1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implements C++ name mangling according to the Itanium C++ ABI, 11 // which is used in GCC 3.2 and newer (and many compilers that are 12 // ABI-compatible with GCC): 13 // 14 // http://www.codesourcery.com/public/cxx-abi/abi.html 15 // 16 //===----------------------------------------------------------------------===// 17 #include "clang/AST/Mangle.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/TypeLoc.h" 26 #include "clang/Basic/ABI.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Support/ErrorHandling.h" 32 33 #define MANGLE_CHECKER 0 34 35 #if MANGLE_CHECKER 36 #include <cxxabi.h> 37 #endif 38 39 using namespace clang; 40 41 namespace { 42 43 static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) { 44 const DeclContext *DC = dyn_cast<DeclContext>(ND); 45 if (!DC) 46 DC = ND->getDeclContext(); 47 while (!DC->isNamespace() && !DC->isTranslationUnit()) { 48 if (isa<FunctionDecl>(DC->getParent())) 49 return dyn_cast<CXXRecordDecl>(DC); 50 DC = DC->getParent(); 51 } 52 return 0; 53 } 54 55 static const FunctionDecl *getStructor(const FunctionDecl *fn) { 56 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) 57 return ftd->getTemplatedDecl(); 58 59 return fn; 60 } 61 62 static const NamedDecl *getStructor(const NamedDecl *decl) { 63 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); 64 return (fn ? getStructor(fn) : decl); 65 } 66 67 static const unsigned UnknownArity = ~0U; 68 69 class ItaniumMangleContext : public MangleContext { 70 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds; 71 unsigned Discriminator; 72 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; 73 74 public: 75 explicit ItaniumMangleContext(ASTContext &Context, 76 Diagnostic &Diags) 77 : MangleContext(Context, Diags) { } 78 79 uint64_t getAnonymousStructId(const TagDecl *TD) { 80 std::pair<llvm::DenseMap<const TagDecl *, 81 uint64_t>::iterator, bool> Result = 82 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size())); 83 return Result.first->second; 84 } 85 86 void startNewFunction() { 87 MangleContext::startNewFunction(); 88 mangleInitDiscriminator(); 89 } 90 91 /// @name Mangler Entry Points 92 /// @{ 93 94 bool shouldMangleDeclName(const NamedDecl *D); 95 void mangleName(const NamedDecl *D, llvm::raw_ostream &); 96 void mangleThunk(const CXXMethodDecl *MD, 97 const ThunkInfo &Thunk, 98 llvm::raw_ostream &); 99 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 100 const ThisAdjustment &ThisAdjustment, 101 llvm::raw_ostream &); 102 void mangleReferenceTemporary(const VarDecl *D, 103 llvm::raw_ostream &); 104 void mangleCXXVTable(const CXXRecordDecl *RD, 105 llvm::raw_ostream &); 106 void mangleCXXVTT(const CXXRecordDecl *RD, 107 llvm::raw_ostream &); 108 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 109 const CXXRecordDecl *Type, 110 llvm::raw_ostream &); 111 void mangleCXXRTTI(QualType T, llvm::raw_ostream &); 112 void mangleCXXRTTIName(QualType T, llvm::raw_ostream &); 113 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, 114 llvm::raw_ostream &); 115 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, 116 llvm::raw_ostream &); 117 118 void mangleItaniumGuardVariable(const VarDecl *D, llvm::raw_ostream &); 119 120 void mangleInitDiscriminator() { 121 Discriminator = 0; 122 } 123 124 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 125 unsigned &discriminator = Uniquifier[ND]; 126 if (!discriminator) 127 discriminator = ++Discriminator; 128 if (discriminator == 1) 129 return false; 130 disc = discriminator-2; 131 return true; 132 } 133 /// @} 134 }; 135 136 /// CXXNameMangler - Manage the mangling of a single name. 137 class CXXNameMangler { 138 ItaniumMangleContext &Context; 139 llvm::raw_ostream &Out; 140 141 /// The "structor" is the top-level declaration being mangled, if 142 /// that's not a template specialization; otherwise it's the pattern 143 /// for that specialization. 144 const NamedDecl *Structor; 145 unsigned StructorType; 146 147 /// SeqID - The next subsitution sequence number. 148 unsigned SeqID; 149 150 class FunctionTypeDepthState { 151 unsigned Bits; 152 153 enum { InResultTypeMask = 1 }; 154 155 public: 156 FunctionTypeDepthState() : Bits(0) {} 157 158 /// The number of function types we're inside. 159 unsigned getDepth() const { 160 return Bits >> 1; 161 } 162 163 /// True if we're in the return type of the innermost function type. 164 bool isInResultType() const { 165 return Bits & InResultTypeMask; 166 } 167 168 FunctionTypeDepthState push() { 169 FunctionTypeDepthState tmp = *this; 170 Bits = (Bits & ~InResultTypeMask) + 2; 171 return tmp; 172 } 173 174 void enterResultType() { 175 Bits |= InResultTypeMask; 176 } 177 178 void leaveResultType() { 179 Bits &= ~InResultTypeMask; 180 } 181 182 void pop(FunctionTypeDepthState saved) { 183 assert(getDepth() == saved.getDepth() + 1); 184 Bits = saved.Bits; 185 } 186 187 } FunctionTypeDepth; 188 189 llvm::DenseMap<uintptr_t, unsigned> Substitutions; 190 191 ASTContext &getASTContext() const { return Context.getASTContext(); } 192 193 public: 194 CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_, 195 const NamedDecl *D = 0) 196 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0), 197 SeqID(0) { 198 // These can't be mangled without a ctor type or dtor type. 199 assert(!D || (!isa<CXXDestructorDecl>(D) && 200 !isa<CXXConstructorDecl>(D))); 201 } 202 CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_, 203 const CXXConstructorDecl *D, CXXCtorType Type) 204 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 205 SeqID(0) { } 206 CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_, 207 const CXXDestructorDecl *D, CXXDtorType Type) 208 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 209 SeqID(0) { } 210 211 #if MANGLE_CHECKER 212 ~CXXNameMangler() { 213 if (Out.str()[0] == '\01') 214 return; 215 216 int status = 0; 217 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); 218 assert(status == 0 && "Could not demangle mangled name!"); 219 free(result); 220 } 221 #endif 222 llvm::raw_ostream &getStream() { return Out; } 223 224 void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z"); 225 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); 226 void mangleNumber(const llvm::APSInt &I); 227 void mangleNumber(int64_t Number); 228 void mangleFloat(const llvm::APFloat &F); 229 void mangleFunctionEncoding(const FunctionDecl *FD); 230 void mangleName(const NamedDecl *ND); 231 void mangleType(QualType T); 232 void mangleNameOrStandardSubstitution(const NamedDecl *ND); 233 234 private: 235 bool mangleSubstitution(const NamedDecl *ND); 236 bool mangleSubstitution(QualType T); 237 bool mangleSubstitution(TemplateName Template); 238 bool mangleSubstitution(uintptr_t Ptr); 239 240 void mangleExistingSubstitution(QualType type); 241 void mangleExistingSubstitution(TemplateName name); 242 243 bool mangleStandardSubstitution(const NamedDecl *ND); 244 245 void addSubstitution(const NamedDecl *ND) { 246 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 247 248 addSubstitution(reinterpret_cast<uintptr_t>(ND)); 249 } 250 void addSubstitution(QualType T); 251 void addSubstitution(TemplateName Template); 252 void addSubstitution(uintptr_t Ptr); 253 254 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 255 NamedDecl *firstQualifierLookup, 256 bool recursive = false); 257 void mangleUnresolvedName(NestedNameSpecifier *qualifier, 258 NamedDecl *firstQualifierLookup, 259 DeclarationName name, 260 unsigned KnownArity = UnknownArity); 261 262 void mangleName(const TemplateDecl *TD, 263 const TemplateArgument *TemplateArgs, 264 unsigned NumTemplateArgs); 265 void mangleUnqualifiedName(const NamedDecl *ND) { 266 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity); 267 } 268 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, 269 unsigned KnownArity); 270 void mangleUnscopedName(const NamedDecl *ND); 271 void mangleUnscopedTemplateName(const TemplateDecl *ND); 272 void mangleUnscopedTemplateName(TemplateName); 273 void mangleSourceName(const IdentifierInfo *II); 274 void mangleLocalName(const NamedDecl *ND); 275 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, 276 bool NoFunction=false); 277 void mangleNestedName(const TemplateDecl *TD, 278 const TemplateArgument *TemplateArgs, 279 unsigned NumTemplateArgs); 280 void manglePrefix(NestedNameSpecifier *qualifier); 281 void manglePrefix(const DeclContext *DC, bool NoFunction=false); 282 void manglePrefix(QualType type); 283 void mangleTemplatePrefix(const TemplateDecl *ND); 284 void mangleTemplatePrefix(TemplateName Template); 285 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); 286 void mangleQualifiers(Qualifiers Quals); 287 void mangleRefQualifier(RefQualifierKind RefQualifier); 288 289 void mangleObjCMethodName(const ObjCMethodDecl *MD); 290 291 // Declare manglers for every type class. 292 #define ABSTRACT_TYPE(CLASS, PARENT) 293 #define NON_CANONICAL_TYPE(CLASS, PARENT) 294 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 295 #include "clang/AST/TypeNodes.def" 296 297 void mangleType(const TagType*); 298 void mangleType(TemplateName); 299 void mangleBareFunctionType(const FunctionType *T, 300 bool MangleReturnType); 301 void mangleNeonVectorType(const VectorType *T); 302 303 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); 304 void mangleMemberExpr(const Expr *base, bool isArrow, 305 NestedNameSpecifier *qualifier, 306 NamedDecl *firstQualifierLookup, 307 DeclarationName name, 308 unsigned knownArity); 309 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); 310 void mangleCXXCtorType(CXXCtorType T); 311 void mangleCXXDtorType(CXXDtorType T); 312 313 void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs); 314 void mangleTemplateArgs(TemplateName Template, 315 const TemplateArgument *TemplateArgs, 316 unsigned NumTemplateArgs); 317 void mangleTemplateArgs(const TemplateParameterList &PL, 318 const TemplateArgument *TemplateArgs, 319 unsigned NumTemplateArgs); 320 void mangleTemplateArgs(const TemplateParameterList &PL, 321 const TemplateArgumentList &AL); 322 void mangleTemplateArg(const NamedDecl *P, TemplateArgument A); 323 void mangleUnresolvedTemplateArgs(const TemplateArgument *args, 324 unsigned numArgs); 325 326 void mangleTemplateParameter(unsigned Index); 327 328 void mangleFunctionParam(const ParmVarDecl *parm); 329 }; 330 331 } 332 333 static bool isInCLinkageSpecification(const Decl *D) { 334 D = D->getCanonicalDecl(); 335 for (const DeclContext *DC = D->getDeclContext(); 336 !DC->isTranslationUnit(); DC = DC->getParent()) { 337 if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) 338 return Linkage->getLanguage() == LinkageSpecDecl::lang_c; 339 } 340 341 return false; 342 } 343 344 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) { 345 // In C, functions with no attributes never need to be mangled. Fastpath them. 346 if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs()) 347 return false; 348 349 // Any decl can be declared with __asm("foo") on it, and this takes precedence 350 // over all other naming in the .o file. 351 if (D->hasAttr<AsmLabelAttr>()) 352 return true; 353 354 // Clang's "overloadable" attribute extension to C/C++ implies name mangling 355 // (always) as does passing a C++ member function and a function 356 // whose name is not a simple identifier. 357 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 358 if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) || 359 !FD->getDeclName().isIdentifier())) 360 return true; 361 362 // Otherwise, no mangling is done outside C++ mode. 363 if (!getASTContext().getLangOptions().CPlusPlus) 364 return false; 365 366 // Variables at global scope with non-internal linkage are not mangled 367 if (!FD) { 368 const DeclContext *DC = D->getDeclContext(); 369 // Check for extern variable declared locally. 370 if (DC->isFunctionOrMethod() && D->hasLinkage()) 371 while (!DC->isNamespace() && !DC->isTranslationUnit()) 372 DC = DC->getParent(); 373 if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage) 374 return false; 375 } 376 377 // Class members are always mangled. 378 if (D->getDeclContext()->isRecord()) 379 return true; 380 381 // C functions and "main" are not mangled. 382 if ((FD && FD->isMain()) || isInCLinkageSpecification(D)) 383 return false; 384 385 return true; 386 } 387 388 void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) { 389 // Any decl can be declared with __asm("foo") on it, and this takes precedence 390 // over all other naming in the .o file. 391 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { 392 // If we have an asm name, then we use it as the mangling. 393 394 // Adding the prefix can cause problems when one file has a "foo" and 395 // another has a "\01foo". That is known to happen on ELF with the 396 // tricks normally used for producing aliases (PR9177). Fortunately the 397 // llvm mangler on ELF is a nop, so we can just avoid adding the \01 398 // marker. We also avoid adding the marker if this is an alias for an 399 // LLVM intrinsic. 400 llvm::StringRef UserLabelPrefix = 401 getASTContext().Target.getUserLabelPrefix(); 402 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm.")) 403 Out << '\01'; // LLVM IR Marker for __asm("foo") 404 405 Out << ALA->getLabel(); 406 return; 407 } 408 409 // <mangled-name> ::= _Z <encoding> 410 // ::= <data name> 411 // ::= <special-name> 412 Out << Prefix; 413 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 414 mangleFunctionEncoding(FD); 415 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 416 mangleName(VD); 417 else 418 mangleName(cast<FieldDecl>(D)); 419 } 420 421 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { 422 // <encoding> ::= <function name> <bare-function-type> 423 mangleName(FD); 424 425 // Don't mangle in the type if this isn't a decl we should typically mangle. 