Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_OBJECTS_H_
     29 #define V8_OBJECTS_H_
     30 
     31 #include "builtins.h"
     32 #include "smart-pointer.h"
     33 #include "unicode-inl.h"
     34 #if V8_TARGET_ARCH_ARM
     35 #include "arm/constants-arm.h"
     36 #elif V8_TARGET_ARCH_MIPS
     37 #include "mips/constants-mips.h"
     38 #endif
     39 
     40 //
     41 // Most object types in the V8 JavaScript are described in this file.
     42 //
     43 // Inheritance hierarchy:
     44 // - MaybeObject    (an object or a failure)
     45 //   - Failure      (immediate for marking failed operation)
     46 //   - Object
     47 //     - Smi          (immediate small integer)
     48 //     - HeapObject   (superclass for everything allocated in the heap)
     49 //       - JSObject
     50 //         - JSArray
     51 //         - JSRegExp
     52 //         - JSFunction
     53 //         - GlobalObject
     54 //           - JSGlobalObject
     55 //           - JSBuiltinsObject
     56 //         - JSGlobalProxy
     57 //         - JSValue
     58 //         - JSMessageObject
     59 //       - ByteArray
     60 //       - ExternalArray
     61 //         - ExternalPixelArray
     62 //         - ExternalByteArray
     63 //         - ExternalUnsignedByteArray
     64 //         - ExternalShortArray
     65 //         - ExternalUnsignedShortArray
     66 //         - ExternalIntArray
     67 //         - ExternalUnsignedIntArray
     68 //         - ExternalFloatArray
     69 //       - FixedArray
     70 //         - DescriptorArray
     71 //         - HashTable
     72 //           - Dictionary
     73 //           - SymbolTable
     74 //           - CompilationCacheTable
     75 //           - CodeCacheHashTable
     76 //           - MapCache
     77 //         - Context
     78 //         - JSFunctionResultCache
     79 //         - SerializedScopeInfo
     80 //       - String
     81 //         - SeqString
     82 //           - SeqAsciiString
     83 //           - SeqTwoByteString
     84 //         - ConsString
     85 //         - ExternalString
     86 //           - ExternalAsciiString
     87 //           - ExternalTwoByteString
     88 //       - HeapNumber
     89 //       - Code
     90 //       - Map
     91 //       - Oddball
     92 //       - Proxy
     93 //       - SharedFunctionInfo
     94 //       - Struct
     95 //         - AccessorInfo
     96 //         - AccessCheckInfo
     97 //         - InterceptorInfo
     98 //         - CallHandlerInfo
     99 //         - TemplateInfo
    100 //           - FunctionTemplateInfo
    101 //           - ObjectTemplateInfo
    102 //         - Script
    103 //         - SignatureInfo
    104 //         - TypeSwitchInfo
    105 //         - DebugInfo
    106 //         - BreakPointInfo
    107 //         - CodeCache
    108 //
    109 // Formats of Object*:
    110 //  Smi:        [31 bit signed int] 0
    111 //  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
    112 //  Failure:    [30 bit signed int] 11
    113 
    114 // Ecma-262 3rd 8.6.1
    115 enum PropertyAttributes {
    116   NONE              = v8::None,
    117   READ_ONLY         = v8::ReadOnly,
    118   DONT_ENUM         = v8::DontEnum,
    119   DONT_DELETE       = v8::DontDelete,
    120   ABSENT            = 16  // Used in runtime to indicate a property is absent.
    121   // ABSENT can never be stored in or returned from a descriptor's attributes
    122   // bitfield.  It is only used as a return value meaning the attributes of
    123   // a non-existent property.
    124 };
    125 
    126 namespace v8 {
    127 namespace internal {
    128 
    129 
    130 // PropertyDetails captures type and attributes for a property.
    131 // They are used both in property dictionaries and instance descriptors.
