Home | History | Annotate | Download | only in Scalar
      1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements sparse conditional constant propagation and merging:
     11 //
     12 // Specifically, this:
     13 //   * Assumes values are constant unless proven otherwise
     14 //   * Assumes BasicBlocks are dead unless proven otherwise
     15 //   * Proves values to be constant, and replaces them with constants
     16 //   * Proves conditional branches to be unconditional
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "sccp"
     21 #include "llvm/Transforms/Scalar.h"
     22 #include "llvm/Transforms/IPO.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Pass.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/Transforms/Utils/Local.h"
     30 #include "llvm/Target/TargetData.h"
     31 #include "llvm/Support/CallSite.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/InstVisitor.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/ADT/DenseMap.h"
     37 #include "llvm/ADT/DenseSet.h"
     38 #include "llvm/ADT/PointerIntPair.h"
     39 #include "llvm/ADT/SmallPtrSet.h"
     40 #include "llvm/ADT/SmallVector.h"
     41 #include "llvm/ADT/Statistic.h"
     42 #include "llvm/ADT/STLExtras.h"
     43 #include <algorithm>
     44 #include <map>
     45 using namespace llvm;
     46 
     47 STATISTIC(NumInstRemoved, "Number of instructions removed");
     48 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
     49 
     50 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
     51 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
     52 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
     53 
     54 namespace {
     55 /// LatticeVal class - This class represents the different lattice values that
     56 /// an LLVM value may occupy.  It is a simple class with value semantics.
     57 ///
     58 class LatticeVal {
     59   enum LatticeValueTy {
     60     /// undefined - This LLVM Value has no known value yet.
     61     undefined,
     62 
     63     /// constant - This LLVM Value has a specific constant value.
     64     constant,
     65 
     66     /// forcedconstant - This LLVM Value was thought to be undef until
     67     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
     68     /// with another (different) constant, it goes to overdefined, instead of
     69     /// asserting.
     70     forcedconstant,
     71 
     72     /// overdefined - This instruction is not known to be constant, and we know
     73     /// it has a value.
     74     overdefined
     75   };
     76 
     77   /// Val: This stores the current lattice value along with the Constant* for
     78   /// the constant if this is a 'constant' or 'forcedconstant' value.
     79   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
     80 
     81   LatticeValueTy getLatticeValue() const {
     82     return Val.getInt();
     83   }
     84 
     85 public:
     86   LatticeVal() : Val(0, undefined) {}
     87 
     88   bool isUndefined() const { return getLatticeValue() == undefined; }
     89   bool isConstant() const {
     90     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
     91   }
     92   bool isOverdefined() const { return getLatticeValue() == overdefined; }
     93 
     94   Constant *getConstant() const {
     95     assert(isConstant() && "Cannot get the constant of a non-constant!");
     96     return Val.getPointer();
     97   }
     98 
     99   /// markOverdefined - Return true if this is a change in status.
    100   bool markOverdefined() {
    101     if (isOverdefined())
    102       return false;
    103 
    104     Val.setInt(overdefined);
    105     return true;
    106   }
    107 
    108   /// markConstant - Return true if this is a change in status.
    109   bool markConstant(Constant *V) {
    110     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
    111       assert(getConstant() == V && "Marking constant with different value");
    112       return false;
    113     }
    114 
    115     if (isUndefined()) {
    116       Val.setInt(constant);
    117       assert(V && "Marking constant with NULL");
    118       Val.setPointer(V);
    119     } else {
    120       assert(getLatticeValue() == forcedconstant &&
    121              "Cannot move from overdefined to constant!");
    122       // Stay at forcedconstant if the constant is the same.
    123       if (V == getConstant()) return false;
    124 
    125       // Otherwise, we go to overdefined.  Assumptions made based on the
    126       // forced value are possibly wrong.  Assuming this is another constant
    127       // could expose a contradiction.
    128       Val.setInt(overdefined);
    129     }
    130     return true;
    131   }
    132 
    133   /// getConstantInt - If this is a constant with a ConstantInt value, return it
    134   /// otherwise return null.
    135   ConstantInt *getConstantInt() const {
    136     if (isConstant())
    137       return dyn_cast<ConstantInt>(getConstant());
    138     return 0;
    139   }
    140 
    141   void markForcedConstant(Constant *V) {
    142     assert(isUndefined() && "Can't force a defined value!");
    143     Val.setInt(forcedconstant);
    144     Val.setPointer(V);
    145   }
    146 };
    147 } // end anonymous namespace.
    148 
    149 
    150 namespace {
    151 
    152 //===----------------------------------------------------------------------===//
    153 //
    154 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
    155 /// Constant Propagation.
    156 ///
    157 class SCCPSolver : public InstVisitor<SCCPSolver> {
    158   const TargetData *TD;
    159   SmallPtrSet<BasicBlock*, 8> BBExecutable;// The BBs that are executable.
    160   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
    161 
    162   /// StructValueState - This maintains ValueState for values that have
    163   /// StructType, for example for formal arguments, calls, insertelement, etc.
    164   ///
    165   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
    166 
    167   /// GlobalValue - If we are tracking any values for the contents of a global
    168   /// variable, we keep a mapping from the constant accessor to the element of
    169   /// the global, to the currently known value.  If the value becomes
    170   /// overdefined, it's entry is simply removed from this map.
    171   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
    172 
    173   /// TrackedRetVals - If we are tracking arguments into and the return
    174   /// value out of a function, it will have an entry in this map, indicating
    175   /// what the known return value for the function is.
    176   DenseMap<Function*, LatticeVal> TrackedRetVals;
    177 
    178   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
    179   /// that return multiple values.
    180   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
    181 
    182   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
    183   /// represented here for efficient lookup.
    184   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
    185 
    186   /// TrackingIncomingArguments - This is the set of functions for whose
    187   /// arguments we make optimistic assumptions about and try to prove as
    188   /// constants.
    189   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
    190 
    191   /// The reason for two worklists is that overdefined is the lowest state
    192   /// on the lattice, and moving things to overdefined as fast as possible
    193   /// makes SCCP converge much faster.
    194   ///
    195   /// By having a separate worklist, we accomplish this because everything
    196   /// possibly overdefined will become overdefined at the soonest possible
    197   /// point.
    198   SmallVector<Value*, 64> OverdefinedInstWorkList;
    199   SmallVector<Value*, 64> InstWorkList;
    200 
    201 
    202   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
    203 
    204   /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
    205   /// overdefined, despite the fact that the PHI node is overdefined.
    206   std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
    207 
    208   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    209   /// PHI nodes retriggered.
    210   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
    211   DenseSet<Edge> KnownFeasibleEdges;
    212 public:
    213   SCCPSolver(const TargetData *td) : TD(td) {}
    214 
    215   /// MarkBlockExecutable - This method can be used by clients to mark all of
    216   /// the blocks that are known to be intrinsically live in the processed unit.
    217   ///
    218   /// This returns true if the block was not considered live before.
    219   bool MarkBlockExecutable(BasicBlock *BB) {
    220     if (!BBExecutable.insert(BB)) return false;
    221     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
    222     BBWorkList.push_back(BB);  // Add the block to the work list!
    223     return true;
    224   }
    225 
    226   /// TrackValueOfGlobalVariable - Clients can use this method to
    227   /// inform the SCCPSolver that it should track loads and stores to the
    228   /// specified global variable if it can.  This is only legal to call if
    229   /// performing Interprocedural SCCP.
    230   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    231     // We only track the contents of scalar globals.
    232     if (GV->getType()->getElementType()->isSingleValueType()) {
    233       LatticeVal &IV = TrackedGlobals[GV];
    234       if (!isa<UndefValue>(GV->getInitializer()))
    235         IV.markConstant(GV->getInitializer());
    236     }
    237   }
    238 
    239   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
    240   /// and out of the specified function (which cannot have its address taken),
    241   /// this method must be called.
    242   void AddTrackedFunction(Function *F) {
    243     // Add an entry, F -> undef.
    244     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    245       MRVFunctionsTracked.insert(F);
    246       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    247         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
    248                                                      LatticeVal()));
    249     } else
    250       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
    251   }
    252 
    253   void AddArgumentTrackedFunction(Function *F) {
    254     TrackingIncomingArguments.insert(F);
    255   }
    256 
    257   /// Solve - Solve for constants and executable blocks.
    258   ///
    259   void Solve();
    260 
    261   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
    262   /// that branches on undef values cannot reach any of their successors.
    263   /// However, this is not a safe assumption.  After we solve dataflow, this
    264   /// method should be use to handle this.  If this returns true, the solver
    265   /// should be rerun.
    266   bool ResolvedUndefsIn(Function &F);
    267 
    268   bool isBlockExecutable(BasicBlock *BB) const {
    269     return BBExecutable.count(BB);
    270   }
    271 
    272   LatticeVal getLatticeValueFor(Value *V) const {
    273     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
    274     assert(I != ValueState.end() && "V is not in valuemap!");
    275     return I->second;
    276   }
    277 
    278   /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
    279     DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
    280       StructValueState.find(std::make_pair(V, i));
    281     assert(I != StructValueState.end() && "V is not in valuemap!");
    282     return I->second;
    283   }*/
    284 
    285   /// getTrackedRetVals - Get the inferred return value map.