426 if (!Context.shouldMangleDeclName(FD)) 427 return; 428 429 // Whether the mangling of a function type includes the return type depends on 430 // the context and the nature of the function. The rules for deciding whether 431 // the return type is included are: 432 // 433 // 1. Template functions (names or types) have return types encoded, with 434 // the exceptions listed below. 435 // 2. Function types not appearing as part of a function name mangling, 436 // e.g. parameters, pointer types, etc., have return type encoded, with the 437 // exceptions listed below. 438 // 3. Non-template function names do not have return types encoded. 439 // 440 // The exceptions mentioned in (1) and (2) above, for which the return type is 441 // never included, are 442 // 1. Constructors. 443 // 2. Destructors. 444 // 3. Conversion operator functions, e.g. operator int. 445 bool MangleReturnType = false; 446 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { 447 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || 448 isa<CXXConversionDecl>(FD))) 449 MangleReturnType = true; 450 451 // Mangle the type of the primary template. 452 FD = PrimaryTemplate->getTemplatedDecl(); 453 } 454 455 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), 456 MangleReturnType); 457 } 458 459 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { 460 while (isa<LinkageSpecDecl>(DC)) { 461 DC = DC->getParent(); 462 } 463 464 return DC; 465 } 466 467 /// isStd - Return whether a given namespace is the 'std' namespace. 468 static bool isStd(const NamespaceDecl *NS) { 469 if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit()) 470 return false; 471 472 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); 473 return II && II->isStr("std"); 474 } 475 476 // isStdNamespace - Return whether a given decl context is a toplevel 'std' 477 // namespace. 478 static bool isStdNamespace(const DeclContext *DC) { 479 if (!DC->isNamespace()) 480 return false; 481 482 return isStd(cast<NamespaceDecl>(DC)); 483 } 484 485 static const TemplateDecl * 486 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 487 // Check if we have a function template. 488 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){ 489 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 490 TemplateArgs = FD->getTemplateSpecializationArgs(); 491 return TD; 492 } 493 } 494 495 // Check if we have a class template. 496 if (const ClassTemplateSpecializationDecl *Spec = 497 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 498 TemplateArgs = &Spec->getTemplateArgs(); 499 return Spec->getSpecializedTemplate(); 500 } 501 502 return 0; 503 } 504 505 void CXXNameMangler::mangleName(const NamedDecl *ND) { 506 // <name> ::= <nested-name> 507 // ::= <unscoped-name> 508 // ::= <unscoped-template-name> <template-args> 509 // ::= <local-name> 510 // 511 const DeclContext *DC = ND->getDeclContext(); 512 513 // If this is an extern variable declared locally, the relevant DeclContext 514 // is that of the containing namespace, or the translation unit. 515 if (isa<FunctionDecl>(DC) && ND->hasLinkage()) 516 while (!DC->isNamespace() && !DC->isTranslationUnit()) 517 DC = DC->getParent(); 518 else if (GetLocalClassDecl(ND)) { 519 mangleLocalName(ND); 520 return; 521 } 522 523 while (isa<LinkageSpecDecl>(DC)) 524 DC = DC->getParent(); 525 526 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 527 // Check if we have a template. 528 const TemplateArgumentList *TemplateArgs = 0; 529 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 530 mangleUnscopedTemplateName(TD); 531 TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); 532 mangleTemplateArgs(*TemplateParameters, *TemplateArgs); 533 return; 534 } 535 536 mangleUnscopedName(ND); 537 return; 538 } 539 540 if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) { 541 mangleLocalName(ND); 542 return; 543 } 544 545 mangleNestedName(ND, DC); 546 } 547 void CXXNameMangler::mangleName(const TemplateDecl *TD, 548 const TemplateArgument *TemplateArgs, 549 unsigned NumTemplateArgs) { 550 const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext()); 551 552 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 553 mangleUnscopedTemplateName(TD); 554 TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); 555 mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs); 556 } else { 557 mangleNestedName(TD, TemplateArgs, NumTemplateArgs); 558 } 559 } 560 561 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) { 562 // <unscoped-name> ::= <unqualified-name> 563 // ::= St <unqualified-name> # ::std:: 564 if (isStdNamespace(ND->getDeclContext())) 565 Out << "St"; 566 567 mangleUnqualifiedName(ND); 568 } 569 570 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) { 571 // <unscoped-template-name> ::= <unscoped-name> 572 // ::= <substitution> 573 if (mangleSubstitution(ND)) 574 return; 575 576 // <template-template-param> ::= <template-param> 577 if (const TemplateTemplateParmDecl *TTP 578 = dyn_cast<TemplateTemplateParmDecl>(ND)) { 579 mangleTemplateParameter(TTP->getIndex()); 580 return; 581 } 582 583 mangleUnscopedName(ND->getTemplatedDecl()); 584 addSubstitution(ND); 585 } 586 587 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) { 588 // <unscoped-template-name> ::= <unscoped-name> 589 // ::= <substitution> 590 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 591 return mangleUnscopedTemplateName(TD); 592 593 if (mangleSubstitution(Template)) 594 return; 595 596 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 597 assert(Dependent && "Not a dependent template name?"); 598 if (const IdentifierInfo *Id = Dependent->getIdentifier()) 599 mangleSourceName(Id); 600 else 601 mangleOperatorName(Dependent->getOperator(), UnknownArity); 602 603 addSubstitution(Template); 604 } 605 606 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { 607 // ABI: 608 // Floating-point literals are encoded using a fixed-length 609 // lowercase hexadecimal string corresponding to the internal 610 // representation (IEEE on Itanium), high-order bytes first, 611 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f 612 // on Itanium. 613 // APInt::toString uses uppercase hexadecimal, and it's not really 614 // worth embellishing that interface for this use case, so we just 615 // do a second pass to lowercase things. 616 typedef llvm::SmallString<20> buffer_t; 617 buffer_t buffer; 618 f.bitcastToAPInt().toString(buffer, 16, false); 619 620 for (buffer_t::iterator i = buffer.begin(), e = buffer.end(); i != e; ++i) 621 if (isupper(*i)) *i = tolower(*i); 622 623 Out.write(buffer.data(), buffer.size()); 624 } 625 626 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { 627 if (Value.isSigned() && Value.isNegative()) { 628 Out << 'n'; 629 Value.abs().print(Out, true); 630 } else 631 Value.print(Out, Value.isSigned()); 632 } 633 634 void CXXNameMangler::mangleNumber(int64_t Number) { 635 // <number> ::= [n] <non-negative decimal integer> 636 if (Number < 0) { 637 Out << 'n'; 638 Number = -Number; 639 } 640 641 Out << Number; 642 } 643 644 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { 645 // <call-offset> ::= h <nv-offset> _ 646 // ::= v <v-offset> _ 647 // <nv-offset> ::= <offset number> # non-virtual base override 648 // <v-offset> ::= <offset number> _ <virtual offset number> 649 // # virtual base override, with vcall offset 650 if (!Virtual) { 651 Out << 'h'; 652 mangleNumber(NonVirtual); 653 Out << '_'; 654 return; 655 } 656 657 Out << 'v'; 658 mangleNumber(NonVirtual); 659 Out << '_'; 660 mangleNumber(Virtual); 661 Out << '_'; 662 } 663 664 void CXXNameMangler::manglePrefix(QualType type) { 665 if (const TemplateSpecializationType *TST = 666 type->getAs<TemplateSpecializationType>()) { 667 if (!mangleSubstitution(QualType(TST, 0))) { 668 mangleTemplatePrefix(TST->getTemplateName()); 669 670 // FIXME: GCC does not appear to mangle the template arguments when 671 // the template in question is a dependent template name. Should we 672 // emulate that badness? 673 mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(), 674 TST->getNumArgs()); 675 addSubstitution(QualType(TST, 0)); 676 } 677 } else if (const DependentTemplateSpecializationType *DTST 678 = type->getAs<DependentTemplateSpecializationType>()) { 679 TemplateName Template 680 = getASTContext().getDependentTemplateName(DTST->getQualifier(), 681 DTST->getIdentifier()); 682 mangleTemplatePrefix(Template); 683 684 // FIXME: GCC does not appear to mangle the template arguments when 685 // the template in question is a dependent template name. Should we 686 // emulate that badness? 687 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); 688 } else { 689 // We use the QualType mangle type variant here because it handles 690 // substitutions. 691 mangleType(type); 692 } 693 } 694 695 /// Mangle everything prior to the base-unresolved-name in an unresolved-name. 696 /// 697 /// \param firstQualifierLookup - the entity found by unqualified lookup 698 /// for the first name in the qualifier, if this is for a member expression 699 /// \param recursive - true if this is being called recursively, 700 /// i.e. if there is more prefix "to the right". 701 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 702 NamedDecl *firstQualifierLookup, 703 bool recursive) { 704 705 // x, ::x 706 // <unresolved-name> ::= [gs] <base-unresolved-name> 707 708 // T::x / decltype(p)::x 709 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> 710 711 // T::N::x /decltype(p)::N::x 712 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E 713 // <base-unresolved-name> 714 715 // A::x, N::y, A<T>::z; "gs" means leading "::" 716 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E 717 // <base-unresolved-name> 718 719 switch (qualifier->getKind()) { 720 case NestedNameSpecifier::Global: 721 Out << "gs"; 722 723 // We want an 'sr' unless this is the entire NNS. 724 if (recursive) 725 Out << "sr"; 726 727 // We never want an 'E' here. 728 return; 729 730 case NestedNameSpecifier::Namespace: 731 if (qualifier->getPrefix()) 732 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, 733 /*recursive*/ true); 734 else 735 Out << "sr"; 736 mangleSourceName(qualifier->getAsNamespace()->getIdentifier()); 737 break; 738 case NestedNameSpecifier::NamespaceAlias: 739 if (qualifier->getPrefix()) 740 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, 741 /*recursive*/ true); 742 else 743 Out << "sr"; 744 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier()); 745 break; 746 747 case NestedNameSpecifier::TypeSpec: 748 case NestedNameSpecifier::TypeSpecWithTemplate: { 749 const Type *type = qualifier->getAsType(); 750 751 // We only want to use an unresolved-type encoding if this is one of: 752 // - a decltype 753 // - a template type parameter 754 // - a template template parameter with arguments 755 // In all of these cases, we should have no prefix. 756 if (qualifier->getPrefix()) { 757 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, 758 /*recursive*/ true); 759 } else { 760 // Otherwise, all the cases want this. 761 Out << "sr"; 762 } 763 764 // Only certain other types are valid as prefixes; enumerate them. 765 switch (type->getTypeClass()) { 766 case Type::Builtin: 767 case Type::Complex: 768 case Type::Pointer: 769 case Type::BlockPointer: 770 case Type::LValueReference: 771 case Type::RValueReference: 772 case Type::MemberPointer: 773 case Type::ConstantArray: 774 case Type::IncompleteArray: 775 case Type::VariableArray: 776 case Type::DependentSizedArray: 777 case Type::DependentSizedExtVector: 778 case Type::Vector: 779 case Type::ExtVector: 780 case Type::FunctionProto: 781 case Type::FunctionNoProto: 782 case Type::Enum: 783 case Type::Paren: 784 case Type::Elaborated: 785 case Type::Attributed: 786 case Type::Auto: 787 case Type::PackExpansion: 788 case Type::ObjCObject: 789 case Type::ObjCInterface: 790 case Type::ObjCObjectPointer: 791 llvm_unreachable("type is illegal as a nested name specifier"); 792 793 case Type::SubstTemplateTypeParmPack: 794 // FIXME: not clear how to mangle this! 795 // template <class T...> class A { 796 // template <class U...> void foo(decltype(T::foo(U())) x...); 797 // }; 798 Out << "_SUBSTPACK_"; 799 break; 800 801 // <unresolved-type> ::= <template-param> 802 // ::= <decltype> 803 // ::= <template-template-param> <template-args> 804 // (this last is not official yet) 805 case Type::TypeOfExpr: 806 case Type::TypeOf: 807 case Type::Decltype: 808 case Type::TemplateTypeParm: 809 case Type::UnaryTransform: 810 case Type::SubstTemplateTypeParm: 811 unresolvedType: 812 assert(!qualifier->getPrefix()); 813 814 // We only get here recursively if we're followed by identifiers. 815 if (recursive) Out << 'N'; 816 817 // This seems to do everything we want. It's not really 818 // sanctioned for a substituted template parameter, though. 819 mangleType(QualType(type, 0)); 820 821 // We never want to print 'E' directly after an unresolved-type, 822 // so we return directly. 823 return; 824 825 case Type::Typedef: 826 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier()); 827 break; 828 829 case Type::UnresolvedUsing: 830 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl() 831 ->getIdentifier()); 832 break; 833 834 case Type::Record: 835 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier()); 836 break; 837 838 case Type::TemplateSpecialization: { 839 const TemplateSpecializationType *tst 840 = cast<TemplateSpecializationType>(type); 841 TemplateName name = tst->getTemplateName(); 842 switch (name.getKind()) { 843 case TemplateName::Template: 844 case TemplateName::QualifiedTemplate: { 845 TemplateDecl *temp = name.getAsTemplateDecl(); 846 847 // If the base is a template template parameter, this is an 848 // unresolved type. 849 assert(temp && "no template for template specialization type"); 850 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType; 851 852 mangleSourceName(temp->getIdentifier()); 853 break; 854 } 855 856 case TemplateName::OverloadedTemplate: 857 case TemplateName::DependentTemplate: 858 llvm_unreachable("invalid base for a template specialization type"); 859 860 case TemplateName::SubstTemplateTemplateParm: { 861 SubstTemplateTemplateParmStorage *subst 862 = name.getAsSubstTemplateTemplateParm(); 863 mangleExistingSubstitution(subst->getReplacement()); 864 break; 865 } 866 867 case TemplateName::SubstTemplateTemplateParmPack: { 868 // FIXME: not clear how to mangle this! 869 // template <template <class U> class T...