Home | History | Annotate | Download | only in AST
      1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implements C++ name mangling according to the Itanium C++ ABI,
     11 // which is used in GCC 3.2 and newer (and many compilers that are
     12 // ABI-compatible with GCC):
     13 //
     14 //   http://www.codesourcery.com/public/cxx-abi/abi.html
     15 //
     16 //===----------------------------------------------------------------------===//
     17 #include "clang/AST/Mangle.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/Decl.h"
     20 #include "clang/AST/DeclCXX.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/ExprCXX.h"
     24 #include "clang/AST/ExprObjC.h"
     25 #include "clang/AST/TypeLoc.h"
     26 #include "clang/Basic/ABI.h"
     27 #include "clang/Basic/SourceManager.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "llvm/ADT/StringExtras.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 
     33 #define MANGLE_CHECKER 0
     34 
     35 #if MANGLE_CHECKER
     36 #include <cxxabi.h>
     37 #endif
     38 
     39 using namespace clang;
     40 
     41 namespace {
     42 
     43 static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
     44   const DeclContext *DC = dyn_cast<DeclContext>(ND);
     45   if (!DC)
     46     DC = ND->getDeclContext();
     47   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
     48     if (isa<FunctionDecl>(DC->getParent()))
     49       return dyn_cast<CXXRecordDecl>(DC);
     50     DC = DC->getParent();
     51   }
     52   return 0;
     53 }
     54 
     55 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
     56   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
     57     return ftd->getTemplatedDecl();
     58 
     59   return fn;
     60 }
     61 
     62 static const NamedDecl *getStructor(const NamedDecl *decl) {
     63   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
     64   return (fn ? getStructor(fn) : decl);
     65 }
     66 
     67 static const unsigned UnknownArity = ~0U;
     68 
     69 class ItaniumMangleContext : public MangleContext {
     70   llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
     71   unsigned Discriminator;
     72   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
     73 
     74 public:
     75   explicit ItaniumMangleContext(ASTContext &Context,
     76                                 Diagnostic &Diags)
     77     : MangleContext(Context, Diags) { }
     78 
     79   uint64_t getAnonymousStructId(const TagDecl *TD) {
     80     std::pair<llvm::DenseMap<const TagDecl *,
     81       uint64_t>::iterator, bool> Result =
     82       AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
     83     return Result.first->second;
     84   }
     85 
     86   void startNewFunction() {
     87     MangleContext::startNewFunction();
     88     mangleInitDiscriminator();
     89   }
     90 
     91   /// @name Mangler Entry Points
     92   /// @{
     93 
     94   bool shouldMangleDeclName(const NamedDecl *D);
     95   void mangleName(const NamedDecl *D, llvm::raw_ostream &);
     96   void mangleThunk(const CXXMethodDecl *MD,
     97                    const ThunkInfo &Thunk,
     98                    llvm::raw_ostream &);
     99   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
    100                           const ThisAdjustment &ThisAdjustment,
    101                           llvm::raw_ostream &);
    102   void mangleReferenceTemporary(const VarDecl *D,
    103                                 llvm::raw_ostream &);
    104   void mangleCXXVTable(const CXXRecordDecl *RD,
    105                        llvm::raw_ostream &);
    106   void mangleCXXVTT(const CXXRecordDecl *RD,
    107                     llvm::raw_ostream &);
    108   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
    109                            const CXXRecordDecl *Type,
    110                            llvm::raw_ostream &);
    111   void mangleCXXRTTI(QualType T, llvm::raw_ostream &);
    112   void mangleCXXRTTIName(QualType T, llvm::raw_ostream &);
    113   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
    114                      llvm::raw_ostream &);
    115   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
    116                      llvm::raw_ostream &);
    117 
    118   void mangleItaniumGuardVariable(const VarDecl *D, llvm::raw_ostream &);
    119 
    120   void mangleInitDiscriminator() {
    121     Discriminator = 0;
    122   }
    123 
    124   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
    125     unsigned &discriminator = Uniquifier[ND];
    126     if (!discriminator)
    127       discriminator = ++Discriminator;
    128     if (discriminator == 1)
    129       return false;
    130     disc = discriminator-2;
    131     return true;
    132   }
    133   /// @}
    134 };
    135 
    136 /// CXXNameMangler - Manage the mangling of a single name.
    137 class CXXNameMangler {
    138   ItaniumMangleContext &Context;
    139   llvm::raw_ostream &Out;
    140 
    141   /// The "structor" is the top-level declaration being mangled, if
    142   /// that's not a template specialization; otherwise it's the pattern
    143   /// for that specialization.
    144   const NamedDecl *Structor;
    145   unsigned StructorType;
    146 
    147   /// SeqID - The next subsitution sequence number.
    148   unsigned SeqID;
    149 
    150   class FunctionTypeDepthState {
    151     unsigned Bits;
    152 
    153     enum { InResultTypeMask = 1 };
    154 
    155   public:
    156     FunctionTypeDepthState() : Bits(0) {}
    157 
    158     /// The number of function types we're inside.
    159     unsigned getDepth() const {
    160       return Bits >> 1;
    161     }
    162 
    163     /// True if we're in the return type of the innermost function type.
    164     bool isInResultType() const {
    165       return Bits & InResultTypeMask;
    166     }
    167 
    168     FunctionTypeDepthState push() {
    169       FunctionTypeDepthState tmp = *this;
    170       Bits = (Bits & ~InResultTypeMask) + 2;
    171       return tmp;
    172     }
    173 
    174     void enterResultType() {
    175       Bits |= InResultTypeMask;
    176     }
    177 
    178     void leaveResultType() {
    179       Bits &= ~InResultTypeMask;
    180     }
    181 
    182     void pop(FunctionTypeDepthState saved) {
    183       assert(getDepth() == saved.getDepth() + 1);
    184       Bits = saved.Bits;
    185     }
    186 
    187   } FunctionTypeDepth;
    188 
    189   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
    190 
    191   ASTContext &getASTContext() const { return Context.getASTContext(); }
    192 
    193 public:
    194   CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
    195                  const NamedDecl *D = 0)
    196     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
    197       SeqID(0) {
    198     // These can't be mangled without a ctor type or dtor type.
    199     assert(!D || (!isa<CXXDestructorDecl>(D) &&
    200                   !isa<CXXConstructorDecl>(D)));
    201   }
    202   CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
    203                  const CXXConstructorDecl *D, CXXCtorType Type)
    204     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
    205       SeqID(0) { }
    206   CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
    207                  const CXXDestructorDecl *D, CXXDtorType Type)
    208     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
    209       SeqID(0) { }
    210 
    211 #if MANGLE_CHECKER
    212   ~CXXNameMangler() {
    213     if (Out.str()[0] == '\01')
    214       return;
    215 
    216     int status = 0;
    217     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
    218     assert(status == 0 && "Could not demangle mangled name!");
    219     free(result);
    220   }
    221 #endif
    222   llvm::raw_ostream &getStream() { return Out; }
    223 
    224   void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
    225   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
    226   void mangleNumber(const llvm::APSInt &I);
    227   void mangleNumber(int64_t Number);
    228   void mangleFloat(const llvm::APFloat &F);
    229   void mangleFunctionEncoding(const FunctionDecl *FD);
    230   void mangleName(const NamedDecl *ND);
    231   void mangleType(QualType T);
    232   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
    233 
    234 private:
    235   bool mangleSubstitution(const NamedDecl *ND);
    236   bool mangleSubstitution(QualType T);
    237   bool mangleSubstitution(TemplateName Template);
    238   bool mangleSubstitution(uintptr_t Ptr);
    239 
    240   void mangleExistingSubstitution(QualType type);
    241   void mangleExistingSubstitution(TemplateName name);
    242 
    243   bool mangleStandardSubstitution(const NamedDecl *ND);
    244 
    245   void addSubstitution(const NamedDecl *ND) {
    246     ND = cast<NamedDecl>(ND->getCanonicalDecl());
    247 
    248     addSubstitution(reinterpret_cast<uintptr_t>(ND));
    249   }
    250   void addSubstitution(QualType T);
    251   void addSubstitution(TemplateName Template);
    252   void addSubstitution(uintptr_t Ptr);
    253 
    254   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
    255                               NamedDecl *firstQualifierLookup,
    256                               bool recursive = false);
    257   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
    258                             NamedDecl *firstQualifierLookup,
    259                             DeclarationName name,
    260                             unsigned KnownArity = UnknownArity);
    261 
    262   void mangleName(const TemplateDecl *TD,
    263                   const TemplateArgument *TemplateArgs,
    264                   unsigned NumTemplateArgs);
    265   void mangleUnqualifiedName(const NamedDecl *ND) {
    266     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
    267   }
    268   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
    269                              unsigned KnownArity);
    270   void mangleUnscopedName(const NamedDecl *ND);
    271   void mangleUnscopedTemplateName(const TemplateDecl *ND);
    272   void mangleUnscopedTemplateName(TemplateName);
    273   void mangleSourceName(const IdentifierInfo *II);
    274   void mangleLocalName(const NamedDecl *ND);
    275   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
    276                         bool NoFunction=false);
    277   void mangleNestedName(const TemplateDecl *TD,
    278                         const TemplateArgument *TemplateArgs,
    279                         unsigned NumTemplateArgs);
    280   void manglePrefix(NestedNameSpecifier *qualifier);
    281   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
    282   void manglePrefix(QualType type);
    283   void mangleTemplatePrefix(const TemplateDecl *ND);
    284   void mangleTemplatePrefix(TemplateName Template);
    285   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
    286   void mangleQualifiers(Qualifiers Quals);
    287   void mangleRefQualifier(RefQualifierKind RefQualifier);
    288 
    289   void mangleObjCMethodName(const ObjCMethodDecl *MD);
    290 
    291   // Declare manglers for every type class.
    292 #define ABSTRACT_TYPE(CLASS, PARENT)
    293 #define NON_CANONICAL_TYPE(CLASS, PARENT)
    294 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
    295 #include "clang/AST/TypeNodes.def"
    296 
    297   void mangleType(const TagType*);
    298   void mangleType(TemplateName);
    299   void mangleBareFunctionType(const FunctionType *T,
    300                               bool MangleReturnType);
    301   void mangleNeonVectorType(const VectorType *T);
    302 
    303   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
    304   void mangleMemberExpr(const Expr *base, bool isArrow,
    305                         NestedNameSpecifier *qualifier,
    306                         NamedDecl *firstQualifierLookup,
    307                         DeclarationName name,
    308                         unsigned knownArity);
    309   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
    310   void mangleCXXCtorType(CXXCtorType T);
    311   void mangleCXXDtorType(CXXDtorType T);
    312 
    313   void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
    314   void mangleTemplateArgs(TemplateName Template,
    315                           const TemplateArgument *TemplateArgs,
    316                           unsigned NumTemplateArgs);
    317   void mangleTemplateArgs(const TemplateParameterList &PL,
    318                           const TemplateArgument *TemplateArgs,
    319                           unsigned NumTemplateArgs);
    320   void mangleTemplateArgs(const TemplateParameterList &PL,
    321                           const TemplateArgumentList &AL);
    322   void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
    323   void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
    324                                     unsigned numArgs);
    325 
    326   void mangleTemplateParameter(unsigned Index);
    327 
    328   void mangleFunctionParam(const ParmVarDecl *parm);
    329 };
    330 
    331 }
    332 
    333 static bool isInCLinkageSpecification(const Decl *D) {
    334   D = D->getCanonicalDecl();
    335   for (const DeclContext *DC = D->getDeclContext();
    336        !DC->isTranslationUnit(); DC = DC->getParent()) {
    337     if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
    338       return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
    339   }
    340 
    341   return false;
    342 }
    343 
    344 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
    345   // In C, functions with no attributes never need to be mangled. Fastpath them.
    346   if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
    347     return false;
    348 
    349   // Any decl can be declared with __asm("foo") on it, and this takes precedence
    350   // over all other naming in the .o file.
    351   if (D->hasAttr<AsmLabelAttr>())
    352     return true;
    353 
    354   // Clang's "overloadable" attribute extension to C/C++ implies name mangling
    355   // (always) as does passing a C++ member function and a function
    356   // whose name is not a simple identifier.
    357   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    358   if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
    359              !FD->getDeclName().isIdentifier()))
    360     return true;
    361 
    362   // Otherwise, no mangling is done outside C++ mode.
    363   if (!getASTContext().getLangOptions().CPlusPlus)
    364     return false;
    365 
    366   // Variables at global scope with non-internal linkage are not mangled
    367   if (!FD) {
    368     const DeclContext *DC = D->getDeclContext();
    369     // Check for extern variable declared locally.
    370     if (DC->isFunctionOrMethod() && D->hasLinkage())
    371       while (!DC->isNamespace() && !DC->isTranslationUnit())
    372         DC = DC->getParent();
    373     if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
    374       return false;
    375   }
    376 
    377   // Class members are always mangled.
    378   if (D->getDeclContext()->isRecord())
    379     return true;
    380 
    381   // C functions and "main" are not mangled.
    382   if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
    383     return false;
    384 
    385   return true;
    386 }
    387 
    388 void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
    389   // Any decl can be declared with __asm("foo") on it, and this takes precedence
    390   // over all other naming in the .o file.
    391   if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
    392     // If we have an asm name, then we use it as the mangling.
    393 
    394     // Adding the prefix can cause problems when one file has a "foo" and
    395     // another has a "\01foo". That is known to happen on ELF with the
    396     // tricks normally used for producing aliases (PR9177). Fortunately the
    397     // llvm mangler on ELF is a nop, so we can just avoid adding the \01
    398     // marker.  We also avoid adding the marker if this is an alias for an
    399     // LLVM intrinsic.
    400     llvm::StringRef UserLabelPrefix =
    401       getASTContext().Target.getUserLabelPrefix();
    402     if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
    403       Out << '\01';  // LLVM IR Marker for __asm("foo")
    404 
    405     Out << ALA->getLabel();
    406     return;
    407   }
    408 
    409   // <mangled-name> ::= _Z <encoding>
    410   //            ::= <data name>
    411   //            ::= <special-name>
    412   Out << Prefix;
    413   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    414     mangleFunctionEncoding(FD);
    415   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    416     mangleName(VD);
    417   else
    418     mangleName(cast<FieldDecl>(D));
    419 }
    420 
    421 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
    422   // <encoding> ::= <function name> <bare-function-type>
    423   mangleName(FD);
    424 
    425   // Don't mangle in the type if this isn't a decl we should typically mangle.
    426   if (!Context.shouldMangleDeclName(FD))
    427     return;
    428 
    429   // Whether the mangling of a function type includes the return type depends on
    430   // the context and the nature of the function. The rules for deciding whether
    431   // the return type is included are:
    432   //
    433   //   1. Template functions (names or types) have return types encoded, with
    434   //   the exceptions listed below.
    435   //   2. Function types not appearing as part of a function name mangling,
    436   //   e.g. parameters, pointer types, etc., have return type encoded, with the
    437   //   exceptions listed below.
    438   //   3. Non-template function names do not have return types encoded.