    286   ///
    287   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
    288     return TrackedRetVals;
    289   }
    290 
    291   /// getTrackedGlobals - Get and return the set of inferred initializers for
    292   /// global variables.
    293   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    294     return TrackedGlobals;
    295   }
    296 
    297   void markOverdefined(Value *V) {
    298     assert(!V->getType()->isStructTy() && "Should use other method");
    299     markOverdefined(ValueState[V], V);
    300   }
    301 
    302   /// markAnythingOverdefined - Mark the specified value overdefined.  This
    303   /// works with both scalars and structs.
    304   void markAnythingOverdefined(Value *V) {
    305     if (StructType *STy = dyn_cast<StructType>(V->getType()))
    306       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    307         markOverdefined(getStructValueState(V, i), V);
    308     else
    309       markOverdefined(V);
    310   }
    311 
    312 private:
    313   // markConstant - Make a value be marked as "constant".  If the value
    314   // is not already a constant, add it to the instruction work list so that
    315   // the users of the instruction are updated later.
    316   //
    317   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    318     if (!IV.markConstant(C)) return;
    319     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    320     if (IV.isOverdefined())
    321       OverdefinedInstWorkList.push_back(V);
    322     else
    323       InstWorkList.push_back(V);
    324   }
    325 
    326   void markConstant(Value *V, Constant *C) {
    327     assert(!V->getType()->isStructTy() && "Should use other method");
    328     markConstant(ValueState[V], V, C);
    329   }
    330 
    331   void markForcedConstant(Value *V, Constant *C) {
    332     assert(!V->getType()->isStructTy() && "Should use other method");
    333     LatticeVal &IV = ValueState[V];
    334     IV.markForcedConstant(C);
    335     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    336     if (IV.isOverdefined())
    337       OverdefinedInstWorkList.push_back(V);
    338     else
    339       InstWorkList.push_back(V);
    340   }
    341 
    342 
    343   // markOverdefined - Make a value be marked as "overdefined". If the
    344   // value is not already overdefined, add it to the overdefined instruction
    345   // work list so that the users of the instruction are updated later.
    346   void markOverdefined(LatticeVal &IV, Value *V) {
    347     if (!IV.markOverdefined()) return;
    348 
    349     DEBUG(dbgs() << "markOverdefined: ";
    350           if (Function *F = dyn_cast<Function>(V))
    351             dbgs() << "Function '" << F->getName() << "'\n";
    352           else
    353             dbgs() << *V << '\n');
    354     // Only instructions go on the work list
    355     OverdefinedInstWorkList.push_back(V);
    356   }
    357 
    358   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    359     if (IV.isOverdefined() || MergeWithV.isUndefined())
    360       return;  // Noop.
    361     if (MergeWithV.isOverdefined())
    362       markOverdefined(IV, V);
    363     else if (IV.isUndefined())
    364       markConstant(IV, V, MergeWithV.getConstant());
    365     else if (IV.getConstant() != MergeWithV.getConstant())
    366       markOverdefined(IV, V);
    367   }
    368 
    369   void mergeInValue(Value *V, LatticeVal MergeWithV) {
    370     assert(!V->getType()->isStructTy() && "Should use other method");
    371     mergeInValue(ValueState[V], V, MergeWithV);
    372   }
    373 
    374 
    375   /// getValueState - Return the LatticeVal object that corresponds to the
    376   /// value.  This function handles the case when the value hasn't been seen yet
    377   /// by properly seeding constants etc.
    378   LatticeVal &getValueState(Value *V) {
    379     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
    380 
    381     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
    382       ValueState.insert(std::make_pair(V, LatticeVal()));
    383     LatticeVal &LV = I.first->second;
    384 
    385     if (!I.second)
    386       return LV;  // Common case, already in the map.
    387 
    388     if (Constant *C = dyn_cast<Constant>(V)) {
    389       // Undef values remain undefined.
    390       if (!isa<UndefValue>(V))
    391         LV.markConstant(C);          // Constants are constant
    392     }
    393 
    394     // All others are underdefined by default.
    395     return LV;
    396   }
    397 
    398   /// getStructValueState - Return the LatticeVal object that corresponds to the
    399   /// value/field pair.  This function handles the case when the value hasn't
    400   /// been seen yet by properly seeding constants etc.
    401   LatticeVal &getStructValueState(Value *V, unsigned i) {
    402     assert(V->getType()->isStructTy() && "Should use getValueState");
    403     assert(i < cast<StructType>(V->getType())->getNumElements() &&
    404            "Invalid element #");
    405 
    406     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
    407               bool> I = StructValueState.insert(
    408                         std::make_pair(std::make_pair(V, i), LatticeVal()));
    409     LatticeVal &LV = I.first->second;
    410 
    411     if (!I.second)
    412       return LV;  // Common case, already in the map.
    413 
    414     if (Constant *C = dyn_cast<Constant>(V)) {
    415       if (isa<UndefValue>(C))
    416         ; // Undef values remain undefined.
    417       else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C))
    418         LV.markConstant(CS->getOperand(i));      // Constants are constant.
    419       else if (isa<ConstantAggregateZero>(C)) {
    420         Type *FieldTy = cast<StructType>(V->getType())->getElementType(i);
    421         LV.markConstant(Constant::getNullValue(FieldTy));
    422       } else
    423         LV.markOverdefined();      // Unknown sort of constant.
    424     }
    425 
    426     // All others are underdefined by default.
    427     return LV;
    428   }
    429 
    430 
    431   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    432   /// work list if it is not already executable.
    433   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    434     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    435       return;  // This edge is already known to be executable!
    436 
    437     if (!MarkBlockExecutable(Dest)) {
    438       // If the destination is already executable, we just made an *edge*
    439       // feasible that wasn't before.  Revisit the PHI nodes in the block
    440       // because they have potentially new operands.
    441       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    442             << " -> " << Dest->getName() << "\n");
    443 
    444       PHINode *PN;
    445       for (BasicBlock::iterator I = Dest->begin();
    446            (PN = dyn_cast<PHINode>(I)); ++I)
    447         visitPHINode(*PN);
    448     }
    449   }
    450 
    451   // getFeasibleSuccessors - Return a vector of booleans to indicate which
    452   // successors are reachable from a given terminator instruction.
    453   //
    454   void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
    455 
    456   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    457   // block to the 'To' basic block is currently feasible.
    458   //
    459   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
    460 
    461   // OperandChangedState - This method is invoked on all of the users of an
    462   // instruction that was just changed state somehow.  Based on this
    463   // information, we need to update the specified user of this instruction.
    464   //
    465   void OperandChangedState(Instruction *I) {
    466     if (BBExecutable.count(I->getParent()))   // Inst is executable?
    467       visit(*I);
    468   }
    469 
    470   /// RemoveFromOverdefinedPHIs - If I has any entries in the
    471   /// UsersOfOverdefinedPHIs map for PN, remove them now.
    472   void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) {
    473     if (UsersOfOverdefinedPHIs.empty()) return;
    474     std::multimap<PHINode*, Instruction*>::iterator It, E;
    475     tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN);
    476     while (It != E) {
    477       if (It->second == I)
    478         UsersOfOverdefinedPHIs.erase(It++);
    479       else
    480         ++It;
    481     }
    482   }
    483 
    484   /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS
    485   /// map for I and PN, but if one is there already, do not create another.
    486   /// (Duplicate entries do not break anything directly, but can lead to
    487   /// exponential growth of the table in rare cases.)
    488   void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) {
    489     std::multimap<PHINode*, Instruction*>::iterator J, E;
    490     tie(J, E) = UsersOfOverdefinedPHIs.equal_range(PN);
    491     for (; J != E; ++J)
    492       if (J->second == I)
    493         return;
    494     UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I));
    495   }
    496 
    497 private:
    498   friend class InstVisitor<SCCPSolver>;
    499 
    500   // visit implementations - Something changed in this instruction.  Either an
    501   // operand made a transition, or the instruction is newly executable.  Change
    502   // the value type of I to reflect these changes if appropriate.
    503   void visitPHINode(PHINode &I);
    504 
    505   // Terminators
    506   void visitReturnInst(ReturnInst &I);
    507   void visitTerminatorInst(TerminatorInst &TI);
    508 
    509   void visitCastInst(CastInst &I);
    510   void visitSelectInst(SelectInst &I);
    511   void visitBinaryOperator(Instruction &I);
    512   void visitCmpInst(CmpInst &I);
    513   void visitExtractElementInst(ExtractElementInst &I);
    514   void visitInsertElementInst(InsertElementInst &I);
    515   void visitShuffleVectorInst(ShuffleVectorInst &I);
    516   void visitExtractValueInst(ExtractValueInst &EVI);
    517   void visitInsertValueInst(InsertValueInst &IVI);
    518 
    519   // Instructions that cannot be folded away.