> class A { 870 // template <class U...> void foo(decltype(T<U>::foo) x...); 871 // }; 872 Out << "_SUBSTPACK_"; 873 break; 874 } 875 } 876 877 mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs()); 878 break; 879 } 880 881 case Type::InjectedClassName: 882 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl() 883 ->getIdentifier()); 884 break; 885 886 case Type::DependentName: 887 mangleSourceName(cast<DependentNameType>(type)->getIdentifier()); 888 break; 889 890 case Type::DependentTemplateSpecialization: { 891 const DependentTemplateSpecializationType *tst 892 = cast<DependentTemplateSpecializationType>(type); 893 mangleSourceName(tst->getIdentifier()); 894 mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs()); 895 break; 896 } 897 } 898 break; 899 } 900 901 case NestedNameSpecifier::Identifier: 902 // Member expressions can have these without prefixes. 903 if (qualifier->getPrefix()) { 904 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, 905 /*recursive*/ true); 906 } else if (firstQualifierLookup) { 907 908 // Try to make a proper qualifier out of the lookup result, and 909 // then just recurse on that. 910 NestedNameSpecifier *newQualifier; 911 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) { 912 QualType type = getASTContext().getTypeDeclType(typeDecl); 913 914 // Pretend we had a different nested name specifier. 915 newQualifier = NestedNameSpecifier::Create(getASTContext(), 916 /*prefix*/ 0, 917 /*template*/ false, 918 type.getTypePtr()); 919 } else if (NamespaceDecl *nspace = 920 dyn_cast<NamespaceDecl>(firstQualifierLookup)) { 921 newQualifier = NestedNameSpecifier::Create(getASTContext(), 922 /*prefix*/ 0, 923 nspace); 924 } else if (NamespaceAliasDecl *alias = 925 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) { 926 newQualifier = NestedNameSpecifier::Create(getASTContext(), 927 /*prefix*/ 0, 928 alias); 929 } else { 930 // No sensible mangling to do here. 931 newQualifier = 0; 932 } 933 934 if (newQualifier) 935 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive); 936 937 } else { 938 Out << "sr"; 939 } 940 941 mangleSourceName(qualifier->getAsIdentifier()); 942 break; 943 } 944 945 // If this was the innermost part of the NNS, and we fell out to 946 // here, append an 'E'. 947 if (!recursive) 948 Out << 'E'; 949 } 950 951 /// Mangle an unresolved-name, which is generally used for names which 952 /// weren't resolved to specific entities. 953 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier, 954 NamedDecl *firstQualifierLookup, 955 DeclarationName name, 956 unsigned knownArity) { 957 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup); 958 mangleUnqualifiedName(0, name, knownArity); 959 } 960 961 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) { 962 assert(RD->isAnonymousStructOrUnion() && 963 "Expected anonymous struct or union!"); 964 965 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 966 I != E; ++I) { 967 const FieldDecl *FD = *I; 968 969 if (FD->getIdentifier()) 970 return FD; 971 972 if (const RecordType *RT = FD->getType()->getAs<RecordType>()) { 973 if (const FieldDecl *NamedDataMember = 974 FindFirstNamedDataMember(RT->getDecl())) 975 return NamedDataMember; 976 } 977 } 978 979 // We didn't find a named data member. 980 return 0; 981 } 982 983 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 984 DeclarationName Name, 985 unsigned KnownArity) { 986 // <unqualified-name> ::= <operator-name> 987 // ::= <ctor-dtor-name> 988 // ::= <source-name> 989 switch (Name.getNameKind()) { 990 case DeclarationName::Identifier: { 991 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 992 // We must avoid conflicts between internally- and externally- 993 // linked variable and function declaration names in the same TU: 994 // void test() { extern void foo(); } 995 // static void foo(); 996 // This naming convention is the same as that followed by GCC, 997 // though it shouldn't actually matter. 998 if (ND && ND->getLinkage() == InternalLinkage && 999 ND->getDeclContext()->isFileContext()) 1000 Out << 'L'; 1001 1002 mangleSourceName(II); 1003 break; 1004 } 1005 1006 // Otherwise, an anonymous entity. We must have a declaration. 1007 assert(ND && "mangling empty name without declaration"); 1008 1009 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1010 if (NS->isAnonymousNamespace()) { 1011 // This is how gcc mangles these names. 1012 Out << "12_GLOBAL__N_1"; 1013 break; 1014 } 1015 } 1016 1017 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1018 // We must have an anonymous union or struct declaration. 1019 const RecordDecl *RD = 1020 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl()); 1021 1022 // Itanium C++ ABI 5.1.2: 1023 // 1024 // For the purposes of mangling, the name of an anonymous union is 1025 // considered to be the name of the first named data member found by a 1026 // pre-order, depth-first, declaration-order walk of the data members of 1027 // the anonymous union. If there is no such data member (i.e., if all of 1028 // the data members in the union are unnamed), then there is no way for 1029 // a program to refer to the anonymous union, and there is therefore no 1030 // need to mangle its name. 1031 const FieldDecl *FD = FindFirstNamedDataMember(RD); 1032 1033 // It's actually possible for various reasons for us to get here 1034 // with an empty anonymous struct / union. Fortunately, it 1035 // doesn't really matter what name we generate. 1036 if (!FD) break; 1037 assert(FD->getIdentifier() && "Data member name isn't an identifier!"); 1038 1039 mangleSourceName(FD->getIdentifier()); 1040 break; 1041 } 1042 1043 // We must have an anonymous struct. 1044 const TagDecl *TD = cast<TagDecl>(ND); 1045 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1046 assert(TD->getDeclContext() == D->getDeclContext() && 1047 "Typedef should not be in another decl context!"); 1048 assert(D->getDeclName().getAsIdentifierInfo() && 1049 "Typedef was not named!"); 1050 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 1051 break; 1052 } 1053 1054 // Get a unique id for the anonymous struct. 1055 uint64_t AnonStructId = Context.getAnonymousStructId(TD); 1056 1057 // Mangle it as a source name in the form 1058 // [n] $_<id> 1059 // where n is the length of the string. 1060 llvm::SmallString<8> Str; 1061 Str += "$_"; 1062 Str += llvm::utostr(AnonStructId); 1063 1064 Out << Str.size(); 1065 Out << Str.str(); 1066 break; 1067 } 1068 1069 case DeclarationName::ObjCZeroArgSelector: 1070 case DeclarationName::ObjCOneArgSelector: 1071 case DeclarationName::ObjCMultiArgSelector: 1072 assert(false && "Can't mangle Objective-C selector names here!"); 1073 break; 1074 1075 case DeclarationName::CXXConstructorName: 1076 if (ND == Structor) 1077 // If the named decl is the C++ constructor we're mangling, use the type 1078 // we were given. 1079 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType)); 1080 else 1081 // Otherwise, use the complete constructor name. This is relevant if a 1082 // class with a constructor is declared within a constructor. 1083 mangleCXXCtorType(Ctor_Complete); 1084 break; 1085 1086 case DeclarationName::CXXDestructorName: 1087 if (ND == Structor) 1088 // If the named decl is the C++ destructor we're mangling, use the type we 1089 // were given. 1090 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1091 else 1092 // Otherwise, use the complete destructor name. This is relevant if a 1093 // class with a destructor is declared within a destructor. 1094 mangleCXXDtorType(Dtor_Complete); 1095 break; 1096 1097 case DeclarationName::CXXConversionFunctionName: 1098 // <operator-name> ::= cv <type> # (cast) 1099 Out << "cv"; 1100 mangleType(Name.getCXXNameType()); 1101 break; 1102 1103 case DeclarationName::CXXOperatorName: { 1104 unsigned Arity; 1105 if (ND) { 1106 Arity = cast<FunctionDecl>(ND)->getNumParams(); 1107 1108 // If we have a C++ member function, we need to include the 'this' pointer. 1109 // FIXME: This does not make sense for operators that are static, but their 1110 // names stay the same regardless of the arity (operator new for instance). 1111 if (isa<CXXMethodDecl>(ND)) 1112 Arity++; 1113 } else 1114 Arity = KnownArity; 1115 1116 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); 1117 break; 1118 } 1119 1120 case DeclarationName::CXXLiteralOperatorName: 1121 // FIXME: This mangling is not yet official. 1122 Out << "li"; 1123 mangleSourceName(Name.getCXXLiteralIdentifier()); 1124 break; 1125 1126 case DeclarationName::CXXUsingDirective: 1127 assert(false && "Can't mangle a using directive name!"); 1128 break; 1129 } 1130 } 1131 1132 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 1133 // <source-name> ::= <positive length number> <identifier> 1134 // <number> ::= [n] <non-negative decimal integer> 1135 // <identifier> ::= <unqualified source code identifier> 1136 Out << II->getLength() << II->getName(); 1137 } 1138 1139 void CXXNameMangler::mangleNestedName(const NamedDecl *ND, 1140 const DeclContext *DC, 1141 bool NoFunction) { 1142 // <nested-name> 1143 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E 1144 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 1145 // <template-args> E 1146 1147 Out << 'N'; 1148 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { 1149 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers())); 1150 mangleRefQualifier(Method->getRefQualifier()); 1151 } 1152 1153 // Check if we have a template. 1154 const TemplateArgumentList *TemplateArgs = 0; 1155 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 1156 mangleTemplatePrefix(TD); 1157 TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); 1158 mangleTemplateArgs(*TemplateParameters, *TemplateArgs); 1159 } 1160 else { 1161 manglePrefix(DC, NoFunction); 1162 mangleUnqualifiedName(ND); 1163 } 1164 1165 Out << 'E'; 1166 } 1167 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, 1168 const TemplateArgument *TemplateArgs, 1169 unsigned NumTemplateArgs) { 1170 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E 1171 1172 Out << 'N'; 1173 1174 mangleTemplatePrefix(TD); 1175 TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); 1176 mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs); 1177 1178 Out << 'E'; 1179 } 1180 1181 void CXXNameMangler::mangleLocalName(const NamedDecl *ND) { 1182 // <local-name> := Z <function encoding> E <entity name> [<discriminator>] 1183 // := Z <function encoding> E s [<discriminator>] 1184 // <discriminator> := _ <non-negative number> 1185 const DeclContext *DC = ND->getDeclContext(); 1186 if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) { 1187 // Don't add objc method name mangling to locally declared function 1188 mangleUnqualifiedName(ND); 1189 return; 1190 } 1191 1192 Out << 'Z'; 1193 1194 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) { 1195 mangleObjCMethodName(MD); 1196 } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) { 1197 mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext())); 1198 Out << 'E'; 1199 1200 // Mangle the name relative to the closest enclosing function. 1201 if (ND == RD) // equality ok because RD derived from ND above 1202 mangleUnqualifiedName(ND); 1203 else 1204 mangleNestedName(ND, DC, true /*NoFunction*/); 1205 1206 unsigned disc; 1207 if (Context.getNextDiscriminator(RD, disc)) { 1208 if (disc < 10) 1209 Out << '_' << disc; 1210 else 1211 Out << "__" << disc << '_'; 1212 } 1213 1214 return; 1215 } 1216 else 1217 mangleFunctionEncoding(cast<FunctionDecl>(DC)); 1218 1219 Out << 'E'; 1220 mangleUnqualifiedName(ND); 1221 } 1222 1223 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { 1224 switch (qualifier->getKind()) { 1225 case NestedNameSpecifier::Global: 1226 // nothing 1227 return; 1228 1229 case NestedNameSpecifier::Namespace: 1230 mangleName(qualifier->getAsNamespace()); 1231 return; 1232 1233 case NestedNameSpecifier::NamespaceAlias: 1234 mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); 1235 return; 1236 1237 case NestedNameSpecifier::TypeSpec: 1238 case NestedNameSpecifier::TypeSpecWithTemplate: 1239 manglePrefix(QualType(qualifier->getAsType(), 0)); 1240 return; 1241 1242 case NestedNameSpecifier::Identifier: 1243 // Member expressions can have these without prefixes, but that 1244 // should end up in mangleUnresolvedPrefix instead. 1245 assert(qualifier->getPrefix()); 1246 manglePrefix(qualifier->getPrefix()); 1247 1248 mangleSourceName(qualifier->getAsIdentifier()); 1249 return; 1250 } 1251 1252 llvm_unreachable("unexpected nested name specifier"); 1253 } 1254 1255 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { 1256 // <prefix> ::= <prefix> <unqualified-name> 1257 // ::= <template-prefix> <template-args> 1258 // ::= <template-param> 1259 // ::= # empty 1260 // ::= <substitution> 1261 1262 while (isa<LinkageSpecDecl>(DC)) 1263 DC = DC->getParent(); 1264 1265 if (DC->isTranslationUnit()) 1266 return; 1267 1268 if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) { 1269 manglePrefix(DC->getParent(), NoFunction); 1270 llvm::SmallString<64> Name; 1271 llvm::raw_svector_ostream NameStream(Name); 1272 Context.mangleBlock(Block, NameStream); 1273 NameStream.flush(); 1274 Out << Name.size() << Name; 1275 return; 1276 } 1277 1278 if (mangleSubstitution(cast<NamedDecl>(DC))) 1279 return; 1280 1281 // Check if we have a template. 