1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 /* 18 * Android's method call profiling goodies. 19 */ 20 #include "Dalvik.h" 21 #include <interp/InterpDefs.h> 22 23 #include <stdlib.h> 24 #include <stddef.h> 25 #include <string.h> 26 #include <sys/time.h> 27 #include <time.h> 28 #include <sys/mman.h> 29 #include <sched.h> 30 #include <errno.h> 31 #include <fcntl.h> 32 33 #include <cutils/open_memstream.h> 34 35 #ifdef HAVE_ANDROID_OS 36 # define UPDATE_MAGIC_PAGE 1 37 #endif 38 39 /* 40 * File format: 41 * header 42 * record 0 43 * record 1 44 * ... 45 * 46 * Header format: 47 * u4 magic ('SLOW') 48 * u2 version 49 * u2 offset to data 50 * u8 start date/time in usec 51 * u2 record size in bytes (version >= 2 only) 52 * ... padding to 32 bytes 53 * 54 * Record format v1: 55 * u1 thread ID 56 * u4 method ID | method action 57 * u4 time delta since start, in usec 58 * 59 * Record format v2: 60 * u2 thread ID 61 * u4 method ID | method action 62 * u4 time delta since start, in usec 63 * 64 * Record format v3: 65 * u2 thread ID 66 * u4 method ID | method action 67 * u4 time delta since start, in usec 68 * u4 wall time since start, in usec (when clock == "dual" only) 69 * 70 * 32 bits of microseconds is 70 minutes. 71 * 72 * All values are stored in little-endian order. 73 */ 74 #define TRACE_REC_SIZE_SINGLE_CLOCK 10 // using v2 75 #define TRACE_REC_SIZE_DUAL_CLOCK 14 // using v3 with two timestamps 76 #define TRACE_MAGIC 0x574f4c53 77 #define TRACE_HEADER_LEN 32 78 79 #define FILL_PATTERN 0xeeeeeeee 80 81 82 /* 83 * Returns true if the thread CPU clock should be used. 84 */ 85 static inline bool useThreadCpuClock() { 86 #if defined(HAVE_POSIX_CLOCKS) 87 return gDvm.profilerClockSource != kProfilerClockSourceWall; 88 #else 89 return false; 90 #endif 91 } 92 93 /* 94 * Returns true if the wall clock should be used. 95 */ 96 static inline bool useWallClock() { 97 #if defined(HAVE_POSIX_CLOCKS) 98 return gDvm.profilerClockSource != kProfilerClockSourceThreadCpu; 99 #else 100 return true; 101 #endif 102 } 103 104 /* 105 * Get the wall-clock date/time, in usec. 106 */ 107 static inline u8 getWallTimeInUsec() 108 { 109 struct timeval tv; 110 111 gettimeofday(&tv, NULL); 112 return tv.tv_sec * 1000000LL + tv.tv_usec; 113 } 114 115 #if defined(HAVE_POSIX_CLOCKS) 116 /* 117 * Get the thread-cpu time, in usec. 118 * We use this clock when we can because it enables us to track the time that 119 * a thread spends running and not blocked. 120 */ 121 static inline u8 getThreadCpuTimeInUsec() 122 { 123 struct timespec tm; 124 125 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tm); 126 if (!(tm.tv_nsec >= 0 && tm.tv_nsec < 1*1000*1000*1000)) { 127 LOGE("bad nsec: %ld", tm.tv_nsec); 128 dvmAbort(); 129 } 130 return tm.tv_sec * 1000000LL + tm.tv_nsec / 1000; 131 } 132 #endif 133 134 /* 135 * Get the clock used for stopwatch-like timing measurements on a single thread. 136 */ 137 static inline u8 getStopwatchClock() 138 { 139 #if defined(HAVE_POSIX_CLOCKS) 140 return getThreadCpuTimeInUsec(); 141 #else 142 return getWallTimeInUsec(); 143 #endif 144 } 145 146 /* 147 * Write little-endian data. 148 */ 149 static inline void storeShortLE(u1* buf, u2 val) 150 { 151 *buf++ = (u1) val; 152 *buf++ = (u1) (val >> 8); 153 } 154 static inline void storeIntLE(u1* buf, u4 val) 155 { 156 *buf++ = (u1) val; 157 *buf++ = (u1) (val >> 8); 158 *buf++ = (u1) (val >> 16); 159 *buf++ = (u1) (val >> 24); 160 } 161 static inline void storeLongLE(u1* buf, u8 val) 162 { 163 *buf++ = (u1) val; 164 *buf++ = (u1) (val >> 8); 165 *buf++ = (u1) (val >> 16); 166 *buf++ = (u1) (val >> 24); 167 *buf++ = (u1) (val >> 32); 168 *buf++ = (u1) (val >> 40); 169 *buf++ = (u1) (val >> 48); 170 *buf++ = (u1) (val >> 56); 171 } 172 173 /* 174 * Boot-time init. 175 */ 176 bool dvmProfilingStartup() 177 { 178 /* 179 * Initialize "dmtrace" method profiling. 