    132 class PropertyDetails BASE_EMBEDDED {
    133  public:
    134 
    135   PropertyDetails(PropertyAttributes attributes,
    136                   PropertyType type,
    137                   int index = 0) {
    138     ASSERT(type != EXTERNAL_ARRAY_TRANSITION);
    139     ASSERT(TypeField::is_valid(type));
    140     ASSERT(AttributesField::is_valid(attributes));
    141     ASSERT(StorageField::is_valid(index));
    142 
    143     value_ = TypeField::encode(type)
    144         | AttributesField::encode(attributes)
    145         | StorageField::encode(index);
    146 
    147     ASSERT(type == this->type());
    148     ASSERT(attributes == this->attributes());
    149     ASSERT(index == this->index());
    150   }
    151 
    152   PropertyDetails(PropertyAttributes attributes,
    153                   PropertyType type,
    154                   ExternalArrayType array_type) {
    155     ASSERT(type == EXTERNAL_ARRAY_TRANSITION);
    156     ASSERT(TypeField::is_valid(type));
    157     ASSERT(AttributesField::is_valid(attributes));
    158     ASSERT(StorageField::is_valid(static_cast<int>(array_type)));
    159 
    160     value_ = TypeField::encode(type)
    161         | AttributesField::encode(attributes)
    162         | StorageField::encode(static_cast<int>(array_type));
    163 
    164     ASSERT(type == this->type());
    165     ASSERT(attributes == this->attributes());
    166     ASSERT(array_type == this->array_type());
    167   }
    168 
    169   // Conversion for storing details as Object*.
    170   explicit inline PropertyDetails(Smi* smi);
    171   inline Smi* AsSmi();
    172 
    173   PropertyType type() { return TypeField::decode(value_); }
    174 
    175   bool IsTransition() {
    176     PropertyType t = type();
    177     ASSERT(t != INTERCEPTOR);
    178     return t == MAP_TRANSITION || t == CONSTANT_TRANSITION ||
    179         t == EXTERNAL_ARRAY_TRANSITION;
    180   }
    181 
    182   bool IsProperty() {
    183     return type() < FIRST_PHANTOM_PROPERTY_TYPE;
    184   }
    185 
    186   PropertyAttributes attributes() { return AttributesField::decode(value_); }
    187 
    188   int index() { return StorageField::decode(value_); }
    189 
    190   ExternalArrayType array_type() {
    191     ASSERT(type() == EXTERNAL_ARRAY_TRANSITION);
    192     return static_cast<ExternalArrayType>(StorageField::decode(value_));
    193   }
    194 
    195   inline PropertyDetails AsDeleted();
    196 
    197   static bool IsValidIndex(int index) {
    198     return StorageField::is_valid(index);
    199   }
    200 
    201   bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
    202   bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
    203   bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
    204   bool IsDeleted() { return DeletedField::decode(value_) != 0;}
    205 
    206   // Bit fields in value_ (type, shift, size). Must be public so the
    207   // constants can be embedded in generated code.
    208   class TypeField:       public BitField<PropertyType,       0, 4> {};
    209   class AttributesField: public BitField<PropertyAttributes, 4, 3> {};
    210   class DeletedField:    public BitField<uint32_t,           7, 1> {};
    211   class StorageField:    public BitField<uint32_t,           8, 32-8> {};
    212 
    213   static const int kInitialIndex = 1;
    214  private:
    215   uint32_t value_;
    216 };
    217 
    218 
    219 // Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
    220 enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
    221 
    222 
    223 // PropertyNormalizationMode is used to specify whether to keep
    224 // inobject properties when normalizing properties of a JSObject.
    225 enum PropertyNormalizationMode {
    226   CLEAR_INOBJECT_PROPERTIES,
    227   KEEP_INOBJECT_PROPERTIES
    228 };
    229 
    230 
    231 // NormalizedMapSharingMode is used to specify whether a map may be shared
    232 // by different objects with normalized properties.
    233 enum NormalizedMapSharingMode {
    234   UNIQUE_NORMALIZED_MAP,
    235   SHARED_NORMALIZED_MAP
    236 };
    237 
    238 
    239 // Instance size sentinel for objects of variable size.
    240 static const int kVariableSizeSentinel = 0;
    241 
    242 
    243 // All Maps have a field instance_type containing a InstanceType.
    244 // It describes the type of the instances.
    245 //
    246 // As an example, a JavaScript object is a heap object and its map
    247 // instance_type is JS_OBJECT_TYPE.
