Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the code that handles AST -> LLVM type lowering.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenTypes.h"
     15 #include "CGCall.h"
     16 #include "CGCXXABI.h"
     17 #include "CGRecordLayout.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/DeclCXX.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "llvm/DerivedTypes.h"
     24 #include "llvm/Module.h"
     25 #include "llvm/Target/TargetData.h"
     26 using namespace clang;
     27 using namespace CodeGen;
     28 
     29 CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
     30                            const llvm::TargetData &TD, const ABIInfo &Info,
     31                            CGCXXABI &CXXABI, const CodeGenOptions &CGO)
     32   : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
     33     TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) {
     34   SkippedLayout = false;
     35 }
     36 
     37 CodeGenTypes::~CodeGenTypes() {
     38   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
     39          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
     40       I != E; ++I)
     41     delete I->second;
     42 
     43   for (llvm::FoldingSet<CGFunctionInfo>::iterator
     44        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
     45     delete &*I++;
     46 }
     47 
     48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
     49                                      llvm::StructType *Ty,
     50                                      llvm::StringRef suffix) {
     51   llvm::SmallString<256> TypeName;
     52   llvm::raw_svector_ostream OS(TypeName);
     53   OS << RD->getKindName() << '.';
     54 
     55   // Name the codegen type after the typedef name
     56   // if there is no tag type name available
     57   if (RD->getIdentifier()) {
     58     // FIXME: We should not have to check for a null decl context here.
     59     // Right now we do it because the implicit Obj-C decls don't have one.
     60     if (RD->getDeclContext())
     61       OS << RD->getQualifiedNameAsString();
     62     else
     63       RD->printName(OS);
     64   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
     65     // FIXME: We should not have to check for a null decl context here.
     66     // Right now we do it because the implicit Obj-C decls don't have one.
     67     if (TDD->getDeclContext())
     68       OS << TDD->getQualifiedNameAsString();
     69     else
     70       TDD->printName(OS);
     71   } else
     72     OS << "anon";
     73 
     74   if (!suffix.empty())
     75     OS << suffix;
     76 
     77   Ty->setName(OS.str());
     78 }
     79 
     80 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
     81 /// ConvertType in that it is used to convert to the memory representation for
     82 /// a type.  For example, the scalar representation for _Bool is i1, but the
     83 /// memory representation is usually i8 or i32, depending on the target.
     84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
     85   llvm::Type *R = ConvertType(T);
     86 
     87   // If this is a non-bool type, don't map it.
     88   if (!R->isIntegerTy(1))
     89     return R;
     90 
     91   // Otherwise, return an integer of the target-specified size.
     92   return llvm::IntegerType::get(getLLVMContext(),
     93                                 (unsigned)Context.getTypeSize(T));
     94 }
     95 
     96 
     97 /// isRecordLayoutComplete - Return true if the specified type is already
     98 /// completely laid out.
     99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
    100   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
    101   RecordDeclTypes.find(Ty);
    102   return I != RecordDeclTypes.end() && !I->second->isOpaque();
    103 }
    104 
    105 static bool
    106 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    107                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
    108 
    109 
    110 /// isSafeToConvert - Return true if it is safe to convert the specified record
    111 /// decl to IR and lay it out, false if doing so would cause us to get into a
    112 /// recursive compilation mess.
    113 static bool
    114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
    115                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    116   // If we have already checked this type (maybe the same type is used by-value
    117   // multiple times in multiple structure fields, don't check again.
    118   if (!AlreadyChecked.insert(RD)) return true;
    119 
    120   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
    121 
    122   // If this type is already laid out, converting it is a noop.
    123   if (CGT.isRecordLayoutComplete(Key)) return true;
    124 
    125   // If this type is currently being laid out, we can't recursively compile it.
    126   if (CGT.isRecordBeingLaidOut(Key))
    127     return false;
    128 
    129   // If this type would require laying out bases that are currently being laid
    130   // out, don't do it.  This includes virtual base classes which get laid out
    131   // when a class is translated, even though they aren't embedded by-value into
    132   // the class.
    133   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    134     for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
    135          E = CRD->bases_end(); I != E; ++I)
    136       if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
    137                            CGT, AlreadyChecked))
    138         return false;
    139   }
    140 
    141   // If this type would require laying out members that are currently being laid
    142   // out, don't do it.
    143   for (RecordDecl::field_iterator I = RD->field_begin(),
    144        E = RD->field_end(); I != E; ++I)
    145     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
    146       return false;
    147 
    148   // If there are no problems, lets do it.