    520   void visitStoreInst     (StoreInst &I);
    521   void visitLoadInst      (LoadInst &I);
    522   void visitGetElementPtrInst(GetElementPtrInst &I);
    523   void visitCallInst      (CallInst &I) {
    524     visitCallSite(&I);
    525   }
    526   void visitInvokeInst    (InvokeInst &II) {
    527     visitCallSite(&II);
    528     visitTerminatorInst(II);
    529   }
    530   void visitCallSite      (CallSite CS);
    531   void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
    532   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
    533   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
    534   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
    535 
    536   void visitInstruction(Instruction &I) {
    537     // If a new instruction is added to LLVM that we don't handle.
    538     dbgs() << "SCCP: Don't know how to handle: " << I;
    539     markAnythingOverdefined(&I);   // Just in case
    540   }
    541 };
    542 
    543 } // end anonymous namespace
    544 
    545 
    546 // getFeasibleSuccessors - Return a vector of booleans to indicate which
    547 // successors are reachable from a given terminator instruction.
    548 //
    549 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
    550                                        SmallVector<bool, 16> &Succs) {
    551   Succs.resize(TI.getNumSuccessors());
    552   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    553     if (BI->isUnconditional()) {
    554       Succs[0] = true;
    555       return;
    556     }
    557 
    558     LatticeVal BCValue = getValueState(BI->getCondition());
    559     ConstantInt *CI = BCValue.getConstantInt();
    560     if (CI == 0) {
    561       // Overdefined condition variables, and branches on unfoldable constant
    562       // conditions, mean the branch could go either way.
    563       if (!BCValue.isUndefined())
    564         Succs[0] = Succs[1] = true;
    565       return;
    566     }
    567 
    568     // Constant condition variables mean the branch can only go a single way.
    569     Succs[CI->isZero()] = true;
    570     return;
    571   }
    572 
    573   if (isa<InvokeInst>(TI)) {
    574     // Invoke instructions successors are always executable.
    575     Succs[0] = Succs[1] = true;
    576     return;
    577   }
    578 
    579   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    580     LatticeVal SCValue = getValueState(SI->getCondition());
    581     ConstantInt *CI = SCValue.getConstantInt();
    582 
    583     if (CI == 0) {   // Overdefined or undefined condition?
    584       // All destinations are executable!
    585       if (!SCValue.isUndefined())
    586         Succs.assign(TI.getNumSuccessors(), true);
    587       return;
    588     }
    589 
    590     Succs[SI->findCaseValue(CI)] = true;
    591     return;
    592   }
    593 
    594   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    595   if (isa<IndirectBrInst>(&TI)) {
    596     // Just mark all destinations executable!
    597     Succs.assign(TI.getNumSuccessors(), true);
    598     return;
    599   }
    600 
    601 #ifndef NDEBUG
    602   dbgs() << "Unknown terminator instruction: " << TI << '\n';
    603 #endif
    604   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    605 }
    606 
    607 
    608 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    609 // block to the 'To' basic block is currently feasible.
    610 //
    611 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
    612   assert(BBExecutable.count(To) && "Dest should always be alive!");
    613 
    614   // Make sure the source basic block is executable!!
    615   if (!BBExecutable.count(From)) return false;
    616 
    617   // Check to make sure this edge itself is actually feasible now.
    618   TerminatorInst *TI = From->getTerminator();
    619   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    620     if (BI->isUnconditional())
    621       return true;
    622 
    623     LatticeVal BCValue = getValueState(BI->getCondition());
    624 
    625     // Overdefined condition variables mean the branch could go either way,
    626     // undef conditions mean that neither edge is feasible yet.
    627     ConstantInt *CI = BCValue.getConstantInt();
    628     if (CI == 0)
    629       return !BCValue.isUndefined();
    630 
    631     // Constant condition variables mean the branch can only go a single way.
    632     return BI->getSuccessor(CI->isZero()) == To;
    633   }
    634 
    635   // Invoke instructions successors are always executable.
    636   if (isa<InvokeInst>(TI))
    637     return true;
    638 
    639   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    640     LatticeVal SCValue = getValueState(SI->getCondition());
    641     ConstantInt *CI = SCValue.getConstantInt();
    642 
    643     if (CI == 0)
    644       return !SCValue.isUndefined();
    645 
    646     // Make sure to skip the "default value" which isn't a value
    647     for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
    648       if (SI->getSuccessorValue(i) == CI) // Found the taken branch.
    649         return SI->getSuccessor(i) == To;
    650 
    651     // If the constant value is not equal to any of the branches, we must
    652     // execute default branch.
    653     return SI->getDefaultDest() == To;
    654   }
    655 
    656   // Just mark all destinations executable!
    657   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    658   if (isa<IndirectBrInst>(TI))
    659     return true;
    660 
    661 #ifndef NDEBUG
    662   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
    663 #endif
    664   llvm_unreachable(0);
    665 }
    666 
    667 // visit Implementations - Something changed in this instruction, either an
    668 // operand made a transition, or the instruction is newly executable.  Change
    669 // the value type of I to reflect these changes if appropriate.  This method
    670 // makes sure to do the following actions:
    671 //
    672 // 1. If a phi node merges two constants in, and has conflicting value coming
    673 //    from different branches, or if the PHI node merges in an overdefined
    674 //    value, then the PHI node becomes overdefined.
    675 // 2. If a phi node merges only constants in, and they all agree on value, the
    676 //    PHI node becomes a constant value equal to that.
    677 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
    678 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
    679 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
    680 // 6. If a conditional branch has a value that is constant, make the selected
    681 //    destination executable
    682 // 7. If a conditional branch has a value that is overdefined, make all
    683 //    successors executable.
    684 //
    685 void SCCPSolver::visitPHINode(PHINode &PN) {
    686   // If this PN returns a struct, just mark the result overdefined.
    687   // TODO: We could do a lot better than this if code actually uses this.
    688   if (PN.getType()->isStructTy())
    689     return markAnythingOverdefined(&PN);
    690 
    691   if (getValueState(&PN).isOverdefined()) {
    692     // There may be instructions using this PHI node that are not overdefined
    693     // themselves.  If so, make sure that they know that the PHI node operand
    694     // changed.
    695     std::multimap<PHINode*, Instruction*>::iterator I, E;
    696     tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
    697     if (I == E)
    698       return;
    699 
    700     SmallVector<Instruction*, 16> Users;
    701     for (; I != E; ++I)
    702       Users.push_back(I->second);
    703     while (!Users.empty())
    704       visit(Users.pop_back_val());
    705     return;  // Quick exit
    706   }
    707 
    708   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
    709   // and slow us down a lot.  Just mark them overdefined.
    710   if (PN.getNumIncomingValues() > 64)
    711     return markOverdefined(&PN);
    712 
    713   // Look at all of the executable operands of the PHI node.  If any of them
    714   // are overdefined, the PHI becomes overdefined as well.  If they are all
    715   // constant, and they agree with each other, the PHI becomes the identical
    716   // constant.  If they are constant and don't agree, the PHI is overdefined.
    717   // If there are no executable operands, the PHI remains undefined.
    718   //
    719   Constant *OperandVal = 0;
    720   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    721     LatticeVal IV = getValueState(PN.getIncomingValue(i));
    722     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
    723 
    724     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
    725       continue;
    726 
    727     if (IV.isOverdefined())    // PHI node becomes overdefined!
    728       return markOverdefined(&PN);
    729 
    730     if (OperandVal == 0) {   // Grab the first value.
    731       OperandVal = IV.getConstant();
    732       continue;
    733     }
    734 
    735     // There is already a reachable operand.  If we conflict with it,
    736     // then the PHI node becomes overdefined.  If we agree with it, we
    737     // can continue on.
    738 
    739     // Check to see if there are two different constants merging, if so, the PHI
    740     // node is overdefined.
    741     if (IV.getConstant() != OperandVal)
    742       return markOverdefined(&PN);
    743   }
    744 
    745   // If we exited the loop, this means that the PHI node only has constant
    746   // arguments that agree with each other(and OperandVal is the constant) or
    747   // OperandVal is null because there are no defined incoming arguments.  If
    748   // this is the case, the PHI remains undefined.
    749   //
    750   if (OperandVal)
    751     markConstant(&PN, OperandVal);      // Acquire operand value
    752 }
    753 
    754 
    755 
    756 
    757 void SCCPSolver::visitReturnInst(ReturnInst &I) {
    758   if (I.getNumOperands() == 0) return;  // ret void
    759 
    760   Function *F = I.getParent()->getParent();
    761   Value *ResultOp = I.getOperand(0);
    762 
    763   // If we are tracking the return value of this function, merge it in.
    764   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    765     DenseMap<Function*, LatticeVal>::iterator TFRVI =
    766       TrackedRetVals.find(F);
    767     if (TFRVI != TrackedRetVals.end()) {
    768       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
    769       return;
    770     }
    771   }
    772 
    773   // Handle functions that return multiple values.
    774   if (!TrackedMultipleRetVals.empty()) {
    775     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
    776       if (MRVFunctionsTracked.count(F))
    777         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    778           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
    779                        getStructValueState(ResultOp, i));
    780 
    781   }
    782 }
    783 
    784 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
    785   SmallVector<bool, 16> SuccFeasible;
    786   getFeasibleSuccessors(TI, SuccFeasible);
    787 
    788   BasicBlock *BB = TI.getParent();
    789 
    790   // Mark all feasible successors executable.