180 */ 181 memset(&gDvm.methodTrace, 0, sizeof(gDvm.methodTrace)); 182 dvmInitMutex(&gDvm.methodTrace.startStopLock); 183 pthread_cond_init(&gDvm.methodTrace.threadExitCond, NULL); 184 185 assert(!dvmCheckException(dvmThreadSelf())); 186 187 /* 188 * Allocate storage for instruction counters. 189 */ 190 gDvm.executedInstrCounts = (int*) malloc(kNumPackedOpcodes * sizeof(int)); 191 if (gDvm.executedInstrCounts == NULL) 192 return false; 193 memset(gDvm.executedInstrCounts, 0, kNumPackedOpcodes * sizeof(int)); 194 195 #ifdef UPDATE_MAGIC_PAGE 196 /* 197 * If we're running on the emulator, there's a magic page into which 198 * we can put interpreted method information. This allows interpreted 199 * methods to show up in the emulator's code traces. 200 * 201 * We could key this off of the "ro.kernel.qemu" property, but there's 202 * no real harm in doing this on a real device. 203 */ 204 int fd = open("/dev/qemu_trace", O_RDWR); 205 if (fd < 0) { 206 LOGV("Unable to open /dev/qemu_trace"); 207 } else { 208 gDvm.emulatorTracePage = mmap(0, SYSTEM_PAGE_SIZE, PROT_READ|PROT_WRITE, 209 MAP_SHARED, fd, 0); 210 close(fd); 211 if (gDvm.emulatorTracePage == MAP_FAILED) { 212 LOGE("Unable to mmap /dev/qemu_trace"); 213 gDvm.emulatorTracePage = NULL; 214 } else { 215 *(u4*) gDvm.emulatorTracePage = 0; 216 } 217 } 218 #else 219 assert(gDvm.emulatorTracePage == NULL); 220 #endif 221 222 return true; 223 } 224 225 /* 226 * Free up profiling resources. 227 */ 228 void dvmProfilingShutdown() 229 { 230 #ifdef UPDATE_MAGIC_PAGE 231 if (gDvm.emulatorTracePage != NULL) 232 munmap(gDvm.emulatorTracePage, SYSTEM_PAGE_SIZE); 233 #endif 234 free(gDvm.executedInstrCounts); 235 } 236 237 /* 238 * Update the set of active profilers 239 */ 240 static void updateActiveProfilers(ExecutionSubModes newMode, bool enable) 241 { 242 int oldValue, newValue; 243 244 // Update global count 245 do { 246 oldValue = gDvm.activeProfilers; 247 newValue = oldValue + (enable ? 1 : -1); 248 if (newValue < 0) { 249 LOGE("Can't have %d active profilers", newValue); 250 dvmAbort(); 251 } 252 } while (android_atomic_release_cas(oldValue, newValue, 253 &gDvm.activeProfilers) != 0); 254 255 // Tell the threads 256 if (enable) { 257 dvmEnableAllSubMode(newMode); 258 } else { 259 dvmDisableAllSubMode(newMode); 260 } 261 262 #if defined(WITH_JIT) 263 dvmCompilerUpdateGlobalState(); 264 #endif 265 266 LOGD("+++ active profiler count now %d", newValue); 267 } 268 269 270 /* 271 * Reset the "cpuClockBase" field in all threads. 272 */ 273 static void resetCpuClockBase() 274 { 275 Thread* thread; 276 277 dvmLockThreadList(NULL); 278 for (thread = gDvm.threadList; thread != NULL; thread = thread->next) { 279 thread->cpuClockBaseSet = false; 280 thread->cpuClockBase = 0; 281 } 282 dvmUnlockThreadList(); 283 } 284 285 /* 286 * Dump the thread list to the specified file. 287 */ 288 static void dumpThreadList(FILE* fp) { 289 dvmLockThreadList(NULL); 290 for (Thread* thread = gDvm.threadList; thread != NULL; thread = thread->next) { 291 std::string threadName(dvmGetThreadName(thread)); 292 fprintf(fp, "%d\t%s\n", thread->threadId, threadName.c_str()); 293 } 294 dvmUnlockThreadList(); 295 } 296 297 /* 298 * This is a dvmHashForeach callback. 