    439   //
    440   // The exceptions mentioned in (1) and (2) above, for which the return type is
    441   // never included, are
    442   //   1. Constructors.
    443   //   2. Destructors.
    444   //   3. Conversion operator functions, e.g. operator int.
    445   bool MangleReturnType = false;
    446   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
    447     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
    448           isa<CXXConversionDecl>(FD)))
    449       MangleReturnType = true;
    450 
    451     // Mangle the type of the primary template.
    452     FD = PrimaryTemplate->getTemplatedDecl();
    453   }
    454 
    455   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
    456                          MangleReturnType);
    457 }
    458 
    459 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
    460   while (isa<LinkageSpecDecl>(DC)) {
    461     DC = DC->getParent();
    462   }
    463 
    464   return DC;
    465 }
    466 
    467 /// isStd - Return whether a given namespace is the 'std' namespace.
    468 static bool isStd(const NamespaceDecl *NS) {
    469   if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
    470     return false;
    471 
    472   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
    473   return II && II->isStr("std");
    474 }
    475 
    476 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
    477 // namespace.
    478 static bool isStdNamespace(const DeclContext *DC) {
    479   if (!DC->isNamespace())
    480     return false;
    481 
    482   return isStd(cast<NamespaceDecl>(DC));
    483 }
    484 
    485 static const TemplateDecl *
    486 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
    487   // Check if we have a function template.
    488   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
    489     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
    490       TemplateArgs = FD->getTemplateSpecializationArgs();
    491       return TD;
    492     }
    493   }
    494 
    495   // Check if we have a class template.
    496   if (const ClassTemplateSpecializationDecl *Spec =
    497         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
    498     TemplateArgs = &Spec->getTemplateArgs();
    499     return Spec->getSpecializedTemplate();
    500   }
    501 
    502   return 0;
    503 }
    504 
    505 void CXXNameMangler::mangleName(const NamedDecl *ND) {
    506   //  <name> ::= <nested-name>
    507   //         ::= <unscoped-name>
    508   //         ::= <unscoped-template-name> <template-args>
    509   //         ::= <local-name>
    510   //
    511   const DeclContext *DC = ND->getDeclContext();
    512 
    513   // If this is an extern variable declared locally, the relevant DeclContext
    514   // is that of the containing namespace, or the translation unit.
    515   if (isa<FunctionDecl>(DC) && ND->hasLinkage())
    516     while (!DC->isNamespace() && !DC->isTranslationUnit())
    517       DC = DC->getParent();
    518   else if (GetLocalClassDecl(ND)) {
    519     mangleLocalName(ND);
    520     return;
    521   }
    522 
    523   while (isa<LinkageSpecDecl>(DC))
    524     DC = DC->getParent();
    525 
    526   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
    527     // Check if we have a template.
    528     const TemplateArgumentList *TemplateArgs = 0;
    529     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
    530       mangleUnscopedTemplateName(TD);
    531       TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
    532       mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
    533       return;
    534     }
    535 
    536     mangleUnscopedName(ND);
    537     return;
    538   }
    539 
    540   if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
    541     mangleLocalName(ND);
    542     return;
    543   }
    544 
    545   mangleNestedName(ND, DC);
    546 }
    547 void CXXNameMangler::mangleName(const TemplateDecl *TD,
    548                                 const TemplateArgument *TemplateArgs,
    549                                 unsigned NumTemplateArgs) {
    550   const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
    551 
    552   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
    553     mangleUnscopedTemplateName(TD);
    554     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
    555     mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
    556   } else {
    557     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
    558   }
    559 }
    560 
    561 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
    562   //  <unscoped-name> ::= <unqualified-name>
    563   //                  ::= St <unqualified-name>   # ::std::
    564   if (isStdNamespace(ND->getDeclContext()))
    565     Out << "St";
    566 
    567   mangleUnqualifiedName(ND);
    568 }
    569 
    570 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
    571   //     <unscoped-template-name> ::= <unscoped-name>
    572   //                              ::= <substitution>
    573   if (mangleSubstitution(ND))
    574     return;
    575 
    576   // <template-template-param> ::= <template-param>
    577   if (const TemplateTemplateParmDecl *TTP
    578                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
    579     mangleTemplateParameter(TTP->getIndex());
    580     return;
    581   }
    582 
    583   mangleUnscopedName(ND->getTemplatedDecl());
    584   addSubstitution(ND);
    585 }
    586 
    587 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
    588   //     <unscoped-template-name> ::= <unscoped-name>
    589   //                              ::= <substitution>
    590   if (TemplateDecl *TD = Template.getAsTemplateDecl())
    591     return mangleUnscopedTemplateName(TD);
    592 
    593   if (mangleSubstitution(Template))
    594     return;
    595 
    596   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
    597   assert(Dependent && "Not a dependent template name?");
    598   if (const IdentifierInfo *Id = Dependent->getIdentifier())
    599     mangleSourceName(Id);
    600   else
    601     mangleOperatorName(Dependent->getOperator(), UnknownArity);
    602 
    603   addSubstitution(Template);
    604 }
    605 
    606 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
    607   // ABI:
    608   //   Floating-point literals are encoded using a fixed-length
    609   //   lowercase hexadecimal string corresponding to the internal
    610   //   representation (IEEE on Itanium), high-order bytes first,
    611   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
    612   //   on Itanium.
    613   // APInt::toString uses uppercase hexadecimal, and it's not really
    614   // worth embellishing that interface for this use case, so we just
    615   // do a second pass to lowercase things.
    616   typedef llvm::SmallString<20> buffer_t;
    617   buffer_t buffer;
    618   f.bitcastToAPInt().toString(buffer, 16, false);
    619 
    620   for (buffer_t::iterator i = buffer.begin(), e = buffer.end(); i != e; ++i)
    621     if (isupper(*i)) *i = tolower(*i);
    622 
    623   Out.write(buffer.data(), buffer.size());
    624 }
    625 
    626 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
    627   if (Value.isSigned() && Value.isNegative()) {
    628     Out << 'n';
    629     Value.abs().print(Out, true);
    630   } else
    631     Value.print(Out, Value.isSigned());
    632 }
    633 
    634 void CXXNameMangler::mangleNumber(int64_t Number) {
    635   //  <number> ::= [n] <non-negative decimal integer>
    636   if (Number < 0) {
    637     Out << 'n';
    638     Number = -Number;
    639   }
    640 
    641   Out << Number;
    642 }
    643 
    644 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
    645   //  <call-offset>  ::= h <nv-offset> _
    646   //                 ::= v <v-offset> _
    647   //  <nv-offset>    ::= <offset number>        # non-virtual base override
    648   //  <v-offset>     ::= <offset number> _ <virtual offset number>
    649   //                      # virtual base override, with vcall offset
    650   if (!Virtual) {
    651     Out << 'h';
    652     mangleNumber(NonVirtual);
    653     Out << '_';
    654     return;
    655   }
    656 
    657   Out << 'v';
    658   mangleNumber(NonVirtual);
    659   Out << '_';
    660   mangleNumber(Virtual);
    661   Out << '_';
    662 }
    663 
    664 void CXXNameMangler::manglePrefix(QualType type) {
    665   if (const TemplateSpecializationType *TST =
    666         type->getAs<TemplateSpecializationType>()) {
    667     if (!mangleSubstitution(QualType(TST, 0))) {
    668       mangleTemplatePrefix(TST->getTemplateName());
    669 
    670       // FIXME: GCC does not appear to mangle the template arguments when
    671       // the template in question is a dependent template name. Should we
    672       // emulate that badness?
    673       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
    674                          TST->getNumArgs());
    675       addSubstitution(QualType(TST, 0));
    676     }
    677   } else if (const DependentTemplateSpecializationType *DTST
    678                = type->getAs<DependentTemplateSpecializationType>()) {
    679     TemplateName Template
    680       = getASTContext().getDependentTemplateName(DTST->getQualifier(),
    681                                                  DTST->getIdentifier());
    682     mangleTemplatePrefix(Template);
    683 
    684     // FIXME: GCC does not appear to mangle the template arguments when
    685     // the template in question is a dependent template name. Should we
    686     // emulate that badness?
    687     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
    688   } else {
    689     // We use the QualType mangle type variant here because it handles
    690     // substitutions.
    691     mangleType(type);
    692   }
    693 }
    694 
    695 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
    696 ///
    697 /// \param firstQualifierLookup - the entity found by unqualified lookup
    698 ///   for the first name in the qualifier, if this is for a member expression
    699 /// \param recursive - true if this is being called recursively,
    700 ///   i.e. if there is more prefix "to the right".
    701 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
    702                                             NamedDecl *firstQualifierLookup,
    703                                             bool recursive) {
    704 
    705   // x, ::x
    706   // <unresolved-name> ::= [gs] <base-unresolved-name>
    707 
    708   // T::x / decltype(p)::x
    709   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
    710 
    711   // T::N::x /decltype(p)::N::x
    712   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
    713   //                       <base-unresolved-name>
    714 
    715   // A::x, N::y, A<T>::z; "gs" means leading "::"
    716   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
    717   //                       <base-unresolved-name>
    718 
    719   switch (qualifier->getKind()) {
    720   case NestedNameSpecifier::Global:
    721     Out << "gs";
    722 
    723     // We want an 'sr' unless this is the entire NNS.
    724     if (recursive)
    725       Out << "sr";
    726 
    727     // We never want an 'E' here.
    728     return;
    729 
    730   case NestedNameSpecifier::Namespace:
    731     if (qualifier->getPrefix())
    732       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    733                              /*recursive*/ true);
    734     else
    735       Out << "sr";
    736     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
    737     break;
    738   case NestedNameSpecifier::NamespaceAlias:
    739     if (qualifier->getPrefix())
    740       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    741                              /*recursive*/ true);
    742     else
    743       Out << "sr";
    744     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
    745     break;
    746 
    747   case NestedNameSpecifier::TypeSpec:
    748   case NestedNameSpecifier::TypeSpecWithTemplate: {
    749     const Type *type = qualifier->getAsType();
    750 
    751     // We only want to use an unresolved-type encoding if this is one of:
    752     //   - a decltype
    753     //   - a template type parameter
    754     //   - a template template parameter with arguments
    755     // In all of these cases, we should have no prefix.
    756     if (qualifier->getPrefix()) {
    757       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    758                              /*recursive*/ true);
    759     } else {
    760       // Otherwise, all the cases want this.
    761       Out << "sr";
    762     }
    763 
    764     // Only certain other types are valid as prefixes;  enumerate them.
    765     switch (type->getTypeClass()) {
    766     case Type::Builtin:
    767     case Type::Complex:
    768     case Type::Pointer:
    769     case Type::BlockPointer:
    770     case Type::LValueReference:
    771     case Type::RValueReference:
    772     case Type::MemberPointer:
    773     case Type::ConstantArray:
    774     case Type::IncompleteArray:
    775     case Type::VariableArray:
    776     case Type::DependentSizedArray:
    777     case Type::DependentSizedExtVector:
    778     case Type::Vector:
    779     case Type::ExtVector:
    780     case Type::FunctionProto:
    781     case Type::FunctionNoProto:
    782     case Type::Enum:
    783     case Type::Paren:
    784     case Type::Elaborated:
    785     case Type::Attributed:
    786     case Type::Auto:
    787     case Type::PackExpansion:
    788     case Type::ObjCObject:
    789     case Type::ObjCInterface:
    790     case Type::ObjCObjectPointer:
    791       llvm_unreachable("type is illegal as a nested name specifier");
    792 
    793     case Type::SubstTemplateTypeParmPack:
    794       // FIXME: not clear how to mangle this!
    795       // template <class T...> class A {
    796       //   template <class U...> void foo(decltype(T::foo(U())) x...);
    797       // };
    798       Out << "_SUBSTPACK_";
    799       break;
    800 
    801     // <unresolved-type> ::= <template-param>
    802     //                   ::= <decltype>
    803     //                   ::= <template-template-param> <template-args>
    804     // (this last is not official yet)
    805     case Type::TypeOfExpr:
    806     case Type::TypeOf:
    807     case Type::Decltype:
    808     case Type::TemplateTypeParm:
    809     case Type::UnaryTransform:
    810     case Type::SubstTemplateTypeParm:
    811     unresolvedType:
    812       assert(!qualifier->getPrefix());
    813 
    814       // We only get here recursively if we're followed by identifiers.
    815       if (recursive) Out << 'N';
    816 
    817       // This seems to do everything we want.  It's not really
    818       // sanctioned for a substituted template parameter, though.
    819       mangleType(QualType(type, 0));
    820 
    821       // We never want to print 'E' directly after an unresolved-type,
    822       // so we return directly.
    823       return;
    824 
    825     case Type::Typedef:
    826       mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
    827       break;
    828 
    829     case Type::UnresolvedUsing:
    830       mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
    831                          ->getIdentifier());
    832       break;
    833 
    834     case Type::Record:
    835       mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
    836       break;
    837 
    838     case Type::TemplateSpecialization: {
    839       const TemplateSpecializationType *tst
    840         = cast<TemplateSpecializationType>(type);
    841       TemplateName name = tst->getTemplateName();
    842       switch (name.getKind()) {
    843       case TemplateName::Template:
    844       case TemplateName::QualifiedTemplate: {
    845         TemplateDecl *temp = name.getAsTemplateDecl();
    846 
    847         // If the base is a template template parameter, this is an
    848         // unresolved type.
    849         assert(temp && "no template for template specialization type");
    850         if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
    851 
    852         mangleSourceName(temp->getIdentifier());
    853         break;
    854       }
    855 
    856       case TemplateName::OverloadedTemplate:
    857       case TemplateName::DependentTemplate:
    858         llvm_unreachable("invalid base for a template specialization type");
    859 
    860       case TemplateName::SubstTemplateTemplateParm: {
    861         SubstTemplateTemplateParmStorage *subst
    862           = name.getAsSubstTemplateTemplateParm();
    863         mangleExistingSubstitution(subst->getReplacement());
    864         break;
    865       }
    866 
    867       case TemplateName::SubstTemplateTemplateParmPack: {
    868         // FIXME: not clear how to mangle this!
    869         // template <template <class U> class T...> class A {
    870         //   template <class U...> void foo(decltype(T<U>::foo) x...);
    871         // };
    872         Out << "_SUBSTPACK_";
    873         break;
    874       }
    875       }
    876 
    877       mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
    878       break;
    879     }
    880 
    881     case Type::InjectedClassName:
    882       mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
    883                          ->getIdentifier());
    884       break;
    885 
    886     case Type::DependentName:
    887       mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
    888       break;
    889 
    890     case Type::DependentTemplateSpecialization: {
    891       const DependentTemplateSpecializationType *tst
    892         = cast<DependentTemplateSpecializationType>(type);
    893       mangleSourceName(tst->getIdentifier());
    894       mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
    895       break;
    896     }
    897     }
    898     break;
    899   }
    900 
    901   case NestedNameSpecifier::Identifier:
    902     // Member expressions can have these without prefixes.