1282 const TemplateArgumentList *TemplateArgs = 0; 1283 if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) { 1284 mangleTemplatePrefix(TD); 1285 TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); 1286 mangleTemplateArgs(*TemplateParameters, *TemplateArgs); 1287 } 1288 else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC))) 1289 return; 1290 else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) 1291 mangleObjCMethodName(Method); 1292 else { 1293 manglePrefix(DC->getParent(), NoFunction); 1294 mangleUnqualifiedName(cast<NamedDecl>(DC)); 1295 } 1296 1297 addSubstitution(cast<NamedDecl>(DC)); 1298 } 1299 1300 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { 1301 // <template-prefix> ::= <prefix> <template unqualified-name> 1302 // ::= <template-param> 1303 // ::= <substitution> 1304 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 1305 return mangleTemplatePrefix(TD); 1306 1307 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) 1308 manglePrefix(Qualified->getQualifier()); 1309 1310 if (OverloadedTemplateStorage *Overloaded 1311 = Template.getAsOverloadedTemplate()) { 1312 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(), 1313 UnknownArity); 1314 return; 1315 } 1316 1317 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 1318 assert(Dependent && "Unknown template name kind?"); 1319 manglePrefix(Dependent->getQualifier()); 1320 mangleUnscopedTemplateName(Template); 1321 } 1322 1323 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) { 1324 // <template-prefix> ::= <prefix> <template unqualified-name> 1325 // ::= <template-param> 1326 // ::= <substitution> 1327 // <template-template-param> ::= <template-param> 1328 // <substitution> 1329 1330 if (mangleSubstitution(ND)) 1331 return; 1332 1333 // <template-template-param> ::= <template-param> 1334 if (const TemplateTemplateParmDecl *TTP 1335 = dyn_cast<TemplateTemplateParmDecl>(ND)) { 1336 mangleTemplateParameter(TTP->getIndex()); 1337 return; 1338 } 1339 1340 manglePrefix(ND->getDeclContext()); 1341 mangleUnqualifiedName(ND->getTemplatedDecl()); 1342 addSubstitution(ND); 1343 } 1344 1345 /// Mangles a template name under the production <type>. Required for 1346 /// template template arguments. 1347 /// <type> ::= <class-enum-type> 1348 /// ::= <template-param> 1349 /// ::= <substitution> 1350 void CXXNameMangler::mangleType(TemplateName TN) { 1351 if (mangleSubstitution(TN)) 1352 return; 1353 1354 TemplateDecl *TD = 0; 1355 1356 switch (TN.getKind()) { 1357 case TemplateName::QualifiedTemplate: 1358 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); 1359 goto HaveDecl; 1360 1361 case TemplateName::Template: 1362 TD = TN.getAsTemplateDecl(); 1363 goto HaveDecl; 1364 1365 HaveDecl: 1366 if (isa<TemplateTemplateParmDecl>(TD)) 1367 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex()); 1368 else 1369 mangleName(TD); 1370 break; 1371 1372 case TemplateName::OverloadedTemplate: 1373 llvm_unreachable("can't mangle an overloaded template name as a <type>"); 1374 break; 1375 1376 case TemplateName::DependentTemplate: { 1377 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); 1378 assert(Dependent->isIdentifier()); 1379 1380 // <class-enum-type> ::= <name> 1381 // <name> ::= <nested-name> 1382 mangleUnresolvedPrefix(Dependent->getQualifier(), 0); 1383 mangleSourceName(Dependent->getIdentifier()); 1384 break; 1385 } 1386 1387 case TemplateName::SubstTemplateTemplateParm: { 1388 // Substituted template parameters are mangled as the substituted 1389 // template. This will check for the substitution twice, which is 1390 // fine, but we have to return early so that we don't try to *add* 1391 // the substitution twice. 1392 SubstTemplateTemplateParmStorage *subst 1393 = TN.getAsSubstTemplateTemplateParm(); 1394 mangleType(subst->getReplacement()); 1395 return; 1396 } 1397 1398 case TemplateName::SubstTemplateTemplateParmPack: { 1399 // FIXME: not clear how to mangle this! 1400 // template <template <class> class T...> class A { 1401 // template <template <class> class U...> void foo(B<T,U> x...); 1402 // }; 1403 Out << "_SUBSTPACK_"; 1404 break; 1405 } 1406 } 1407 1408 addSubstitution(TN); 1409 } 1410 1411 void 1412 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { 1413 switch (OO) { 1414 // <operator-name> ::= nw # new 1415 case OO_New: Out << "nw"; break; 1416 // ::= na # new[] 1417 case OO_Array_New: Out << "na"; break; 1418 // ::= dl # delete 1419 case OO_Delete: Out << "dl"; break; 1420 // ::= da # delete[] 1421 case OO_Array_Delete: Out << "da"; break; 1422 // ::= ps # + (unary) 1423 // ::= pl # + (binary or unknown) 1424 case OO_Plus: 1425 Out << (Arity == 1? "ps" : "pl"); break; 1426 // ::= ng # - (unary) 1427 // ::= mi # - (binary or unknown) 1428 case OO_Minus: 1429 Out << (Arity == 1? "ng" : "mi"); break; 1430 // ::= ad # & (unary) 1431 // ::= an # & (binary or unknown) 1432 case OO_Amp: 1433 Out << (Arity == 1? "ad" : "an"); break; 1434 // ::= de # * (unary) 1435 // ::= ml # * (binary or unknown) 1436 case OO_Star: 1437 // Use binary when unknown. 1438 Out << (Arity == 1? "de" : "ml"); break; 1439 // ::= co # ~ 1440 case OO_Tilde: Out << "co"; break; 1441 // ::= dv # / 1442 case OO_Slash: Out << "dv"; break; 1443 // ::= rm # % 1444 case OO_Percent: Out << "rm"; break; 1445 // ::= or # | 1446 case OO_Pipe: Out << "or"; break; 1447 // ::= eo # ^ 1448 case OO_Caret: Out << "eo"; break; 1449 // ::= aS # = 1450 case OO_Equal: Out << "aS"; break; 1451 // ::= pL # += 1452 case OO_PlusEqual: Out << "pL"; break; 1453 // ::= mI # -= 1454 case OO_MinusEqual: Out << "mI"; break; 1455 // ::= mL # *= 1456 case OO_StarEqual: Out << "mL"; break; 1457 // ::= dV # /= 1458 case OO_SlashEqual: Out << "dV"; break; 1459 // ::= rM # %= 1460 case OO_PercentEqual: Out << "rM"; break; 1461 // ::= aN # &= 1462 case OO_AmpEqual: Out << "aN"; break; 1463 // ::= oR # |= 1464 case OO_PipeEqual: Out << "oR"; break; 1465 // ::= eO # ^= 1466 case OO_CaretEqual: Out << "eO"; break; 1467 // ::= ls # << 1468 case OO_LessLess: Out << "ls"; break; 1469 // ::= rs # >> 1470 case OO_GreaterGreater: Out << "rs"; break; 1471 // ::= lS # <<= 1472 case OO_LessLessEqual: Out << "lS"; break; 1473 // ::= rS # >>= 1474 case OO_GreaterGreaterEqual: Out << "rS"; break; 1475 // ::= eq # == 1476 case OO_EqualEqual: Out << "eq"; break; 1477 // ::= ne # != 1478 case OO_ExclaimEqual: Out << "ne"; break; 1479 // ::= lt # < 1480 case OO_Less: Out << "lt"; break; 1481 // ::= gt # > 1482 case OO_Greater: Out << "gt"; break; 1483 // ::= le # <= 1484 case OO_LessEqual: Out << "le"; break; 1485 // ::= ge # >= 1486 case OO_GreaterEqual: Out << "ge"; break; 1487 // ::= nt # ! 1488 case OO_Exclaim: Out << "nt"; break; 1489 // ::= aa # && 1490 case OO_AmpAmp: Out << "aa"; break; 1491 // ::= oo # || 1492 case OO_PipePipe: Out << "oo"; break; 1493 // ::= pp # ++ 1494 case OO_PlusPlus: Out << "pp"; break; 1495 // ::= mm # -- 1496 case OO_MinusMinus: Out << "mm"; break; 1497 // ::= cm # , 1498 case OO_Comma: Out << "cm"; break; 1499 // ::= pm # ->* 1500 case OO_ArrowStar: Out << "pm"; break; 1501 // ::= pt # -> 1502 case OO_Arrow: Out << "pt"; break; 1503 // ::= cl # () 1504 case OO_Call: Out << "cl"; break; 1505 // ::= ix # [] 1506 case OO_Subscript: Out << "ix"; break; 1507 1508 // ::= qu # ? 1509 // The conditional operator can't be overloaded, but we still handle it when 1510 // mangling expressions. 1511 case OO_Conditional: Out << "qu"; break; 1512 1513 case OO_None: 1514 case NUM_OVERLOADED_OPERATORS: 1515 assert(false && "Not an overloaded operator"); 1516 break; 1517 } 1518 } 1519 1520 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) { 1521 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const 1522 if (Quals.hasRestrict()) 1523 Out << 'r'; 1524 if (Quals.hasVolatile()) 1525 Out << 'V'; 1526 if (Quals.hasConst()) 1527 Out << 'K'; 1528 1529 if (Quals.hasAddressSpace()) { 1530 // Extension: 1531 // 1532 // <type> ::= U <address-space-number> 1533 // 1534 // where <address-space-number> is a source name consisting of 'AS' 1535 // followed by the address space <number>. 1536 llvm::SmallString<64> ASString; 1537 ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace()); 1538 Out << 'U' << ASString.size() << ASString; 1539 } 1540 1541 llvm::StringRef LifetimeName; 1542 switch (Quals.getObjCLifetime()) { 1543 // Objective-C ARC Extension: 1544 // 1545 // <type> ::= U "__strong" 1546 // <type> ::= U "__weak" 1547 // <type> ::= U "__autoreleasing" 1548 case Qualifiers::OCL_None: 1549 break; 1550 1551 case Qualifiers::OCL_Weak: 1552 LifetimeName = "__weak"; 1553 break; 1554 1555 case Qualifiers::OCL_Strong: 1556 LifetimeName = "__strong"; 1557 break; 1558 1559 case Qualifiers::OCL_Autoreleasing: 1560 LifetimeName = "__autoreleasing"; 1561 break; 1562 1563 case Qualifiers::OCL_ExplicitNone: 1564 // The __unsafe_unretained qualifier is *not* mangled, so that 1565 // __unsafe_unretained types in ARC produce the same manglings as the 1566 // equivalent (but, naturally, unqualified) types in non-ARC, providing 1567 // better ABI compatibility. 1568 // 1569 // It's safe to do this because unqualified 'id' won't show up 1570 // in any type signatures that need to be mangled. 1571 break; 1572 } 1573 if (!LifetimeName.empty()) 1574 Out << 'U' << LifetimeName.size() << LifetimeName; 1575 } 1576 1577 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 1578 // <ref-qualifier> ::= R # lvalue reference 1579 // ::= O # rvalue-reference 1580 // Proposal to Itanium C++ ABI list on 1/26/11 1581 switch (RefQualifier) { 1582 case RQ_None: 1583 break; 1584 1585 case RQ_LValue: 1586 Out << 'R'; 1587 break; 1588 1589 case RQ_RValue: 1590 Out << 'O'; 1591 break; 1592 } 1593 } 1594 1595 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1596 Context.mangleObjCMethodName(MD, Out); 1597 } 1598 1599 void CXXNameMangler::mangleType(QualType T) { 1600 // If our type is instantiation-dependent but not dependent, we mangle 1601 // it as it was written in the source, removing any top-level sugar. 1602 // Otherwise, use the canonical type. 1603 // 1604 // FIXME: This is an approximation of the instantiation-dependent name 1605 // mangling rules, since we should really be using the type as written and 1606 // augmented via semantic analysis (i.e., with implicit conversions and 1607 // default template arguments) for any instantiation-dependent type. 1608 // Unfortunately, that requires several changes to our AST: 1609 // - Instantiation-dependent TemplateSpecializationTypes will need to be 1610 // uniqued, so that we can handle substitutions properly 1611 // - Default template arguments will need to be represented in the 1612 // TemplateSpecializationType, since they need to be mangled even though 1613 // they aren't written. 1614 // - Conversions on non-type template arguments need to be expressed, since 1615 // they can affect the mangling of sizeof/alignof. 1616 if (!T->isInstantiationDependentType() || T->isDependentType()) 1617 T = T.getCanonicalType(); 1618 else { 1619 // Desugar any types that are purely sugar. 1620 do { 1621 // Don't desugar through template specialization types that aren't 1622 // type aliases. We need to mangle the template arguments as written. 1623 if (const TemplateSpecializationType *TST 1624 = dyn_cast<TemplateSpecializationType>(T)) 1625 if (!TST->isTypeAlias()) 1626 break; 1627 1628 QualType Desugared 1629 = T.getSingleStepDesugaredType(Context.getASTContext()); 1630 if (Desugared == T) 1631 break; 1632 1633 T = Desugared; 1634 } while (true); 1635 } 1636 SplitQualType split = T.split(); 1637 Qualifiers quals = split.second; 1638 const Type *ty = split.first; 1639 1640 bool isSubstitutable = quals || !isa<BuiltinType>(T); 1641 if (isSubstitutable && mangleSubstitution(T)) 1642 return; 1643 1644 // If we're mangling a qualified array type, push the qualifiers to 1645 // the element type. 1646 if (quals && isa<ArrayType>(T)) { 1647 ty = Context.getASTContext().getAsArrayType(T); 1648 quals = Qualifiers(); 1649 1650 // Note that we don't update T: we want to add the 1651 // substitution at the original type. 1652 } 1653 1654 if (quals) { 1655 mangleQualifiers(quals); 1656 // Recurse: even if the qualified type isn't yet substitutable, 1657 // the unqualified type might be. 1658 mangleType(QualType(ty, 0)); 1659 } else { 1660 switch (ty->getTypeClass()) { 1661 #define ABSTRACT_TYPE(CLASS, PARENT) 1662 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 1663 case Type::CLASS: \ 1664 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 1665 return; 1666 #define TYPE(CLASS, PARENT) \ 1667 case Type::CLASS: \ 1668 mangleType(static_cast<const CLASS##Type*>(ty)); \ 1669 break; 1670 #include "clang/AST/TypeNodes.def" 1671 } 1672 } 1673 1674 // Add the substitution. 