    149   return true;
    150 }
    151 
    152 /// isSafeToConvert - Return true if it is safe to convert this field type,
    153 /// which requires the structure elements contained by-value to all be
    154 /// recursively safe to convert.
    155 static bool
    156 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    157                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    158   T = T.getCanonicalType();
    159 
    160   // If this is a record, check it.
    161   if (const RecordType *RT = dyn_cast<RecordType>(T))
    162     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
    163 
    164   // If this is an array, check the elements, which are embedded inline.
    165   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
    166     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
    167 
    168   // Otherwise, there is no concern about transforming this.  We only care about
    169   // things that are contained by-value in a structure that can have another
    170   // structure as a member.
    171   return true;
    172 }
    173 
    174 
    175 /// isSafeToConvert - Return true if it is safe to convert the specified record
    176 /// decl to IR and lay it out, false if doing so would cause us to get into a
    177 /// recursive compilation mess.
    178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
    179   // If no structs are being laid out, we can certainly do this one.
    180   if (CGT.noRecordsBeingLaidOut()) return true;
    181 
    182   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
    183   return isSafeToConvert(RD, CGT, AlreadyChecked);
    184 }
    185 
    186 
    187 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
    188 /// function argument or result position can be converted to an IR type at this
    189 /// point.  This boils down to being whether it is complete, as well as whether
    190 /// we've temporarily deferred expanding the type because we're in a recursive
    191 /// context.
    192 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
    193   // If this isn't a tagged type, we can convert it!
    194   const TagType *TT = Ty->getAs<TagType>();
    195   if (TT == 0) return true;
    196 
    197 
    198   // If it's a tagged type used by-value, but is just a forward decl, we can't
    199   // convert it.  Note that getDefinition()==0 is not the same as !isDefinition.
    200   if (TT->getDecl()->getDefinition() == 0)
    201     return false;
    202 
    203   // If this is an enum, then it is always safe to convert.
    204   const RecordType *RT = dyn_cast<RecordType>(TT);
    205   if (RT == 0) return true;
    206 
    207   // Otherwise, we have to be careful.  If it is a struct that we're in the
    208   // process of expanding, then we can't convert the function type.  That's ok
    209   // though because we must be in a pointer context under the struct, so we can
    210   // just convert it to a dummy type.
    211   //
    212   // We decide this by checking whether ConvertRecordDeclType returns us an
    213   // opaque type for a struct that we know is defined.
    214   return isSafeToConvert(RT->getDecl(), *this);
    215 }
    216 
    217 
    218 /// Code to verify a given function type is complete, i.e. the return type
    219 /// and all of the argument types are complete.  Also check to see if we are in
    220 /// a RS_StructPointer context, and if so whether any struct types have been
    221 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
    222 /// that cannot be converted to an IR type.
    223 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
    224   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
    225     return false;
    226 
    227   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    228     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
    229       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
    230         return false;
    231 
    232   return true;
    233 }
    234 
    235 /// UpdateCompletedType - When we find the full definition for a TagDecl,
    236 /// replace the 'opaque' type we previously made for it if applicable.
    237 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
    238   // If this is an enum being completed, then we flush all non-struct types from
    239   // the cache.  This allows function types and other things that may be derived
    240   // from the enum to be recomputed.
    241   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
    242     // Only flush the cache if we've actually already converted this type.
    243     if (TypeCache.count(ED->getTypeForDecl())) {
    244       // Okay, we formed some types based on this.  We speculated that the enum
    245       // would be lowered to i32, so we only need to flush the cache if this
    246       // didn't happen.
    247       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
    248         TypeCache.clear();
    249     }
    250     return;
    251   }
    252 
    253   // If we completed a RecordDecl that we previously used and converted to an
    254   // anonymous type, then go ahead and complete it now.
    255   const RecordDecl *RD = cast<RecordDecl>(TD);
    256   if (RD->isDependentType()) return;
    257 
    258   // Only complete it if we converted it already.  If we haven't converted it
    259   // yet, we'll just do it lazily.