    248 //
    249 // The names of the string instance types are intended to systematically
    250 // mirror their encoding in the instance_type field of the map.  The default
    251 // encoding is considered TWO_BYTE.  It is not mentioned in the name.  ASCII
    252 // encoding is mentioned explicitly in the name.  Likewise, the default
    253 // representation is considered sequential.  It is not mentioned in the
    254 // name.  The other representations (eg, CONS, EXTERNAL) are explicitly
    255 // mentioned.  Finally, the string is either a SYMBOL_TYPE (if it is a
    256 // symbol) or a STRING_TYPE (if it is not a symbol).
    257 //
    258 // NOTE: The following things are some that depend on the string types having
    259 // instance_types that are less than those of all other types:
    260 // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
    261 // Object::IsString.
    262 //
    263 // NOTE: Everything following JS_VALUE_TYPE is considered a
    264 // JSObject for GC purposes. The first four entries here have typeof
    265 // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
    266 #define INSTANCE_TYPE_LIST_ALL(V)                                              \
    267   V(SYMBOL_TYPE)                                                               \
    268   V(ASCII_SYMBOL_TYPE)                                                         \
    269   V(CONS_SYMBOL_TYPE)                                                          \
    270   V(CONS_ASCII_SYMBOL_TYPE)                                                    \
    271   V(EXTERNAL_SYMBOL_TYPE)                                                      \
    272   V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE)                                      \
    273   V(EXTERNAL_ASCII_SYMBOL_TYPE)                                                \
    274   V(STRING_TYPE)                                                               \
    275   V(ASCII_STRING_TYPE)                                                         \
    276   V(CONS_STRING_TYPE)                                                          \
    277   V(CONS_ASCII_STRING_TYPE)                                                    \
    278   V(EXTERNAL_STRING_TYPE)                                                      \
    279   V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE)                                      \
    280   V(EXTERNAL_ASCII_STRING_TYPE)                                                \
    281   V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE)                                        \
    282                                                                                \
    283   V(MAP_TYPE)                                                                  \
    284   V(CODE_TYPE)                                                                 \
    285   V(ODDBALL_TYPE)                                                              \
    286   V(JS_GLOBAL_PROPERTY_CELL_TYPE)                                              \
    287                                                                                \
    288   V(HEAP_NUMBER_TYPE)                                                          \
    289   V(PROXY_TYPE)                                                                \
    290   V(BYTE_ARRAY_TYPE)                                                           \
    291   /* Note: the order of these external array */                                \
    292   /* types is relied upon in */                                                \
    293   /* Object::IsExternalArray(). */                                             \
    294   V(EXTERNAL_BYTE_ARRAY_TYPE)                                                  \
    295   V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)                                         \
    296   V(EXTERNAL_SHORT_ARRAY_TYPE)                                                 \
    297   V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)                                        \
    298   V(EXTERNAL_INT_ARRAY_TYPE)                                                   \
    299   V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)                                          \
    300   V(EXTERNAL_FLOAT_ARRAY_TYPE)                                                 \
    301   V(EXTERNAL_PIXEL_ARRAY_TYPE)                                                 \
    302   V(FILLER_TYPE)                                                               \
    303                                                                                \
    304   V(ACCESSOR_INFO_TYPE)                                                        \
    305   V(ACCESS_CHECK_INFO_TYPE)                                                    \
    306   V(INTERCEPTOR_INFO_TYPE)                                                     \
    307   V(CALL_HANDLER_INFO_TYPE)                                                    \
    308   V(FUNCTION_TEMPLATE_INFO_TYPE)                                               \
    309   V(OBJECT_TEMPLATE_INFO_TYPE)                                                 \
    310   V(SIGNATURE_INFO_TYPE)                                                       \
    311   V(TYPE_SWITCH_INFO_TYPE)                                                     \
    312   V(SCRIPT_TYPE)                                                               \
    313   V(CODE_CACHE_TYPE)                                                           \
    314                                                                                \
    315   V(FIXED_ARRAY_TYPE)                                                          \
    316   V(SHARED_FUNCTION_INFO_TYPE)                                                 \
    317                                                                                \
    318   V(JS_MESSAGE_OBJECT_TYPE)                                                    \
    319                                                                                \
    320   V(JS_VALUE_TYPE)                                                             \
    321   V(JS_OBJECT_TYPE)                                                            \
    322   V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                                          \
    323   V(JS_GLOBAL_OBJECT_TYPE)                                                     \
    324   V(JS_BUILTINS_OBJECT_TYPE)                                                   \