1675 if (isSubstitutable) 1676 addSubstitution(T); 1677 } 1678 1679 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { 1680 if (!mangleStandardSubstitution(ND)) 1681 mangleName(ND); 1682 } 1683 1684 void CXXNameMangler::mangleType(const BuiltinType *T) { 1685 // <type> ::= <builtin-type> 1686 // <builtin-type> ::= v # void 1687 // ::= w # wchar_t 1688 // ::= b # bool 1689 // ::= c # char 1690 // ::= a # signed char 1691 // ::= h # unsigned char 1692 // ::= s # short 1693 // ::= t # unsigned short 1694 // ::= i # int 1695 // ::= j # unsigned int 1696 // ::= l # long 1697 // ::= m # unsigned long 1698 // ::= x # long long, __int64 1699 // ::= y # unsigned long long, __int64 1700 // ::= n # __int128 1701 // UNSUPPORTED: ::= o # unsigned __int128 1702 // ::= f # float 1703 // ::= d # double 1704 // ::= e # long double, __float80 1705 // UNSUPPORTED: ::= g # __float128 1706 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) 1707 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) 1708 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) 1709 // UNSUPPORTED: ::= Dh # IEEE 754r half-precision floating point (16 bits) 1710 // ::= Di # char32_t 1711 // ::= Ds # char16_t 1712 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) 1713 // ::= u <source-name> # vendor extended type 1714 switch (T->getKind()) { 1715 case BuiltinType::Void: Out << 'v'; break; 1716 case BuiltinType::Bool: Out << 'b'; break; 1717 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break; 1718 case BuiltinType::UChar: Out << 'h'; break; 1719 case BuiltinType::UShort: Out << 't'; break; 1720 case BuiltinType::UInt: Out << 'j'; break; 1721 case BuiltinType::ULong: Out << 'm'; break; 1722 case BuiltinType::ULongLong: Out << 'y'; break; 1723 case BuiltinType::UInt128: Out << 'o'; break; 1724 case BuiltinType::SChar: Out << 'a'; break; 1725 case BuiltinType::WChar_S: 1726 case BuiltinType::WChar_U: Out << 'w'; break; 1727 case BuiltinType::Char16: Out << "Ds"; break; 1728 case BuiltinType::Char32: Out << "Di"; break; 1729 case BuiltinType::Short: Out << 's'; break; 1730 case BuiltinType::Int: Out << 'i'; break; 1731 case BuiltinType::Long: Out << 'l'; break; 1732 case BuiltinType::LongLong: Out << 'x'; break; 1733 case BuiltinType::Int128: Out << 'n'; break; 1734 case BuiltinType::Float: Out << 'f'; break; 1735 case BuiltinType::Double: Out << 'd'; break; 1736 case BuiltinType::LongDouble: Out << 'e'; break; 1737 case BuiltinType::NullPtr: Out << "Dn"; break; 1738 1739 case BuiltinType::Overload: 1740 case BuiltinType::Dependent: 1741 case BuiltinType::BoundMember: 1742 case BuiltinType::UnknownAny: 1743 llvm_unreachable("mangling a placeholder type"); 1744 break; 1745 case BuiltinType::ObjCId: Out << "11objc_object"; break; 1746 case BuiltinType::ObjCClass: Out << "10objc_class"; break; 1747 case BuiltinType::ObjCSel: Out << "13objc_selector"; break; 1748 } 1749 } 1750 1751 // <type> ::= <function-type> 1752 // <function-type> ::= F [Y] <bare-function-type> E 1753 void CXXNameMangler::mangleType(const FunctionProtoType *T) { 1754 Out << 'F'; 1755 // FIXME: We don't have enough information in the AST to produce the 'Y' 1756 // encoding for extern "C" function types. 1757 mangleBareFunctionType(T, /*MangleReturnType=*/true); 1758 Out << 'E'; 1759 } 1760 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { 1761 llvm_unreachable("Can't mangle K&R function prototypes"); 1762 } 1763 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T, 1764 bool MangleReturnType) { 1765 // We should never be mangling something without a prototype. 1766 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 1767 1768 // Record that we're in a function type. See mangleFunctionParam 1769 // for details on what we're trying to achieve here. 1770 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 1771 1772 // <bare-function-type> ::= <signature type>+ 1773 if (MangleReturnType) { 1774 FunctionTypeDepth.enterResultType(); 1775 mangleType(Proto->getResultType()); 1776 FunctionTypeDepth.leaveResultType(); 1777 } 1778 1779 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) { 1780 // <builtin-type> ::= v # void 1781 Out << 'v'; 1782 1783 FunctionTypeDepth.pop(saved); 1784 return; 1785 } 1786 1787 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), 1788 ArgEnd = Proto->arg_type_end(); 1789 Arg != ArgEnd; ++Arg) 1790 mangleType(Context.getASTContext().getSignatureParameterType(*Arg)); 1791 1792 FunctionTypeDepth.pop(saved); 1793 1794 // <builtin-type> ::= z # ellipsis 1795 if (Proto->isVariadic()) 1796 Out << 'z'; 1797 } 1798 1799 // <type> ::= <class-enum-type> 1800 // <class-enum-type> ::= <name> 1801 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { 1802 mangleName(T->getDecl()); 1803 } 1804 1805 // <type> ::= <class-enum-type> 1806 // <class-enum-type> ::= <name> 1807 void CXXNameMangler::mangleType(const EnumType *T) { 1808 mangleType(static_cast<const TagType*>(T)); 1809 } 1810 void CXXNameMangler::mangleType(const RecordType *T) { 1811 mangleType(static_cast<const TagType*>(T)); 1812 } 1813 void CXXNameMangler::mangleType(const TagType *T) { 1814 mangleName(T->getDecl()); 1815 } 1816 1817 // <type> ::= <array-type> 1818 // <array-type> ::= A <positive dimension number> _ <element type> 1819 // ::= A [<dimension expression>] _ <element type> 1820 void CXXNameMangler::mangleType(const ConstantArrayType *T) { 1821 Out << 'A' << T->getSize() << '_'; 1822 mangleType(T->getElementType()); 1823 } 1824 void CXXNameMangler::mangleType(const VariableArrayType *T) { 1825 Out << 'A'; 1826 // decayed vla types (size 0) will just be skipped. 1827 if (T->getSizeExpr()) 1828 mangleExpression(T->getSizeExpr()); 1829 Out << '_'; 1830 mangleType(T->getElementType()); 1831 } 1832 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { 1833 Out << 'A'; 1834 mangleExpression(T->getSizeExpr()); 1835 Out << '_'; 1836 mangleType(T->getElementType()); 1837 } 1838 void CXXNameMangler::mangleType(const IncompleteArrayType *T) { 1839 Out << "A_"; 1840 mangleType(T->getElementType()); 1841 } 1842 1843 // <type> ::= <pointer-to-member-type> 1844 // <pointer-to-member-type> ::= M <class type> <member type> 1845 void CXXNameMangler::mangleType(const MemberPointerType *T) { 1846 Out << 'M'; 1847 mangleType(QualType(T->getClass(), 0)); 1848 QualType PointeeType = T->getPointeeType(); 1849 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 1850 mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals())); 1851 mangleRefQualifier(FPT->getRefQualifier()); 1852 mangleType(FPT); 1853 1854 // Itanium C++ ABI 5.1.8: 1855 // 1856 // The type of a non-static member function is considered to be different, 1857 // for the purposes of substitution, from the type of a namespace-scope or 1858 // static member function whose type appears similar. The types of two 1859 // non-static member functions are considered to be different, for the 1860 // purposes of substitution, if the functions are members of different 1861 // classes. In other words, for the purposes of substitution, the class of 1862 // which the function is a member is considered part of the type of 1863 // function. 1864 1865 // We increment the SeqID here to emulate adding an entry to the 1866 // substitution table. We can't actually add it because we don't want this 1867 // particular function type to be substituted. 1868 ++SeqID; 1869 } else 1870 mangleType(PointeeType); 1871 } 1872 1873 // <type> ::= <template-param> 1874 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { 1875 mangleTemplateParameter(T->getIndex()); 1876 } 1877 1878 // <type> ::= <template-param> 1879 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { 1880 // FIXME: not clear how to mangle this! 1881 // template <class T...> class A { 1882 // template <class U...> void foo(T(*)(U) x...); 1883 // }; 1884 Out << "_SUBSTPACK_"; 1885 } 1886 1887 // <type> ::= P <type> # pointer-to 1888 void CXXNameMangler::mangleType(const PointerType *T) { 1889 Out << 'P'; 1890 mangleType(T->getPointeeType()); 1891 } 1892 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 1893 Out << 'P'; 1894 mangleType(T->getPointeeType()); 1895 } 1896 1897 // <type> ::= R <type> # reference-to 1898 void CXXNameMangler::mangleType(const LValueReferenceType *T) { 1899 Out << 'R'; 1900 mangleType(T->getPointeeType()); 1901 } 1902 1903 // <type> ::= O <type> # rvalue reference-to (C++0x) 1904 void CXXNameMangler::mangleType(const RValueReferenceType *T) { 1905 Out << 'O'; 1906 mangleType(T->getPointeeType()); 1907 } 1908 1909 // <type> ::= C <type> # complex pair (C 2000) 1910 void CXXNameMangler::mangleType(const ComplexType *T) { 1911 Out << 'C'; 1912 mangleType(T->getElementType()); 1913 } 1914 1915 // ARM's ABI for Neon vector types specifies that they should be mangled as 1916 // if they are structs (to match ARM's initial implementation). The 1917 // vector type must be one of the special types predefined by ARM. 1918 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { 1919 QualType EltType = T->getElementType(); 1920 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 1921 const char *EltName = 0; 1922 if (T->getVectorKind() == VectorType::NeonPolyVector) { 1923 switch (cast<BuiltinType>(EltType)->getKind()) { 1924 case BuiltinType::SChar: EltName = "poly8_t"; break; 1925 case BuiltinType::Short: EltName = "poly16_t"; break; 1926 default: llvm_unreachable("unexpected Neon polynomial vector element type"); 1927 } 1928 } else { 1929 switch (cast<BuiltinType>(EltType)->getKind()) { 1930 case BuiltinType::SChar: EltName = "int8_t"; break; 1931 case BuiltinType::UChar: EltName = "uint8_t"; break; 1932 case BuiltinType::Short: EltName = "int16_t"; break; 1933 case BuiltinType::UShort: EltName = "uint16_t"; break; 1934 case BuiltinType::Int: EltName = "int32_t"; break; 1935 case BuiltinType::UInt: EltName = "uint32_t"; break; 1936 case BuiltinType::LongLong: EltName = "int64_t"; break; 1937 case BuiltinType::ULongLong: EltName = "uint64_t"; break; 1938 case BuiltinType::Float: EltName = "float32_t"; break; 1939 default: llvm_unreachable("unexpected Neon vector element type"); 1940 } 1941 } 1942 const char *BaseName = 0; 1943 unsigned BitSize = (T->getNumElements() * 1944 getASTContext().getTypeSize(EltType)); 1945 if (BitSize == 64) 1946 BaseName = "__simd64_"; 1947 else { 1948 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); 1949 BaseName = "__simd128_"; 1950 } 1951 Out << strlen(BaseName) + strlen(EltName); 1952 Out << BaseName << EltName; 1953 } 1954 1955 // GNU extension: vector types 1956 // <type> ::= <vector-type> 1957 // <vector-type> ::= Dv <positive dimension number> _ 1958 // <extended element type> 1959 // ::= Dv [<dimension expression>] _ <element type> 1960 // <extended element type> ::= <element type> 1961 // ::= p # AltiVec vector pixel 1962 void CXXNameMangler::mangleType(const VectorType *T) { 1963 if ((T->getVectorKind() == VectorType::NeonVector || 1964 T->getVectorKind() == VectorType::NeonPolyVector)) { 1965 mangleNeonVectorType(T); 1966 return; 1967 } 1968 Out << "Dv" << T->getNumElements() << '_'; 1969 if (T->getVectorKind() == VectorType::AltiVecPixel) 1970 Out << 'p'; 1971 else if (T->getVectorKind() == VectorType::AltiVecBool) 1972 Out << 'b'; 1973 else 1974 mangleType(T->getElementType()); 1975 } 1976 void CXXNameMangler::mangleType(const ExtVectorType *T) { 1977 mangleType(static_cast<const VectorType*>(T)); 1978 } 1979 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 1980 Out << "Dv"; 1981 mangleExpression(T->getSizeExpr()); 1982 Out << '_'; 1983 mangleType(T->getElementType()); 1984 } 1985 1986 void CXXNameMangler::mangleType(const PackExpansionType *T) { 1987 // <type> ::= Dp <type> # pack expansion (C++0x) 1988 Out << "Dp"; 1989 mangleType(T->getPattern()); 1990 } 1991 1992 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { 1993 mangleSourceName(T->getDecl()->getIdentifier()); 1994 } 1995 1996 void CXXNameMangler::mangleType(const ObjCObjectType *T) { 1997 // We don't allow overloading by different protocol qualification, 1998 // so mangling them isn't necessary. 1999 mangleType(T->getBaseType()); 2000 } 2001 2002 void CXXNameMangler::mangleType(const BlockPointerType *T) { 2003 Out << "U13block_pointer"; 2004 mangleType(T->getPointeeType()); 2005 } 2006 2007 void CXXNameMangler::mangleType(const InjectedClassNameType *T) { 2008 // Mangle injected class name types as if the user had written the 2009 // specialization out fully. It may not actually be possible to see 2010 // this mangling, though. 2011 mangleType(T->getInjectedSpecializationType()); 2012 } 2013 2014 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { 2015 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { 2016 mangleName(TD, T->getArgs(), T->getNumArgs()); 2017 } else { 2018 if (mangleSubstitution(QualType(T, 0))) 2019 return; 2020 2021 mangleTemplatePrefix(T->getTemplateName()); 2022 2023 // FIXME: GCC does not appear to mangle the template arguments when 2024 // the template in question is a dependent template name. Should we 2025 // emulate that badness? 2026 mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs()); 2027 addSubstitution(QualType(T, 0)); 2028 } 2029 } 2030 2031 void CXXNameMangler::mangleType(const DependentNameType *T) { 2032 // Typename types are always nested 2033 Out << 'N'; 2034 manglePrefix(T->getQualifier()); 2035 mangleSourceName(T->getIdentifier()); 2036 Out << 'E'; 2037 } 2038 2039 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { 2040 // Dependently-scoped template types are nested if they have a prefix. 2041 Out << 'N'; 2042 2043 // TODO: avoid making this TemplateName. 2044 TemplateName Prefix = 2045 getASTContext().getDependentTemplateName(T->getQualifier(), 2046 T->getIdentifier()); 2047 mangleTemplatePrefix(Prefix); 2048 2049 // FIXME: GCC does not appear to mangle the template arguments when 2050 // the template in question is a dependent template name. Should we 2051 // emulate that badness? 2052 mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs()); 2053 Out << 'E'; 2054 } 2055 2056 void CXXNameMangler::mangleType(const TypeOfType *T) { 2057 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 2058 // "extension with parameters" mangling. 2059 Out << "u6typeof"; 2060 } 2061 2062 void CXXNameMangler::mangleType(const TypeOfExprType *T) { 2063 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 2064 // "extension with parameters" mangling. 2065 Out << "u6typeof"; 2066 } 2067 2068 void CXXNameMangler::mangleType(const DecltypeType *T) { 2069 Expr *E = T->getUnderlyingExpr(); 2070 2071 // type ::= Dt <expression> E # decltype of an id-expression 2072 // # or class member access 2073 // ::= DT <expression> E # decltype of an expression 2074 2075 // This purports to be an exhaustive list of id-expressions and 2076 // class member accesses. Note that we do not ignore parentheses; 2077 // parentheses change the semantics of decltype for these 2078 // expressions (and cause the mangler to use the other form). 