    791   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    792     if (SuccFeasible[i])
    793       markEdgeExecutable(BB, TI.getSuccessor(i));
    794 }
    795 
    796 void SCCPSolver::visitCastInst(CastInst &I) {
    797   LatticeVal OpSt = getValueState(I.getOperand(0));
    798   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    799     markOverdefined(&I);
    800   else if (OpSt.isConstant())        // Propagate constant value
    801     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
    802                                            OpSt.getConstant(), I.getType()));
    803 }
    804 
    805 
    806 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
    807   // If this returns a struct, mark all elements over defined, we don't track
    808   // structs in structs.
    809   if (EVI.getType()->isStructTy())
    810     return markAnythingOverdefined(&EVI);
    811 
    812   // If this is extracting from more than one level of struct, we don't know.
    813   if (EVI.getNumIndices() != 1)
    814     return markOverdefined(&EVI);
    815 
    816   Value *AggVal = EVI.getAggregateOperand();
    817   if (AggVal->getType()->isStructTy()) {
    818     unsigned i = *EVI.idx_begin();
    819     LatticeVal EltVal = getStructValueState(AggVal, i);
    820     mergeInValue(getValueState(&EVI), &EVI, EltVal);
    821   } else {
    822     // Otherwise, must be extracting from an array.
    823     return markOverdefined(&EVI);
    824   }
    825 }
    826 
    827 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
    828   StructType *STy = dyn_cast<StructType>(IVI.getType());
    829   if (STy == 0)
    830     return markOverdefined(&IVI);
    831 
    832   // If this has more than one index, we can't handle it, drive all results to
    833   // undef.
    834   if (IVI.getNumIndices() != 1)
    835     return markAnythingOverdefined(&IVI);
    836 
    837   Value *Aggr = IVI.getAggregateOperand();
    838   unsigned Idx = *IVI.idx_begin();
    839 
    840   // Compute the result based on what we're inserting.
    841   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    842     // This passes through all values that aren't the inserted element.
    843     if (i != Idx) {
    844       LatticeVal EltVal = getStructValueState(Aggr, i);
    845       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
    846       continue;
    847     }
    848 
    849     Value *Val = IVI.getInsertedValueOperand();
    850     if (Val->getType()->isStructTy())
    851       // We don't track structs in structs.
    852       markOverdefined(getStructValueState(&IVI, i), &IVI);
    853     else {
    854       LatticeVal InVal = getValueState(Val);
    855       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    856     }
    857   }
    858 }
    859 
    860 void SCCPSolver::visitSelectInst(SelectInst &I) {
    861   // If this select returns a struct, just mark the result overdefined.
    862   // TODO: We could do a lot better than this if code actually uses this.
    863   if (I.getType()->isStructTy())
    864     return markAnythingOverdefined(&I);
    865 
    866   LatticeVal CondValue = getValueState(I.getCondition());
    867   if (CondValue.isUndefined())
    868     return;
    869 
    870   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    871     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    872     mergeInValue(&I, getValueState(OpVal));
    873     return;
    874   }
    875 
    876   // Otherwise, the condition is overdefined or a constant we can't evaluate.
    877   // See if we can produce something better than overdefined based on the T/F
    878   // value.
    879   LatticeVal TVal = getValueState(I.getTrueValue());
    880   LatticeVal FVal = getValueState(I.getFalseValue());
    881 
    882   // select ?, C, C -> C.
    883   if (TVal.isConstant() && FVal.isConstant() &&
    884       TVal.getConstant() == FVal.getConstant())
    885     return markConstant(&I, FVal.getConstant());
    886 
    887   if (TVal.isUndefined())   // select ?, undef, X -> X.
    888     return mergeInValue(&I, FVal);
    889   if (FVal.isUndefined())   // select ?, X, undef -> X.
    890     return mergeInValue(&I, TVal);
    891   markOverdefined(&I);
    892 }
    893 
    894 // Handle Binary Operators.
    895 void SCCPSolver::visitBinaryOperator(Instruction &I) {
    896   LatticeVal V1State = getValueState(I.getOperand(0));
    897   LatticeVal V2State = getValueState(I.getOperand(1));
    898 
    899   LatticeVal &IV = ValueState[&I];
    900   if (IV.isOverdefined()) return;
    901 
    902   if (V1State.isConstant() && V2State.isConstant())
    903     return markConstant(IV, &I,
    904                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
    905                                           V2State.getConstant()));
    906 
    907   // If something is undef, wait for it to resolve.
    908   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    909     return;
    910 
    911   // Otherwise, one of our operands is overdefined.  Try to produce something
    912   // better than overdefined with some tricks.
    913 
    914   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    915   // operand is overdefined.
    916   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
    917     LatticeVal *NonOverdefVal = 0;
    918     if (!V1State.isOverdefined())
    919       NonOverdefVal = &V1State;
    920     else if (!V2State.isOverdefined())
    921       NonOverdefVal = &V2State;
    922 
    923     if (NonOverdefVal) {
    924       if (NonOverdefVal->isUndefined()) {
    925         // Could annihilate value.
    926         if (I.getOpcode() == Instruction::And)
    927           markConstant(IV, &I, Constant::getNullValue(I.getType()));
    928         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
    929           markConstant(IV, &I, Constant::getAllOnesValue(PT));
    930         else
    931           markConstant(IV, &I,
    932                        Constant::getAllOnesValue(I.getType()));
    933         return;
    934       }
    935 
    936       if (I.getOpcode() == Instruction::And) {
    937         // X and 0 = 0
    938         if (NonOverdefVal->getConstant()->isNullValue())
    939           return markConstant(IV, &I, NonOverdefVal->getConstant());
    940       } else {
    941         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
    942           if (CI->isAllOnesValue())     // X or -1 = -1
    943             return markConstant(IV, &I, NonOverdefVal->getConstant());
    944       }
    945     }
    946   }
    947 
    948 
    949   // If both operands are PHI nodes, it is possible that this instruction has
    950   // a constant value, despite the fact that the PHI node doesn't.  Check for
    951   // this condition now.
    952   if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
    953     if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
    954       if (PN1->getParent() == PN2->getParent()) {
    955         // Since the two PHI nodes are in the same basic block, they must have
    956         // entries for the same predecessors.  Walk the predecessor list, and
    957         // if all of the incoming values are constants, and the result of
    958         // evaluating this expression with all incoming value pairs is the
    959         // same, then this expression is a constant even though the PHI node
    960         // is not a constant!
    961         LatticeVal Result;
    962         for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
    963           LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
    964           BasicBlock *InBlock = PN1->getIncomingBlock(i);
    965           LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
    966 
    967           if (In1.isOverdefined() || In2.isOverdefined()) {
    968             Result.markOverdefined();
    969             break;  // Cannot fold this operation over the PHI nodes!
    970           }
    971 
    972           if (In1.isConstant() && In2.isConstant()) {
    973             Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
    974                                             In2.getConstant());
    975             if (Result.isUndefined())
    976               Result.markConstant(V);
    977             else if (Result.isConstant() && Result.getConstant() != V) {
    978               Result.markOverdefined();
    979               break;
    980             }
    981           }
    982         }
    983 
    984         // If we found a constant value here, then we know the instruction is
    985         // constant despite the fact that the PHI nodes are overdefined.
    986         if (Result.isConstant()) {
    987           markConstant(IV, &I, Result.getConstant());
    988           // Remember that this instruction is virtually using the PHI node
    989           // operands.
    990           InsertInOverdefinedPHIs(&I, PN1);
    991           InsertInOverdefinedPHIs(&I, PN2);
    992           return;
    993         }
    994 
    995         if (Result.isUndefined())
    996           return;
    997 
    998         // Okay, this really is overdefined now.  Since we might have
    999         // speculatively thought that this was not overdefined before, and
   1000         // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
   1001         // make sure to clean out any entries that we put there, for
   1002         // efficiency.
   1003         RemoveFromOverdefinedPHIs(&I, PN1);
   1004         RemoveFromOverdefinedPHIs(&I, PN2);
   1005       }
   1006 
   1007   markOverdefined(&I);
   1008 }
   1009 
   1010 // Handle ICmpInst instruction.
   1011 void SCCPSolver::visitCmpInst(CmpInst &I) {
   1012   LatticeVal V1State = getValueState(I.getOperand(0));
   1013   LatticeVal V2State = getValueState(I.getOperand(1));
   1014 
   1015   LatticeVal &IV = ValueState[&I];
   1016   if (IV.isOverdefined()) return;
   1017 
   1018   if (V1State.isConstant() && V2State.isConstant())
   1019     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
   1020                                                          V1State.getConstant(),
   1021                                                         V2State.getConstant()));
   1022 
   1023   // If operands are still undefined, wait for it to resolve.
   1024   if (!V1State.isOverdefined() && !V2State.isOverdefined())
   1025     return;
   1026 
   1027   // If something is overdefined, use some tricks to avoid ending up and over
   1028   // defined if we can.