299 */ 300 static int dumpMarkedMethods(void* vclazz, void* vfp) 301 { 302 DexStringCache stringCache; 303 ClassObject* clazz = (ClassObject*) vclazz; 304 FILE* fp = (FILE*) vfp; 305 Method* meth; 306 char* name; 307 int i; 308 309 dexStringCacheInit(&stringCache); 310 311 for (i = 0; i < clazz->virtualMethodCount; i++) { 312 meth = &clazz->virtualMethods[i]; 313 if (meth->inProfile) { 314 name = dvmDescriptorToName(meth->clazz->descriptor); 315 fprintf(fp, "0x%08x\t%s\t%s\t%s\t%s\t%d\n", (int) meth, 316 name, meth->name, 317 dexProtoGetMethodDescriptor(&meth->prototype, &stringCache), 318 dvmGetMethodSourceFile(meth), dvmLineNumFromPC(meth, 0)); 319 meth->inProfile = false; 320 free(name); 321 } 322 } 323 324 for (i = 0; i < clazz->directMethodCount; i++) { 325 meth = &clazz->directMethods[i]; 326 if (meth->inProfile) { 327 name = dvmDescriptorToName(meth->clazz->descriptor); 328 fprintf(fp, "0x%08x\t%s\t%s\t%s\t%s\t%d\n", (int) meth, 329 name, meth->name, 330 dexProtoGetMethodDescriptor(&meth->prototype, &stringCache), 331 dvmGetMethodSourceFile(meth), dvmLineNumFromPC(meth, 0)); 332 meth->inProfile = false; 333 free(name); 334 } 335 } 336 337 dexStringCacheRelease(&stringCache); 338 339 return 0; 340 } 341 342 /* 343 * Dump the list of "marked" methods to the specified file. 344 */ 345 static void dumpMethodList(FILE* fp) 346 { 347 dvmHashTableLock(gDvm.loadedClasses); 348 dvmHashForeach(gDvm.loadedClasses, dumpMarkedMethods, (void*) fp); 349 dvmHashTableUnlock(gDvm.loadedClasses); 350 } 351 352 /* 353 * Start method tracing. Method tracing is global to the VM (i.e. we 354 * trace all threads). 355 * 356 * This opens the output file (if an already open fd has not been supplied, 357 * and we're not going direct to DDMS) and allocates the data buffer. This 358 * takes ownership of the file descriptor, closing it on completion. 359 * 360 * On failure, we throw an exception and return. 361 */ 362 void dvmMethodTraceStart(const char* traceFileName, int traceFd, int bufferSize, 363 int flags, bool directToDdms) 364 { 365 MethodTraceState* state = &gDvm.methodTrace; 366 367 assert(bufferSize > 0); 368 369 dvmLockMutex(&state->startStopLock); 370 while (state->traceEnabled != 0) { 371 LOGI("TRACE start requested, but already in progress; stopping"); 372 dvmUnlockMutex(&state->startStopLock); 373 dvmMethodTraceStop(); 374 dvmLockMutex(&state->startStopLock); 375 } 376 /* 377 * ENHANCEMENT: To trace just a single thread, modify the 378 * following to take a Thread* argument, and set the appropriate 379 * interpBreak flags only on the target thread. 380 */ 381 updateActiveProfilers(kSubModeMethodTrace, true); 382 LOGI("TRACE STARTED: '%s' %dKB", traceFileName, bufferSize / 1024); 383 384 /* 385 * Allocate storage and open files. 386 * 387 * We don't need to initialize the buffer, but doing so might remove 388 * some fault overhead if the pages aren't mapped until touched. 389 */ 390 state->buf = (u1*) malloc(bufferSize); 391 if (state->buf == NULL) { 392 dvmThrowInternalError("buffer alloc failed"); 393 goto fail; 394 } 395 if (!directToDdms) { 396 if (traceFd < 0) { 397 state->traceFile = fopen(traceFileName, "w"); 398 } else { 399 state->traceFile = fdopen(traceFd, "w"); 400 } 401 if (state->traceFile == NULL) { 402 int err = errno; 403 LOGE("Unable to open trace file '%s': %s", 404 traceFileName, strerror(err)); 405 dvmThrowExceptionFmt(gDvm.exRuntimeException, 406 "Unable to open trace file '%s': %s", 407 traceFileName, strerror(err)); 408 goto fail; 409 } 410 } 411 traceFd = -1; 412 memset(state->buf, (char)FILL_PATTERN, bufferSize); 413 414 state->directToDdms = directToDdms; 415 state->bufferSize = bufferSize; 416 state->overflow = false; 417 418 /* 419 * Enable alloc counts if we've been requested to do so. 420 */ 421 state->flags = flags; 422 if ((flags & TRACE_ALLOC_COUNTS) != 0) 423 dvmStartAllocCounting(); 424 425 /* reset our notion of the start time for all CPU threads */ 426 resetCpuClockBase(); 427 428 state->startWhen = getWallTimeInUsec(); 429 430 if (useThreadCpuClock() && useWallClock()) { 431 state->traceVersion = 3; 432 state->recordSize = TRACE_REC_SIZE_DUAL_CLOCK; 433 } else { 434 state->traceVersion = 2; 435 state->recordSize = TRACE_REC_SIZE_SINGLE_CLOCK; 436 } 437 438 /* 439 * Output the header. 