    325   V(JS_GLOBAL_PROXY_TYPE)                                                      \
    326   V(JS_ARRAY_TYPE)                                                             \
    327   V(JS_REGEXP_TYPE)                                                            \
    328                                                                                \
    329   V(JS_FUNCTION_TYPE)                                                          \
    330 
    331 #ifdef ENABLE_DEBUGGER_SUPPORT
    332 #define INSTANCE_TYPE_LIST_DEBUGGER(V)                                         \
    333   V(DEBUG_INFO_TYPE)                                                           \
    334   V(BREAK_POINT_INFO_TYPE)
    335 #else
    336 #define INSTANCE_TYPE_LIST_DEBUGGER(V)
    337 #endif
    338 
    339 #define INSTANCE_TYPE_LIST(V)                                                  \
    340   INSTANCE_TYPE_LIST_ALL(V)                                                    \
    341   INSTANCE_TYPE_LIST_DEBUGGER(V)
    342 
    343 
    344 // Since string types are not consecutive, this macro is used to
    345 // iterate over them.
    346 #define STRING_TYPE_LIST(V)                                                    \
    347   V(SYMBOL_TYPE,                                                               \
    348     kVariableSizeSentinel,                                                     \
    349     symbol,                                                                    \
    350     Symbol)                                                                    \
    351   V(ASCII_SYMBOL_TYPE,                                                         \
    352     kVariableSizeSentinel,                                                     \
    353     ascii_symbol,                                                              \
    354     AsciiSymbol)                                                               \
    355   V(CONS_SYMBOL_TYPE,                                                          \
    356     ConsString::kSize,                                                         \
    357     cons_symbol,                                                               \
    358     ConsSymbol)                                                                \
    359   V(CONS_ASCII_SYMBOL_TYPE,                                                    \
    360     ConsString::kSize,                                                         \
    361     cons_ascii_symbol,                                                         \
    362     ConsAsciiSymbol)                                                           \
    363   V(EXTERNAL_SYMBOL_TYPE,                                                      \
    364     ExternalTwoByteString::kSize,                                              \
    365     external_symbol,                                                           \
    366     ExternalSymbol)                                                            \
    367   V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE,                                      \
    368     ExternalTwoByteString::kSize,                                              \
    369     external_symbol_with_ascii_data,                                           \
    370     ExternalSymbolWithAsciiData)                                               \
    371   V(EXTERNAL_ASCII_SYMBOL_TYPE,                                                \
    372     ExternalAsciiString::kSize,                                                \
    373     external_ascii_symbol,                                                     \
    374     ExternalAsciiSymbol)                                                       \
    375   V(STRING_TYPE,                                                               \
    376     kVariableSizeSentinel,                                                     \
    377     string,                                                                    \
    378     String)                                                                    \
    379   V(ASCII_STRING_TYPE,                                                         \
    380     kVariableSizeSentinel,                                                     \
    381     ascii_string,                                                              \
    382     AsciiString)                                                               \
    383   V(CONS_STRING_TYPE,                                                          \
    384     ConsString::kSize,                                                         \
    385     cons_string,                                                               \
    386     ConsString)                                                                \
    387   V(CONS_ASCII_STRING_TYPE,                                                    \
    388     ConsString::kSize,                                                         \
    389     cons_ascii_string,                                                         \
    390     ConsAsciiString)                                                           \
    391   V(EXTERNAL_STRING_TYPE,                                                      \
    392     ExternalTwoByteString::kSize,                                              \
    393     external_string,                                                           \
    394     ExternalString)                                                            \
    395   V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE,                                      \
    396     ExternalTwoByteString::kSize,                                              \
    397     external_string_with_ascii_data,                                           \
    398     ExternalStringWithAsciiData)                                               \
    399   V(EXTERNAL_ASCII_STRING_TYPE,                                                \
    400     ExternalAsciiString::kSize,                                                \
    401     external_ascii_string,                                                     \
    402     ExternalAsciiString)
    403 
    404 // A struct is a simple object a set of object-valued fields.  Including an
    405 // object type in this causes the compiler to generate most of the boilerplate
    406 // code for the class including allocation and garbage collection routines,
    407 // casts and predicates.  All you need to define is the class, methods and
    408 // object verification routines.  Easy, no?