    903     if (qualifier->getPrefix()) {
    904       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    905                              /*recursive*/ true);
    906     } else if (firstQualifierLookup) {
    907 
    908       // Try to make a proper qualifier out of the lookup result, and
    909       // then just recurse on that.
    910       NestedNameSpecifier *newQualifier;
    911       if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
    912         QualType type = getASTContext().getTypeDeclType(typeDecl);
    913 
    914         // Pretend we had a different nested name specifier.
    915         newQualifier = NestedNameSpecifier::Create(getASTContext(),
    916                                                    /*prefix*/ 0,
    917                                                    /*template*/ false,
    918                                                    type.getTypePtr());
    919       } else if (NamespaceDecl *nspace =
    920                    dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
    921         newQualifier = NestedNameSpecifier::Create(getASTContext(),
    922                                                    /*prefix*/ 0,
    923                                                    nspace);
    924       } else if (NamespaceAliasDecl *alias =
    925                    dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
    926         newQualifier = NestedNameSpecifier::Create(getASTContext(),
    927                                                    /*prefix*/ 0,
    928                                                    alias);
    929       } else {
    930         // No sensible mangling to do here.
    931         newQualifier = 0;
    932       }
    933 
    934       if (newQualifier)
    935         return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
    936 
    937     } else {
    938       Out << "sr";
    939     }
    940 
    941     mangleSourceName(qualifier->getAsIdentifier());
    942     break;
    943   }
    944 
    945   // If this was the innermost part of the NNS, and we fell out to
    946   // here, append an 'E'.
    947   if (!recursive)
    948     Out << 'E';
    949 }
    950 
    951 /// Mangle an unresolved-name, which is generally used for names which
    952 /// weren't resolved to specific entities.
    953 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
    954                                           NamedDecl *firstQualifierLookup,
    955                                           DeclarationName name,
    956                                           unsigned knownArity) {
    957   if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
    958   mangleUnqualifiedName(0, name, knownArity);
    959 }
    960 
    961 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
    962   assert(RD->isAnonymousStructOrUnion() &&
    963          "Expected anonymous struct or union!");
    964 
    965   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    966        I != E; ++I) {
    967     const FieldDecl *FD = *I;
    968 
    969     if (FD->getIdentifier())
    970       return FD;
    971 
    972     if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
    973       if (const FieldDecl *NamedDataMember =
    974           FindFirstNamedDataMember(RT->getDecl()))
    975         return NamedDataMember;
    976     }
    977   }
    978 
    979   // We didn't find a named data member.
    980   return 0;
    981 }
    982 
    983 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
    984                                            DeclarationName Name,
    985                                            unsigned KnownArity) {
    986   //  <unqualified-name> ::= <operator-name>
    987   //                     ::= <ctor-dtor-name>
    988   //                     ::= <source-name>
    989   switch (Name.getNameKind()) {
    990   case DeclarationName::Identifier: {
    991     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
    992       // We must avoid conflicts between internally- and externally-
    993       // linked variable and function declaration names in the same TU:
    994       //   void test() { extern void foo(); }
    995       //   static void foo();
    996       // This naming convention is the same as that followed by GCC,
    997       // though it shouldn't actually matter.
    998       if (ND && ND->getLinkage() == InternalLinkage &&
    999           ND->getDeclContext()->isFileContext())
   1000         Out << 'L';
   1001 
   1002       mangleSourceName(II);
   1003       break;
   1004     }
   1005 
   1006     // Otherwise, an anonymous entity.  We must have a declaration.
   1007     assert(ND && "mangling empty name without declaration");
   1008 
   1009     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
   1010       if (NS->isAnonymousNamespace()) {
   1011         // This is how gcc mangles these names.
   1012         Out << "12_GLOBAL__N_1";
   1013         break;
   1014       }
   1015     }
   1016 
   1017     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   1018       // We must have an anonymous union or struct declaration.
   1019       const RecordDecl *RD =
   1020         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
   1021 
   1022       // Itanium C++ ABI 5.1.2:
   1023       //
   1024       //   For the purposes of mangling, the name of an anonymous union is
   1025       //   considered to be the name of the first named data member found by a
   1026       //   pre-order, depth-first, declaration-order walk of the data members of
   1027       //   the anonymous union. If there is no such data member (i.e., if all of
   1028       //   the data members in the union are unnamed), then there is no way for
   1029       //   a program to refer to the anonymous union, and there is therefore no
   1030       //   need to mangle its name.
   1031       const FieldDecl *FD = FindFirstNamedDataMember(RD);
   1032 
   1033       // It's actually possible for various reasons for us to get here
   1034       // with an empty anonymous struct / union.  Fortunately, it
   1035       // doesn't really matter what name we generate.
   1036       if (!FD) break;
   1037       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
   1038 
   1039       mangleSourceName(FD->getIdentifier());
   1040       break;
   1041     }
   1042 
   1043     // We must have an anonymous struct.
   1044     const TagDecl *TD = cast<TagDecl>(ND);
   1045     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
   1046       assert(TD->getDeclContext() == D->getDeclContext() &&
   1047              "Typedef should not be in another decl context!");
   1048       assert(D->getDeclName().getAsIdentifierInfo() &&
   1049              "Typedef was not named!");
   1050       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
   1051       break;
   1052     }
   1053 
   1054     // Get a unique id for the anonymous struct.
   1055     uint64_t AnonStructId = Context.getAnonymousStructId(TD);
   1056 
   1057     // Mangle it as a source name in the form
   1058     // [n] $_<id>
   1059     // where n is the length of the string.
   1060     llvm::SmallString<8> Str;
   1061     Str += "$_";
   1062     Str += llvm::utostr(AnonStructId);
   1063 
   1064     Out << Str.size();
   1065     Out << Str.str();
   1066     break;
   1067   }
   1068 
   1069   case DeclarationName::ObjCZeroArgSelector:
   1070   case DeclarationName::ObjCOneArgSelector:
   1071   case DeclarationName::ObjCMultiArgSelector:
   1072     assert(false && "Can't mangle Objective-C selector names here!");
   1073     break;
   1074 
   1075   case DeclarationName::CXXConstructorName:
   1076     if (ND == Structor)
   1077       // If the named decl is the C++ constructor we're mangling, use the type
   1078       // we were given.
   1079       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
   1080     else
   1081       // Otherwise, use the complete constructor name. This is relevant if a
   1082       // class with a constructor is declared within a constructor.
   1083       mangleCXXCtorType(Ctor_Complete);
   1084     break;
   1085 
   1086   case DeclarationName::CXXDestructorName:
   1087     if (ND == Structor)
   1088       // If the named decl is the C++ destructor we're mangling, use the type we
   1089       // were given.
   1090       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
   1091     else
   1092       // Otherwise, use the complete destructor name. This is relevant if a
   1093       // class with a destructor is declared within a destructor.
   1094       mangleCXXDtorType(Dtor_Complete);
   1095     break;
   1096 
   1097   case DeclarationName::CXXConversionFunctionName:
   1098     // <operator-name> ::= cv <type>    # (cast)
   1099     Out << "cv";
   1100     mangleType(Name.getCXXNameType());
   1101     break;
   1102 
   1103   case DeclarationName::CXXOperatorName: {
   1104     unsigned Arity;
   1105     if (ND) {
   1106       Arity = cast<FunctionDecl>(ND)->getNumParams();
   1107 
   1108       // If we have a C++ member function, we need to include the 'this' pointer.
   1109       // FIXME: This does not make sense for operators that are static, but their
   1110       // names stay the same regardless of the arity (operator new for instance).
   1111       if (isa<CXXMethodDecl>(ND))
   1112         Arity++;
   1113     } else
   1114       Arity = KnownArity;
   1115 
   1116     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
   1117     break;
   1118   }
   1119 
   1120   case DeclarationName::CXXLiteralOperatorName:
   1121     // FIXME: This mangling is not yet official.
   1122     Out << "li";
   1123     mangleSourceName(Name.getCXXLiteralIdentifier());
   1124     break;
   1125 
   1126   case DeclarationName::CXXUsingDirective:
   1127     assert(false && "Can't mangle a using directive name!");
   1128     break;
   1129   }
   1130 }
   1131 
   1132 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
   1133   // <source-name> ::= <positive length number> <identifier>
   1134   // <number> ::= [n] <non-negative decimal integer>
   1135   // <identifier> ::= <unqualified source code identifier>
   1136   Out << II->getLength() << II->getName();
   1137 }
   1138 
   1139 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
   1140                                       const DeclContext *DC,
   1141                                       bool NoFunction) {
   1142   // <nested-name>
   1143   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
   1144   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
   1145   //       <template-args> E
   1146 
   1147   Out << 'N';
   1148   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
   1149     mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   1150     mangleRefQualifier(Method->getRefQualifier());
   1151   }
   1152 
   1153   // Check if we have a template.
   1154   const TemplateArgumentList *TemplateArgs = 0;
   1155   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
   1156     mangleTemplatePrefix(TD);
   1157     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
   1158     mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
   1159   }
   1160   else {
   1161     manglePrefix(DC, NoFunction);
   1162     mangleUnqualifiedName(ND);
   1163   }
   1164 
   1165   Out << 'E';
   1166 }
   1167 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
   1168                                       const TemplateArgument *TemplateArgs,
   1169                                       unsigned NumTemplateArgs) {
   1170   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
   1171 
   1172   Out << 'N';
   1173 
   1174   mangleTemplatePrefix(TD);
   1175   TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
   1176   mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
   1177 
   1178   Out << 'E';
   1179 }
   1180 
   1181 void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
   1182   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
   1183   //              := Z <function encoding> E s [<discriminator>]
   1184   // <discriminator> := _ <non-negative number>
   1185   const DeclContext *DC = ND->getDeclContext();
   1186   if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
   1187     // Don't add objc method name mangling to locally declared function
   1188     mangleUnqualifiedName(ND);
   1189     return;
   1190   }
   1191 
   1192   Out << 'Z';
   1193 
   1194   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
   1195    mangleObjCMethodName(MD);
   1196   } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
   1197     mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
   1198     Out << 'E';
   1199 
   1200     // Mangle the name relative to the closest enclosing function.
   1201     if (ND == RD) // equality ok because RD derived from ND above
   1202       mangleUnqualifiedName(ND);
   1203     else
   1204       mangleNestedName(ND, DC, true /*NoFunction*/);
   1205 
   1206     unsigned disc;
   1207     if (Context.getNextDiscriminator(RD, disc)) {
   1208       if (disc < 10)
   1209         Out << '_' << disc;
   1210       else
   1211         Out << "__" << disc << '_';
   1212     }
   1213 
   1214     return;
   1215   }
   1216   else
   1217     mangleFunctionEncoding(cast<FunctionDecl>(DC));
   1218 
   1219   Out << 'E';
   1220   mangleUnqualifiedName(ND);
   1221 }
   1222 
   1223 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
   1224   switch (qualifier->getKind()) {
   1225   case NestedNameSpecifier::Global:
   1226     // nothing
   1227     return;
   1228 
   1229   case NestedNameSpecifier::Namespace:
   1230     mangleName(qualifier->getAsNamespace());
   1231     return;
   1232 
   1233   case NestedNameSpecifier::NamespaceAlias:
   1234     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
   1235     return;
   1236 
   1237   case NestedNameSpecifier::TypeSpec:
   1238   case NestedNameSpecifier::TypeSpecWithTemplate:
   1239     manglePrefix(QualType(qualifier->getAsType(), 0));
   1240     return;
   1241 
   1242   case NestedNameSpecifier::Identifier:
   1243     // Member expressions can have these without prefixes, but that
   1244     // should end up in mangleUnresolvedPrefix instead.
   1245     assert(qualifier->getPrefix());
   1246     manglePrefix(qualifier->getPrefix());
   1247 
   1248     mangleSourceName(qualifier->getAsIdentifier());
   1249     return;
   1250   }
   1251 
   1252   llvm_unreachable("unexpected nested name specifier");
   1253 }
   1254 
   1255 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
   1256   //  <prefix> ::= <prefix> <unqualified-name>
   1257   //           ::= <template-prefix> <template-args>
   1258   //           ::= <template-param>
   1259   //           ::= # empty
   1260   //           ::= <substitution>
   1261 
   1262   while (isa<LinkageSpecDecl>(DC))
   1263     DC = DC->getParent();
   1264 
   1265   if (DC->isTranslationUnit())
   1266     return;
   1267 
   1268   if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
   1269     manglePrefix(DC->getParent(), NoFunction);
   1270     llvm::SmallString<64> Name;
   1271     llvm::raw_svector_ostream NameStream(Name);
   1272     Context.mangleBlock(Block, NameStream);
   1273     NameStream.flush();
   1274     Out << Name.size() << Name;
   1275     return;
   1276   }
   1277 
   1278   if (mangleSubstitution(cast<NamedDecl>(DC)))
   1279     return;
   1280 
   1281   // Check if we have a template.
   1282   const TemplateArgumentList *TemplateArgs = 0;
   1283   if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
   1284     mangleTemplatePrefix(TD);
   1285     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
   1286     mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
   1287   }
   1288   else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
   1289     return;
   1290   else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
   1291     mangleObjCMethodName(Method);
   1292   else {
   1293     manglePrefix(DC->getParent(), NoFunction);
   1294     mangleUnqualifiedName(cast<NamedDecl>(DC));
   1295   }
   1296 
   1297   addSubstitution(cast<NamedDecl>(DC));
   1298 }
   1299 
   1300 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
   1301   // <template-prefix> ::= <prefix> <template unqualified-name>
   1302   //                   ::= <template-param>
   1303   //                   ::= <substitution>
   1304   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   1305     return mangleTemplatePrefix(TD);
   1306 
   1307   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
   1308     manglePrefix(Qualified->getQualifier());
   1309 
   1310   if (OverloadedTemplateStorage *Overloaded
   1311                                       = Template.getAsOverloadedTemplate()) {
   1312     mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
   1313                           UnknownArity);
   1314     return;
   1315   }
   1316 
   1317   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
   1318   assert(Dependent && "Unknown template name kind?");
   1319   manglePrefix(Dependent->getQualifier());
   1320   mangleUnscopedTemplateName(Template);
   1321 }
   1322 
   1323 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
   1324   // <template-prefix> ::= <prefix> <template unqualified-name>
   1325   //                   ::= <template-param>
   1326   //                   ::= <substitution>
   1327   // <template-template-param> ::= <template-param>
   1328   //                               <substitution>
   1329 
   1330   if (mangleSubstitution(ND))
   1331     return;
   1332 
   1333   // <template-template-param> ::= <template-param>
   1334   if (const TemplateTemplateParmDecl *TTP
   1335                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
   1336     mangleTemplateParameter(TTP->getIndex());
   1337     return;
   1338   }
   1339 
   1340   manglePrefix(ND->getDeclContext());
   1341   mangleUnqualifiedName(ND->getTemplatedDecl());
   1342   addSubstitution(ND);
   1343 }
   1344 
   1345 /// Mangles a template name under the production <type>.  Required for
   1346 /// template template arguments.