   1029 
   1030   // If both operands are PHI nodes, it is possible that this instruction has
   1031   // a constant value, despite the fact that the PHI node doesn't.  Check for
   1032   // this condition now.
   1033   if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
   1034     if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
   1035       if (PN1->getParent() == PN2->getParent()) {
   1036         // Since the two PHI nodes are in the same basic block, they must have
   1037         // entries for the same predecessors.  Walk the predecessor list, and
   1038         // if all of the incoming values are constants, and the result of
   1039         // evaluating this expression with all incoming value pairs is the
   1040         // same, then this expression is a constant even though the PHI node
   1041         // is not a constant!
   1042         LatticeVal Result;
   1043         for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
   1044           LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
   1045           BasicBlock *InBlock = PN1->getIncomingBlock(i);
   1046           LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
   1047 
   1048           if (In1.isOverdefined() || In2.isOverdefined()) {
   1049             Result.markOverdefined();
   1050             break;  // Cannot fold this operation over the PHI nodes!
   1051           }
   1052 
   1053           if (In1.isConstant() && In2.isConstant()) {
   1054             Constant *V = ConstantExpr::getCompare(I.getPredicate(),
   1055                                                    In1.getConstant(),
   1056                                                    In2.getConstant());
   1057             if (Result.isUndefined())
   1058               Result.markConstant(V);
   1059             else if (Result.isConstant() && Result.getConstant() != V) {
   1060               Result.markOverdefined();
   1061               break;
   1062             }
   1063           }
   1064         }
   1065 
   1066         // If we found a constant value here, then we know the instruction is
   1067         // constant despite the fact that the PHI nodes are overdefined.
   1068         if (Result.isConstant()) {
   1069           markConstant(&I, Result.getConstant());
   1070           // Remember that this instruction is virtually using the PHI node
   1071           // operands.
   1072           InsertInOverdefinedPHIs(&I, PN1);
   1073           InsertInOverdefinedPHIs(&I, PN2);
   1074           return;
   1075         }
   1076 
   1077         if (Result.isUndefined())
   1078           return;
   1079 
   1080         // Okay, this really is overdefined now.  Since we might have
   1081         // speculatively thought that this was not overdefined before, and
   1082         // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
   1083         // make sure to clean out any entries that we put there, for
   1084         // efficiency.
   1085         RemoveFromOverdefinedPHIs(&I, PN1);
   1086         RemoveFromOverdefinedPHIs(&I, PN2);
   1087       }
   1088 
   1089   markOverdefined(&I);
   1090 }
   1091 
   1092 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
   1093   // TODO : SCCP does not handle vectors properly.
   1094   return markOverdefined(&I);
   1095 
   1096 #if 0
   1097   LatticeVal &ValState = getValueState(I.getOperand(0));
   1098   LatticeVal &IdxState = getValueState(I.getOperand(1));
   1099 
   1100   if (ValState.isOverdefined() || IdxState.isOverdefined())
   1101     markOverdefined(&I);
   1102   else if(ValState.isConstant() && IdxState.isConstant())
   1103     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
   1104                                                      IdxState.getConstant()));
   1105 #endif
   1106 }
   1107 
   1108 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
   1109   // TODO : SCCP does not handle vectors properly.
   1110   return markOverdefined(&I);
   1111 #if 0
   1112   LatticeVal &ValState = getValueState(I.getOperand(0));
   1113   LatticeVal &EltState = getValueState(I.getOperand(1));
   1114   LatticeVal &IdxState = getValueState(I.getOperand(2));
   1115 
   1116   if (ValState.isOverdefined() || EltState.isOverdefined() ||
   1117       IdxState.isOverdefined())
   1118     markOverdefined(&I);
   1119   else if(ValState.isConstant() && EltState.isConstant() &&
   1120           IdxState.isConstant())
   1121     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
   1122                                                     EltState.getConstant(),
   1123                                                     IdxState.getConstant()));
   1124   else if (ValState.isUndefined() && EltState.isConstant() &&
   1125            IdxState.isConstant())
   1126     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
   1127                                                    EltState.getConstant(),
   1128                                                    IdxState.getConstant()));
   1129 #endif
   1130 }
   1131 
   1132 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
   1133   // TODO : SCCP does not handle vectors properly.
   1134   return markOverdefined(&I);
   1135 #if 0
   1136   LatticeVal &V1State   = getValueState(I.getOperand(0));
   1137   LatticeVal &V2State   = getValueState(I.getOperand(1));
   1138   LatticeVal &MaskState = getValueState(I.getOperand(2));
   1139 
   1140   if (MaskState.isUndefined() ||
   1141       (V1State.isUndefined() && V2State.isUndefined()))
   1142     return;  // Undefined output if mask or both inputs undefined.
   1143 
   1144   if (V1State.isOverdefined() || V2State.isOverdefined() ||
   1145       MaskState.isOverdefined()) {
   1146     markOverdefined(&I);
   1147   } else {
   1148     // A mix of constant/undef inputs.
   1149     Constant *V1 = V1State.isConstant() ?
   1150         V1State.getConstant() : UndefValue::get(I.getType());
   1151     Constant *V2 = V2State.isConstant() ?
   1152         V2State.getConstant() : UndefValue::get(I.getType());
   1153     Constant *Mask = MaskState.isConstant() ?
   1154       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
   1155     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
   1156   }
   1157 #endif
   1158 }
   1159 
   1160 // Handle getelementptr instructions.  If all operands are constants then we
   1161 // can turn this into a getelementptr ConstantExpr.
   1162 //
   1163 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
   1164   if (ValueState[&I].isOverdefined()) return;
   1165 
   1166   SmallVector<Constant*, 8> Operands;
   1167   Operands.reserve(I.getNumOperands());
   1168 
   1169   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1170     LatticeVal State = getValueState(I.getOperand(i));
   1171     if (State.isUndefined())
   1172       return;  // Operands are not resolved yet.
   1173 
   1174     if (State.isOverdefined())
   1175       return markOverdefined(&I);
   1176 
   1177     assert(State.isConstant() && "Unknown state!");
   1178     Operands.push_back(State.getConstant());
   1179   }
   1180 
   1181   Constant *Ptr = Operands[0];
   1182   markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0]+1,
   1183                                                   Operands.size()-1));
   1184 }
   1185 
   1186 void SCCPSolver::visitStoreInst(StoreInst &SI) {
   1187   // If this store is of a struct, ignore it.
   1188   if (SI.getOperand(0)->getType()->isStructTy())
   1189     return;
   1190 
   1191   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
   1192     return;
   1193 
   1194   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
   1195   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
   1196   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
   1197 
   1198   // Get the value we are storing into the global, then merge it.
   1199   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
   1200   if (I->second.isOverdefined())
   1201     TrackedGlobals.erase(I);      // No need to keep tracking this!
   1202 }
   1203 
   1204 
   1205 // Handle load instructions.  If the operand is a constant pointer to a constant
   1206 // global, we can replace the load with the loaded constant value!
   1207 void SCCPSolver::visitLoadInst(LoadInst &I) {
   1208   // If this load is of a struct, just mark the result overdefined.
   1209   if (I.getType()->isStructTy())
   1210     return markAnythingOverdefined(&I);
   1211 
   1212   LatticeVal PtrVal = getValueState(I.getOperand(0));
   1213   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
   1214 
   1215   LatticeVal &IV = ValueState[&I];
   1216   if (IV.isOverdefined()) return;
   1217 
   1218   if (!PtrVal.isConstant() || I.isVolatile())
   1219     return markOverdefined(IV, &I);
   1220 
   1221   Constant *Ptr = PtrVal.getConstant();
   1222 
   1223   // load null -> null
   1224   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
   1225     return markConstant(IV, &I, Constant::getNullValue(I.getType()));
   1226 
   1227   // Transform load (constant global) into the value loaded.
   1228   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   1229     if (!TrackedGlobals.empty()) {
   1230       // If we are tracking this global, merge in the known value for it.
   1231       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
   1232         TrackedGlobals.find(GV);
   1233       if (It != TrackedGlobals.end()) {
   1234         mergeInValue(IV, &I, It->second);
   1235         return;
   1236       }
   1237     }
   1238   }
   1239 
   1240   // Transform load from a constant into a constant if possible.
   1241   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
   1242     return markConstant(IV, &I, C);
   1243 
   1244   // Otherwise we cannot say for certain what value this load will produce.
   1245   // Bail out.
   1246   markOverdefined(IV, &I);
   1247 }
   1248 
   1249 void SCCPSolver::visitCallSite(CallSite CS) {
   1250   Function *F = CS.getCalledFunction();
   1251   Instruction *I = CS.getInstruction();
   1252 
   1253   // The common case is that we aren't tracking the callee, either because we
   1254   // are not doing interprocedural analysis or the callee is indirect, or is
   1255   // external.  Handle these cases first.
   1256   if (F == 0 || F->isDeclaration()) {
   1257 CallOverdefined:
   1258     // Void return and not tracking callee, just bail.
