1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements bookkeeping for "interesting" users of expressions 11 // computed from induction variables. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "iv-users" 16 #include "llvm/Analysis/IVUsers.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Type.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/Analysis/Dominators.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Assembly/Writer.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 char IVUsers::ID = 0; 33 INITIALIZE_PASS_BEGIN(IVUsers, "iv-users", 34 "Induction Variable Users", false, true) 35 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 36 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 37 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 38 INITIALIZE_PASS_END(IVUsers, "iv-users", 39 "Induction Variable Users", false, true) 40 41 Pass *llvm::createIVUsersPass() { 42 return new IVUsers(); 43 } 44 45 /// isInteresting - Test whether the given expression is "interesting" when 46 /// used by the given expression, within the context of analyzing the 47 /// given loop. 48 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, 49 ScalarEvolution *SE, LoopInfo *LI) { 50 // An addrec is interesting if it's affine or if it has an interesting start. 51 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 52 // Keep things simple. Don't touch loop-variant strides unless they're 53 // only used outside the loop and we can simplify them. 54 if (AR->getLoop() == L) 55 return AR->isAffine() || 56 (!L->contains(I) && 57 SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); 58 // Otherwise recurse to see if the start value is interesting, and that 59 // the step value is not interesting, since we don't yet know how to 60 // do effective SCEV expansions for addrecs with interesting steps. 61 return isInteresting(AR->getStart(), I, L, SE, LI) && 62 !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); 63 } 64 65 // An add is interesting if exactly one of its operands is interesting. 66 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 67 bool AnyInterestingYet = false; 68 for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end(); 69 OI != OE; ++OI) 70 if (isInteresting(*OI, I, L, SE, LI)) { 71 if (AnyInterestingYet) 72 return false; 73 AnyInterestingYet = true; 74 } 75 return AnyInterestingYet; 76 } 77 78 // Nothing else is interesting here. 79 return false; 80 } 81 82 /// AddUsersIfInteresting - Inspect the specified instruction. If it is a 83 /// reducible SCEV, recursively add its users to the IVUsesByStride set and 84 /// return true. Otherwise, return false. 85 bool IVUsers::AddUsersIfInteresting(Instruction *I) { 86 if (!SE->isSCEVable(I->getType())) 87 return false; // Void and FP expressions cannot be reduced. 88 89 // LSR is not APInt clean, do not touch integers bigger than 64-bits. 90 // Also avoid creating IVs of non-native types. For example, we don't want a 91 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. 92 uint64_t Width = SE->getTypeSizeInBits(I->getType()); 93 if (Width > 64 || (TD && !TD->isLegalInteger(Width))) 94 return false; 95 96 if (!Processed.insert(I)) 97 return true; // Instruction already handled. 98 99 // Get the symbolic expression for this instruction. 100 const SCEV *ISE = SE->getSCEV(I); 101 102 // If we've come to an uninteresting expression, stop the traversal and 103 // call this a user. 104 if (!isInteresting(ISE, I, L, SE, LI)) 105 return false; 106 107 SmallPtrSet<Instruction *, 4> UniqueUsers; 108 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 109 UI != E; ++UI) { 110 Instruction *User = cast<Instruction>(*UI); 111 if (!UniqueUsers.insert(User)) 112 continue; 113 114 // Do not infinitely recurse on PHI nodes. 115 if (isa<PHINode>(User) && Processed.count(User)) 116 continue; 117 118 // Descend recursively, but not into PHI nodes outside the current loop. 119 // It's important to see the entire expression outside the loop to get 120 // choices that depend on addressing mode use right, although we won't 121 // consider references outside the loop in all cases. 122 // If User is already in Processed, we don't want to recurse into it again, 123 // but do want to record a second reference in the same instruction. 