440 */ 441 memset(state->buf, 0, TRACE_HEADER_LEN); 442 storeIntLE(state->buf + 0, TRACE_MAGIC); 443 storeShortLE(state->buf + 4, state->traceVersion); 444 storeShortLE(state->buf + 6, TRACE_HEADER_LEN); 445 storeLongLE(state->buf + 8, state->startWhen); 446 if (state->traceVersion >= 3) { 447 storeShortLE(state->buf + 16, state->recordSize); 448 } 449 state->curOffset = TRACE_HEADER_LEN; 450 451 /* 452 * Set the "enabled" flag. Once we do this, threads will wait to be 453 * signaled before exiting, so we have to make sure we wake them up. 454 */ 455 android_atomic_release_store(true, &state->traceEnabled); 456 dvmUnlockMutex(&state->startStopLock); 457 return; 458 459 fail: 460 updateActiveProfilers(kSubModeMethodTrace, false); 461 if (state->traceFile != NULL) { 462 fclose(state->traceFile); 463 state->traceFile = NULL; 464 } 465 if (state->buf != NULL) { 466 free(state->buf); 467 state->buf = NULL; 468 } 469 if (traceFd >= 0) 470 close(traceFd); 471 dvmUnlockMutex(&state->startStopLock); 472 } 473 474 /* 475 * Run through the data buffer and pull out the methods that were visited. 476 * Set a mark so that we know which ones to output. 477 */ 478 static void markTouchedMethods(int endOffset) 479 { 480 u1* ptr = gDvm.methodTrace.buf + TRACE_HEADER_LEN; 481 u1* end = gDvm.methodTrace.buf + endOffset; 482 size_t recordSize = gDvm.methodTrace.recordSize; 483 unsigned int methodVal; 484 Method* method; 485 486 while (ptr < end) { 487 methodVal = ptr[2] | (ptr[3] << 8) | (ptr[4] << 16) 488 | (ptr[5] << 24); 489 method = (Method*) METHOD_ID(methodVal); 490 491 method->inProfile = true; 492 ptr += recordSize; 493 } 494 } 495 496 /* 497 * Exercises the clocks in the same way they will be during profiling. 498 */ 499 static inline void measureClockOverhead() 500 { 501 #if defined(HAVE_POSIX_CLOCKS) 502 if (useThreadCpuClock()) { 503 getThreadCpuTimeInUsec(); 504 } 505 #endif 506 if (useWallClock()) { 507 getWallTimeInUsec(); 508 } 509 } 510 511 /* 512 * Compute the amount of overhead in a clock call, in nsec. 513 * 514 * This value is going to vary depending on what else is going on in the 515 * system. When examined across several runs a pattern should emerge. 516 */ 517 static u4 getClockOverhead() 518 { 519 u8 calStart, calElapsed; 520 int i; 521 522 calStart = getStopwatchClock(); 523 for (i = 1000 * 4; i > 0; i--) { 524 measureClockOverhead(); 525 measureClockOverhead(); 526 measureClockOverhead(); 527 measureClockOverhead(); 528 measureClockOverhead(); 529 measureClockOverhead(); 530 measureClockOverhead(); 531 measureClockOverhead(); 532 } 533 534 calElapsed = getStopwatchClock() - calStart; 535 return (int) (calElapsed / (8*4)); 536 } 537 538 /* 539 * Returns "true" if method tracing is currently active. 