   1347 ///   <type> ::= <class-enum-type>
   1348 ///          ::= <template-param>
   1349 ///          ::= <substitution>
   1350 void CXXNameMangler::mangleType(TemplateName TN) {
   1351   if (mangleSubstitution(TN))
   1352     return;
   1353 
   1354   TemplateDecl *TD = 0;
   1355 
   1356   switch (TN.getKind()) {
   1357   case TemplateName::QualifiedTemplate:
   1358     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
   1359     goto HaveDecl;
   1360 
   1361   case TemplateName::Template:
   1362     TD = TN.getAsTemplateDecl();
   1363     goto HaveDecl;
   1364 
   1365   HaveDecl:
   1366     if (isa<TemplateTemplateParmDecl>(TD))
   1367       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
   1368     else
   1369       mangleName(TD);
   1370     break;
   1371 
   1372   case TemplateName::OverloadedTemplate:
   1373     llvm_unreachable("can't mangle an overloaded template name as a <type>");
   1374     break;
   1375 
   1376   case TemplateName::DependentTemplate: {
   1377     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
   1378     assert(Dependent->isIdentifier());
   1379 
   1380     // <class-enum-type> ::= <name>
   1381     // <name> ::= <nested-name>
   1382     mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
   1383     mangleSourceName(Dependent->getIdentifier());
   1384     break;
   1385   }
   1386 
   1387   case TemplateName::SubstTemplateTemplateParm: {
   1388     // Substituted template parameters are mangled as the substituted
   1389     // template.  This will check for the substitution twice, which is
   1390     // fine, but we have to return early so that we don't try to *add*
   1391     // the substitution twice.
   1392     SubstTemplateTemplateParmStorage *subst
   1393       = TN.getAsSubstTemplateTemplateParm();
   1394     mangleType(subst->getReplacement());
   1395     return;
   1396   }
   1397 
   1398   case TemplateName::SubstTemplateTemplateParmPack: {
   1399     // FIXME: not clear how to mangle this!
   1400     // template <template <class> class T...> class A {
   1401     //   template <template <class> class U...> void foo(B<T,U> x...);
   1402     // };
   1403     Out << "_SUBSTPACK_";
   1404     break;
   1405   }
   1406   }
   1407 
   1408   addSubstitution(TN);
   1409 }
   1410 
   1411 void
   1412 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
   1413   switch (OO) {
   1414   // <operator-name> ::= nw     # new
   1415   case OO_New: Out << "nw"; break;
   1416   //              ::= na        # new[]
   1417   case OO_Array_New: Out << "na"; break;
   1418   //              ::= dl        # delete
   1419   case OO_Delete: Out << "dl"; break;
   1420   //              ::= da        # delete[]
   1421   case OO_Array_Delete: Out << "da"; break;
   1422   //              ::= ps        # + (unary)
   1423   //              ::= pl        # + (binary or unknown)
   1424   case OO_Plus:
   1425     Out << (Arity == 1? "ps" : "pl"); break;
   1426   //              ::= ng        # - (unary)
   1427   //              ::= mi        # - (binary or unknown)
   1428   case OO_Minus:
   1429     Out << (Arity == 1? "ng" : "mi"); break;
   1430   //              ::= ad        # & (unary)
   1431   //              ::= an        # & (binary or unknown)
   1432   case OO_Amp:
   1433     Out << (Arity == 1? "ad" : "an"); break;
   1434   //              ::= de        # * (unary)
   1435   //              ::= ml        # * (binary or unknown)
   1436   case OO_Star:
   1437     // Use binary when unknown.
   1438     Out << (Arity == 1? "de" : "ml"); break;
   1439   //              ::= co        # ~
   1440   case OO_Tilde: Out << "co"; break;
   1441   //              ::= dv        # /
   1442   case OO_Slash: Out << "dv"; break;
   1443   //              ::= rm        # %
   1444   case OO_Percent: Out << "rm"; break;
   1445   //              ::= or        # |
   1446   case OO_Pipe: Out << "or"; break;
   1447   //              ::= eo        # ^
   1448   case OO_Caret: Out << "eo"; break;
   1449   //              ::= aS        # =
   1450   case OO_Equal: Out << "aS"; break;
   1451   //              ::= pL        # +=
   1452   case OO_PlusEqual: Out << "pL"; break;
   1453   //              ::= mI        # -=
   1454   case OO_MinusEqual: Out << "mI"; break;
   1455   //              ::= mL        # *=
   1456   case OO_StarEqual: Out << "mL"; break;
   1457   //              ::= dV        # /=
   1458   case OO_SlashEqual: Out << "dV"; break;
   1459   //              ::= rM        # %=
   1460   case OO_PercentEqual: Out << "rM"; break;
   1461   //              ::= aN        # &=
   1462   case OO_AmpEqual: Out << "aN"; break;
   1463   //              ::= oR        # |=
   1464   case OO_PipeEqual: Out << "oR"; break;
   1465   //              ::= eO        # ^=
   1466   case OO_CaretEqual: Out << "eO"; break;
   1467   //              ::= ls        # <<
   1468   case OO_LessLess: Out << "ls"; break;
   1469   //              ::= rs        # >>
   1470   case OO_GreaterGreater: Out << "rs"; break;
   1471   //              ::= lS        # <<=
   1472   case OO_LessLessEqual: Out << "lS"; break;
   1473   //              ::= rS        # >>=
   1474   case OO_GreaterGreaterEqual: Out << "rS"; break;
   1475   //              ::= eq        # ==
   1476   case OO_EqualEqual: Out << "eq"; break;
   1477   //              ::= ne        # !=
   1478   case OO_ExclaimEqual: Out << "ne"; break;
   1479   //              ::= lt        # <
   1480   case OO_Less: Out << "lt"; break;
   1481   //              ::= gt        # >
   1482   case OO_Greater: Out << "gt"; break;
   1483   //              ::= le        # <=
   1484   case OO_LessEqual: Out << "le"; break;
   1485   //              ::= ge        # >=
   1486   case OO_GreaterEqual: Out << "ge"; break;
   1487   //              ::= nt        # !
   1488   case OO_Exclaim: Out << "nt"; break;
   1489   //              ::= aa        # &&
   1490   case OO_AmpAmp: Out << "aa"; break;
   1491   //              ::= oo        # ||
   1492   case OO_PipePipe: Out << "oo"; break;
   1493   //              ::= pp        # ++
   1494   case OO_PlusPlus: Out << "pp"; break;
   1495   //              ::= mm        # --
   1496   case OO_MinusMinus: Out << "mm"; break;
   1497   //              ::= cm        # ,
   1498   case OO_Comma: Out << "cm"; break;
   1499   //              ::= pm        # ->*
   1500   case OO_ArrowStar: Out << "pm"; break;
   1501   //              ::= pt        # ->
   1502   case OO_Arrow: Out << "pt"; break;
   1503   //              ::= cl        # ()
   1504   case OO_Call: Out << "cl"; break;
   1505   //              ::= ix        # []
   1506   case OO_Subscript: Out << "ix"; break;
   1507 
   1508   //              ::= qu        # ?
   1509   // The conditional operator can't be overloaded, but we still handle it when
   1510   // mangling expressions.
   1511   case OO_Conditional: Out << "qu"; break;
   1512 
   1513   case OO_None:
   1514   case NUM_OVERLOADED_OPERATORS:
   1515     assert(false && "Not an overloaded operator");
   1516     break;
   1517   }
   1518 }
   1519 
   1520 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
   1521   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
   1522   if (Quals.hasRestrict())
   1523     Out << 'r';
   1524   if (Quals.hasVolatile())
   1525     Out << 'V';
   1526   if (Quals.hasConst())
   1527     Out << 'K';
   1528 
   1529   if (Quals.hasAddressSpace()) {
   1530     // Extension:
   1531     //
   1532     //   <type> ::= U <address-space-number>
   1533     //
   1534     // where <address-space-number> is a source name consisting of 'AS'
   1535     // followed by the address space <number>.
   1536     llvm::SmallString<64> ASString;
   1537     ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
   1538     Out << 'U' << ASString.size() << ASString;
   1539   }
   1540 
   1541   llvm::StringRef LifetimeName;
   1542   switch (Quals.getObjCLifetime()) {
   1543   // Objective-C ARC Extension:
   1544   //
   1545   //   <type> ::= U "__strong"
   1546   //   <type> ::= U "__weak"
   1547   //   <type> ::= U "__autoreleasing"
   1548   case Qualifiers::OCL_None:
   1549     break;
   1550 
   1551   case Qualifiers::OCL_Weak:
   1552     LifetimeName = "__weak";
   1553     break;
   1554 
   1555   case Qualifiers::OCL_Strong:
   1556     LifetimeName = "__strong";
   1557     break;
   1558 
   1559   case Qualifiers::OCL_Autoreleasing:
   1560     LifetimeName = "__autoreleasing";
   1561     break;
   1562 
   1563   case Qualifiers::OCL_ExplicitNone:
   1564     // The __unsafe_unretained qualifier is *not* mangled, so that
   1565     // __unsafe_unretained types in ARC produce the same manglings as the
   1566     // equivalent (but, naturally, unqualified) types in non-ARC, providing
   1567     // better ABI compatibility.
   1568     //
   1569     // It's safe to do this because unqualified 'id' won't show up
   1570     // in any type signatures that need to be mangled.
   1571     break;
   1572   }
   1573   if (!LifetimeName.empty())
   1574     Out << 'U' << LifetimeName.size() << LifetimeName;
   1575 }
   1576 
   1577 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
   1578   // <ref-qualifier> ::= R                # lvalue reference
   1579   //                 ::= O                # rvalue-reference
   1580   // Proposal to Itanium C++ ABI list on 1/26/11
   1581   switch (RefQualifier) {
   1582   case RQ_None:
   1583     break;
   1584 
   1585   case RQ_LValue:
   1586     Out << 'R';
   1587     break;
   1588 
   1589   case RQ_RValue:
   1590     Out << 'O';
   1591     break;
   1592   }
   1593 }
   1594 
   1595 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
   1596   Context.mangleObjCMethodName(MD, Out);
   1597 }
   1598 
   1599 void CXXNameMangler::mangleType(QualType T) {
   1600   // If our type is instantiation-dependent but not dependent, we mangle
   1601   // it as it was written in the source, removing any top-level sugar.
   1602   // Otherwise, use the canonical type.
   1603   //
   1604   // FIXME: This is an approximation of the instantiation-dependent name
   1605   // mangling rules, since we should really be using the type as written and
   1606   // augmented via semantic analysis (i.e., with implicit conversions and
   1607   // default template arguments) for any instantiation-dependent type.
   1608   // Unfortunately, that requires several changes to our AST:
   1609   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
   1610   //     uniqued, so that we can handle substitutions properly
   1611   //   - Default template arguments will need to be represented in the
   1612   //     TemplateSpecializationType, since they need to be mangled even though
   1613   //     they aren't written.
   1614   //   - Conversions on non-type template arguments need to be expressed, since
   1615   //     they can affect the mangling of sizeof/alignof.
   1616   if (!T->isInstantiationDependentType() || T->isDependentType())
   1617     T = T.getCanonicalType();
   1618   else {
   1619     // Desugar any types that are purely sugar.
   1620     do {
   1621       // Don't desugar through template specialization types that aren't
   1622       // type aliases. We need to mangle the template arguments as written.
   1623       if (const TemplateSpecializationType *TST
   1624                                       = dyn_cast<TemplateSpecializationType>(T))
   1625         if (!TST->isTypeAlias())
   1626           break;
   1627 
   1628       QualType Desugared
   1629         = T.getSingleStepDesugaredType(Context.getASTContext());
   1630       if (Desugared == T)
   1631         break;
   1632 
   1633       T = Desugared;
   1634     } while (true);
   1635   }
   1636   SplitQualType split = T.split();
   1637   Qualifiers quals = split.second;
   1638   const Type *ty = split.first;
   1639 
   1640   bool isSubstitutable = quals || !isa<BuiltinType>(T);
   1641   if (isSubstitutable && mangleSubstitution(T))
   1642     return;
   1643 
   1644   // If we're mangling a qualified array type, push the qualifiers to
   1645   // the element type.
   1646   if (quals && isa<ArrayType>(T)) {
   1647     ty = Context.getASTContext().getAsArrayType(T);
   1648     quals = Qualifiers();
   1649 
   1650     // Note that we don't update T: we want to add the
   1651     // substitution at the original type.
   1652   }
   1653 
   1654   if (quals) {
   1655     mangleQualifiers(quals);
   1656     // Recurse:  even if the qualified type isn't yet substitutable,
   1657     // the unqualified type might be.
   1658     mangleType(QualType(ty, 0));
   1659   } else {
   1660     switch (ty->getTypeClass()) {
   1661 #define ABSTRACT_TYPE(CLASS, PARENT)
   1662 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
   1663     case Type::CLASS: \
   1664       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
   1665       return;
   1666 #define TYPE(CLASS, PARENT) \
   1667     case Type::CLASS: \
   1668       mangleType(static_cast<const CLASS##Type*>(ty)); \
   1669       break;
   1670 #include "clang/AST/TypeNodes.def"
   1671     }
   1672   }
   1673 
   1674   // Add the substitution.
   1675   if (isSubstitutable)
   1676     addSubstitution(T);
   1677 }
   1678 
   1679 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
   1680   if (!mangleStandardSubstitution(ND))
   1681     mangleName(ND);
   1682 }
   1683 
   1684 void CXXNameMangler::mangleType(const BuiltinType *T) {
   1685   //  <type>         ::= <builtin-type>
   1686   //  <builtin-type> ::= v  # void
   1687   //                 ::= w  # wchar_t
   1688   //                 ::= b  # bool
   1689   //                 ::= c  # char
   1690   //                 ::= a  # signed char
   1691   //                 ::= h  # unsigned char
   1692   //                 ::= s  # short
   1693   //                 ::= t  # unsigned short
   1694   //                 ::= i  # int
   1695   //                 ::= j  # unsigned int
   1696   //                 ::= l  # long
   1697   //                 ::= m  # unsigned long
   1698   //                 ::= x  # long long, __int64
   1699   //                 ::= y  # unsigned long long, __int64
   1700   //                 ::= n  # __int128
   1701   // UNSUPPORTED:    ::= o  # unsigned __int128
   1702   //                 ::= f  # float
   1703   //                 ::= d  # double
   1704   //                 ::= e  # long double, __float80
   1705   // UNSUPPORTED:    ::= g  # __float128
   1706   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
   1707   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
   1708   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
   1709   // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
   1710   //                 ::= Di # char32_t
   1711   //                 ::= Ds # char16_t
   1712   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
   1713   //                 ::= u <source-name>    # vendor extended type
   1714   switch (T->getKind()) {
   1715   case BuiltinType::Void: Out << 'v'; break;
   1716   case BuiltinType::Bool: Out << 'b'; break;
   1717   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
   1718   case BuiltinType::UChar: Out << 'h'; break;
   1719   case BuiltinType::UShort: Out << 't'; break;
   1720   case BuiltinType::UInt: Out << 'j'; break;
   1721   case BuiltinType::ULong: Out << 'm'; break;
   1722   case BuiltinType::ULongLong: Out << 'y'; break;
   1723   case BuiltinType::UInt128: Out << 'o'; break;
   1724   case BuiltinType::SChar: Out << 'a'; break;
   1725   case BuiltinType::WChar_S:
   1726   case BuiltinType::WChar_U: Out << 'w'; break;
   1727   case BuiltinType::Char16: Out << "Ds"; break;
   1728   case BuiltinType::Char32: Out << "Di"; break;
   1729   case BuiltinType::Short: Out << 's'; break;
   1730   case BuiltinType::Int: Out << 'i'; break;
   1731   case BuiltinType::Long: Out << 'l'; break;
   1732   case BuiltinType::LongLong: Out << 'x'; break;
   1733   case BuiltinType::Int128: Out << 'n'; break;
   1734   case BuiltinType::Float: Out << 'f'; break;
   1735   case BuiltinType::Double: Out << 'd'; break;
   1736   case BuiltinType::LongDouble: Out << 'e'; break;
   1737   case BuiltinType::NullPtr: Out << "Dn"; break;
   1738 
   1739   case BuiltinType::Overload:
   1740   case BuiltinType::Dependent:
   1741   case BuiltinType::BoundMember:
   1742   case BuiltinType::UnknownAny:
   1743     llvm_unreachable("mangling a placeholder type");
   1744     break;
   1745   case BuiltinType::ObjCId: Out << "11objc_object"; break;
   1746   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
   1747   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
   1748   }
   1749 }
   1750 
   1751 // <type>          ::= <function-type>
   1752 // <function-type> ::= F [Y] <bare-function-type> E
   1753 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
   1754   Out << 'F';
   1755   // FIXME: We don't have enough information in the AST to produce the 'Y'
   1756   // encoding for extern "C" function types.