2079 if (isa<DeclRefExpr>(E) || 2080 isa<MemberExpr>(E) || 2081 isa<UnresolvedLookupExpr>(E) || 2082 isa<DependentScopeDeclRefExpr>(E) || 2083 isa<CXXDependentScopeMemberExpr>(E) || 2084 isa<UnresolvedMemberExpr>(E)) 2085 Out << "Dt"; 2086 else 2087 Out << "DT"; 2088 mangleExpression(E); 2089 Out << 'E'; 2090 } 2091 2092 void CXXNameMangler::mangleType(const UnaryTransformType *T) { 2093 // If this is dependent, we need to record that. If not, we simply 2094 // mangle it as the underlying type since they are equivalent. 2095 if (T->isDependentType()) { 2096 Out << 'U'; 2097 2098 switch (T->getUTTKind()) { 2099 case UnaryTransformType::EnumUnderlyingType: 2100 Out << "3eut"; 2101 break; 2102 } 2103 } 2104 2105 mangleType(T->getUnderlyingType()); 2106 } 2107 2108 void CXXNameMangler::mangleType(const AutoType *T) { 2109 QualType D = T->getDeducedType(); 2110 // <builtin-type> ::= Da # dependent auto 2111 if (D.isNull()) 2112 Out << "Da"; 2113 else 2114 mangleType(D); 2115 } 2116 2117 void CXXNameMangler::mangleIntegerLiteral(QualType T, 2118 const llvm::APSInt &Value) { 2119 // <expr-primary> ::= L <type> <value number> E # integer literal 2120 Out << 'L'; 2121 2122 mangleType(T); 2123 if (T->isBooleanType()) { 2124 // Boolean values are encoded as 0/1. 2125 Out << (Value.getBoolValue() ? '1' : '0'); 2126 } else { 2127 mangleNumber(Value); 2128 } 2129 Out << 'E'; 2130 2131 } 2132 2133 /// Mangles a member expression. Implicit accesses are not handled, 2134 /// but that should be okay, because you shouldn't be able to 2135 /// make an implicit access in a function template declaration. 2136 void CXXNameMangler::mangleMemberExpr(const Expr *base, 2137 bool isArrow, 2138 NestedNameSpecifier *qualifier, 2139 NamedDecl *firstQualifierLookup, 2140 DeclarationName member, 2141 unsigned arity) { 2142 // <expression> ::= dt <expression> <unresolved-name> 2143 // ::= pt <expression> <unresolved-name> 2144 Out << (isArrow ? "pt" : "dt"); 2145 mangleExpression(base); 2146 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity); 2147 } 2148 2149 /// Look at the callee of the given call expression and determine if 2150 /// it's a parenthesized id-expression which would have triggered ADL 2151 /// otherwise. 2152 static bool isParenthesizedADLCallee(const CallExpr *call) { 2153 const Expr *callee = call->getCallee(); 2154 const Expr *fn = callee->IgnoreParens(); 2155 2156 // Must be parenthesized. IgnoreParens() skips __extension__ nodes, 2157 // too, but for those to appear in the callee, it would have to be 2158 // parenthesized. 2159 if (callee == fn) return false; 2160 2161 // Must be an unresolved lookup. 2162 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); 2163 if (!lookup) return false; 2164 2165 assert(!lookup->requiresADL()); 2166 2167 // Must be an unqualified lookup. 2168 if (lookup->getQualifier()) return false; 2169 2170 // Must not have found a class member. Note that if one is a class 2171 // member, they're all class members. 2172 if (lookup->getNumDecls() > 0 && 2173 (*lookup->decls_begin())->isCXXClassMember()) 2174 return false; 2175 2176 // Otherwise, ADL would have been triggered. 2177 return true; 2178 } 2179 2180 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) { 2181 // <expression> ::= <unary operator-name> <expression> 2182 // ::= <binary operator-name> <expression> <expression> 2183 // ::= <trinary operator-name> <expression> <expression> <expression> 2184 // ::= cv <type> expression # conversion with one argument 2185 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments 2186 // ::= st <type> # sizeof (a type) 2187 // ::= at <type> # alignof (a type) 2188 // ::= <template-param> 2189 // ::= <function-param> 2190 // ::= sr <type> <unqualified-name> # dependent name 2191 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id 2192 // ::= ds <expression> <expression> # expr.*expr 2193 // ::= sZ <template-param> # size of a parameter pack 2194 // ::= sZ <function-param> # size of a function parameter pack 2195 // ::= <expr-primary> 2196 // <expr-primary> ::= L <type> <value number> E # integer literal 2197 // ::= L <type <value float> E # floating literal 2198 // ::= L <mangled-name> E # external name 2199 QualType ImplicitlyConvertedToType; 2200 2201 recurse: 2202 switch (E->getStmtClass()) { 2203 case Expr::NoStmtClass: 2204 #define ABSTRACT_STMT(Type) 2205 #define EXPR(Type, Base) 2206 #define STMT(Type, Base) \ 2207 case Expr::Type##Class: 2208 #include "clang/AST/StmtNodes.inc" 2209 // fallthrough 2210 2211 // These all can only appear in local or variable-initialization 2212 // contexts and so should never appear in a mangling. 2213 case Expr::AddrLabelExprClass: 2214 case Expr::BlockDeclRefExprClass: 2215 case Expr::CXXThisExprClass: 2216 case Expr::DesignatedInitExprClass: 2217 case Expr::ImplicitValueInitExprClass: 2218 case Expr::InitListExprClass: 2219 case Expr::ParenListExprClass: 2220 case Expr::CXXScalarValueInitExprClass: 2221 llvm_unreachable("unexpected statement kind"); 2222 break; 2223 2224 // FIXME: invent manglings for all these. 2225 case Expr::BlockExprClass: 2226 case Expr::CXXPseudoDestructorExprClass: 2227 case Expr::ChooseExprClass: 2228 case Expr::CompoundLiteralExprClass: 2229 case Expr::ExtVectorElementExprClass: 2230 case Expr::GenericSelectionExprClass: 2231 case Expr::ObjCEncodeExprClass: 2232 case Expr::ObjCIsaExprClass: 2233 case Expr::ObjCIvarRefExprClass: 2234 case Expr::ObjCMessageExprClass: 2235 case Expr::ObjCPropertyRefExprClass: 2236 case Expr::ObjCProtocolExprClass: 2237 case Expr::ObjCSelectorExprClass: 2238 case Expr::ObjCStringLiteralClass: 2239 case Expr::ObjCIndirectCopyRestoreExprClass: 2240 case Expr::OffsetOfExprClass: 2241 case Expr::PredefinedExprClass: 2242 case Expr::ShuffleVectorExprClass: 2243 case Expr::StmtExprClass: 2244 case Expr::UnaryTypeTraitExprClass: 2245 case Expr::BinaryTypeTraitExprClass: 2246 case Expr::ArrayTypeTraitExprClass: 2247 case Expr::ExpressionTraitExprClass: 2248 case Expr::VAArgExprClass: 2249 case Expr::CXXUuidofExprClass: 2250 case Expr::CXXNoexceptExprClass: 2251 case Expr::CUDAKernelCallExprClass: 2252 case Expr::AsTypeExprClass: 2253 { 2254 // As bad as this diagnostic is, it's better than crashing. 2255 Diagnostic &Diags = Context.getDiags(); 2256 unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error, 2257 "cannot yet mangle expression type %0"); 2258 Diags.Report(E->getExprLoc(), DiagID) 2259 << E->getStmtClassName() << E->getSourceRange(); 2260 break; 2261 } 2262 2263 // Even gcc-4.5 doesn't mangle this. 2264 case Expr::BinaryConditionalOperatorClass: { 2265 Diagnostic &Diags = Context.getDiags(); 2266 unsigned DiagID = 2267 Diags.getCustomDiagID(Diagnostic::Error, 2268 "?: operator with omitted middle operand cannot be mangled"); 2269 Diags.Report(E->getExprLoc(), DiagID) 2270 << E->getStmtClassName() << E->getSourceRange(); 2271 break; 2272 } 2273 2274 // These are used for internal purposes and cannot be meaningfully mangled. 2275 case Expr::OpaqueValueExprClass: 2276 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); 2277 2278 case Expr::CXXDefaultArgExprClass: 2279 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity); 2280 break; 2281 2282 case Expr::SubstNonTypeTemplateParmExprClass: 2283 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), 2284 Arity); 2285 break; 2286 2287 case Expr::CXXMemberCallExprClass: // fallthrough 2288 case Expr::CallExprClass: { 2289 const CallExpr *CE = cast<CallExpr>(E); 2290 2291 // <expression> ::= cp <simple-id> <expression>* E 2292 // We use this mangling only when the call would use ADL except 2293 // for being parenthesized. Per discussion with David 2294 // Vandervoorde, 2011.04.25. 2295 if (isParenthesizedADLCallee(CE)) { 2296 Out << "cp"; 2297 // The callee here is a parenthesized UnresolvedLookupExpr with 2298 // no qualifier and should always get mangled as a <simple-id> 2299 // anyway. 2300 2301 // <expression> ::= cl <expression>* E 2302 } else { 2303 Out << "cl"; 2304 } 2305 2306 mangleExpression(CE->getCallee(), CE->getNumArgs()); 2307 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I) 2308 mangleExpression(CE->getArg(I)); 2309 Out << 'E'; 2310 break; 2311 } 2312 2313 case Expr::CXXNewExprClass: { 2314 // Proposal from David Vandervoorde, 2010.06.30 2315 const CXXNewExpr *New = cast<CXXNewExpr>(E); 2316 if (New->isGlobalNew()) Out << "gs"; 2317 Out << (New->isArray() ? "na" : "nw"); 2318 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), 2319 E = New->placement_arg_end(); I != E; ++I) 2320 mangleExpression(*I); 2321 Out << '_'; 2322 mangleType(New->getAllocatedType()); 2323 if (New->hasInitializer()) { 2324 Out << "pi"; 2325 for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(), 2326 E = New->constructor_arg_end(); I != E; ++I) 2327 mangleExpression(*I); 2328 } 2329 Out << 'E'; 2330 break; 2331 } 2332 2333 case Expr::MemberExprClass: { 2334 const MemberExpr *ME = cast<MemberExpr>(E); 2335 mangleMemberExpr(ME->getBase(), ME->isArrow(), 2336 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(), 2337 Arity); 2338 break; 2339 } 2340 2341 case Expr::UnresolvedMemberExprClass: { 2342 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); 2343 mangleMemberExpr(ME->getBase(), ME->isArrow(), 2344 ME->getQualifier(), 0, ME->getMemberName(), 2345 Arity); 2346 if (ME->hasExplicitTemplateArgs()) 2347 mangleTemplateArgs(ME->getExplicitTemplateArgs()); 2348 break; 2349 } 2350 2351 case Expr::CXXDependentScopeMemberExprClass: { 2352 const CXXDependentScopeMemberExpr *ME 2353 = cast<CXXDependentScopeMemberExpr>(E); 2354 mangleMemberExpr(ME->getBase(), ME->isArrow(), 2355 ME->getQualifier(), ME->getFirstQualifierFoundInScope(), 2356 ME->getMember(), Arity); 2357 if (ME->hasExplicitTemplateArgs()) 2358 mangleTemplateArgs(ME->getExplicitTemplateArgs()); 2359 break; 2360 } 2361 2362 case Expr::UnresolvedLookupExprClass: { 2363 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); 2364 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity); 2365 2366 // All the <unresolved-name> productions end in a 2367 // base-unresolved-name, where <template-args> are just tacked 2368 // onto the end. 2369 if (ULE->hasExplicitTemplateArgs()) 2370 mangleTemplateArgs(ULE->getExplicitTemplateArgs()); 2371 break; 2372 } 2373 2374 case Expr::CXXUnresolvedConstructExprClass: { 2375 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); 2376 unsigned N = CE->arg_size(); 2377 2378 Out << "cv"; 2379 mangleType(CE->getType()); 2380 if (N != 1) Out << '_'; 2381 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 2382 if (N != 1) Out << 'E'; 2383 break; 2384 } 2385 2386 case Expr::CXXTemporaryObjectExprClass: 2387 case Expr::CXXConstructExprClass: { 2388 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E); 2389 unsigned N = CE->getNumArgs(); 2390 2391 Out << "cv"; 2392 mangleType(CE->getType()); 2393 if (N != 1) Out << '_'; 2394 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 2395 if (N != 1) Out << 'E'; 2396 break; 2397 } 2398 2399 case Expr::UnaryExprOrTypeTraitExprClass: { 2400 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); 2401 2402 if (!SAE->isInstantiationDependent()) { 2403 // Itanium C++ ABI: 2404 // If the operand of a sizeof or alignof operator is not 2405 // instantiation-dependent it is encoded as an integer literal 2406 // reflecting the result of the operator. 2407 // 2408 // If the result of the operator is implicitly converted to a known 2409 // integer type, that type is used for the literal; otherwise, the type 2410 // of std::size_t or std::ptrdiff_t is used. 2411 QualType T = (ImplicitlyConvertedToType.isNull() || 2412 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() 2413 : ImplicitlyConvertedToType; 2414 mangleIntegerLiteral(T, SAE->EvaluateAsInt(Context.getASTContext())); 2415 break; 2416 } 2417 2418 switch(SAE->getKind()) { 2419 case UETT_SizeOf: 2420 Out << 's'; 2421 break; 2422 case UETT_AlignOf: 2423 Out << 'a'; 2424 break; 2425 case UETT_VecStep: 2426 Diagnostic &Diags = Context.getDiags(); 2427 unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error, 2428 "cannot yet mangle vec_step expression"); 2429 Diags.Report(DiagID); 2430 return; 2431 } 2432 if (SAE->isArgumentType()) { 2433 Out << 't'; 2434 mangleType(SAE->getArgumentType()); 2435 } else { 2436 Out << 'z'; 2437 mangleExpression(SAE->getArgumentExpr()); 2438 } 2439 break; 2440 } 2441 2442 case Expr::CXXThrowExprClass: { 2443 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); 2444 2445 // Proposal from David Vandervoorde, 2010.06.30 2446 if (TE->getSubExpr()) { 2447 Out << "tw"; 2448 mangleExpression(TE->getSubExpr()); 2449 } else { 2450 Out << "tr"; 2451 } 2452 break; 2453 } 2454 2455 case Expr::CXXTypeidExprClass: { 2456 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); 2457 2458 // Proposal from David Vandervoorde, 2010.06.30 2459 if (TIE->isTypeOperand()) { 2460 Out << "ti"; 2461 mangleType(TIE->getTypeOperand()); 2462 } else { 2463 Out << "te"; 2464 mangleExpression(TIE->getExprOperand()); 2465 } 2466 break; 2467 } 2468 2469 case Expr::CXXDeleteExprClass: { 2470 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); 2471 2472 // Proposal from David Vandervoorde, 2010.06.30 2473 if (DE->isGlobalDelete()) Out << "gs"; 2474 Out << (DE->isArrayForm() ? "da" : "dl"); 2475 mangleExpression(DE->getArgument()); 2476 break; 2477 } 2478 2479 case Expr::UnaryOperatorClass: { 2480 const UnaryOperator *UO = cast<UnaryOperator>(E); 2481 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), 2482 /*Arity=*/1); 2483 mangleExpression(UO->getSubExpr()); 2484 break; 2485 } 2486 2487 case Expr::ArraySubscriptExprClass: { 2488 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); 2489 2490 // Array subscript is treated as a syntactically weird form of 2491 // binary operator. 