540 */ 541 bool dvmIsMethodTraceActive() 542 { 543 const MethodTraceState* state = &gDvm.methodTrace; 544 return state->traceEnabled; 545 } 546 547 /* 548 * Stop method tracing. We write the buffer to disk and generate a key 549 * file so we can interpret it. 550 */ 551 void dvmMethodTraceStop() 552 { 553 MethodTraceState* state = &gDvm.methodTrace; 554 u8 elapsed; 555 556 /* 557 * We need this to prevent somebody from starting a new trace while 558 * we're in the process of stopping the old. 559 */ 560 dvmLockMutex(&state->startStopLock); 561 562 if (!state->traceEnabled) { 563 /* somebody already stopped it, or it was never started */ 564 LOGD("TRACE stop requested, but not running"); 565 dvmUnlockMutex(&state->startStopLock); 566 return; 567 } else { 568 updateActiveProfilers(kSubModeMethodTrace, false); 569 } 570 571 /* compute elapsed time */ 572 elapsed = getWallTimeInUsec() - state->startWhen; 573 574 /* 575 * Globally disable it, and allow other threads to notice. We want 576 * to stall here for at least as long as dvmMethodTraceAdd needs 577 * to finish. There's no real risk though -- it will take a while to 578 * write the data to disk, and we don't clear the buffer pointer until 579 * after that completes. 580 */ 581 state->traceEnabled = false; 582 ANDROID_MEMBAR_FULL(); 583 sched_yield(); 584 usleep(250 * 1000); 585 586 if ((state->flags & TRACE_ALLOC_COUNTS) != 0) 587 dvmStopAllocCounting(); 588 589 /* 590 * It's possible under some circumstances for a thread to have advanced 591 * the data pointer but not written the method value. It's possible 592 * (though less likely) for the data pointer to be advanced, or partial 593 * data written, while we're doing work here. 594 * 595 * To avoid seeing partially-written data, we grab state->curOffset here, 596 * and use our local copy from here on. We then scan through what's 597 * already written. If we see the fill pattern in what should be the 598 * method pointer, we cut things off early. (If we don't, we'll fail 599 * when we dereference the pointer.) 600 * 601 * There's a theoretical possibility of interrupting another thread 602 * after it has partially written the method pointer, in which case 603 * we'll likely crash when we dereference it. The possibility of 604 * this actually happening should be at or near zero. Fixing it 605 * completely could be done by writing the thread number last and 606 * using a sentinel value to indicate a partially-written record, 607 * but that requires memory barriers. 608 */ 609 int finalCurOffset = state->curOffset; 610 611 size_t recordSize = state->recordSize; 612 if (finalCurOffset > TRACE_HEADER_LEN) { 613 u4 fillVal = METHOD_ID(FILL_PATTERN); 614 u1* scanPtr = state->buf + TRACE_HEADER_LEN; 615 616 while (scanPtr < state->buf + finalCurOffset) { 617 u4 methodVal = scanPtr[2] | (scanPtr[3] << 8) | (scanPtr[4] << 16) 618 | (scanPtr[5] << 24); 619 if (METHOD_ID(methodVal) == fillVal) { 620 u1* scanBase = state->buf + TRACE_HEADER_LEN; 621 LOGW("Found unfilled record at %d (of %d)", 622 (scanPtr - scanBase) / recordSize, 623 (finalCurOffset - TRACE_HEADER_LEN) / recordSize); 624 finalCurOffset = scanPtr - state->buf; 625 break; 626 } 627 628 scanPtr += recordSize; 629 } 630 } 631 632 LOGI("TRACE STOPPED%s: writing %d records", 633 state->overflow ? " (NOTE: overflowed buffer)" : "", 634 (finalCurOffset - TRACE_HEADER_LEN) / recordSize); 635 if (gDvm.debuggerActive) { 636 LOGW("WARNING: a debugger is active; method-tracing results " 637 "will be skewed"); 638 } 639 640 /* 641 * Do a quick calibration test to see how expensive our clock call is. 642 */ 643 u4 clockNsec = getClockOverhead(); 644 645 markTouchedMethods(finalCurOffset); 646 647 char* memStreamPtr; 648 size_t memStreamSize; 649 if (state->directToDdms) { 650 assert(state->traceFile == NULL); 651 state->traceFile = open_memstream(&memStreamPtr, &memStreamSize); 652 if (state->traceFile == NULL) { 653 /* not expected */ 654 LOGE("Unable to open memstream"); 655 dvmAbort(); 656 } 657 } 658 assert(state->traceFile != NULL); 659 660 fprintf(state->traceFile, "%cversion\n", TOKEN_CHAR); 661 fprintf(state->traceFile, "%d\n", state->traceVersion); 662 fprintf(state->traceFile, "data-file-overflow=%s\n", 663 state->overflow ? "true" : "false"); 664 if (useThreadCpuClock()) { 665 if (useWallClock()) { 666 fprintf(state->traceFile, "clock=dual\n"); 667 } else { 668 fprintf(state->traceFile, "clock=thread-cpu\n"); 669 } 670 } else { 671 fprintf(state->traceFile, "clock=wall\n"); 672 } 673 fprintf(state->traceFile, "elapsed-time-usec=%llu\n", elapsed); 674 fprintf(state->traceFile, "num-method-calls=%d\n", 675 (finalCurOffset - TRACE_HEADER_LEN) / state->recordSize); 676 fprintf(state->traceFile, "clock-call-overhead-nsec=%d\n", clockNsec); 677 fprintf(state->traceFile, "vm=dalvik\n"); 678 if ((state->flags & TRACE_ALLOC_COUNTS) != 0) { 679 fprintf(state->traceFile, "alloc-count=%d\n", 680 gDvm.allocProf.allocCount); 681 fprintf(state->traceFile, "alloc-size=%d\n", 682 gDvm.allocProf.allocSize); 683 fprintf(state->traceFile, "gc-count=%d\n", 684 gDvm.allocProf.gcCount); 685 } 686 fprintf(state->traceFile, "%cthreads\n", TOKEN_CHAR); 687 dumpThreadList(state->traceFile); 688 fprintf(state->traceFile, "%cmethods\n", TOKEN_CHAR); 689 dumpMethodList(state->traceFile); 690 fprintf(state->traceFile, "%cend\n", TOKEN_CHAR); 691 692 if (state->directToDdms) { 693 /* 694 * Data is in two places: memStreamPtr and state->buf. Send 695 * the whole thing to DDMS, wrapped in an MPSE packet. 696 */ 697 fflush(state->traceFile); 698 699 struct iovec iov[2]; 700 iov[0].iov_base = memStreamPtr; 701 iov[0].iov_len = memStreamSize; 702 iov[1].iov_base = state->buf; 703 iov[1].iov_len = finalCurOffset; 704 dvmDbgDdmSendChunkV(CHUNK_TYPE("MPSE"), iov, 2); 705 } else { 706 /* append the profiling data */ 707 if (fwrite(state->buf, finalCurOffset, 1, state->traceFile) != 1) { 708 int err = errno; 709 LOGE("trace fwrite(%d) failed: %s", 710 finalCurOffset, strerror(err)); 711 dvmThrowExceptionFmt(gDvm.exRuntimeException, 712 "Trace data write failed: %s", strerror(err)); 713 } 714 } 715 716 /* done! */ 717 free(state->buf); 718 state->buf = NULL; 719 fclose(state->traceFile); 720 state->traceFile = NULL; 721 722 /* wake any threads that were waiting for profiling to complete */ 723 dvmBroadcastCond(&state->threadExitCond); 724 dvmUnlockMutex(&state->startStopLock); 725 } 726 727 /* 728 * We just did something with a method. Emit a record. 729 * 730 * Multiple threads may be banging on this all at once. We use atomic ops 731 * rather than mutexes for speed. 732 */ 733 void dvmMethodTraceAdd(Thread* self, const Method* method, int action) 734 { 735 MethodTraceState* state = &gDvm.methodTrace; 736 u4 methodVal; 737 int oldOffset, newOffset; 738 u1* ptr; 739 740 assert(method != NULL); 741 742 #if defined(HAVE_POSIX_CLOCKS) 743 /* 744 * We can only access the per-thread CPU clock from within the 745 * thread, so we have to initialize the base time on the first use. 746 * (Looks like pthread_getcpuclockid(thread, &id) will do what we 747 * want, but it doesn't appear to be defined on the device.) 748 */ 749 if (!self->cpuClockBaseSet) { 750 self->cpuClockBase = getThreadCpuTimeInUsec(); 751 self->cpuClockBaseSet = true; 752 //LOGI("thread base id=%d 0x%llx", 753 // self->threadId, self->cpuClockBase); 754 } 755 #endif 756 757 /* 758 * Advance "curOffset" atomically. 759 */ 760 do { 761 oldOffset = state->curOffset; 762 newOffset = oldOffset + state->recordSize; 763 if (newOffset > state->bufferSize) { 764 state->overflow = true; 765 return; 766 } 767 } while (android_atomic_release_cas(oldOffset, newOffset, 768 &state->curOffset) != 0); 769 770 //assert(METHOD_ACTION((u4) method) == 0); 771 772 methodVal = METHOD_COMBINE((u4) method, action); 773 774 /* 775 * Write data into "oldOffset". 