for this block is now the PHI.
   1045         IncomingVals[AllocaNo] = APN;
   1046 
   1047         // Get the next phi node.
   1048         ++PNI;
   1049         APN = dyn_cast<PHINode>(PNI);
   1050         if (APN == 0) break;
   1051 
   1052         // Verify that it is missing entries.  If not, it is not being inserted
   1053         // by this mem2reg invocation so we want to ignore it.
   1054       } while (APN->getNumOperands() == NewPHINumOperands);
   1055     }
   1056   }
   1057 
   1058   // Don't revisit blocks.
   1059   if (!Visited.insert(BB)) return;
   1060 
   1061   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
   1062     Instruction *I = II++; // get the instruction, increment iterator
   1063 
   1064     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1065       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
   1066       if (!Src) continue;
   1067 
   1068       DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
   1069       if (AI == AllocaLookup.end()) continue;
   1070 
   1071       Value *V = IncomingVals[AI->second];
   1072 
   1073       // Anything using the load now uses the current value.
   1074       LI->replaceAllUsesWith(V);
   1075       if (AST && LI->getType()->isPointerTy())
   1076         AST->deleteValue(LI);
   1077       BB->getInstList().erase(LI);
   1078     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1079       // Delete this instruction and mark the name as the current holder of the
   1080       // value
   1081       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
   1082       if (!Dest) continue;
   1083 
   1084       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
   1085       if (ai == AllocaLookup.end())
   1086         continue;
   1087 
   1088       // what value were we writing?
   1089       IncomingVals[ai->second] = SI->getOperand(0);
   1090       // Record debuginfo for the store before removing it.
   1091       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
   1092         if (!DIB)
   1093           DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
   1094         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
   1095       }
   1096       BB->getInstList().erase(SI);
   1097     }
   1098   }
   1099 
   1100   // 'Recurse' to our successors.
   1101   succ_iterator I = succ_begin(BB), E = succ_end(BB);
   1102   if (I == E) return;
   1103 
   1104   // Keep track of the successors so we don't visit the same successor twice
   1105   SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
   1106 
   1107   // Handle the first successor without using the worklist.
   1108   VisitedSuccs.insert(*I);
   1109   Pred = BB;
   1110   BB = *I;
   1111   ++I;
   1112 
   1113   for (; I != E; ++I)
   1114     if (VisitedSuccs.insert(*I))
   1115       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
   1116 
   1117   goto NextIteration;
   1118 }
   1119 
   1120 /// PromoteMemToReg - Promote the specified list of alloca instructions into
   1121 /// scalar registers, inserting PHI nodes as appropriate.  This function does
   1122 /// not modify the CFG of the function at all.  All allocas must be from the
   1123 /// same function.
   1124 ///
   1125 /// If AST is specified, the specified tracker is updated to reflect changes
   1126 /// made to the IR.
   1127 ///
   1128 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
   1129                            DominatorTree &DT, AliasSetTracker *AST) {
   1130   // If there is nothing to do, bail out...
   1131   if (Allocas.empty()) return;
   1132 
   1133   PromoteMem2Reg(Allocas, DT, AST).run();
   1134 }
   1135