2492 Out << "ix"; 2493 mangleExpression(AE->getLHS()); 2494 mangleExpression(AE->getRHS()); 2495 break; 2496 } 2497 2498 case Expr::CompoundAssignOperatorClass: // fallthrough 2499 case Expr::BinaryOperatorClass: { 2500 const BinaryOperator *BO = cast<BinaryOperator>(E); 2501 if (BO->getOpcode() == BO_PtrMemD) 2502 Out << "ds"; 2503 else 2504 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), 2505 /*Arity=*/2); 2506 mangleExpression(BO->getLHS()); 2507 mangleExpression(BO->getRHS()); 2508 break; 2509 } 2510 2511 case Expr::ConditionalOperatorClass: { 2512 const ConditionalOperator *CO = cast<ConditionalOperator>(E); 2513 mangleOperatorName(OO_Conditional, /*Arity=*/3); 2514 mangleExpression(CO->getCond()); 2515 mangleExpression(CO->getLHS(), Arity); 2516 mangleExpression(CO->getRHS(), Arity); 2517 break; 2518 } 2519 2520 case Expr::ImplicitCastExprClass: { 2521 ImplicitlyConvertedToType = E->getType(); 2522 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 2523 goto recurse; 2524 } 2525 2526 case Expr::ObjCBridgedCastExprClass: { 2527 // Mangle ownership casts as a vendor extended operator __bridge, 2528 // __bridge_transfer, or __bridge_retain. 2529 llvm::StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); 2530 Out << "v1U" << Kind.size() << Kind; 2531 } 2532 // Fall through to mangle the cast itself. 2533 2534 case Expr::CStyleCastExprClass: 2535 case Expr::CXXStaticCastExprClass: 2536 case Expr::CXXDynamicCastExprClass: 2537 case Expr::CXXReinterpretCastExprClass: 2538 case Expr::CXXConstCastExprClass: 2539 case Expr::CXXFunctionalCastExprClass: { 2540 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); 2541 Out << "cv"; 2542 mangleType(ECE->getType()); 2543 mangleExpression(ECE->getSubExpr()); 2544 break; 2545 } 2546 2547 case Expr::CXXOperatorCallExprClass: { 2548 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); 2549 unsigned NumArgs = CE->getNumArgs(); 2550 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); 2551 // Mangle the arguments. 2552 for (unsigned i = 0; i != NumArgs; ++i) 2553 mangleExpression(CE->getArg(i)); 2554 break; 2555 } 2556 2557 case Expr::ParenExprClass: 2558 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity); 2559 break; 2560 2561 case Expr::DeclRefExprClass: { 2562 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); 2563 2564 switch (D->getKind()) { 2565 default: 2566 // <expr-primary> ::= L <mangled-name> E # external name 2567 Out << 'L'; 2568 mangle(D, "_Z"); 2569 Out << 'E'; 2570 break; 2571 2572 case Decl::ParmVar: 2573 mangleFunctionParam(cast<ParmVarDecl>(D)); 2574 break; 2575 2576 case Decl::EnumConstant: { 2577 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); 2578 mangleIntegerLiteral(ED->getType(), ED->getInitVal()); 2579 break; 2580 } 2581 2582 case Decl::NonTypeTemplateParm: { 2583 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); 2584 mangleTemplateParameter(PD->getIndex()); 2585 break; 2586 } 2587 2588 } 2589 2590 break; 2591 } 2592 2593 case Expr::SubstNonTypeTemplateParmPackExprClass: 2594 // FIXME: not clear how to mangle this! 2595 // template <unsigned N...> class A { 2596 // template <class U...> void foo(U (&x)[N]...); 2597 // }; 2598 Out << "_SUBSTPACK_"; 2599 break; 2600 2601 case Expr::DependentScopeDeclRefExprClass: { 2602 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); 2603 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity); 2604 2605 // All the <unresolved-name> productions end in a 2606 // base-unresolved-name, where <template-args> are just tacked 2607 // onto the end. 2608 if (DRE->hasExplicitTemplateArgs()) 2609 mangleTemplateArgs(DRE->getExplicitTemplateArgs()); 2610 break; 2611 } 2612 2613 case Expr::CXXBindTemporaryExprClass: 2614 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr()); 2615 break; 2616 2617 case Expr::ExprWithCleanupsClass: 2618 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity); 2619 break; 2620 2621 case Expr::FloatingLiteralClass: { 2622 const FloatingLiteral *FL = cast<FloatingLiteral>(E); 2623 Out << 'L'; 2624 mangleType(FL->getType()); 2625 mangleFloat(FL->getValue()); 2626 Out << 'E'; 2627 break; 2628 } 2629 2630 case Expr::CharacterLiteralClass: 2631 Out << 'L'; 2632 mangleType(E->getType()); 2633 Out << cast<CharacterLiteral>(E)->getValue(); 2634 Out << 'E'; 2635 break; 2636 2637 case Expr::CXXBoolLiteralExprClass: 2638 Out << "Lb"; 2639 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 2640 Out << 'E'; 2641 break; 2642 2643 case Expr::IntegerLiteralClass: { 2644 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); 2645 if (E->getType()->isSignedIntegerType()) 2646 Value.setIsSigned(true); 2647 mangleIntegerLiteral(E->getType(), Value); 2648 break; 2649 } 2650 2651 case Expr::ImaginaryLiteralClass: { 2652 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); 2653 // Mangle as if a complex literal. 2654 // Proposal from David Vandevoorde, 2010.06.30. 2655 Out << 'L'; 2656 mangleType(E->getType()); 2657 if (const FloatingLiteral *Imag = 2658 dyn_cast<FloatingLiteral>(IE->getSubExpr())) { 2659 // Mangle a floating-point zero of the appropriate type. 2660 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); 2661 Out << '_'; 2662 mangleFloat(Imag->getValue()); 2663 } else { 2664 Out << "0_"; 2665 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); 2666 if (IE->getSubExpr()->getType()->isSignedIntegerType()) 2667 Value.setIsSigned(true); 2668 mangleNumber(Value); 2669 } 2670 Out << 'E'; 2671 break; 2672 } 2673 2674 case Expr::StringLiteralClass: { 2675 // Revised proposal from David Vandervoorde, 2010.07.15. 2676 Out << 'L'; 2677 assert(isa<ConstantArrayType>(E->getType())); 2678 mangleType(E->getType()); 2679 Out << 'E'; 2680 break; 2681 } 2682 2683 case Expr::GNUNullExprClass: 2684 // FIXME: should this really be mangled the same as nullptr? 2685 // fallthrough 2686 2687 case Expr::CXXNullPtrLiteralExprClass: { 2688 // Proposal from David Vandervoorde, 2010.06.30, as 2689 // modified by ABI list discussion. 2690 Out << "LDnE"; 2691 break; 2692 } 2693 2694 case Expr::PackExpansionExprClass: 2695 Out << "sp"; 2696 mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); 2697 break; 2698 2699 case Expr::SizeOfPackExprClass: { 2700 Out << "sZ"; 2701 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack(); 2702 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) 2703 mangleTemplateParameter(TTP->getIndex()); 2704 else if (const NonTypeTemplateParmDecl *NTTP 2705 = dyn_cast<NonTypeTemplateParmDecl>(Pack)) 2706 mangleTemplateParameter(NTTP->getIndex()); 2707 else if (const TemplateTemplateParmDecl *TempTP 2708 = dyn_cast<TemplateTemplateParmDecl>(Pack)) 2709 mangleTemplateParameter(TempTP->getIndex()); 2710 else 2711 mangleFunctionParam(cast<ParmVarDecl>(Pack)); 2712 break; 2713 } 2714 2715 case Expr::MaterializeTemporaryExprClass: { 2716 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()); 2717 break; 2718 } 2719 } 2720 } 2721 2722 /// Mangle an expression which refers to a parameter variable. 2723 /// 2724 /// <expression> ::= <function-param> 2725 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 2726 /// <function-param> ::= fp <top-level CV-qualifiers> 2727 /// <parameter-2 non-negative number> _ # L == 0, I > 0 2728 /// <function-param> ::= fL <L-1 non-negative number> 2729 /// p <top-level CV-qualifiers> _ # L > 0, I == 0 2730 /// <function-param> ::= fL <L-1 non-negative number> 2731 /// p <top-level CV-qualifiers> 2732 /// <I-1 non-negative number> _ # L > 0, I > 0 2733 /// 2734 /// L is the nesting depth of the parameter, defined as 1 if the 2735 /// parameter comes from the innermost function prototype scope 2736 /// enclosing the current context, 2 if from the next enclosing 2737 /// function prototype scope, and so on, with one special case: if 2738 /// we've processed the full parameter clause for the innermost 2739 /// function type, then L is one less. This definition conveniently 2740 /// makes it irrelevant whether a function's result type was written 2741 /// trailing or leading, but is otherwise overly complicated; the 2742 /// numbering was first designed without considering references to 2743 /// parameter in locations other than return types, and then the 2744 /// mangling had to be generalized without changing the existing 2745 /// manglings. 2746 /// 2747 /// I is the zero-based index of the parameter within its parameter 2748 /// declaration clause. Note that the original ABI document describes 2749 /// this using 1-based ordinals. 2750 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { 2751 unsigned parmDepth = parm->getFunctionScopeDepth(); 2752 unsigned parmIndex = parm->getFunctionScopeIndex(); 2753 2754 // Compute 'L'. 2755 // parmDepth does not include the declaring function prototype. 2756 // FunctionTypeDepth does account for that. 2757 assert(parmDepth < FunctionTypeDepth.getDepth()); 2758 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; 2759 if (FunctionTypeDepth.isInResultType()) 2760 nestingDepth--; 2761 2762 if (nestingDepth == 0) { 2763 Out << "fp"; 2764 } else { 2765 Out << "fL" << (nestingDepth - 1) << 'p'; 2766 } 2767 2768 // Top-level qualifiers. We don't have to worry about arrays here, 2769 // because parameters declared as arrays should already have been 2770 // tranformed to have pointer type. FIXME: apparently these don't 2771 // get mangled if used as an rvalue of a known non-class type? 2772 assert(!parm->getType()->isArrayType() 2773 && "parameter's type is still an array type?"); 2774 mangleQualifiers(parm->getType().getQualifiers()); 2775 2776 // Parameter index. 2777 if (parmIndex != 0) { 2778 Out << (parmIndex - 1); 2779 } 2780 Out << '_'; 2781 } 2782 2783 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) { 2784 // <ctor-dtor-name> ::= C1 # complete object constructor 2785 // ::= C2 # base object constructor 2786 // ::= C3 # complete object allocating constructor 2787 // 2788 switch (T) { 2789 case Ctor_Complete: 2790 Out << "C1"; 2791 break; 2792 case Ctor_Base: 2793 Out << "C2"; 2794 break; 2795 case Ctor_CompleteAllocating: 2796 Out << "C3"; 2797 break; 2798 } 2799 } 2800 2801 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 2802 // <ctor-dtor-name> ::= D0 # deleting destructor 2803 // ::= D1 # complete object destructor 2804 // ::= D2 # base object destructor 2805 // 2806 switch (T) { 2807 case Dtor_Deleting: 2808 Out << "D0"; 2809 break; 2810 case Dtor_Complete: 2811 Out << "D1"; 2812 break; 2813 case Dtor_Base: 2814 Out << "D2"; 2815 break; 2816 } 2817 } 2818 2819 void CXXNameMangler::mangleTemplateArgs( 2820 const ExplicitTemplateArgumentList &TemplateArgs) { 2821 // <template-args> ::= I <template-arg>+ E 2822 Out << 'I'; 2823 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i) 2824 mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument()); 2825 Out << 'E'; 2826 } 2827 2828 void CXXNameMangler::mangleTemplateArgs(TemplateName Template, 2829 const TemplateArgument *TemplateArgs, 2830 unsigned NumTemplateArgs) { 2831 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 2832 return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs, 2833 NumTemplateArgs); 2834 2835 mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs); 2836 } 2837 2838 void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args, 2839 unsigned numArgs) { 2840 // <template-args> ::= I <template-arg>+ E 2841 Out << 'I'; 2842 for (unsigned i = 0; i != numArgs; ++i) 2843 mangleTemplateArg(0, args[i]); 2844 Out << 'E'; 2845 } 2846 2847 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL, 2848 const TemplateArgumentList &AL) { 2849 // <template-args> ::= I <template-arg>+ E 2850 Out << 'I'; 2851 for (unsigned i = 0, e = AL.size(); i != e; ++i) 2852 mangleTemplateArg(PL.getParam(i), AL[i]); 2853 Out << 'E'; 2854 } 2855 2856 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL, 2857 const TemplateArgument *TemplateArgs, 2858 unsigned NumTemplateArgs) { 2859 // <template-args> ::= I <template-arg>+ E 2860 Out << 'I'; 2861 for (unsigned i = 0; i != NumTemplateArgs; ++i) 2862 mangleTemplateArg(PL.getParam(i), TemplateArgs[i]); 2863 Out << 'E'; 2864 } 2865 2866 void CXXNameMangler::mangleTemplateArg(const NamedDecl *P, 2867 TemplateArgument A) { 2868 // <template-arg> ::= <type> # type or template 2869 // ::= X <expression> E # expression 2870 // ::= <expr-primary> # simple expressions 2871 // ::= J <template-arg>* E # argument pack 2872 // ::= sp <expression> # pack expansion of (C++0x) 2873 if (!A.isInstantiationDependent() || A.isDependent()) 2874 A = Context.getASTContext().getCanonicalTemplateArgument(A); 2875 2876 switch (A.getKind()) { 2877 case TemplateArgument::Null: 2878 llvm_unreachable("Cannot mangle NULL template argument"); 2879 2880 case TemplateArgument::Type: 2881 mangleType(A.getAsType()); 2882 break; 2883 case TemplateArgument::Template: 2884 // This is mangled as <type>. 2885 mangleType(A.getAsTemplate()); 2886 break; 2887 case TemplateArgument::TemplateExpansion: 2888 // <type> ::= Dp <type> # pack expansion (C++0x) 2889 Out << "Dp"; 2890 mangleType(A.getAsTemplateOrTemplatePattern()); 2891 break; 2892 case TemplateArgument::Expression: 2893 Out << 'X'; 2894 mangleExpression(A.getAsExpr()); 2895 Out << 'E'; 2896 break; 2897 case TemplateArgument::Integral: 2898 mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral()); 2899 break; 2900 case TemplateArgument::Declaration: { 2901 assert(P && "Missing template parameter for declaration argument"); 2902 // <expr-primary> ::= L <mangled-name> E # external name 2903 2904 // Clang produces AST's where pointer-to-member-function expressions 2905 // and pointer-to-function expressions are represented as a declaration not 2906 // an expression. We compensate for it here to produce the correct mangling. 