    409 //
    410 // Note that for subtle reasons related to the ordering or numerical values of
    411 // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
    412 // manually.
    413 #define STRUCT_LIST_ALL(V)                                                     \
    414   V(ACCESSOR_INFO, AccessorInfo, accessor_info)                                \
    415   V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                     \
    416   V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                       \
    417   V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                     \
    418   V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)      \
    419   V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)            \
    420   V(SIGNATURE_INFO, SignatureInfo, signature_info)                             \
    421   V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                        \
    422   V(SCRIPT, Script, script)                                                    \
    423   V(CODE_CACHE, CodeCache, code_cache)
    424 
    425 #ifdef ENABLE_DEBUGGER_SUPPORT
    426 #define STRUCT_LIST_DEBUGGER(V)                                                \
    427   V(DEBUG_INFO, DebugInfo, debug_info)                                         \
    428   V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
    429 #else
    430 #define STRUCT_LIST_DEBUGGER(V)
    431 #endif
    432 
    433 #define STRUCT_LIST(V)                                                         \
    434   STRUCT_LIST_ALL(V)                                                           \
    435   STRUCT_LIST_DEBUGGER(V)
    436 
    437 // We use the full 8 bits of the instance_type field to encode heap object
    438 // instance types.  The high-order bit (bit 7) is set if the object is not a
    439 // string, and cleared if it is a string.
    440 const uint32_t kIsNotStringMask = 0x80;
    441 const uint32_t kStringTag = 0x0;
    442 const uint32_t kNotStringTag = 0x80;
    443 
    444 // Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
    445 // There are not enough types that the non-string types (with bit 7 set) can
    446 // have bit 6 set too.
    447 const uint32_t kIsSymbolMask = 0x40;
    448 const uint32_t kNotSymbolTag = 0x0;
    449 const uint32_t kSymbolTag = 0x40;
    450 
    451 // If bit 7 is clear then bit 2 indicates whether the string consists of
    452 // two-byte characters or one-byte characters.
    453 const uint32_t kStringEncodingMask = 0x4;
    454 const uint32_t kTwoByteStringTag = 0x0;
    455 const uint32_t kAsciiStringTag = 0x4;
    456 
    457 // If bit 7 is clear, the low-order 2 bits indicate the representation
    458 // of the string.
    459 const uint32_t kStringRepresentationMask = 0x03;
    460 enum StringRepresentationTag {
    461   kSeqStringTag = 0x0,
    462   kConsStringTag = 0x1,
    463   kExternalStringTag = 0x2
    464 };
    465 const uint32_t kIsConsStringMask = 0x1;
    466 
    467 // If bit 7 is clear, then bit 3 indicates whether this two-byte
    468 // string actually contains ascii data.
    469 const uint32_t kAsciiDataHintMask = 0x08;
    470 const uint32_t kAsciiDataHintTag = 0x08;
    471 
    472 
    473 // A ConsString with an empty string as the right side is a candidate
    474 // for being shortcut by the garbage collector unless it is a
    475 // symbol. It's not common to have non-flat symbols, so we do not
    476 // shortcut them thereby avoiding turning symbols into strings. See
    477 // heap.cc and mark-compact.cc.
    478 const uint32_t kShortcutTypeMask =
    479     kIsNotStringMask |
    480     kIsSymbolMask |
    481     kStringRepresentationMask;
    482 const uint32_t kShortcutTypeTag = kConsStringTag;
    483 
    484 
    485 enum InstanceType {
    486   // String types.