776 */ 777 ptr = state->buf + oldOffset; 778 *ptr++ = (u1) self->threadId; 779 *ptr++ = (u1) (self->threadId >> 8); 780 *ptr++ = (u1) methodVal; 781 *ptr++ = (u1) (methodVal >> 8); 782 *ptr++ = (u1) (methodVal >> 16); 783 *ptr++ = (u1) (methodVal >> 24); 784 785 #if defined(HAVE_POSIX_CLOCKS) 786 if (useThreadCpuClock()) { 787 u4 cpuClockDiff = (u4) (getThreadCpuTimeInUsec() - self->cpuClockBase); 788 *ptr++ = (u1) cpuClockDiff; 789 *ptr++ = (u1) (cpuClockDiff >> 8); 790 *ptr++ = (u1) (cpuClockDiff >> 16); 791 *ptr++ = (u1) (cpuClockDiff >> 24); 792 } 793 #endif 794 795 if (useWallClock()) { 796 u4 wallClockDiff = (u4) (getWallTimeInUsec() - state->startWhen); 797 *ptr++ = (u1) wallClockDiff; 798 *ptr++ = (u1) (wallClockDiff >> 8); 799 *ptr++ = (u1) (wallClockDiff >> 16); 800 *ptr++ = (u1) (wallClockDiff >> 24); 801 } 802 } 803 804 805 /* 806 * Register the METHOD_TRACE_ENTER action for the fast interpreter and 807 * JIT'ed code. 808 */ 809 void dvmFastMethodTraceEnter(const Method* method, Thread* self) 810 { 811 if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) { 812 dvmMethodTraceAdd(self, method, METHOD_TRACE_ENTER); 813 } 814 } 815 816 /* 817 * Register the METHOD_TRACE_EXIT action for the fast interpreter and 818 * JIT'ed code for methods. The about-to-return callee method can be 819 * retrieved from self->interpSave.method. 820 */ 821 void dvmFastMethodTraceExit(Thread* self) 822 { 823 if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) { 824 dvmMethodTraceAdd(self, self->interpSave.method, 825 METHOD_TRACE_EXIT); 826 } 827 } 828 829 /* 830 * Register the METHOD_TRACE_EXIT action for the fast interpreter and 831 * JIT'ed code for JNI methods. The about-to-return JNI callee method is passed 832 * in explicitly. Also used for inline-execute. 833 */ 834 void dvmFastNativeMethodTraceExit(const Method* method, Thread* self) 835 { 836 if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) { 837 dvmMethodTraceAdd(self, method, METHOD_TRACE_EXIT); 838 } 839 } 840 841 /* 842 * We just did something with a method. Emit a record by setting a value 843 * in a magic memory location. 844 */ 845 void dvmEmitEmulatorTrace(const Method* method, int action) 846 { 847 #ifdef UPDATE_MAGIC_PAGE 848 /* 849 * We store the address of the Dalvik bytecodes to the memory-mapped 850 * trace page for normal methods. We also trace calls to native 851 * functions by storing the address of the native function to the 852 * trace page. 853 * Abstract methods don't have any bytecodes, so we don't trace them. 854 * (Abstract methods are never called, but in Dalvik they can be 855 * because we do a "late trap" to a native method to generate the 856 * abstract method exception.) 857 */ 858 if (dvmIsAbstractMethod(method)) 859 return; 860 861 u4* pMagic = (u4*) gDvm.emulatorTracePage; 862 u4 addr; 863 864 if (dvmIsNativeMethod(method)) { 865 /* 866 * The "action" parameter is one of: 867 * 0 = ENTER 868 * 1 = EXIT 869 * 2 = UNROLL 870 * To help the trace tools reconstruct the runtime stack containing 871 * a mix of normal plus native methods, we add 4 to the action if this 872 * is a native method. 873 */ 874 action += 4; 875 876 /* 877 * Get the address of the native function. 