    260   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
    261     ConvertRecordDeclType(RD);
    262 }
    263 
    264 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
    265                                     const llvm::fltSemantics &format) {
    266   if (&format == &llvm::APFloat::IEEEsingle)
    267     return llvm::Type::getFloatTy(VMContext);
    268   if (&format == &llvm::APFloat::IEEEdouble)
    269     return llvm::Type::getDoubleTy(VMContext);
    270   if (&format == &llvm::APFloat::IEEEquad)
    271     return llvm::Type::getFP128Ty(VMContext);
    272   if (&format == &llvm::APFloat::PPCDoubleDouble)
    273     return llvm::Type::getPPC_FP128Ty(VMContext);
    274   if (&format == &llvm::APFloat::x87DoubleExtended)
    275     return llvm::Type::getX86_FP80Ty(VMContext);
    276   assert(0 && "Unknown float format!");
    277   return 0;
    278 }
    279 
    280 /// ConvertType - Convert the specified type to its LLVM form.
    281 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
    282   T = Context.getCanonicalType(T);
    283 
    284   const Type *Ty = T.getTypePtr();
    285 
    286   // RecordTypes are cached and processed specially.
    287   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    288     return ConvertRecordDeclType(RT->getDecl());
    289 
    290   // See if type is already cached.
    291   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
    292   // If type is found in map then use it. Otherwise, convert type T.
    293   if (TCI != TypeCache.end())
    294     return TCI->second;
    295 
    296   // If we don't have it in the cache, convert it now.
    297   llvm::Type *ResultType = 0;
    298   switch (Ty->getTypeClass()) {
    299   case Type::Record: // Handled above.
    300 #define TYPE(Class, Base)
    301 #define ABSTRACT_TYPE(Class, Base)
    302 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    303 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    304 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    305 #include "clang/AST/TypeNodes.def"
    306     llvm_unreachable("Non-canonical or dependent types aren't possible.");
    307     break;
    308 
    309   case Type::Builtin: {
    310     switch (cast<BuiltinType>(Ty)->getKind()) {
    311     case BuiltinType::Void:
    312     case BuiltinType::ObjCId:
    313     case BuiltinType::ObjCClass:
    314     case BuiltinType::ObjCSel:
    315       // LLVM void type can only be used as the result of a function call.  Just
    316       // map to the same as char.
    317       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    318       break;
    319 
    320     case BuiltinType::Bool:
    321       // Note that we always return bool as i1 for use as a scalar type.
    322       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
    323       break;
    324 
    325     case BuiltinType::Char_S:
    326     case BuiltinType::Char_U:
    327     case BuiltinType::SChar:
    328     case BuiltinType::UChar:
    329     case BuiltinType::Short:
    330     case BuiltinType::UShort:
    331     case BuiltinType::Int:
    332     case BuiltinType::UInt:
    333     case BuiltinType::Long:
    334     case BuiltinType::ULong:
    335     case BuiltinType::LongLong:
    336     case BuiltinType::ULongLong:
    337     case BuiltinType::WChar_S:
    338     case BuiltinType::WChar_U:
    339     case BuiltinType::Char16:
    340     case BuiltinType::Char32:
    341       ResultType = llvm::IntegerType::get(getLLVMContext(),
    342                                  static_cast<unsigned>(Context.getTypeSize(T)));
    343       break;
    344 
    345     case BuiltinType::Float:
    346     case BuiltinType::Double:
    347     case BuiltinType::LongDouble:
    348       ResultType = getTypeForFormat(getLLVMContext(),
    349                                     Context.getFloatTypeSemantics(T));
    350       break;
    351 
    352     case BuiltinType::NullPtr:
    353       // Model std::nullptr_t as i8*
    354       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
    355       break;
    356 
    357     case BuiltinType::UInt128:
    358     case BuiltinType::Int128:
    359       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
    360       break;
    361 
    362     case BuiltinType::Overload:
    363     case BuiltinType::Dependent:
    364     case BuiltinType::BoundMember:
    365     case BuiltinType::UnknownAny:
    366       llvm_unreachable("Unexpected placeholder builtin type!");
    367       break;
    368     }
    369     break;
    370   }
    371   case Type::Complex: {
    372     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
    373     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
    374     break;
    375   }
    376   case Type::LValueReference:
    377   case Type::RValueReference: {
    378     const ReferenceType *RTy = cast<ReferenceType>(Ty);
    379     QualType ETy = RTy->getPointeeType();
    380     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    381     unsigned AS = Context.getTargetAddressSpace(ETy);
    382     ResultType = llvm::PointerType::get(PointeeType, AS);
    383     break;
    384   }
    385   case Type::Pointer: {
    386     const PointerType *PTy = cast<PointerType>(Ty);
    387     QualType ETy = PTy->getPointeeType();
    388     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    389     if (PointeeType->isVoidTy())
    390       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    391     unsigned AS = Context.getTargetAddressSpace(ETy);
    392     ResultType = llvm::PointerType::get(PointeeType, AS);
    393     break;
    394   }
    395 
    396   case Type::VariableArray: {
    397     const VariableArrayType *A = cast<VariableArrayType>(Ty);
    398     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    399            "FIXME: We only handle trivial array types so far!");
    400     // VLAs resolve to the innermost element type; this matches
    401     // the return of alloca, and there isn't any obviously better choice.