    487   // FIRST_STRING_TYPE
    488   SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kSeqStringTag,
    489   ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
    490   CONS_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kConsStringTag,
    491   CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
    492   EXTERNAL_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kExternalStringTag,
    493   EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE =
    494       kTwoByteStringTag | kSymbolTag | kExternalStringTag | kAsciiDataHintTag,
    495   EXTERNAL_ASCII_SYMBOL_TYPE =
    496       kAsciiStringTag | kSymbolTag | kExternalStringTag,
    497   STRING_TYPE = kTwoByteStringTag | kSeqStringTag,
    498   ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
    499   CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag,
    500   CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
    501   EXTERNAL_STRING_TYPE = kTwoByteStringTag | kExternalStringTag,
    502   EXTERNAL_STRING_WITH_ASCII_DATA_TYPE =
    503       kTwoByteStringTag | kExternalStringTag | kAsciiDataHintTag,
    504   // LAST_STRING_TYPE
    505   EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
    506   PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
    507 
    508   // Objects allocated in their own spaces (never in new space).
    509   MAP_TYPE = kNotStringTag,  // FIRST_NONSTRING_TYPE
    510   CODE_TYPE,
    511   ODDBALL_TYPE,
    512   JS_GLOBAL_PROPERTY_CELL_TYPE,
    513 
    514   // "Data", objects that cannot contain non-map-word pointers to heap
    515   // objects.
    516   HEAP_NUMBER_TYPE,
    517   PROXY_TYPE,
    518   BYTE_ARRAY_TYPE,
    519   EXTERNAL_BYTE_ARRAY_TYPE,  // FIRST_EXTERNAL_ARRAY_TYPE
    520   EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
    521   EXTERNAL_SHORT_ARRAY_TYPE,
    522   EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
    523   EXTERNAL_INT_ARRAY_TYPE,
    524   EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
    525   EXTERNAL_FLOAT_ARRAY_TYPE,
    526   EXTERNAL_PIXEL_ARRAY_TYPE,  // LAST_EXTERNAL_ARRAY_TYPE
    527   FILLER_TYPE,  // LAST_DATA_TYPE
    528 
    529   // Structs.
    530   ACCESSOR_INFO_TYPE,
    531   ACCESS_CHECK_INFO_TYPE,
    532   INTERCEPTOR_INFO_TYPE,
    533   CALL_HANDLER_INFO_TYPE,
    534   FUNCTION_TEMPLATE_INFO_TYPE,
    535   OBJECT_TEMPLATE_INFO_TYPE,
    536   SIGNATURE_INFO_TYPE,
    537   TYPE_SWITCH_INFO_TYPE,
    538   SCRIPT_TYPE,
    539   CODE_CACHE_TYPE,
    540   // The following two instance types are only used when ENABLE_DEBUGGER_SUPPORT
    541   // is defined. However as include/v8.h contain some of the instance type
    542   // constants always having them avoids them getting different numbers
    543   // depending on whether ENABLE_DEBUGGER_SUPPORT is defined or not.
    544   DEBUG_INFO_TYPE,
    545   BREAK_POINT_INFO_TYPE,
    546 
    547   FIXED_ARRAY_TYPE,
    548   SHARED_FUNCTION_INFO_TYPE,
    549 
    550   JS_MESSAGE_OBJECT_TYPE,
    551 
    552   JS_VALUE_TYPE,  // FIRST_JS_OBJECT_TYPE
    553   JS_OBJECT_TYPE,
    554   JS_CONTEXT_EXTENSION_OBJECT_TYPE,
    555   JS_GLOBAL_OBJECT_TYPE,
    556   JS_BUILTINS_OBJECT_TYPE,
    557   JS_GLOBAL_PROXY_TYPE,
    558   JS_ARRAY_TYPE,
    559 
    560   JS_REGEXP_TYPE,  // LAST_JS_OBJECT_TYPE, FIRST_FUNCTION_CLASS_TYPE
    561 
    562   JS_FUNCTION_TYPE,
    563 
    564   // Pseudo-types
    565   FIRST_TYPE = 0x0,
    566   LAST_TYPE = JS_FUNCTION_TYPE,
    567   INVALID_TYPE = FIRST_TYPE - 1,
    568   FIRST_NONSTRING_TYPE = MAP_TYPE,
    569   FIRST_STRING_TYPE = FIRST_TYPE,
    570   LAST_STRING_TYPE = FIRST_NONSTRING_TYPE - 1,
    571   // Boundaries for testing for an external array.