   1757   mangleBareFunctionType(T, /*MangleReturnType=*/true);
   1758   Out << 'E';
   1759 }
   1760 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
   1761   llvm_unreachable("Can't mangle K&R function prototypes");
   1762 }
   1763 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
   1764                                             bool MangleReturnType) {
   1765   // We should never be mangling something without a prototype.
   1766   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   1767 
   1768   // Record that we're in a function type.  See mangleFunctionParam
   1769   // for details on what we're trying to achieve here.
   1770   FunctionTypeDepthState saved = FunctionTypeDepth.push();
   1771 
   1772   // <bare-function-type> ::= <signature type>+
   1773   if (MangleReturnType) {
   1774     FunctionTypeDepth.enterResultType();
   1775     mangleType(Proto->getResultType());
   1776     FunctionTypeDepth.leaveResultType();
   1777   }
   1778 
   1779   if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
   1780     //   <builtin-type> ::= v   # void
   1781     Out << 'v';
   1782 
   1783     FunctionTypeDepth.pop(saved);
   1784     return;
   1785   }
   1786 
   1787   for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
   1788                                          ArgEnd = Proto->arg_type_end();
   1789        Arg != ArgEnd; ++Arg)
   1790     mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
   1791 
   1792   FunctionTypeDepth.pop(saved);
   1793 
   1794   // <builtin-type>      ::= z  # ellipsis
   1795   if (Proto->isVariadic())
   1796     Out << 'z';
   1797 }
   1798 
   1799 // <type>            ::= <class-enum-type>
   1800 // <class-enum-type> ::= <name>
   1801 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
   1802   mangleName(T->getDecl());
   1803 }
   1804 
   1805 // <type>            ::= <class-enum-type>
   1806 // <class-enum-type> ::= <name>
   1807 void CXXNameMangler::mangleType(const EnumType *T) {
   1808   mangleType(static_cast<const TagType*>(T));
   1809 }
   1810 void CXXNameMangler::mangleType(const RecordType *T) {
   1811   mangleType(static_cast<const TagType*>(T));
   1812 }
   1813 void CXXNameMangler::mangleType(const TagType *T) {
   1814   mangleName(T->getDecl());
   1815 }
   1816 
   1817 // <type>       ::= <array-type>
   1818 // <array-type> ::= A <positive dimension number> _ <element type>
   1819 //              ::= A [<dimension expression>] _ <element type>
   1820 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
   1821   Out << 'A' << T->getSize() << '_';
   1822   mangleType(T->getElementType());
   1823 }
   1824 void CXXNameMangler::mangleType(const VariableArrayType *T) {
   1825   Out << 'A';
   1826   // decayed vla types (size 0) will just be skipped.
   1827   if (T->getSizeExpr())
   1828     mangleExpression(T->getSizeExpr());
   1829   Out << '_';
   1830   mangleType(T->getElementType());
   1831 }
   1832 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
   1833   Out << 'A';
   1834   mangleExpression(T->getSizeExpr());
   1835   Out << '_';
   1836   mangleType(T->getElementType());
   1837 }
   1838 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
   1839   Out << "A_";
   1840   mangleType(T->getElementType());
   1841 }
   1842 
   1843 // <type>                   ::= <pointer-to-member-type>
   1844 // <pointer-to-member-type> ::= M <class type> <member type>
   1845 void CXXNameMangler::mangleType(const MemberPointerType *T) {
   1846   Out << 'M';
   1847   mangleType(QualType(T->getClass(), 0));
   1848   QualType PointeeType = T->getPointeeType();
   1849   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
   1850     mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
   1851     mangleRefQualifier(FPT->getRefQualifier());
   1852     mangleType(FPT);
   1853 
   1854     // Itanium C++ ABI 5.1.8:
   1855     //
   1856     //   The type of a non-static member function is considered to be different,
   1857     //   for the purposes of substitution, from the type of a namespace-scope or
   1858     //   static member function whose type appears similar. The types of two
   1859     //   non-static member functions are considered to be different, for the
   1860     //   purposes of substitution, if the functions are members of different
   1861     //   classes. In other words, for the purposes of substitution, the class of
   1862     //   which the function is a member is considered part of the type of
   1863     //   function.
   1864 
   1865     // We increment the SeqID here to emulate adding an entry to the
   1866     // substitution table. We can't actually add it because we don't want this
   1867     // particular function type to be substituted.
   1868     ++SeqID;
   1869   } else
   1870     mangleType(PointeeType);
   1871 }
   1872 
   1873 // <type>           ::= <template-param>
   1874 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
   1875   mangleTemplateParameter(T->getIndex());
   1876 }
   1877 
   1878 // <type>           ::= <template-param>
   1879 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
   1880   // FIXME: not clear how to mangle this!
   1881   // template <class T...> class A {
   1882   //   template <class U...> void foo(T(*)(U) x...);
   1883   // };
   1884   Out << "_SUBSTPACK_";
   1885 }
   1886 
   1887 // <type> ::= P <type>   # pointer-to
   1888 void CXXNameMangler::mangleType(const PointerType *T) {
   1889   Out << 'P';
   1890   mangleType(T->getPointeeType());
   1891 }
   1892 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
   1893   Out << 'P';
   1894   mangleType(T->getPointeeType());
   1895 }
   1896 
   1897 // <type> ::= R <type>   # reference-to
   1898 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
   1899   Out << 'R';
   1900   mangleType(T->getPointeeType());
   1901 }
   1902 
   1903 // <type> ::= O <type>   # rvalue reference-to (C++0x)
   1904 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
   1905   Out << 'O';
   1906   mangleType(T->getPointeeType());
   1907 }
   1908 
   1909 // <type> ::= C <type>   # complex pair (C 2000)
   1910 void CXXNameMangler::mangleType(const ComplexType *T) {
   1911   Out << 'C';
   1912   mangleType(T->getElementType());
   1913 }
   1914 
   1915 // ARM's ABI for Neon vector types specifies that they should be mangled as
   1916 // if they are structs (to match ARM's initial implementation).  The
   1917 // vector type must be one of the special types predefined by ARM.
   1918 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
   1919   QualType EltType = T->getElementType();
   1920   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
   1921   const char *EltName = 0;
   1922   if (T->getVectorKind() == VectorType::NeonPolyVector) {
   1923     switch (cast<BuiltinType>(EltType)->getKind()) {
   1924     case BuiltinType::SChar:     EltName = "poly8_t"; break;
   1925     case BuiltinType::Short:     EltName = "poly16_t"; break;
   1926     default: llvm_unreachable("unexpected Neon polynomial vector element type");
   1927     }
   1928   } else {
   1929     switch (cast<BuiltinType>(EltType)->getKind()) {
   1930     case BuiltinType::SChar:     EltName = "int8_t"; break;
   1931     case BuiltinType::UChar:     EltName = "uint8_t"; break;
   1932     case BuiltinType::Short:     EltName = "int16_t"; break;
   1933     case BuiltinType::UShort:    EltName = "uint16_t"; break;
   1934     case BuiltinType::Int:       EltName = "int32_t"; break;
   1935     case BuiltinType::UInt:      EltName = "uint32_t"; break;
   1936     case BuiltinType::LongLong:  EltName = "int64_t"; break;
   1937     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
   1938     case BuiltinType::Float:     EltName = "float32_t"; break;
   1939     default: llvm_unreachable("unexpected Neon vector element type");
   1940     }
   1941   }
   1942   const char *BaseName = 0;
   1943   unsigned BitSize = (T->getNumElements() *
   1944                       getASTContext().getTypeSize(EltType));
   1945   if (BitSize == 64)
   1946     BaseName = "__simd64_";
   1947   else {
   1948     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
   1949     BaseName = "__simd128_";
   1950   }
   1951   Out << strlen(BaseName) + strlen(EltName);
   1952   Out << BaseName << EltName;
   1953 }
   1954 
   1955 // GNU extension: vector types
   1956 // <type>                  ::= <vector-type>
   1957 // <vector-type>           ::= Dv <positive dimension number> _
   1958 //                                    <extended element type>
   1959 //                         ::= Dv [<dimension expression>] _ <element type>
   1960 // <extended element type> ::= <element type>
   1961 //                         ::= p # AltiVec vector pixel
   1962 void CXXNameMangler::mangleType(const VectorType *T) {
   1963   if ((T->getVectorKind() == VectorType::NeonVector ||
   1964        T->getVectorKind() == VectorType::NeonPolyVector)) {
   1965     mangleNeonVectorType(T);
   1966     return;
   1967   }
   1968   Out << "Dv" << T->getNumElements() << '_';
   1969   if (T->getVectorKind() == VectorType::AltiVecPixel)
   1970     Out << 'p';
   1971   else if (T->getVectorKind() == VectorType::AltiVecBool)
   1972     Out << 'b';
   1973   else
   1974     mangleType(T->getElementType());
   1975 }
   1976 void CXXNameMangler::mangleType(const ExtVectorType *T) {
   1977   mangleType(static_cast<const VectorType*>(T));
   1978 }
   1979 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
   1980   Out << "Dv";
   1981   mangleExpression(T->getSizeExpr());
   1982   Out << '_';
   1983   mangleType(T->getElementType());
   1984 }
   1985 
   1986 void CXXNameMangler::mangleType(const PackExpansionType *T) {
   1987   // <type>  ::= Dp <type>          # pack expansion (C++0x)
   1988   Out << "Dp";
   1989   mangleType(T->getPattern());
   1990 }
   1991 
   1992 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
   1993   mangleSourceName(T->getDecl()->getIdentifier());
   1994 }
   1995 
   1996 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
   1997   // We don't allow overloading by different protocol qualification,
   1998   // so mangling them isn't necessary.
   1999   mangleType(T->getBaseType());
   2000 }
   2001 
   2002 void CXXNameMangler::mangleType(const BlockPointerType *T) {
   2003   Out << "U13block_pointer";
   2004   mangleType(T->getPointeeType());
   2005 }
   2006 
   2007 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
   2008   // Mangle injected class name types as if the user had written the
   2009   // specialization out fully.  It may not actually be possible to see
   2010   // this mangling, though.
   2011   mangleType(T->getInjectedSpecializationType());
   2012 }
   2013 
   2014 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
   2015   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
   2016     mangleName(TD, T->getArgs(), T->getNumArgs());
   2017   } else {
   2018     if (mangleSubstitution(QualType(T, 0)))
   2019       return;
   2020 
   2021     mangleTemplatePrefix(T->getTemplateName());
   2022 
   2023     // FIXME: GCC does not appear to mangle the template arguments when
   2024     // the template in question is a dependent template name. Should we
   2025     // emulate that badness?
   2026     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
   2027     addSubstitution(QualType(T, 0));
   2028   }
   2029 }
   2030 
   2031 void CXXNameMangler::mangleType(const DependentNameType *T) {
   2032   // Typename types are always nested
   2033   Out << 'N';
   2034   manglePrefix(T->getQualifier());
   2035   mangleSourceName(T->getIdentifier());
   2036   Out << 'E';
   2037 }
   2038 
   2039 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
   2040   // Dependently-scoped template types are nested if they have a prefix.
   2041   Out << 'N';
   2042 
   2043   // TODO: avoid making this TemplateName.
   2044   TemplateName Prefix =
   2045     getASTContext().getDependentTemplateName(T->getQualifier(),
   2046                                              T->getIdentifier());
   2047   mangleTemplatePrefix(Prefix);
   2048 
   2049   // FIXME: GCC does not appear to mangle the template arguments when
   2050   // the template in question is a dependent template name. Should we
   2051   // emulate that badness?
   2052   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
   2053   Out << 'E';
   2054 }
   2055 
   2056 void CXXNameMangler::mangleType(const TypeOfType *T) {
   2057   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
   2058   // "extension with parameters" mangling.
   2059   Out << "u6typeof";
   2060 }
   2061 
   2062 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
   2063   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
   2064   // "extension with parameters" mangling.
   2065   Out << "u6typeof";
   2066 }
   2067 
   2068 void CXXNameMangler::mangleType(const DecltypeType *T) {
   2069   Expr *E = T->getUnderlyingExpr();
   2070 
   2071   // type ::= Dt <expression> E  # decltype of an id-expression
   2072   //                             #   or class member access
   2073   //      ::= DT <expression> E  # decltype of an expression
   2074 
   2075   // This purports to be an exhaustive list of id-expressions and
   2076   // class member accesses.  Note that we do not ignore parentheses;
   2077   // parentheses change the semantics of decltype for these
   2078   // expressions (and cause the mangler to use the other form).
   2079   if (isa<DeclRefExpr>(E) ||
   2080       isa<MemberExpr>(E) ||
   2081       isa<UnresolvedLookupExpr>(E) ||
   2082       isa<DependentScopeDeclRefExpr>(E) ||
   2083       isa<CXXDependentScopeMemberExpr>(E) ||
   2084       isa<UnresolvedMemberExpr>(E))
   2085     Out << "Dt";
   2086   else
   2087     Out << "DT";
   2088   mangleExpression(E);
   2089   Out << 'E';
   2090 }
   2091 
   2092 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
   2093   // If this is dependent, we need to record that. If not, we simply
   2094   // mangle it as the underlying type since they are equivalent.