    402     ResultType = ConvertTypeForMem(A->getElementType());
    403     break;
    404   }
    405   case Type::IncompleteArray: {
    406     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    407     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    408            "FIXME: We only handle trivial array types so far!");
    409     // int X[] -> [0 x int], unless the element type is not sized.  If it is
    410     // unsized (e.g. an incomplete struct) just use [0 x i8].
    411     ResultType = ConvertTypeForMem(A->getElementType());
    412     if (!ResultType->isSized()) {
    413       SkippedLayout = true;
    414       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    415     }
    416     ResultType = llvm::ArrayType::get(ResultType, 0);
    417     break;
    418   }
    419   case Type::ConstantArray: {
    420     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    421     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    422     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    423     break;
    424   }
    425   case Type::ExtVector:
    426   case Type::Vector: {
    427     const VectorType *VT = cast<VectorType>(Ty);
    428     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
    429                                        VT->getNumElements());
    430     break;
    431   }
    432   case Type::FunctionNoProto:
    433   case Type::FunctionProto: {
    434     const FunctionType *FT = cast<FunctionType>(Ty);
    435     // First, check whether we can build the full function type.  If the
    436     // function type depends on an incomplete type (e.g. a struct or enum), we
    437     // cannot lower the function type.
    438     if (!isFuncTypeConvertible(FT)) {
    439       // This function's type depends on an incomplete tag type.
    440       // Return a placeholder type.
    441       ResultType = llvm::StructType::get(getLLVMContext());
    442 
    443       SkippedLayout = true;
    444       break;
    445     }
    446 
    447     // While we're converting the argument types for a function, we don't want
    448     // to recursively convert any pointed-to structs.  Converting directly-used
    449     // structs is ok though.
    450     if (!RecordsBeingLaidOut.insert(Ty)) {
    451       ResultType = llvm::StructType::get(getLLVMContext());
    452 
    453       SkippedLayout = true;
    454       break;
    455     }
    456 
    457     // The function type can be built; call the appropriate routines to
    458     // build it.
    459     const CGFunctionInfo *FI;
    460     bool isVariadic;
    461     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
    462       FI = &getFunctionInfo(
    463                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
    464       isVariadic = FPT->isVariadic();
    465     } else {
    466       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
    467       FI = &getFunctionInfo(
    468                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
    469       isVariadic = true;
    470     }
    471 
    472     // If there is something higher level prodding our CGFunctionInfo, then
    473     // don't recurse into it again.
    474     if (FunctionsBeingProcessed.count(FI)) {
    475 
    476       ResultType = llvm::StructType::get(getLLVMContext());
    477       SkippedLayout = true;
    478     } else {
    479 
    480       // Otherwise, we're good to go, go ahead and convert it.
    481       ResultType = GetFunctionType(*FI, isVariadic);
    482     }
    483 
    484     RecordsBeingLaidOut.erase(Ty);
    485 
    486     if (SkippedLayout)
    487       TypeCache.clear();
    488 
    489     if (RecordsBeingLaidOut.empty())
    490       while (!DeferredRecords.empty())
    491         ConvertRecordDeclType(DeferredRecords.pop_back_val());
    492     break;
    493   }
    494 
    495   case Type::ObjCObject:
    496     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    497     break;
    498 
    499   case Type::ObjCInterface: {
    500     // Objective-C interfaces are always opaque (outside of the
    501     // runtime, which can do whatever it likes); we never refine
    502     // these.
    503     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    504     if (!T)
    505       T = llvm::StructType::createNamed(getLLVMContext(), "");
    506     ResultType = T;
    507     break;
    508   }
    509 
    510   case Type::ObjCObjectPointer: {
    511     // Protocol qualifications do not influence the LLVM type, we just return a
    512     // pointer to the underlying interface type. We don't need to worry about
    513     // recursive conversion.