   1259     if (I->getType()->isVoidTy()) return;
   1260 
   1261     // Otherwise, if we have a single return value case, and if the function is
   1262     // a declaration, maybe we can constant fold it.
   1263     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
   1264         canConstantFoldCallTo(F)) {
   1265 
   1266       SmallVector<Constant*, 8> Operands;
   1267       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
   1268            AI != E; ++AI) {
   1269         LatticeVal State = getValueState(*AI);
   1270 
   1271         if (State.isUndefined())
   1272           return;  // Operands are not resolved yet.
   1273         if (State.isOverdefined())
   1274           return markOverdefined(I);
   1275         assert(State.isConstant() && "Unknown state!");
   1276         Operands.push_back(State.getConstant());
   1277       }
   1278 
   1279       // If we can constant fold this, mark the result of the call as a
   1280       // constant.
   1281       if (Constant *C = ConstantFoldCall(F, Operands))
   1282         return markConstant(I, C);
   1283     }
   1284 
   1285     // Otherwise, we don't know anything about this call, mark it overdefined.
   1286     return markAnythingOverdefined(I);
   1287   }
   1288 
   1289   // If this is a local function that doesn't have its address taken, mark its
   1290   // entry block executable and merge in the actual arguments to the call into
   1291   // the formal arguments of the function.
   1292   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
   1293     MarkBlockExecutable(F->begin());
   1294 
   1295     // Propagate information from this call site into the callee.
   1296     CallSite::arg_iterator CAI = CS.arg_begin();
   1297     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1298          AI != E; ++AI, ++CAI) {
   1299       // If this argument is byval, and if the function is not readonly, there
   1300       // will be an implicit copy formed of the input aggregate.
   1301       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
   1302         markOverdefined(AI);
   1303         continue;
   1304       }
   1305 
   1306       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
   1307         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1308           LatticeVal CallArg = getStructValueState(*CAI, i);
   1309           mergeInValue(getStructValueState(AI, i), AI, CallArg);
   1310         }
   1311       } else {
   1312         mergeInValue(AI, getValueState(*CAI));
   1313       }
   1314     }
   1315   }
   1316 
   1317   // If this is a single/zero retval case, see if we're tracking the function.
   1318   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
   1319     if (!MRVFunctionsTracked.count(F))
   1320       goto CallOverdefined;  // Not tracking this callee.
   1321 
   1322     // If we are tracking this callee, propagate the result of the function
   1323     // into this call site.
   1324     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1325       mergeInValue(getStructValueState(I, i), I,
   1326                    TrackedMultipleRetVals[std::make_pair(F, i)]);
   1327   } else {
   1328     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
   1329     if (TFRVI == TrackedRetVals.end())
   1330       goto CallOverdefined;  // Not tracking this callee.
   1331 
   1332     // If so, propagate the return value of the callee into this call result.
   1333     mergeInValue(I, TFRVI->second);
   1334   }
   1335 }
   1336 
   1337 void SCCPSolver::Solve() {
   1338   // Process the work lists until they are empty!
   1339   while (!BBWorkList.empty() || !InstWorkList.empty() ||
   1340          !OverdefinedInstWorkList.empty()) {
   1341     // Process the overdefined instruction's work list first, which drives other
   1342     // things to overdefined more quickly.
   1343     while (!OverdefinedInstWorkList.empty()) {
   1344       Value *I = OverdefinedInstWorkList.pop_back_val();
   1345 
   1346       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
   1347 
   1348       // "I" got into the work list because it either made the transition from
   1349       // bottom to constant
   1350       //
   1351       // Anything on this worklist that is overdefined need not be visited
   1352       // since all of its users will have already been marked as overdefined
   1353       // Update all of the users of this instruction's value.
   1354       //
   1355       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1356            UI != E; ++UI)
   1357         if (Instruction *I = dyn_cast<Instruction>(*UI))
   1358           OperandChangedState(I);
   1359     }
   1360 
   1361     // Process the instruction work list.
   1362     while (!InstWorkList.empty()) {
   1363       Value *I = InstWorkList.pop_back_val();
   1364 
   1365       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
   1366 
   1367       // "I" got into the work list because it made the transition from undef to
   1368       // constant.
   1369       //
   1370       // Anything on this worklist that is overdefined need not be visited
   1371       // since all of its users will have already been marked as overdefined.
   1372       // Update all of the users of this instruction's value.
   1373       //
   1374       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
   1375         for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1376              UI != E; ++UI)
   1377           if (Instruction *I = dyn_cast<Instruction>(*UI))
   1378             OperandChangedState(I);
   1379     }
   1380 
   1381     // Process the basic block work list.
   1382     while (!BBWorkList.empty()) {
   1383       BasicBlock *BB = BBWorkList.back();
   1384       BBWorkList.pop_back();
   1385 
   1386       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
   1387 
   1388       // Notify all instructions in this basic block that they are newly
   1389       // executable.
   1390       visit(BB);
   1391     }
   1392   }
   1393 }
   1394 
   1395 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
   1396 /// that branches on undef values cannot reach any of their successors.
   1397 /// However, this is not a safe assumption.  After we solve dataflow, this
   1398 /// method should be use to handle this.  If this returns true, the solver
   1399 /// should be rerun.
   1400 ///
   1401 /// This method handles this by finding an unresolved branch and marking it one
   1402 /// of the edges from the block as being feasible, even though the condition
   1403 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
   1404 /// CFG and only slightly pessimizes the analysis results (by marking one,
   1405 /// potentially infeasible, edge feasible).  This cannot usefully modify the
   1406 /// constraints on the condition of the branch, as that would impact other users
   1407 /// of the value.
   1408 ///
   1409 /// This scan also checks for values that use undefs, whose results are actually
   1410 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
   1411 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
   1412 /// even if X isn't defined.
   1413 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
   1414   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1415     if (!BBExecutable.count(BB))
   1416       continue;
   1417 
   1418     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1419       // Look for instructions which produce undef values.
   1420       if (I->getType()->isVoidTy()) continue;
   1421 
   1422       if (StructType *STy = dyn_cast<StructType>(I->getType())) {
   1423         // Only a few things that can be structs matter for undef.  Just send
   1424         // all their results to overdefined.  We could be more precise than this
   1425         // but it isn't worth bothering.
   1426         if (isa<CallInst>(I) || isa<SelectInst>(I)) {
   1427           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1428             LatticeVal &LV = getStructValueState(I, i);
   1429             if (LV.isUndefined())
   1430               markOverdefined(LV, I);
   1431           }
   1432         }
   1433         continue;
   1434       }
   1435 
   1436       LatticeVal &LV = getValueState(I);
   1437       if (!LV.isUndefined()) continue;
   1438 
   1439       // No instructions using structs need disambiguation.
   1440       if (I->getOperand(0)->getType()->isStructTy())
   1441         continue;
   1442 
   1443       // Get the lattice values of the first two operands for use below.
   1444       LatticeVal Op0LV = getValueState(I->getOperand(0));
   1445       LatticeVal Op1LV;
   1446       if (I->getNumOperands() == 2) {
   1447         // No instructions using structs need disambiguation.
   1448         if (I->getOperand(1)->getType()->isStructTy())
   1449           continue;
   1450 
   1451         // If this is a two-operand instruction, and if both operands are
   1452         // undefs, the result stays undef.
   1453         Op1LV = getValueState(I->getOperand(1));
   1454         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1455           continue;
   1456       }
   1457 
   1458       // If this is an instructions whose result is defined even if the input is
   1459       // not fully defined, propagate the information.
   1460       Type *ITy = I->getType();
   1461       switch (I->getOpcode()) {
   1462       default: break;          // Leave the instruction as an undef.
   1463       case Instruction::ZExt:
   1464         // After a zero extend, we know the top part is zero.  SExt doesn't have
   1465         // to be handled here, because we don't know whether the top part is 1's
   1466         // or 0's.
   1467       case Instruction::SIToFP:  // some FP values are not possible, just use 0.
   1468       case Instruction::UIToFP:  // some FP values are not possible, just use 0.
   1469         markForcedConstant(I, Constant::getNullValue(ITy));
   1470         return true;
   1471       case Instruction::Mul:
   1472       case Instruction::And:
   1473         // undef * X -> 0.   X could be zero.
   1474         // undef & X -> 0.   X could be zero.
   1475         markForcedConstant(I, Constant::getNullValue(ITy));
   1476         return true;
   1477 
   1478       case Instruction::Or:
   1479         // undef | X -> -1.   X could be -1.
   1480         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1481         return true;
   1482 
   1483       case Instruction::SDiv:
   1484       case Instruction::UDiv:
   1485       case Instruction::SRem:
   1486       case Instruction::URem:
   1487         // X / undef -> undef.  No change.
   1488         // X % undef -> undef.  No change.
   1489         if (Op1LV.isUndefined()) break;
   1490 
   1491         // undef / X -> 0.   X could be maxint.
   1492         // undef % X -> 0.   X could be 1.
   1493         markForcedConstant(I, Constant::getNullValue(ITy));
   1494         return true;
   1495 
   1496       case Instruction::AShr:
   1497         // undef >>s X -> undef.  No change.