   2095   if (T->isDependentType()) {
   2096     Out << 'U';
   2097 
   2098     switch (T->getUTTKind()) {
   2099       case UnaryTransformType::EnumUnderlyingType:
   2100         Out << "3eut";
   2101         break;
   2102     }
   2103   }
   2104 
   2105   mangleType(T->getUnderlyingType());
   2106 }
   2107 
   2108 void CXXNameMangler::mangleType(const AutoType *T) {
   2109   QualType D = T->getDeducedType();
   2110   // <builtin-type> ::= Da  # dependent auto
   2111   if (D.isNull())
   2112     Out << "Da";
   2113   else
   2114     mangleType(D);
   2115 }
   2116 
   2117 void CXXNameMangler::mangleIntegerLiteral(QualType T,
   2118                                           const llvm::APSInt &Value) {
   2119   //  <expr-primary> ::= L <type> <value number> E # integer literal
   2120   Out << 'L';
   2121 
   2122   mangleType(T);
   2123   if (T->isBooleanType()) {
   2124     // Boolean values are encoded as 0/1.
   2125     Out << (Value.getBoolValue() ? '1' : '0');
   2126   } else {
   2127     mangleNumber(Value);
   2128   }
   2129   Out << 'E';
   2130 
   2131 }
   2132 
   2133 /// Mangles a member expression.  Implicit accesses are not handled,
   2134 /// but that should be okay, because you shouldn't be able to
   2135 /// make an implicit access in a function template declaration.
   2136 void CXXNameMangler::mangleMemberExpr(const Expr *base,
   2137                                       bool isArrow,
   2138                                       NestedNameSpecifier *qualifier,
   2139                                       NamedDecl *firstQualifierLookup,
   2140                                       DeclarationName member,
   2141                                       unsigned arity) {
   2142   // <expression> ::= dt <expression> <unresolved-name>
   2143   //              ::= pt <expression> <unresolved-name>
   2144   Out << (isArrow ? "pt" : "dt");
   2145   mangleExpression(base);
   2146   mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
   2147 }
   2148 
   2149 /// Look at the callee of the given call expression and determine if
   2150 /// it's a parenthesized id-expression which would have triggered ADL
   2151 /// otherwise.
   2152 static bool isParenthesizedADLCallee(const CallExpr *call) {
   2153   const Expr *callee = call->getCallee();
   2154   const Expr *fn = callee->IgnoreParens();
   2155 
   2156   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
   2157   // too, but for those to appear in the callee, it would have to be
   2158   // parenthesized.
   2159   if (callee == fn) return false;
   2160 
   2161   // Must be an unresolved lookup.
   2162   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
   2163   if (!lookup) return false;
   2164 
   2165   assert(!lookup->requiresADL());
   2166 
   2167   // Must be an unqualified lookup.
   2168   if (lookup->getQualifier()) return false;
   2169 
   2170   // Must not have found a class member.  Note that if one is a class
   2171   // member, they're all class members.
   2172   if (lookup->getNumDecls() > 0 &&
   2173       (*lookup->decls_begin())->isCXXClassMember())
   2174     return false;
   2175 
   2176   // Otherwise, ADL would have been triggered.
   2177   return true;
   2178 }
   2179 
   2180 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
   2181   // <expression> ::= <unary operator-name> <expression>
   2182   //              ::= <binary operator-name> <expression> <expression>
   2183   //              ::= <trinary operator-name> <expression> <expression> <expression>
   2184   //              ::= cv <type> expression           # conversion with one argument
   2185   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
   2186   //              ::= st <type>                      # sizeof (a type)
   2187   //              ::= at <type>                      # alignof (a type)
   2188   //              ::= <template-param>
   2189   //              ::= <function-param>
   2190   //              ::= sr <type> <unqualified-name>                   # dependent name
   2191   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
   2192   //              ::= ds <expression> <expression>                   # expr.*expr
   2193   //              ::= sZ <template-param>                            # size of a parameter pack
   2194   //              ::= sZ <function-param>    # size of a function parameter pack
   2195   //              ::= <expr-primary>
   2196   // <expr-primary> ::= L <type> <value number> E    # integer literal
   2197   //                ::= L <type <value float> E      # floating literal
   2198   //                ::= L <mangled-name> E           # external name
   2199   QualType ImplicitlyConvertedToType;
   2200 
   2201 recurse:
   2202   switch (E->getStmtClass()) {
   2203   case Expr::NoStmtClass:
   2204 #define ABSTRACT_STMT(Type)
   2205 #define EXPR(Type, Base)
   2206 #define STMT(Type, Base) \
   2207   case Expr::Type##Class:
   2208 #include "clang/AST/StmtNodes.inc"
   2209     // fallthrough
   2210 
   2211   // These all can only appear in local or variable-initialization
   2212   // contexts and so should never appear in a mangling.
   2213   case Expr::AddrLabelExprClass:
   2214   case Expr::BlockDeclRefExprClass:
   2215   case Expr::CXXThisExprClass:
   2216   case Expr::DesignatedInitExprClass:
   2217   case Expr::ImplicitValueInitExprClass:
   2218   case Expr::InitListExprClass:
   2219   case Expr::ParenListExprClass:
   2220   case Expr::CXXScalarValueInitExprClass:
   2221     llvm_unreachable("unexpected statement kind");
   2222     break;
   2223 
   2224   // FIXME: invent manglings for all these.
   2225   case Expr::BlockExprClass:
   2226   case Expr::CXXPseudoDestructorExprClass:
   2227   case Expr::ChooseExprClass:
   2228   case Expr::CompoundLiteralExprClass:
   2229   case Expr::ExtVectorElementExprClass:
   2230   case Expr::GenericSelectionExprClass:
   2231   case Expr::ObjCEncodeExprClass:
   2232   case Expr::ObjCIsaExprClass:
   2233   case Expr::ObjCIvarRefExprClass:
   2234   case Expr::ObjCMessageExprClass:
   2235   case Expr::ObjCPropertyRefExprClass:
   2236   case Expr::ObjCProtocolExprClass:
   2237   case Expr::ObjCSelectorExprClass:
   2238   case Expr::ObjCStringLiteralClass:
   2239   case Expr::ObjCIndirectCopyRestoreExprClass:
   2240   case Expr::OffsetOfExprClass:
   2241   case Expr::PredefinedExprClass:
   2242   case Expr::ShuffleVectorExprClass:
   2243   case Expr::StmtExprClass:
   2244   case Expr::UnaryTypeTraitExprClass:
   2245   case Expr::BinaryTypeTraitExprClass:
   2246   case Expr::ArrayTypeTraitExprClass:
   2247   case Expr::ExpressionTraitExprClass:
   2248   case Expr::VAArgExprClass:
   2249   case Expr::CXXUuidofExprClass:
   2250   case Expr::CXXNoexceptExprClass:
   2251   case Expr::CUDAKernelCallExprClass:
   2252   case Expr::AsTypeExprClass:
   2253   {
   2254     // As bad as this diagnostic is, it's better than crashing.
   2255     Diagnostic &Diags = Context.getDiags();
   2256     unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
   2257                                      "cannot yet mangle expression type %0");
   2258     Diags.Report(E->getExprLoc(), DiagID)
   2259       << E->getStmtClassName() << E->getSourceRange();
   2260     break;
   2261   }
   2262 
   2263   // Even gcc-4.5 doesn't mangle this.
   2264   case Expr::BinaryConditionalOperatorClass: {
   2265     Diagnostic &Diags = Context.getDiags();
   2266     unsigned DiagID =
   2267       Diags.getCustomDiagID(Diagnostic::Error,
   2268                 "?: operator with omitted middle operand cannot be mangled");
   2269     Diags.Report(E->getExprLoc(), DiagID)
   2270       << E->getStmtClassName() << E->getSourceRange();
   2271     break;
   2272   }
   2273 
   2274   // These are used for internal purposes and cannot be meaningfully mangled.
   2275   case Expr::OpaqueValueExprClass:
   2276     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
   2277 
   2278   case Expr::CXXDefaultArgExprClass:
   2279     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
   2280     break;
   2281 
   2282   case Expr::SubstNonTypeTemplateParmExprClass:
   2283     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
   2284                      Arity);
   2285     break;
   2286 
   2287   case Expr::CXXMemberCallExprClass: // fallthrough
   2288   case Expr::CallExprClass: {
   2289     const CallExpr *CE = cast<CallExpr>(E);
   2290 
   2291     // <expression> ::= cp <simple-id> <expression>* E
   2292     // We use this mangling only when the call would use ADL except
   2293     // for being parenthesized.  Per discussion with David
   2294     // Vandervoorde, 2011.04.25.
   2295     if (isParenthesizedADLCallee(CE)) {
   2296       Out << "cp";
   2297       // The callee here is a parenthesized UnresolvedLookupExpr with
   2298       // no qualifier and should always get mangled as a <simple-id>
   2299       // anyway.
   2300 
   2301     // <expression> ::= cl <expression>* E
   2302     } else {
   2303       Out << "cl";
   2304     }
   2305 
   2306     mangleExpression(CE->getCallee(), CE->getNumArgs());
   2307     for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
   2308       mangleExpression(CE->getArg(I));
   2309     Out << 'E';
   2310     break;
   2311   }
   2312 
   2313   case Expr::CXXNewExprClass: {
   2314     // Proposal from David Vandervoorde, 2010.06.30
   2315     const CXXNewExpr *New = cast<CXXNewExpr>(E);
   2316     if (New->isGlobalNew()) Out << "gs";
   2317     Out << (New->isArray() ? "na" : "nw");
   2318     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
   2319            E = New->placement_arg_end(); I != E; ++I)
   2320       mangleExpression(*I);
   2321     Out << '_';
   2322     mangleType(New->getAllocatedType());
   2323     if (New->hasInitializer()) {
   2324       Out << "pi";
   2325       for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
   2326              E = New->constructor_arg_end(); I != E; ++I)
   2327         mangleExpression(*I);
   2328     }
   2329     Out << 'E';
   2330     break;
   2331   }
   2332 
   2333   case Expr::MemberExprClass: {
   2334     const MemberExpr *ME = cast<MemberExpr>(E);
   2335     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2336                      ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
   2337                      Arity);
   2338     break;
   2339   }
   2340 
   2341   case Expr::UnresolvedMemberExprClass: {
   2342     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
   2343     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2344                      ME->getQualifier(), 0, ME->getMemberName(),
   2345                      Arity);
   2346     if (ME->hasExplicitTemplateArgs())
   2347       mangleTemplateArgs(ME->getExplicitTemplateArgs());
   2348     break;
   2349   }
   2350 
   2351   case Expr::CXXDependentScopeMemberExprClass: {
   2352     const CXXDependentScopeMemberExpr *ME
   2353       = cast<CXXDependentScopeMemberExpr>(E);
   2354     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2355                      ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
   2356                      ME->getMember(), Arity);
   2357     if (ME->hasExplicitTemplateArgs())
   2358       mangleTemplateArgs(ME->getExplicitTemplateArgs());
   2359     break;
   2360   }
   2361 
   2362   case Expr::UnresolvedLookupExprClass: {
   2363     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
   2364     mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
   2365 
   2366     // All the <unresolved-name> productions end in a
   2367     // base-unresolved-name, where <template-args> are just tacked
   2368     // onto the end.
   2369     if (ULE->hasExplicitTemplateArgs())
   2370       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
   2371     break;
   2372   }
   2373 
   2374   case Expr::CXXUnresolvedConstructExprClass: {
   2375     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
   2376     unsigned N = CE->arg_size();
   2377 
   2378     Out << "cv";
   2379     mangleType(CE->getType());
   2380     if (N != 1) Out << '_';
   2381     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
   2382     if (N != 1) Out << 'E';
   2383     break;
   2384   }
   2385 
   2386   case Expr::CXXTemporaryObjectExprClass:
   2387   case Expr::CXXConstructExprClass: {
   2388     const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
   2389     unsigned N = CE->getNumArgs();
   2390 
   2391     Out << "cv";
   2392     mangleType(CE->getType());
   2393     if (N != 1) Out << '_';
   2394     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
   2395     if (N != 1) Out << 'E';
   2396     break;
   2397   }
   2398 
   2399   case Expr::UnaryExprOrTypeTraitExprClass: {
   2400     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
   2401 
   2402     if (!SAE->isInstantiationDependent()) {
   2403       // Itanium C++ ABI:
   2404       //   If the operand of a sizeof or alignof operator is not
   2405       //   instantiation-dependent it is encoded as an integer literal
   2406       //   reflecting the result of the operator.
   2407       //
   2408       //   If the result of the operator is implicitly converted to a known
   2409       //   integer type, that type is used for the literal; otherwise, the type
   2410       //   of std::size_t or std::ptrdiff_t is used.
   2411       QualType T = (ImplicitlyConvertedToType.isNull() ||
   2412                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
   2413                                                     : ImplicitlyConvertedToType;
   2414       mangleIntegerLiteral(T, SAE->EvaluateAsInt(Context.getASTContext()));
   2415       break;
   2416     }
   2417 
   2418     switch(SAE->getKind()) {
   2419     case UETT_SizeOf:
   2420       Out << 's';
   2421       break;
   2422     case UETT_AlignOf:
   2423       Out << 'a';
   2424       break;
   2425     case UETT_VecStep:
   2426       Diagnostic &Diags = Context.getDiags();
   2427       unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
   2428                                      "cannot yet mangle vec_step expression");
   2429       Diags.Report(DiagID);
   2430       return;
   2431     }
   2432     if (SAE->isArgumentType()) {
   2433       Out << 't';
   2434       mangleType(SAE->getArgumentType());
   2435     } else {
   2436       Out << 'z';
   2437       mangleExpression(SAE->getArgumentExpr());
   2438     }
   2439     break;
   2440   }
   2441 
   2442   case Expr::CXXThrowExprClass: {
   2443     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
   2444 
   2445     // Proposal from David Vandervoorde, 2010.06.30
   2446     if (TE->getSubExpr()) {
   2447       Out << "tw";
   2448       mangleExpression(TE->getSubExpr());
   2449     } else {
   2450       Out << "tr";
   2451     }
   2452     break;
   2453   }
   2454 
   2455   case Expr::CXXTypeidExprClass: {
   2456     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
   2457 
   2458     // Proposal from David Vandervoorde, 2010.06.30
   2459     if (TIE->isTypeOperand()) {
   2460       Out << "ti";
   2461       mangleType(TIE->getTypeOperand());
   2462     } else {
   2463       Out << "te";
   2464       mangleExpression(TIE->getExprOperand());
   2465     }
   2466     break;
   2467   }
   2468 
   2469   case Expr::CXXDeleteExprClass: {
   2470     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
   2471 
   2472     // Proposal from David Vandervoorde, 2010.06.30
   2473     if (DE->isGlobalDelete()) Out << "gs";
   2474     Out << (DE->isArrayForm() ? "da" : "dl");
   2475     mangleExpression(DE->getArgument());
   2476     break;
   2477   }
   2478 
   2479   case Expr::UnaryOperatorClass: {
   2480     const UnaryOperator *UO = cast<UnaryOperator>(E);
   2481     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
   2482                        /*Arity=*/1);
   2483     mangleExpression(UO->getSubExpr());
   2484     break;
   2485   }
   2486 
   2487   case Expr::ArraySubscriptExprClass: {
   2488     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
   2489 
   2490     // Array subscript is treated as a syntactically weird form of
   2491     // binary operator.