2907 NamedDecl *D = cast<NamedDecl>(A.getAsDecl()); 2908 const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P); 2909 bool compensateMangling = !Parameter->getType()->isReferenceType(); 2910 if (compensateMangling) { 2911 Out << 'X'; 2912 mangleOperatorName(OO_Amp, 1); 2913 } 2914 2915 Out << 'L'; 2916 // References to external entities use the mangled name; if the name would 2917 // not normally be manged then mangle it as unqualified. 2918 // 2919 // FIXME: The ABI specifies that external names here should have _Z, but 2920 // gcc leaves this off. 2921 if (compensateMangling) 2922 mangle(D, "_Z"); 2923 else 2924 mangle(D, "Z"); 2925 Out << 'E'; 2926 2927 if (compensateMangling) 2928 Out << 'E'; 2929 2930 break; 2931 } 2932 2933 case TemplateArgument::Pack: { 2934 // Note: proposal by Mike Herrick on 12/20/10 2935 Out << 'J'; 2936 for (TemplateArgument::pack_iterator PA = A.pack_begin(), 2937 PAEnd = A.pack_end(); 2938 PA != PAEnd; ++PA) 2939 mangleTemplateArg(P, *PA); 2940 Out << 'E'; 2941 } 2942 } 2943 } 2944 2945 void CXXNameMangler::mangleTemplateParameter(unsigned Index) { 2946 // <template-param> ::= T_ # first template parameter 2947 // ::= T <parameter-2 non-negative number> _ 2948 if (Index == 0) 2949 Out << "T_"; 2950 else 2951 Out << 'T' << (Index - 1) << '_'; 2952 } 2953 2954 void CXXNameMangler::mangleExistingSubstitution(QualType type) { 2955 bool result = mangleSubstitution(type); 2956 assert(result && "no existing substitution for type"); 2957 (void) result; 2958 } 2959 2960 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { 2961 bool result = mangleSubstitution(tname); 2962 assert(result && "no existing substitution for template name"); 2963 (void) result; 2964 } 2965 2966 // <substitution> ::= S <seq-id> _ 2967 // ::= S_ 2968 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { 2969 // Try one of the standard substitutions first. 2970 if (mangleStandardSubstitution(ND)) 2971 return true; 2972 2973 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 2974 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); 2975 } 2976 2977 bool CXXNameMangler::mangleSubstitution(QualType T) { 2978 if (!T.getCVRQualifiers()) { 2979 if (const RecordType *RT = T->getAs<RecordType>()) 2980 return mangleSubstitution(RT->getDecl()); 2981 } 2982 2983 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 2984 2985 return mangleSubstitution(TypePtr); 2986 } 2987 2988 bool CXXNameMangler::mangleSubstitution(TemplateName Template) { 2989 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 2990 return mangleSubstitution(TD); 2991 2992 Template = Context.getASTContext().getCanonicalTemplateName(Template); 2993 return mangleSubstitution( 2994 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 2995 } 2996 2997 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { 2998 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); 2999 if (I == Substitutions.end()) 3000 return false; 3001 3002 unsigned SeqID = I->second; 3003 if (SeqID == 0) 3004 Out << "S_"; 3005 else { 3006 SeqID--; 3007 3008 // <seq-id> is encoded in base-36, using digits and upper case letters. 3009 char Buffer[10]; 3010 char *BufferPtr = llvm::array_endof(Buffer); 3011 3012 if (SeqID == 0) *--BufferPtr = '0'; 3013 3014 while (SeqID) { 3015 assert(BufferPtr > Buffer && "Buffer overflow!"); 3016 3017 char c = static_cast<char>(SeqID % 36); 3018 3019 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10); 3020 SeqID /= 36; 3021 } 3022 3023 Out << 'S' 3024 << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr) 3025 << '_'; 3026 } 3027 3028 return true; 3029 } 3030 3031 static bool isCharType(QualType T) { 3032 if (T.isNull()) 3033 return false; 3034 3035 return T->isSpecificBuiltinType(BuiltinType::Char_S) || 3036 T->isSpecificBuiltinType(BuiltinType::Char_U); 3037 } 3038 3039 /// isCharSpecialization - Returns whether a given type is a template 3040 /// specialization of a given name with a single argument of type char. 3041 static bool isCharSpecialization(QualType T, const char *Name) { 3042 if (T.isNull()) 3043 return false; 3044 3045 const RecordType *RT = T->getAs<RecordType>(); 3046 if (!RT) 3047 return false; 3048 3049 const ClassTemplateSpecializationDecl *SD = 3050 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 3051 if (!SD) 3052 return false; 3053 3054 if (!isStdNamespace(SD->getDeclContext())) 3055 return false; 3056 3057 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 3058 if (TemplateArgs.size() != 1) 3059 return false; 3060 3061 if (!isCharType(TemplateArgs[0].getAsType())) 3062 return false; 3063 3064 return SD->getIdentifier()->getName() == Name; 3065 } 3066 3067 template <std::size_t StrLen> 3068 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, 3069 const char (&Str)[StrLen]) { 3070 if (!SD->getIdentifier()->isStr(Str)) 3071 return false; 3072 3073 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 3074 if (TemplateArgs.size() != 2) 3075 return false; 3076 3077 if (!isCharType(TemplateArgs[0].getAsType())) 3078 return false; 3079 3080 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 3081 return false; 3082 3083 return true; 3084 } 3085 3086 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { 3087 // <substitution> ::= St # ::std:: 3088 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 3089 if (isStd(NS)) { 3090 Out << "St"; 3091 return true; 3092 } 3093 } 3094 3095 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { 3096 if (!isStdNamespace(TD->getDeclContext())) 3097 return false; 3098 3099 // <substitution> ::= Sa # ::std::allocator 3100 if (TD->getIdentifier()->isStr("allocator")) { 3101 Out << "Sa"; 3102 return true; 3103 } 3104 3105 // <<substitution> ::= Sb # ::std::basic_string 3106 if (TD->getIdentifier()->isStr("basic_string")) { 3107 Out << "Sb"; 3108 return true; 3109 } 3110 } 3111 3112 if (const ClassTemplateSpecializationDecl *SD = 3113 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 3114 if (!isStdNamespace(SD->getDeclContext())) 3115 return false; 3116 3117 // <substitution> ::= Ss # ::std::basic_string<char, 3118 // ::std::char_traits<char>, 3119 // ::std::allocator<char> > 3120 if (SD->getIdentifier()->isStr("basic_string")) { 3121 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 3122 3123 if (TemplateArgs.size() != 3) 3124 return false; 3125 3126 if (!isCharType(TemplateArgs[0].getAsType())) 3127 return false; 3128 3129 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 3130 return false; 3131 3132 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) 3133 return false; 3134 3135 Out << "Ss"; 3136 return true; 3137 } 3138 3139 // <substitution> ::= Si # ::std::basic_istream<char, 3140 // ::std::char_traits<char> > 3141 if (isStreamCharSpecialization(SD, "basic_istream")) { 3142 Out << "Si"; 3143 return true; 3144 } 3145 3146 // <substitution> ::= So # ::std::basic_ostream<char, 3147 // ::std::char_traits<char> > 3148 if (isStreamCharSpecialization(SD, "basic_ostream")) { 3149 Out << "So"; 3150 return true; 3151 } 3152 3153 // <substitution> ::= Sd # ::std::basic_iostream<char, 3154 // ::std::char_traits<char> > 3155 if (isStreamCharSpecialization(SD, "basic_iostream")) { 3156 Out << "Sd"; 3157 return true; 3158 } 3159 } 3160 return false; 3161 } 3162 3163 void CXXNameMangler::addSubstitution(QualType T) { 3164 if (!T.getCVRQualifiers()) { 3165 if (const RecordType *RT = T->getAs<RecordType>()) { 3166 addSubstitution(RT->getDecl()); 3167 return; 3168 } 3169 } 3170 3171 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 3172 addSubstitution(TypePtr); 3173 } 3174 3175 void CXXNameMangler::addSubstitution(TemplateName Template) { 3176 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 3177 return addSubstitution(TD); 3178 3179 Template = Context.getASTContext().getCanonicalTemplateName(Template); 3180 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 3181 } 3182 3183 void CXXNameMangler::addSubstitution(uintptr_t Ptr) { 3184 assert(!Substitutions.count(Ptr) && "Substitution already exists!"); 3185 Substitutions[Ptr] = SeqID++; 3186 } 3187 3188 // 3189 3190 /// \brief Mangles the name of the declaration D and emits that name to the 3191 /// given output stream. 3192 /// 3193 /// If the declaration D requires a mangled name, this routine will emit that 3194 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged 3195 /// and this routine will return false. In this case, the caller should just 3196 /// emit the identifier of the declaration (\c D->getIdentifier()) as its 3197 /// name. 3198 void ItaniumMangleContext::mangleName(const NamedDecl *D, 3199 llvm::raw_ostream &Out) { 3200 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && 3201 "Invalid mangleName() call, argument is not a variable or function!"); 3202 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && 3203 "Invalid mangleName() call on 'structor decl!"); 3204 3205 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 3206 getASTContext().getSourceManager(), 3207 "Mangling declaration"); 3208 3209 CXXNameMangler Mangler(*this, Out, D); 3210 return Mangler.mangle(D); 3211 } 3212 3213 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D, 3214 CXXCtorType Type, 3215 llvm::raw_ostream &Out) { 3216 CXXNameMangler Mangler(*this, Out, D, Type); 3217 Mangler.mangle(D); 3218 } 3219 3220 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D, 3221 CXXDtorType Type, 3222 llvm::raw_ostream &Out) { 3223 CXXNameMangler Mangler(*this, Out, D, Type); 3224 Mangler.mangle(D); 3225 } 3226 3227 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD, 3228 const ThunkInfo &Thunk, 3229 llvm::raw_ostream &Out) { 3230 // <special-name> ::= T <call-offset> <base encoding> 3231 // # base is the nominal target function of thunk 3232 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> 3233 // # base is the nominal target function of thunk 3234 // # first call-offset is 'this' adjustment 3235 // # second call-offset is result adjustment 3236 3237 assert(!isa<CXXDestructorDecl>(MD) && 3238 "Use mangleCXXDtor for destructor decls!"); 3239 CXXNameMangler Mangler(*this, Out); 3240 Mangler.getStream() << "_ZT"; 3241 if (!Thunk.Return.isEmpty()) 3242 Mangler.getStream() << 'c'; 3243 3244 // Mangle the 'this' pointer adjustment. 3245 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset); 3246 3247 // Mangle the return pointer adjustment if there is one. 3248 if (!Thunk.Return.isEmpty()) 3249 Mangler.mangleCallOffset(Thunk.Return.NonVirtual, 3250 Thunk.Return.VBaseOffsetOffset); 3251 3252 Mangler.mangleFunctionEncoding(MD); 3253 } 3254 3255 void 3256 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD, 3257 CXXDtorType Type, 3258 const ThisAdjustment &ThisAdjustment, 3259 llvm::raw_ostream &Out) { 3260 // <special-name> ::= T <call-offset> <base encoding> 3261 // # base is the nominal target function of thunk 3262 CXXNameMangler Mangler(*this, Out, DD, Type); 3263 Mangler.getStream() << "_ZT"; 3264 3265 // Mangle the 'this' pointer adjustment. 3266 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 3267 ThisAdjustment.VCallOffsetOffset); 3268 3269 Mangler.mangleFunctionEncoding(DD); 3270 } 3271 3272 /// mangleGuardVariable - Returns the mangled name for a guard variable 3273 /// for the passed in VarDecl. 3274 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D, 3275 llvm::raw_ostream &Out) { 3276 // <special-name> ::= GV <object name> # Guard variable for one-time 3277 // # initialization 3278 CXXNameMangler Mangler(*this, Out); 3279 Mangler.getStream() << "_ZGV"; 3280 Mangler.mangleName(D); 3281 } 3282 3283 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D, 3284 llvm::raw_ostream &Out) { 3285 // We match the GCC mangling here. 3286 // <special-name> ::= GR <object name> 3287 CXXNameMangler Mangler(*this, Out); 3288 Mangler.getStream() << "_ZGR"; 3289 Mangler.mangleName(D); 3290 } 3291 3292 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD, 3293 llvm::raw_ostream &Out) { 3294 // <special-name> ::= TV <type> # virtual table 3295 CXXNameMangler Mangler(*this, Out); 3296 Mangler.getStream() << "_ZTV"; 3297 Mangler.mangleNameOrStandardSubstitution(RD); 3298 } 3299 3300 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD, 3301 llvm::raw_ostream &Out) { 3302 // <special-name> ::= TT <type> # VTT structure 3303 CXXNameMangler Mangler(*this, Out); 3304 Mangler.getStream() << "_ZTT"; 3305 Mangler.mangleNameOrStandardSubstitution(RD); 3306 } 3307 3308 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD, 3309 int64_t Offset, 3310 const CXXRecordDecl *Type, 3311 llvm::raw_ostream &Out) { 3312 // <special-name> ::= TC <type> <offset number> _ <base type> 3313 CXXNameMangler Mangler(*this, Out); 3314 Mangler.getStream() << "_ZTC"; 3315 Mangler.mangleNameOrStandardSubstitution(RD); 3316 Mangler.getStream() << Offset; 3317 Mangler.getStream() << '_'; 3318 Mangler.mangleNameOrStandardSubstitution(Type); 3319 } 3320 3321 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty, 3322 llvm::raw_ostream &Out) { 3323 // <special-name> ::= TI <type> # typeinfo structure 3324 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); 3325 CXXNameMangler Mangler(*this, Out); 3326 Mangler.getStream() << "_ZTI"; 3327 Mangler.mangleType(Ty); 3328 } 3329 3330 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty, 3331 llvm::raw_ostream &Out) { 3332 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) 3333 CXXNameMangler Mangler(*this, Out); 3334 Mangler.getStream() << "_ZTS"; 3335 Mangler.mangleType(Ty); 3336 } 3337 3338 MangleContext *clang::createItaniumMangleContext(ASTContext &Context, 3339 Diagnostic &Diags) { 3340 return new ItaniumMangleContext(Context, Diags); 3341 } 3342