124 bool AddUserToIVUsers = false; 125 if (LI->getLoopFor(User->getParent()) != L) { 126 if (isa<PHINode>(User) || Processed.count(User) || 127 !AddUsersIfInteresting(User)) { 128 DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' 129 << " OF SCEV: " << *ISE << '\n'); 130 AddUserToIVUsers = true; 131 } 132 } else if (Processed.count(User) || !AddUsersIfInteresting(User)) { 133 DEBUG(dbgs() << "FOUND USER: " << *User << '\n' 134 << " OF SCEV: " << *ISE << '\n'); 135 AddUserToIVUsers = true; 136 } 137 138 if (AddUserToIVUsers) { 139 // Okay, we found a user that we cannot reduce. 140 IVUses.push_back(new IVStrideUse(this, User, I)); 141 IVStrideUse &NewUse = IVUses.back(); 142 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. 143 // The regular return value here is discarded; instead of recording 144 // it, we just recompute it when we need it. 145 ISE = TransformForPostIncUse(NormalizeAutodetect, 146 ISE, User, I, 147 NewUse.PostIncLoops, 148 *SE, *DT); 149 DEBUG(dbgs() << " NORMALIZED TO: " << *ISE << '\n'); 150 } 151 } 152 return true; 153 } 154 155 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { 156 IVUses.push_back(new IVStrideUse(this, User, Operand)); 157 return IVUses.back(); 158 } 159 160 IVUsers::IVUsers() 161 : LoopPass(ID) { 162 initializeIVUsersPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.addRequired<LoopInfo>(); 167 AU.addRequired<DominatorTree>(); 168 AU.addRequired<ScalarEvolution>(); 169 AU.setPreservesAll(); 170 } 171 172 bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) { 173 174 L = l; 175 LI = &getAnalysis<LoopInfo>(); 176 DT = &getAnalysis<DominatorTree>(); 177 SE = &getAnalysis<ScalarEvolution>(); 178 TD = getAnalysisIfAvailable<TargetData>(); 179 180 // Find all uses of induction variables in this loop, and categorize 181 // them by stride. Start by finding all of the PHI nodes in the header for 182 // this loop. If they are induction variables, inspect their uses. 183 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) 184 (void)AddUsersIfInteresting(I); 185 186 return false; 187 } 188 189 void IVUsers::print(raw_ostream &OS, const Module *M) const { 190 OS << "IV Users for loop "; 191 WriteAsOperand(OS, L->getHeader(), false); 192 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 193 OS << " with backedge-taken count " 194 << *SE->getBackedgeTakenCount(L); 195 } 196 OS << ":\n"; 197 198 for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(), 199 E = IVUses.end(); UI != E; ++UI) { 200 OS << " "; 201 WriteAsOperand(OS, UI->getOperandValToReplace(), false); 202 OS << " = " << *getReplacementExpr(*UI); 203 for (PostIncLoopSet::const_iterator 204 I = UI->PostIncLoops.begin(), 205 E = UI->PostIncLoops.end(); I != E; ++I) { 206 OS << " (post-inc with loop "; 207 WriteAsOperand(OS, (*I)->getHeader(), false); 208 OS << ")"; 209 } 210 OS << " in "; 211 UI->getUser()->print(OS); 212 OS << '\n'; 213 } 214 } 215 216 void IVUsers::dump() const { 217 print(dbgs()); 218 } 219 220 void IVUsers::releaseMemory() { 221 Processed.clear(); 222 IVUses.clear(); 223 } 224 225 /// getReplacementExpr - Return a SCEV expression which computes the 226 /// value of the OperandValToReplace. 227 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { 228 return SE->getSCEV(IU.getOperandValToReplace()); 229 } 230 231 /// getExpr - Return the expression for the use. 232 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { 233 return 234 TransformForPostIncUse(Normalize, getReplacementExpr(IU), 235 IU.getUser(), IU.getOperandValToReplace(), 236 const_cast<PostIncLoopSet &>(IU.getPostIncLoops()), 237 *SE, *DT); 238 } 239 240 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { 241 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 242 if (AR->getLoop() == L) 243 return AR; 244 return findAddRecForLoop(AR->getStart(), L); 245 } 246 247 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 248 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 249 I != E; ++I) 250 if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L)) 251 return AR; 252 return 0; 253 } 254 255 return 0; 256 } 257 258 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { 259 if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) 260 return AR->getStepRecurrence(*SE); 261 return 0; 262 } 263 264 void IVStrideUse::transformToPostInc(const Loop *L) { 265 PostIncLoops.insert(L); 266 } 267 268 void IVStrideUse::deleted() { 269 // Remove this user from the list. 270 Parent->IVUses.erase(this); 271 // this now dangles! 272 } 273