   2492     Out << "ix";
   2493     mangleExpression(AE->getLHS());
   2494     mangleExpression(AE->getRHS());
   2495     break;
   2496   }
   2497 
   2498   case Expr::CompoundAssignOperatorClass: // fallthrough
   2499   case Expr::BinaryOperatorClass: {
   2500     const BinaryOperator *BO = cast<BinaryOperator>(E);
   2501     if (BO->getOpcode() == BO_PtrMemD)
   2502       Out << "ds";
   2503     else
   2504       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
   2505                          /*Arity=*/2);
   2506     mangleExpression(BO->getLHS());
   2507     mangleExpression(BO->getRHS());
   2508     break;
   2509   }
   2510 
   2511   case Expr::ConditionalOperatorClass: {
   2512     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
   2513     mangleOperatorName(OO_Conditional, /*Arity=*/3);
   2514     mangleExpression(CO->getCond());
   2515     mangleExpression(CO->getLHS(), Arity);
   2516     mangleExpression(CO->getRHS(), Arity);
   2517     break;
   2518   }
   2519 
   2520   case Expr::ImplicitCastExprClass: {
   2521     ImplicitlyConvertedToType = E->getType();
   2522     E = cast<ImplicitCastExpr>(E)->getSubExpr();
   2523     goto recurse;
   2524   }
   2525 
   2526   case Expr::ObjCBridgedCastExprClass: {
   2527     // Mangle ownership casts as a vendor extended operator __bridge,
   2528     // __bridge_transfer, or __bridge_retain.
   2529     llvm::StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
   2530     Out << "v1U" << Kind.size() << Kind;
   2531   }
   2532   // Fall through to mangle the cast itself.
   2533 
   2534   case Expr::CStyleCastExprClass:
   2535   case Expr::CXXStaticCastExprClass:
   2536   case Expr::CXXDynamicCastExprClass:
   2537   case Expr::CXXReinterpretCastExprClass:
   2538   case Expr::CXXConstCastExprClass:
   2539   case Expr::CXXFunctionalCastExprClass: {
   2540     const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
   2541     Out << "cv";
   2542     mangleType(ECE->getType());
   2543     mangleExpression(ECE->getSubExpr());
   2544     break;
   2545   }
   2546 
   2547   case Expr::CXXOperatorCallExprClass: {
   2548     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
   2549     unsigned NumArgs = CE->getNumArgs();
   2550     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
   2551     // Mangle the arguments.
   2552     for (unsigned i = 0; i != NumArgs; ++i)
   2553       mangleExpression(CE->getArg(i));
   2554     break;
   2555   }
   2556 
   2557   case Expr::ParenExprClass:
   2558     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
   2559     break;
   2560 
   2561   case Expr::DeclRefExprClass: {
   2562     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
   2563 
   2564     switch (D->getKind()) {
   2565     default:
   2566       //  <expr-primary> ::= L <mangled-name> E # external name
   2567       Out << 'L';
   2568       mangle(D, "_Z");
   2569       Out << 'E';
   2570       break;
   2571 
   2572     case Decl::ParmVar:
   2573       mangleFunctionParam(cast<ParmVarDecl>(D));
   2574       break;
   2575 
   2576     case Decl::EnumConstant: {
   2577       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
   2578       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
   2579       break;
   2580     }
   2581 
   2582     case Decl::NonTypeTemplateParm: {
   2583       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
   2584       mangleTemplateParameter(PD->getIndex());
   2585       break;
   2586     }
   2587 
   2588     }
   2589 
   2590     break;
   2591   }
   2592 
   2593   case Expr::SubstNonTypeTemplateParmPackExprClass:
   2594     // FIXME: not clear how to mangle this!
   2595     // template <unsigned N...> class A {
   2596     //   template <class U...> void foo(U (&x)[N]...);
   2597     // };
   2598     Out << "_SUBSTPACK_";
   2599     break;
   2600 
   2601   case Expr::DependentScopeDeclRefExprClass: {
   2602     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
   2603     mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
   2604 
   2605     // All the <unresolved-name> productions end in a
   2606     // base-unresolved-name, where <template-args> are just tacked
   2607     // onto the end.
   2608     if (DRE->hasExplicitTemplateArgs())
   2609       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
   2610     break;
   2611   }
   2612 
   2613   case Expr::CXXBindTemporaryExprClass:
   2614     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
   2615     break;
   2616 
   2617   case Expr::ExprWithCleanupsClass:
   2618     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
   2619     break;
   2620 
   2621   case Expr::FloatingLiteralClass: {
   2622     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
   2623     Out << 'L';
   2624     mangleType(FL->getType());
   2625     mangleFloat(FL->getValue());
   2626     Out << 'E';
   2627     break;
   2628   }
   2629 
   2630   case Expr::CharacterLiteralClass:
   2631     Out << 'L';
   2632     mangleType(E->getType());
   2633     Out << cast<CharacterLiteral>(E)->getValue();
   2634     Out << 'E';
   2635     break;
   2636 
   2637   case Expr::CXXBoolLiteralExprClass:
   2638     Out << "Lb";
   2639     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
   2640     Out << 'E';
   2641     break;
   2642 
   2643   case Expr::IntegerLiteralClass: {
   2644     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
   2645     if (E->getType()->isSignedIntegerType())
   2646       Value.setIsSigned(true);
   2647     mangleIntegerLiteral(E->getType(), Value);
   2648     break;
   2649   }
   2650 
   2651   case Expr::ImaginaryLiteralClass: {
   2652     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
   2653     // Mangle as if a complex literal.
   2654     // Proposal from David Vandevoorde, 2010.06.30.
   2655     Out << 'L';
   2656     mangleType(E->getType());
   2657     if (const FloatingLiteral *Imag =
   2658           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
   2659       // Mangle a floating-point zero of the appropriate type.
   2660       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
   2661       Out << '_';
   2662       mangleFloat(Imag->getValue());
   2663     } else {
   2664       Out << "0_";
   2665       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
   2666       if (IE->getSubExpr()->getType()->isSignedIntegerType())
   2667         Value.setIsSigned(true);
   2668       mangleNumber(Value);
   2669     }
   2670     Out << 'E';
   2671     break;
   2672   }
   2673 
   2674   case Expr::StringLiteralClass: {
   2675     // Revised proposal from David Vandervoorde, 2010.07.15.
   2676     Out << 'L';
   2677     assert(isa<ConstantArrayType>(E->getType()));
   2678     mangleType(E->getType());
   2679     Out << 'E';
   2680     break;
   2681   }
   2682 
   2683   case Expr::GNUNullExprClass:
   2684     // FIXME: should this really be mangled the same as nullptr?
   2685     // fallthrough
   2686 
   2687   case Expr::CXXNullPtrLiteralExprClass: {
   2688     // Proposal from David Vandervoorde, 2010.06.30, as
   2689     // modified by ABI list discussion.
   2690     Out << "LDnE";
   2691     break;
   2692   }
   2693 
   2694   case Expr::PackExpansionExprClass:
   2695     Out << "sp";
   2696     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
   2697     break;
   2698 
   2699   case Expr::SizeOfPackExprClass: {
   2700     Out << "sZ";
   2701     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
   2702     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
   2703       mangleTemplateParameter(TTP->getIndex());
   2704     else if (const NonTypeTemplateParmDecl *NTTP
   2705                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
   2706       mangleTemplateParameter(NTTP->getIndex());
   2707     else if (const TemplateTemplateParmDecl *TempTP
   2708                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
   2709       mangleTemplateParameter(TempTP->getIndex());
   2710     else
   2711       mangleFunctionParam(cast<ParmVarDecl>(Pack));
   2712     break;
   2713   }
   2714 
   2715   case Expr::MaterializeTemporaryExprClass: {
   2716     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
   2717     break;
   2718   }
   2719   }
   2720 }
   2721 
   2722 /// Mangle an expression which refers to a parameter variable.
   2723 ///
   2724 /// <expression>     ::= <function-param>
   2725 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
   2726 /// <function-param> ::= fp <top-level CV-qualifiers>
   2727 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
   2728 /// <function-param> ::= fL <L-1 non-negative number>
   2729 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
   2730 /// <function-param> ::= fL <L-1 non-negative number>
   2731 ///                      p <top-level CV-qualifiers>
   2732 ///                      <I-1 non-negative number> _         # L > 0, I > 0
   2733 ///
   2734 /// L is the nesting depth of the parameter, defined as 1 if the
   2735 /// parameter comes from the innermost function prototype scope
   2736 /// enclosing the current context, 2 if from the next enclosing
   2737 /// function prototype scope, and so on, with one special case: if
   2738 /// we've processed the full parameter clause for the innermost
   2739 /// function type, then L is one less.  This definition conveniently
   2740 /// makes it irrelevant whether a function's result type was written
   2741 /// trailing or leading, but is otherwise overly complicated; the
   2742 /// numbering was first designed without considering references to
   2743 /// parameter in locations other than return types, and then the
   2744 /// mangling had to be generalized without changing the existing
   2745 /// manglings.
   2746 ///
   2747 /// I is the zero-based index of the parameter within its parameter
   2748 /// declaration clause.  Note that the original ABI document describes
   2749 /// this using 1-based ordinals.
   2750 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
   2751   unsigned parmDepth = parm->getFunctionScopeDepth();
   2752   unsigned parmIndex = parm->getFunctionScopeIndex();
   2753 
   2754   // Compute 'L'.
   2755   // parmDepth does not include the declaring function prototype.
   2756   // FunctionTypeDepth does account for that.
   2757   assert(parmDepth < FunctionTypeDepth.getDepth());
   2758   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
   2759   if (FunctionTypeDepth.isInResultType())
   2760     nestingDepth--;
   2761 
   2762   if (nestingDepth == 0) {
   2763     Out << "fp";
   2764   } else {
   2765     Out << "fL" << (nestingDepth - 1) << 'p';
   2766   }
   2767 
   2768   // Top-level qualifiers.  We don't have to worry about arrays here,
   2769   // because parameters declared as arrays should already have been
   2770   // tranformed to have pointer type. FIXME: apparently these don't
   2771   // get mangled if used as an rvalue of a known non-class type?
   2772   assert(!parm->getType()->isArrayType()
   2773          && "parameter's type is still an array type?");
   2774   mangleQualifiers(parm->getType().getQualifiers());
   2775 
   2776   // Parameter index.
   2777   if (parmIndex != 0) {
   2778     Out << (parmIndex - 1);
   2779   }
   2780   Out << '_';
   2781 }
   2782 
   2783 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
   2784   // <ctor-dtor-name> ::= C1  # complete object constructor
   2785   //                  ::= C2  # base object constructor
   2786   //                  ::= C3  # complete object allocating constructor
   2787   //
   2788   switch (T) {
   2789   case Ctor_Complete:
   2790     Out << "C1";
   2791     break;
   2792   case Ctor_Base:
   2793     Out << "C2";
   2794     break;
   2795   case Ctor_CompleteAllocating:
   2796     Out << "C3";
   2797     break;
   2798   }
   2799 }
   2800 
   2801 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
   2802   // <ctor-dtor-name> ::= D0  # deleting destructor
   2803   //                  ::= D1  # complete object destructor
   2804   //                  ::= D2  # base object destructor
   2805   //
   2806   switch (T) {
   2807   case Dtor_Deleting:
   2808     Out << "D0";
   2809     break;
   2810   case Dtor_Complete:
   2811     Out << "D1";
   2812     break;
   2813   case Dtor_Base:
   2814     Out << "D2";
   2815     break;
   2816   }
   2817 }
   2818 
   2819 void CXXNameMangler::mangleTemplateArgs(
   2820                           const ExplicitTemplateArgumentList &TemplateArgs) {
   2821   // <template-args> ::= I <template-arg>+ E
   2822   Out << 'I';
   2823   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
   2824     mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
   2825   Out << 'E';
   2826 }
   2827 
   2828 void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
   2829                                         const TemplateArgument *TemplateArgs,
   2830                                         unsigned NumTemplateArgs) {
   2831   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   2832     return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
   2833                               NumTemplateArgs);
   2834 
   2835   mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
   2836 }
   2837 
   2838 void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
   2839                                                   unsigned numArgs) {
   2840   // <template-args> ::= I <template-arg>+ E
   2841   Out << 'I';
   2842   for (unsigned i = 0; i != numArgs; ++i)
   2843     mangleTemplateArg(0, args[i]);
   2844   Out << 'E';
   2845 }
   2846 
   2847 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
   2848                                         const TemplateArgumentList &AL) {
   2849   // <template-args> ::= I <template-arg>+ E
   2850   Out << 'I';
   2851   for (unsigned i = 0, e = AL.size(); i != e; ++i)
   2852     mangleTemplateArg(PL.getParam(i), AL[i]);
   2853   Out << 'E';
   2854 }
   2855 
   2856 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
   2857                                         const TemplateArgument *TemplateArgs,
   2858                                         unsigned NumTemplateArgs) {
   2859   // <template-args> ::= I <template-arg>+ E
   2860   Out << 'I';
   2861   for (unsigned i = 0; i != NumTemplateArgs; ++i)
   2862     mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
   2863   Out << 'E';
   2864 }
   2865 
   2866 void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
   2867                                        TemplateArgument A) {
   2868   // <template-arg> ::= <type>              # type or template
   2869   //                ::= X <expression> E    # expression
   2870   //                ::= <expr-primary>      # simple expressions
   2871   //                ::= J <template-arg>* E # argument pack
   2872   //                ::= sp <expression>     # pack expansion of (C++0x)
   2873   if (!A.isInstantiationDependent() || A.isDependent())
   2874     A = Context.getASTContext().getCanonicalTemplateArgument(A);
   2875 
   2876   switch (A.getKind()) {
   2877   case TemplateArgument::Null:
   2878     llvm_unreachable("Cannot mangle NULL template argument");
   2879 
   2880   case TemplateArgument::Type:
   2881     mangleType(A.getAsType());
   2882     break;
   2883   case TemplateArgument::Template:
   2884     // This is mangled as <type>.
   2885     mangleType(A.getAsTemplate());
   2886     break;
   2887   case TemplateArgument::TemplateExpansion:
   2888     // <type>  ::= Dp <type>          # pack expansion (C++0x)
   2889     Out << "Dp";
   2890     mangleType(A.getAsTemplateOrTemplatePattern());
   2891     break;
   2892   case TemplateArgument::Expression:
   2893     Out << 'X';
   2894     mangleExpression(A.getAsExpr());
   2895     Out << 'E';
   2896     break;
   2897   case TemplateArgument::Integral:
   2898     mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
   2899     break;
   2900   case TemplateArgument::Declaration: {
   2901     assert(P && "Missing template parameter for declaration argument");
   2902     //  <expr-primary> ::= L <mangled-name> E # external name
   2903 
   2904     // Clang produces AST's where pointer-to-member-function expressions
   2905     // and pointer-to-function expressions are represented as a declaration not
   2906     // an expression. We compensate for it here to produce the correct mangling.