   1498         if (Op0LV.isUndefined()) break;
   1499 
   1500         // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
   1501         if (Op0LV.isConstant())
   1502           markForcedConstant(I, Op0LV.getConstant());
   1503         else
   1504           markOverdefined(I);
   1505         return true;
   1506       case Instruction::LShr:
   1507       case Instruction::Shl:
   1508         // undef >> X -> undef.  No change.
   1509         // undef << X -> undef.  No change.
   1510         if (Op0LV.isUndefined()) break;
   1511 
   1512         // X >> undef -> 0.  X could be 0.
   1513         // X << undef -> 0.  X could be 0.
   1514         markForcedConstant(I, Constant::getNullValue(ITy));
   1515         return true;
   1516       case Instruction::Select:
   1517         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
   1518         if (Op0LV.isUndefined()) {
   1519           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
   1520             Op1LV = getValueState(I->getOperand(2));
   1521         } else if (Op1LV.isUndefined()) {
   1522           // c ? undef : undef -> undef.  No change.
   1523           Op1LV = getValueState(I->getOperand(2));
   1524           if (Op1LV.isUndefined())
   1525             break;
   1526           // Otherwise, c ? undef : x -> x.
   1527         } else {
   1528           // Leave Op1LV as Operand(1)'s LatticeValue.
   1529         }
   1530 
   1531         if (Op1LV.isConstant())
   1532           markForcedConstant(I, Op1LV.getConstant());
   1533         else
   1534           markOverdefined(I);
   1535         return true;
   1536       case Instruction::Call:
   1537         // If a call has an undef result, it is because it is constant foldable
   1538         // but one of the inputs was undef.  Just force the result to
   1539         // overdefined.
   1540         markOverdefined(I);
   1541         return true;
   1542       }
   1543     }
   1544 
   1545     // Check to see if we have a branch or switch on an undefined value.  If so
   1546     // we force the branch to go one way or the other to make the successor
   1547     // values live.  It doesn't really matter which way we force it.
   1548     TerminatorInst *TI = BB->getTerminator();
   1549     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1550       if (!BI->isConditional()) continue;
   1551       if (!getValueState(BI->getCondition()).isUndefined())
   1552         continue;
   1553 
   1554       // If the input to SCCP is actually branch on undef, fix the undef to
   1555       // false.
   1556       if (isa<UndefValue>(BI->getCondition())) {
   1557         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
   1558         markEdgeExecutable(BB, TI->getSuccessor(1));
   1559         return true;
   1560       }
   1561 
   1562       // Otherwise, it is a branch on a symbolic value which is currently
   1563       // considered to be undef.  Handle this by forcing the input value to the
   1564       // branch to false.
   1565       markForcedConstant(BI->getCondition(),
   1566                          ConstantInt::getFalse(TI->getContext()));
   1567       return true;
   1568     }
   1569 
   1570     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1571       if (SI->getNumSuccessors() < 2)   // no cases
   1572         continue;
   1573       if (!getValueState(SI->getCondition()).isUndefined())
   1574         continue;
   1575 
   1576       // If the input to SCCP is actually switch on undef, fix the undef to
   1577       // the first constant.
   1578       if (isa<UndefValue>(SI->getCondition())) {
   1579         SI->setCondition(SI->getCaseValue(1));
   1580         markEdgeExecutable(BB, TI->getSuccessor(1));
   1581         return true;
   1582       }
   1583 
   1584       markForcedConstant(SI->getCondition(), SI->getCaseValue(1));
   1585       return true;
   1586     }
   1587   }
   1588 
   1589   return false;
   1590 }
   1591 
   1592 
   1593 namespace {
   1594   //===--------------------------------------------------------------------===//
   1595   //
   1596   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
   1597   /// Sparse Conditional Constant Propagator.
   1598   ///
   1599   struct SCCP : public FunctionPass {
   1600     static char ID; // Pass identification, replacement for typeid
   1601     SCCP() : FunctionPass(ID) {
   1602       initializeSCCPPass(*PassRegistry::getPassRegistry());
   1603     }
   1604 
   1605     // runOnFunction - Run the Sparse Conditional Constant Propagation
   1606     // algorithm, and return true if the function was modified.
   1607     //
   1608     bool runOnFunction(Function &F);
   1609   };
   1610 } // end anonymous namespace
   1611 
   1612 char SCCP::ID = 0;
   1613 INITIALIZE_PASS(SCCP, "sccp",
   1614                 "Sparse Conditional Constant Propagation", false, false)
   1615 
   1616 // createSCCPPass - This is the public interface to this file.
   1617 FunctionPass *llvm::createSCCPPass() {
   1618   return new SCCP();
   1619 }
   1620 
   1621 static void DeleteInstructionInBlock(BasicBlock *BB) {
   1622   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   1623   ++NumDeadBlocks;
   1624 
   1625   // Delete the instructions backwards, as it has a reduced likelihood of
   1626   // having to update as many def-use and use-def chains.
   1627   while (!isa<TerminatorInst>(BB->begin())) {
   1628     Instruction *I = --BasicBlock::iterator(BB->getTerminator());
   1629 
   1630     if (!I->use_empty())
   1631       I->replaceAllUsesWith(UndefValue::get(I->getType()));
   1632     BB->getInstList().erase(I);
   1633     ++NumInstRemoved;
   1634   }
   1635 }
   1636 
   1637 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
   1638 // and return true if the function was modified.
   1639 //
   1640 bool SCCP::runOnFunction(Function &F) {
   1641   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
   1642   SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
   1643 
   1644   // Mark the first block of the function as being executable.
   1645   Solver.MarkBlockExecutable(F.begin());
   1646 
   1647   // Mark all arguments to the function as being overdefined.
   1648   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
   1649     Solver.markAnythingOverdefined(AI);
   1650 
   1651   // Solve for constants.
   1652   bool ResolvedUndefs = true;
   1653   while (ResolvedUndefs) {
   1654     Solver.Solve();
   1655     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
   1656     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
   1657   }
   1658 
   1659   bool MadeChanges = false;
   1660 
   1661   // If we decided that there are basic blocks that are dead in this function,
   1662   // delete their contents now.  Note that we cannot actually delete the blocks,
   1663   // as we cannot modify the CFG of the function.
   1664 
   1665   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1666     if (!Solver.isBlockExecutable(BB)) {
   1667       DeleteInstructionInBlock(BB);
   1668       MadeChanges = true;
   1669       continue;
   1670     }
   1671 
   1672     // Iterate over all of the instructions in a function, replacing them with
   1673     // constants if we have found them to be of constant values.
   1674     //
   1675     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1676       Instruction *Inst = BI++;
   1677       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
   1678         continue;
   1679 
   1680       // TODO: Reconstruct structs from their elements.
   1681       if (Inst->getType()->isStructTy())
   1682         continue;
   1683 
   1684       LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1685       if (IV.isOverdefined())
   1686         continue;
   1687 
   1688       Constant *Const = IV.isConstant()
   1689         ? IV.getConstant() : UndefValue::get(Inst->getType());
   1690       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
   1691 
   1692       // Replaces all of the uses of a variable with uses of the constant.
   1693       Inst->replaceAllUsesWith(Const);
   1694 
   1695       // Delete the instruction.
   1696       Inst->eraseFromParent();
   1697 
   1698       // Hey, we just changed something!
   1699       MadeChanges = true;
   1700       ++NumInstRemoved;
   1701     }
   1702   }
   1703 
   1704   return MadeChanges;
   1705 }
   1706 
   1707 namespace {
   1708   //===--------------------------------------------------------------------===//
   1709   //
   1710   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
   1711   /// Constant Propagation.
   1712   ///
   1713   struct IPSCCP : public ModulePass {
   1714     static char ID;
   1715     IPSCCP() : ModulePass(ID) {
   1716       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
   1717     }
   1718     bool runOnModule(Module &M);
   1719   };
   1720 } // end anonymous namespace
   1721 
   1722 char IPSCCP::ID = 0;
   1723 INITIALIZE_PASS(IPSCCP, "ipsccp",
   1724                 "Interprocedural Sparse Conditional Constant Propagation",
   1725                 false, false)
   1726 
   1727 // createIPSCCPPass - This is the public interface to this file.
   1728 ModulePass *llvm::createIPSCCPPass() {
   1729   return new IPSCCP();
   1730 }
   1731 
   1732 
   1733 static bool AddressIsTaken(const GlobalValue *GV) {
   1734   // Delete any dead constantexpr klingons.
   1735   GV->removeDeadConstantUsers();
   1736 
   1737   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
   1738        UI != E; ++UI) {
   1739     const User *U = *UI;
   1740     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1741       if (SI->getOperand(0) == GV || SI->isVolatile())
   1742         return true;  // Storing addr of GV.
   1743     } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
   1744       // Make sure we are calling the function, not passing the address.
   1745       ImmutableCallSite CS(cast<Instruction>(U));
   1746       if (!CS.isCallee(UI))
   1747         return true;
   1748     } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1749       if (LI->isVolatile())
   1750         return true;
   1751     } else if (isa<BlockAddress>(U)) {
   1752       // blockaddress doesn't take the address of the function, it takes addr
   1753       // of label.