878 * This isn't the right address -- how do I get it? 879 * Fortunately, the trace tools can get by without the address, but 880 * it would be nice to fix this. 881 */ 882 addr = (u4) method->nativeFunc; 883 } else { 884 /* 885 * The dexlist output shows the &DexCode.insns offset value, which 886 * is offset from the start of the base DEX header. Method.insns 887 * is the absolute address, effectively offset from the start of 888 * the optimized DEX header. We either need to return the 889 * optimized DEX base file address offset by the right amount, or 890 * take the "real" address and subtract off the size of the 891 * optimized DEX header. 892 * 893 * Would be nice to factor this out at dexlist time, but we can't count 894 * on having access to the correct optimized DEX file. 895 */ 896 assert(method->insns != NULL); 897 const DexOptHeader* pOptHdr = method->clazz->pDvmDex->pDexFile->pOptHeader; 898 addr = (u4) method->insns - pOptHdr->dexOffset; 899 } 900 901 *(pMagic+action) = addr; 902 LOGVV("Set %p = 0x%08x (%s.%s)", 903 pMagic+action, addr, method->clazz->descriptor, method->name); 904 #endif 905 } 906 907 /* 908 * The GC calls this when it's about to start. We add a marker to the 909 * trace output so the tool can exclude the GC cost from the results. 910 */ 911 void dvmMethodTraceGCBegin() 912 { 913 TRACE_METHOD_ENTER(dvmThreadSelf(), gDvm.methodTraceGcMethod); 914 } 915 void dvmMethodTraceGCEnd() 916 { 917 TRACE_METHOD_EXIT(dvmThreadSelf(), gDvm.methodTraceGcMethod); 918 } 919 920 /* 921 * The class loader calls this when it's loading or initializing a class. 922 */ 923 void dvmMethodTraceClassPrepBegin() 924 { 925 TRACE_METHOD_ENTER(dvmThreadSelf(), gDvm.methodTraceClassPrepMethod); 926 } 927 void dvmMethodTraceClassPrepEnd() 928 { 929 TRACE_METHOD_EXIT(dvmThreadSelf(), gDvm.methodTraceClassPrepMethod); 930 } 931 932 933 /* 934 * Enable emulator trace info. 935 */ 936 void dvmEmulatorTraceStart() 937 { 938 /* If we could not map the emulator trace page, then do not enable tracing */ 939 if (gDvm.emulatorTracePage == NULL) 940 return; 941 942 /* in theory we should make this an atomic inc; in practice not important */ 943 gDvm.emulatorTraceEnableCount++; 944 if (gDvm.emulatorTraceEnableCount == 1) 945 LOGD("--- emulator method traces enabled"); 946 updateActiveProfilers(kSubModeEmulatorTrace, true); 947 } 948 949 /* 950 * Disable emulator trace info. 951 */ 952 void dvmEmulatorTraceStop() 953 { 954 if (gDvm.emulatorTraceEnableCount == 0) { 955 LOGE("ERROR: emulator tracing not enabled"); 956 return; 957 } 958 /* in theory we should make this an atomic inc; in practice not important */ 959 gDvm.emulatorTraceEnableCount--; 960 if (gDvm.emulatorTraceEnableCount == 0) 961 LOGD("--- emulator method traces disabled"); 962 updateActiveProfilers(kSubModeEmulatorTrace, 963 (gDvm.emulatorTraceEnableCount != 0)); 964 } 965 966 967 /* 968 * Start instruction counting. 969 */ 970 void dvmStartInstructionCounting() 971 { 972 /* in theory we should make this an atomic inc; in practice not important */ 973 gDvm.instructionCountEnableCount++; 974 updateActiveProfilers(kSubModeInstCounting, true); 975 } 976 977 /* 978 * Stop instruction counting. 979 */ 980 void dvmStopInstructionCounting() 981 { 982 if (gDvm.instructionCountEnableCount == 0) { 983 LOGE("ERROR: instruction counting not enabled"); 984 dvmAbort(); 985 } 986 gDvm.instructionCountEnableCount--; 987 updateActiveProfilers(kSubModeInstCounting, 988 (gDvm.instructionCountEnableCount != 0)); 989 } 990 991 992 /* 993 * Start alloc counting. Note this doesn't affect the "active profilers" 994 * count, since the interpreter loop is not involved. 995 */ 996 void dvmStartAllocCounting() 997 { 998 gDvm.allocProf.enabled = true; 999 } 1000 1001 /* 1002 * Stop alloc counting. 1003 */ 1004 void dvmStopAllocCounting() 1005 { 1006 gDvm.allocProf.enabled = false; 1007 } 1008