   2907     NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
   2908     const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
   2909     bool compensateMangling = !Parameter->getType()->isReferenceType();
   2910     if (compensateMangling) {
   2911       Out << 'X';
   2912       mangleOperatorName(OO_Amp, 1);
   2913     }
   2914 
   2915     Out << 'L';
   2916     // References to external entities use the mangled name; if the name would
   2917     // not normally be manged then mangle it as unqualified.
   2918     //
   2919     // FIXME: The ABI specifies that external names here should have _Z, but
   2920     // gcc leaves this off.
   2921     if (compensateMangling)
   2922       mangle(D, "_Z");
   2923     else
   2924       mangle(D, "Z");
   2925     Out << 'E';
   2926 
   2927     if (compensateMangling)
   2928       Out << 'E';
   2929 
   2930     break;
   2931   }
   2932 
   2933   case TemplateArgument::Pack: {
   2934     // Note: proposal by Mike Herrick on 12/20/10
   2935     Out << 'J';
   2936     for (TemplateArgument::pack_iterator PA = A.pack_begin(),
   2937                                       PAEnd = A.pack_end();
   2938          PA != PAEnd; ++PA)
   2939       mangleTemplateArg(P, *PA);
   2940     Out << 'E';
   2941   }
   2942   }
   2943 }
   2944 
   2945 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
   2946   // <template-param> ::= T_    # first template parameter
   2947   //                  ::= T <parameter-2 non-negative number> _
   2948   if (Index == 0)
   2949     Out << "T_";
   2950   else
   2951     Out << 'T' << (Index - 1) << '_';
   2952 }
   2953 
   2954 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
   2955   bool result = mangleSubstitution(type);
   2956   assert(result && "no existing substitution for type");
   2957   (void) result;
   2958 }
   2959 
   2960 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
   2961   bool result = mangleSubstitution(tname);
   2962   assert(result && "no existing substitution for template name");
   2963   (void) result;
   2964 }
   2965 
   2966 // <substitution> ::= S <seq-id> _
   2967 //                ::= S_
   2968 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
   2969   // Try one of the standard substitutions first.
   2970   if (mangleStandardSubstitution(ND))
   2971     return true;
   2972 
   2973   ND = cast<NamedDecl>(ND->getCanonicalDecl());
   2974   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
   2975 }
   2976 
   2977 bool CXXNameMangler::mangleSubstitution(QualType T) {
   2978   if (!T.getCVRQualifiers()) {
   2979     if (const RecordType *RT = T->getAs<RecordType>())
   2980       return mangleSubstitution(RT->getDecl());
   2981   }
   2982 
   2983   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
   2984 
   2985   return mangleSubstitution(TypePtr);
   2986 }
   2987 
   2988 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
   2989   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   2990     return mangleSubstitution(TD);
   2991 
   2992   Template = Context.getASTContext().getCanonicalTemplateName(Template);
   2993   return mangleSubstitution(
   2994                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
   2995 }
   2996 
   2997 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
   2998   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
   2999   if (I == Substitutions.end())
   3000     return false;
   3001 
   3002   unsigned SeqID = I->second;
   3003   if (SeqID == 0)
   3004     Out << "S_";
   3005   else {
   3006     SeqID--;
   3007 
   3008     // <seq-id> is encoded in base-36, using digits and upper case letters.
   3009     char Buffer[10];
   3010     char *BufferPtr = llvm::array_endof(Buffer);
   3011 
   3012     if (SeqID == 0) *--BufferPtr = '0';
   3013 
   3014     while (SeqID) {
   3015       assert(BufferPtr > Buffer && "Buffer overflow!");
   3016 
   3017       char c = static_cast<char>(SeqID % 36);
   3018 
   3019       *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
   3020       SeqID /= 36;
   3021     }
   3022 
   3023     Out << 'S'
   3024         << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
   3025         << '_';
   3026   }
   3027 
   3028   return true;
   3029 }
   3030 
   3031 static bool isCharType(QualType T) {
   3032   if (T.isNull())
   3033     return false;
   3034 
   3035   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
   3036     T->isSpecificBuiltinType(BuiltinType::Char_U);
   3037 }
   3038 
   3039 /// isCharSpecialization - Returns whether a given type is a template
   3040 /// specialization of a given name with a single argument of type char.
   3041 static bool isCharSpecialization(QualType T, const char *Name) {
   3042   if (T.isNull())
   3043     return false;
   3044 
   3045   const RecordType *RT = T->getAs<RecordType>();
   3046   if (!RT)
   3047     return false;
   3048 
   3049   const ClassTemplateSpecializationDecl *SD =
   3050     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
   3051   if (!SD)
   3052     return false;
   3053 
   3054   if (!isStdNamespace(SD->getDeclContext()))
   3055     return false;
   3056 
   3057   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3058   if (TemplateArgs.size() != 1)
   3059     return false;
   3060 
   3061   if (!isCharType(TemplateArgs[0].getAsType()))
   3062     return false;
   3063 
   3064   return SD->getIdentifier()->getName() == Name;
   3065 }
   3066 
   3067 template <std::size_t StrLen>
   3068 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
   3069                                        const char (&Str)[StrLen]) {
   3070   if (!SD->getIdentifier()->isStr(Str))
   3071     return false;
   3072 
   3073   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3074   if (TemplateArgs.size() != 2)
   3075     return false;
   3076 
   3077   if (!isCharType(TemplateArgs[0].getAsType()))
   3078     return false;
   3079 
   3080   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
   3081     return false;
   3082 
   3083   return true;
   3084 }
   3085 
   3086 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
   3087   // <substitution> ::= St # ::std::
   3088   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
   3089     if (isStd(NS)) {
   3090       Out << "St";
   3091       return true;
   3092     }
   3093   }
   3094 
   3095   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
   3096     if (!isStdNamespace(TD->getDeclContext()))
   3097       return false;
   3098 
   3099     // <substitution> ::= Sa # ::std::allocator
   3100     if (TD->getIdentifier()->isStr("allocator")) {
   3101       Out << "Sa";
   3102       return true;
   3103     }
   3104 
   3105     // <<substitution> ::= Sb # ::std::basic_string
   3106     if (TD->getIdentifier()->isStr("basic_string")) {
   3107       Out << "Sb";
   3108       return true;
   3109     }
   3110   }
   3111 
   3112   if (const ClassTemplateSpecializationDecl *SD =
   3113         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
   3114     if (!isStdNamespace(SD->getDeclContext()))
   3115       return false;
   3116 
   3117     //    <substitution> ::= Ss # ::std::basic_string<char,
   3118     //                            ::std::char_traits<char>,
   3119     //                            ::std::allocator<char> >
   3120     if (SD->getIdentifier()->isStr("basic_string")) {
   3121       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3122 
   3123       if (TemplateArgs.size() != 3)
   3124         return false;
   3125 
   3126       if (!isCharType(TemplateArgs[0].getAsType()))
   3127         return false;
   3128 
   3129       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
   3130         return false;
   3131 
   3132       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
   3133         return false;
   3134 
   3135       Out << "Ss";
   3136       return true;
   3137     }
   3138 
   3139     //    <substitution> ::= Si # ::std::basic_istream<char,
   3140     //                            ::std::char_traits<char> >
   3141     if (isStreamCharSpecialization(SD, "basic_istream")) {
   3142       Out << "Si";
   3143       return true;
   3144     }
   3145 
   3146     //    <substitution> ::= So # ::std::basic_ostream<char,
   3147     //                            ::std::char_traits<char> >
   3148     if (isStreamCharSpecialization(SD, "basic_ostream")) {
   3149       Out << "So";
   3150       return true;
   3151     }
   3152 
   3153     //    <substitution> ::= Sd # ::std::basic_iostream<char,
   3154     //                            ::std::char_traits<char> >
   3155     if (isStreamCharSpecialization(SD, "basic_iostream")) {
   3156       Out << "Sd";
   3157       return true;
   3158     }
   3159   }
   3160   return false;
   3161 }
   3162 
   3163 void CXXNameMangler::addSubstitution(QualType T) {
   3164   if (!T.getCVRQualifiers()) {
   3165     if (const RecordType *RT = T->getAs<RecordType>()) {
   3166       addSubstitution(RT->getDecl());
   3167       return;
   3168     }
   3169   }
   3170 
   3171   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
   3172   addSubstitution(TypePtr);
   3173 }
   3174 
   3175 void CXXNameMangler::addSubstitution(TemplateName Template) {
   3176   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   3177     return addSubstitution(TD);
   3178 
   3179   Template = Context.getASTContext().getCanonicalTemplateName(Template);
   3180   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
   3181 }
   3182 
   3183 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
   3184   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
   3185   Substitutions[Ptr] = SeqID++;
   3186 }
   3187 
   3188 //
   3189 
   3190 /// \brief Mangles the name of the declaration D and emits that name to the
   3191 /// given output stream.
   3192 ///
   3193 /// If the declaration D requires a mangled name, this routine will emit that
   3194 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
   3195 /// and this routine will return false. In this case, the caller should just
   3196 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
   3197 /// name.
   3198 void ItaniumMangleContext::mangleName(const NamedDecl *D,
   3199                                       llvm::raw_ostream &Out) {
   3200   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
   3201           "Invalid mangleName() call, argument is not a variable or function!");
   3202   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
   3203          "Invalid mangleName() call on 'structor decl!");
   3204 
   3205   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
   3206                                  getASTContext().getSourceManager(),
   3207                                  "Mangling declaration");
   3208 
   3209   CXXNameMangler Mangler(*this, Out, D);
   3210   return Mangler.mangle(D);
   3211 }
   3212 
   3213 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
   3214                                          CXXCtorType Type,
   3215                                          llvm::raw_ostream &Out) {
   3216   CXXNameMangler Mangler(*this, Out, D, Type);
   3217   Mangler.mangle(D);
   3218 }
   3219 
   3220 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
   3221                                          CXXDtorType Type,
   3222                                          llvm::raw_ostream &Out) {
   3223   CXXNameMangler Mangler(*this, Out, D, Type);
   3224   Mangler.mangle(D);
   3225 }
   3226 
   3227 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
   3228                                        const ThunkInfo &Thunk,
   3229                                        llvm::raw_ostream &Out) {
   3230   //  <special-name> ::= T <call-offset> <base encoding>
   3231   //                      # base is the nominal target function of thunk
   3232   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
   3233   //                      # base is the nominal target function of thunk
   3234   //                      # first call-offset is 'this' adjustment
   3235   //                      # second call-offset is result adjustment
   3236 
   3237   assert(!isa<CXXDestructorDecl>(MD) &&
   3238          "Use mangleCXXDtor for destructor decls!");
   3239   CXXNameMangler Mangler(*this, Out);
   3240   Mangler.getStream() << "_ZT";
   3241   if (!Thunk.Return.isEmpty())
   3242     Mangler.getStream() << 'c';
   3243 
   3244   // Mangle the 'this' pointer adjustment.
   3245   Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
   3246 
   3247   // Mangle the return pointer adjustment if there is one.
   3248   if (!Thunk.Return.isEmpty())
   3249     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
   3250                              Thunk.Return.VBaseOffsetOffset);
   3251 
   3252   Mangler.mangleFunctionEncoding(MD);
   3253 }
   3254 
   3255 void
   3256 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
   3257                                          CXXDtorType Type,
   3258                                          const ThisAdjustment &ThisAdjustment,
   3259                                          llvm::raw_ostream &Out) {
   3260   //  <special-name> ::= T <call-offset> <base encoding>
   3261   //                      # base is the nominal target function of thunk
   3262   CXXNameMangler Mangler(*this, Out, DD, Type);
   3263   Mangler.getStream() << "_ZT";
   3264 
   3265   // Mangle the 'this' pointer adjustment.
   3266   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
   3267                            ThisAdjustment.VCallOffsetOffset);
   3268 
   3269   Mangler.mangleFunctionEncoding(DD);
   3270 }
   3271 
   3272 /// mangleGuardVariable - Returns the mangled name for a guard variable
   3273 /// for the passed in VarDecl.
   3274 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
   3275                                                       llvm::raw_ostream &Out) {
   3276   //  <special-name> ::= GV <object name>       # Guard variable for one-time
   3277   //                                            # initialization
   3278   CXXNameMangler Mangler(*this, Out);
   3279   Mangler.getStream() << "_ZGV";
   3280   Mangler.mangleName(D);
   3281 }
   3282 
   3283 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
   3284                                                     llvm::raw_ostream &Out) {
   3285   // We match the GCC mangling here.
   3286   //  <special-name> ::= GR <object name>
   3287   CXXNameMangler Mangler(*this, Out);
   3288   Mangler.getStream() << "_ZGR";
   3289   Mangler.mangleName(D);
   3290 }
   3291 
   3292 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
   3293                                            llvm::raw_ostream &Out) {
   3294   // <special-name> ::= TV <type>  # virtual table
   3295   CXXNameMangler Mangler(*this, Out);
   3296   Mangler.getStream() << "_ZTV";
   3297   Mangler.mangleNameOrStandardSubstitution(RD);
   3298 }
   3299 
   3300 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
   3301                                         llvm::raw_ostream &Out) {
   3302   // <special-name> ::= TT <type>  # VTT structure
   3303   CXXNameMangler Mangler(*this, Out);
   3304   Mangler.getStream() << "_ZTT";
   3305   Mangler.mangleNameOrStandardSubstitution(RD);
   3306 }
   3307 
   3308 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
   3309                                                int64_t Offset,
   3310                                                const CXXRecordDecl *Type,
   3311                                                llvm::raw_ostream &Out) {
   3312   // <special-name> ::= TC <type> <offset number> _ <base type>
   3313   CXXNameMangler Mangler(*this, Out);
   3314   Mangler.getStream() << "_ZTC";
   3315   Mangler.mangleNameOrStandardSubstitution(RD);
   3316   Mangler.getStream() << Offset;
   3317   Mangler.getStream() << '_';
   3318   Mangler.mangleNameOrStandardSubstitution(Type);
   3319 }
   3320 
   3321 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
   3322                                          llvm::raw_ostream &Out) {
   3323   // <special-name> ::= TI <type>  # typeinfo structure
   3324   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
   3325   CXXNameMangler Mangler(*this, Out);
   3326   Mangler.getStream() << "_ZTI";
   3327   Mangler.mangleType(Ty);
   3328 }
   3329 
   3330 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
   3331                                              llvm::raw_ostream &Out) {
   3332   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
   3333   CXXNameMangler Mangler(*this, Out);
   3334   Mangler.getStream() << "_ZTS";
   3335   Mangler.mangleType(Ty);
   3336 }
   3337 
   3338 MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
   3339                                                  Diagnostic &Diags) {
   3340   return new ItaniumMangleContext(Context, Diags);
   3341 }
   3342