    514     llvm::Type *T =
    515       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    516     ResultType = T->getPointerTo();
    517     break;
    518   }
    519 
    520   case Type::Enum: {
    521     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    522     if (ED->isDefinition() || ED->isFixed())
    523       return ConvertType(ED->getIntegerType());
    524     // Return a placeholder 'i32' type.  This can be changed later when the
    525     // type is defined (see UpdateCompletedType), but is likely to be the
    526     // "right" answer.
    527     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
    528     break;
    529   }
    530 
    531   case Type::BlockPointer: {
    532     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    533     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    534     unsigned AS = Context.getTargetAddressSpace(FTy);
    535     ResultType = llvm::PointerType::get(PointeeType, AS);
    536     break;
    537   }
    538 
    539   case Type::MemberPointer: {
    540     ResultType =
    541       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
    542     break;
    543   }
    544   }
    545 
    546   assert(ResultType && "Didn't convert a type?");
    547 
    548   TypeCache[Ty] = ResultType;
    549   return ResultType;
    550 }
    551 
    552 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
    553 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
    554   // TagDecl's are not necessarily unique, instead use the (clang)
    555   // type connected to the decl.
    556   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    557 
    558   llvm::StructType *&Entry = RecordDeclTypes[Key];
    559 
    560   // If we don't have a StructType at all yet, create the forward declaration.
    561   if (Entry == 0) {
    562     Entry = llvm::StructType::createNamed(getLLVMContext(), "");
    563     addRecordTypeName(RD, Entry, "");
    564   }
    565   llvm::StructType *Ty = Entry;
    566 
    567   // If this is still a forward declaration, or the LLVM type is already
    568   // complete, there's nothing more to do.
    569   RD = RD->getDefinition();
    570   if (RD == 0 || !Ty->isOpaque())
    571     return Ty;
    572 
    573   // If converting this type would cause us to infinitely loop, don't do it!
    574   if (!isSafeToConvert(RD, *this)) {
    575     DeferredRecords.push_back(RD);
    576     return Ty;
    577   }
    578 
    579   // Okay, this is a definition of a type.  Compile the implementation now.
    580   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
    581   assert(InsertResult && "Recursively compiling a struct?");
    582 
    583   // Force conversion of non-virtual base classes recursively.
    584   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    585     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
    586          e = CRD->bases_end(); i != e; ++i) {
    587       if (i->isVirtual()) continue;
    588 
    589       ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
    590     }
    591   }
    592 
    593   // Layout fields.
    594   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
    595   CGRecordLayouts[Key] = Layout;
    596 
    597   // We're done laying out this struct.
    598   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
    599   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
    600 
    601   // If this struct blocked a FunctionType conversion, then recompute whatever
    602   // was derived from that.
    603   // FIXME: This is hugely overconservative.
    604   if (SkippedLayout)
    605     TypeCache.clear();
    606 
    607   // If we're done converting the outer-most record, then convert any deferred
    608   // structs as well.
    609   if (RecordsBeingLaidOut.empty())
    610     while (!DeferredRecords.empty())
    611       ConvertRecordDeclType(DeferredRecords.pop_back_val());
    612 
    613   return Ty;
    614 }
    615 
    616 /// getCGRecordLayout - Return record layout info for the given record decl.
    617 const CGRecordLayout &
    618 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
    619   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    620 
    621   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
    622   if (!Layout) {
    623     // Compute the type information.
    624     ConvertRecordDeclType(RD);
    625 
    626     // Now try again.
    627     Layout = CGRecordLayouts.lookup(Key);
    628   }
    629 
    630   assert(Layout && "Unable to find record layout information for type");
    631   return *Layout;
    632 }
    633 
    634 bool CodeGenTypes::isZeroInitializable(QualType T) {
    635   // No need to check for member pointers when not compiling C++.
    636   if (!Context.getLangOptions().CPlusPlus)
    637     return true;
    638 
    639   T = Context.getBaseElementType(T);
    640 
    641   // Records are non-zero-initializable if they contain any
    642   // non-zero-initializable subobjects.
    643   if (const RecordType *RT = T->getAs<RecordType>()) {
    644     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    645     return isZeroInitializable(RD);
    646   }
    647 
    648   // We have to ask the ABI about member pointers.
    649   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    650     return getCXXABI().isZeroInitializable(MPT);
    651 
    652   // Everything else is okay.
    653   return true;
    654 }
    655 
    656 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
    657   return getCGRecordLayout(RD).isZeroInitializable();
    658 }
    659