   1754     } else {
   1755       return true;
   1756     }
   1757   }
   1758   return false;
   1759 }
   1760 
   1761 bool IPSCCP::runOnModule(Module &M) {
   1762   SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
   1763 
   1764   // AddressTakenFunctions - This set keeps track of the address-taken functions
   1765   // that are in the input.  As IPSCCP runs through and simplifies code,
   1766   // functions that were address taken can end up losing their
   1767   // address-taken-ness.  Because of this, we keep track of their addresses from
   1768   // the first pass so we can use them for the later simplification pass.
   1769   SmallPtrSet<Function*, 32> AddressTakenFunctions;
   1770 
   1771   // Loop over all functions, marking arguments to those with their addresses
   1772   // taken or that are external as overdefined.
   1773   //
   1774   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1775     if (F->isDeclaration())
   1776       continue;
   1777 
   1778     // If this is a strong or ODR definition of this function, then we can
   1779     // propagate information about its result into callsites of it.
   1780     if (!F->mayBeOverridden())
   1781       Solver.AddTrackedFunction(F);
   1782 
   1783     // If this function only has direct calls that we can see, we can track its
   1784     // arguments and return value aggressively, and can assume it is not called
   1785     // unless we see evidence to the contrary.
   1786     if (F->hasLocalLinkage()) {
   1787       if (AddressIsTaken(F))
   1788         AddressTakenFunctions.insert(F);
   1789       else {
   1790         Solver.AddArgumentTrackedFunction(F);
   1791         continue;
   1792       }
   1793     }
   1794 
   1795     // Assume the function is called.
   1796     Solver.MarkBlockExecutable(F->begin());
   1797 
   1798     // Assume nothing about the incoming arguments.
   1799     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1800          AI != E; ++AI)
   1801       Solver.markAnythingOverdefined(AI);
   1802   }
   1803 
   1804   // Loop over global variables.  We inform the solver about any internal global
   1805   // variables that do not have their 'addresses taken'.  If they don't have
   1806   // their addresses taken, we can propagate constants through them.
   1807   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
   1808        G != E; ++G)
   1809     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
   1810       Solver.TrackValueOfGlobalVariable(G);
   1811 
   1812   // Solve for constants.
   1813   bool ResolvedUndefs = true;
   1814   while (ResolvedUndefs) {
   1815     Solver.Solve();
   1816 
   1817     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
   1818     ResolvedUndefs = false;
   1819     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
   1820       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
   1821   }
   1822 
   1823   bool MadeChanges = false;
   1824 
   1825   // Iterate over all of the instructions in the module, replacing them with
   1826   // constants if we have found them to be of constant values.
   1827   //
   1828   SmallVector<BasicBlock*, 512> BlocksToErase;
   1829 
   1830   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1831     if (Solver.isBlockExecutable(F->begin())) {
   1832       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1833            AI != E; ++AI) {
   1834         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
   1835 
   1836         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1837         // result is a constant and replace it entirely if so.
   1838 
   1839         LatticeVal IV = Solver.getLatticeValueFor(AI);
   1840         if (IV.isOverdefined()) continue;
   1841 
   1842         Constant *CST = IV.isConstant() ?
   1843         IV.getConstant() : UndefValue::get(AI->getType());
   1844         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
   1845 
   1846         // Replaces all of the uses of a variable with uses of the
   1847         // constant.
   1848         AI->replaceAllUsesWith(CST);
   1849         ++IPNumArgsElimed;
   1850       }
   1851     }
   1852 
   1853     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
   1854       if (!Solver.isBlockExecutable(BB)) {
   1855         DeleteInstructionInBlock(BB);
   1856         MadeChanges = true;
   1857 
   1858         TerminatorInst *TI = BB->getTerminator();
   1859         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
   1860           BasicBlock *Succ = TI->getSuccessor(i);
   1861           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
   1862             TI->getSuccessor(i)->removePredecessor(BB);
   1863         }
   1864         if (!TI->use_empty())
   1865           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
   1866         TI->eraseFromParent();
   1867 
   1868         if (&*BB != &F->front())
   1869           BlocksToErase.push_back(BB);
   1870         else
   1871           new UnreachableInst(M.getContext(), BB);
   1872         continue;
   1873       }
   1874 
   1875       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1876         Instruction *Inst = BI++;
   1877         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
   1878           continue;
   1879 
   1880         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1881         // result is a constant and replace it entirely if so.
   1882 
   1883         LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1884         if (IV.isOverdefined())
   1885           continue;
   1886 
   1887         Constant *Const = IV.isConstant()
   1888           ? IV.getConstant() : UndefValue::get(Inst->getType());
   1889         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
   1890 
   1891         // Replaces all of the uses of a variable with uses of the
   1892         // constant.
   1893         Inst->replaceAllUsesWith(Const);
   1894 
   1895         // Delete the instruction.
   1896         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
   1897           Inst->eraseFromParent();
   1898 
   1899         // Hey, we just changed something!
   1900         MadeChanges = true;
   1901         ++IPNumInstRemoved;
   1902       }
   1903     }
   1904 
   1905     // Now that all instructions in the function are constant folded, erase dead
   1906     // blocks, because we can now use ConstantFoldTerminator to get rid of
   1907     // in-edges.
   1908     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
   1909       // If there are any PHI nodes in this successor, drop entries for BB now.
   1910       BasicBlock *DeadBB = BlocksToErase[i];
   1911       for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
   1912            UI != UE; ) {
   1913         // Grab the user and then increment the iterator early, as the user
   1914         // will be deleted. Step past all adjacent uses from the same user.
   1915         Instruction *I = dyn_cast<Instruction>(*UI);
   1916         do { ++UI; } while (UI != UE && *UI == I);
   1917 
   1918         // Ignore blockaddress users; BasicBlock's dtor will handle them.
   1919         if (!I) continue;
   1920 
   1921         bool Folded = ConstantFoldTerminator(I->getParent());
   1922         if (!Folded) {
   1923           // The constant folder may not have been able to fold the terminator
   1924           // if this is a branch or switch on undef.  Fold it manually as a
   1925           // branch to the first successor.
   1926 #ifndef NDEBUG
   1927           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1928             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
   1929                    "Branch should be foldable!");
   1930           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   1931             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
   1932           } else {
   1933             llvm_unreachable("Didn't fold away reference to block!");
   1934           }
   1935 #endif
   1936 
   1937           // Make this an uncond branch to the first successor.
   1938           TerminatorInst *TI = I->getParent()->getTerminator();
   1939           BranchInst::Create(TI->getSuccessor(0), TI);
   1940 
   1941           // Remove entries in successor phi nodes to remove edges.
   1942           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
   1943             TI->getSuccessor(i)->removePredecessor(TI->getParent());
   1944 
   1945           // Remove the old terminator.
   1946           TI->eraseFromParent();
   1947         }
   1948       }
   1949 
   1950       // Finally, delete the basic block.
   1951       F->getBasicBlockList().erase(DeadBB);
   1952     }
   1953     BlocksToErase.clear();
   1954   }
   1955 
   1956   // If we inferred constant or undef return values for a function, we replaced
   1957   // all call uses with the inferred value.  This means we don't need to bother
   1958   // actually returning anything from the function.  Replace all return
   1959   // instructions with return undef.
   1960   //
   1961   // Do this in two stages: first identify the functions we should process, then
   1962   // actually zap their returns.  This is important because we can only do this
   1963   // if the address of the function isn't taken.  In cases where a return is the
   1964   // last use of a function, the order of processing functions would affect
   1965   // whether other functions are optimizable.
   1966   SmallVector<ReturnInst*, 8> ReturnsToZap;
   1967 
   1968   // TODO: Process multiple value ret instructions also.
   1969   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
   1970   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
   1971        E = RV.end(); I != E; ++I) {
   1972     Function *F = I->first;
   1973     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
   1974       continue;
   1975 
   1976     // We can only do this if we know that nothing else can call the function.
   1977     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
   1978       continue;
   1979 
   1980     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
   1981       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
   1982         if (!isa<UndefValue>(RI->getOperand(0)))
   1983           ReturnsToZap.push_back(RI);
   1984   }
   1985 
   1986   // Zap all returns which we've identified as zap to change.
   1987   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
   1988     Function *F = ReturnsToZap[i]->getParent()->getParent();
   1989     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
   1990   }
   1991 
   1992   // If we inferred constant or undef values for globals variables, we can delete
   1993   // the global and any stores that remain to it.
   1994   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
   1995   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
   1996          E = TG.end(); I != E; ++I) {
   1997     GlobalVariable *GV = I->first;
   1998     assert(!I->second.isOverdefined() &&
   1999            "Overdefined values should have been taken out of the map!");
   2000     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
   2001     while (!GV->use_empty()) {
   2002       StoreInst *SI = cast<StoreInst>(GV->use_back());
   2003       SI->eraseFromParent();
   2004     }
   2005     M.getGlobalList().erase(GV);
   2006     ++IPNumGlobalConst;
   2007   }
   2008 
   2009   return MadeChanges;
   2010 }
   2011