    572   FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
    573   LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_PIXEL_ARRAY_TYPE,
    574   // Boundary for promotion to old data space/old pointer space.
    575   LAST_DATA_TYPE = FILLER_TYPE,
    576   // Boundaries for testing the type is a JavaScript "object".  Note that
    577   // function objects are not counted as objects, even though they are
    578   // implemented as such; only values whose typeof is "object" are included.
    579   FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
    580   LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE,
    581   // RegExp objects have [[Class]] "function" because they are callable.
    582   // All types from this type and above are objects with [[Class]] "function".
    583   FIRST_FUNCTION_CLASS_TYPE = JS_REGEXP_TYPE
    584 };
    585 
    586 static const int kExternalArrayTypeCount = LAST_EXTERNAL_ARRAY_TYPE -
    587     FIRST_EXTERNAL_ARRAY_TYPE + 1;
    588 
    589 STATIC_CHECK(JS_OBJECT_TYPE == Internals::kJSObjectType);
    590 STATIC_CHECK(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
    591 STATIC_CHECK(PROXY_TYPE == Internals::kProxyType);
    592 
    593 
    594 enum CompareResult {
    595   LESS      = -1,
    596   EQUAL     =  0,
    597   GREATER   =  1,
    598 
    599   NOT_EQUAL = GREATER
    600 };
    601 
    602 
    603 #define DECL_BOOLEAN_ACCESSORS(name)   \
    604   inline bool name();                  \
    605   inline void set_##name(bool value);  \
    606 
    607 
    608 #define DECL_ACCESSORS(name, type)                                      \
    609   inline type* name();                                                  \
    610   inline void set_##name(type* value,                                   \
    611                          WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
    612 
    613 
    614 class StringStream;
    615 class ObjectVisitor;
    616 class Failure;
    617 
    618 struct ValueInfo : public Malloced {
    619   ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
    620   InstanceType type;
    621   Object* ptr;
    622   const char* str;
    623   double number;
    624 };
    625 
    626 
    627 // A template-ized version of the IsXXX functions.
    628 template <class C> static inline bool Is(Object* obj);
    629 
    630 
    631 class MaybeObject BASE_EMBEDDED {
    632  public:
    633   inline bool IsFailure();
    634   inline bool IsRetryAfterGC();
    635   inline bool IsOutOfMemory();
    636   inline bool IsException();
    637   INLINE(bool IsTheHole());
    638   inline bool ToObject(Object** obj) {
    639     if (IsFailure()) return false;
    640     *obj = reinterpret_cast<Object*>(this);
    641     return true;
    642   }
    643   inline Failure* ToFailureUnchecked() {
    644     ASSERT(IsFailure());
    645     return reinterpret_cast<Failure*>(this);
    646   }
    647   inline Object* ToObjectUnchecked() {
    648     ASSERT(!IsFailure());
    649     return reinterpret_cast<Object*>(this);
    650   }
    651   inline Object* ToObjectChecked() {
    652     CHECK(!IsFailure());
    653     return reinterpret_cast<Object*>(this);
    654   }
    655 
    656   template<typename T>
    657   inline bool To(T** obj) {
    658     if (IsFailure()) return false;
    659     *obj = T::cast(reinterpret_cast<Object*>(this));
    660     return true;
    661   }
    662 
    663 #ifdef OBJECT_PRINT
    664   // Prints this object with details.
    665   inline void Print() {
    666     Print(stdout);
    667   };
    668   inline void PrintLn() {
    669     PrintLn(stdout);
    670   }
    671   void Print(FILE* out);
    672   void PrintLn(FILE* out);
    673 #endif
    674 #ifdef DEBUG
    675   // Verifies the object.
    676   void Verify();
    677 #endif
    678 };
    679 
    680 
    681 #define OBJECT_TYPE_LIST(V)                    \
    682   V(Smi)                                       \
    683   V(HeapObject)                                \
    684   V(Number)                                    \
    685 
    686 #define HEAP_OBJECT_TYPE_LIST(V)               \
    687   V(HeapNumber)                                \
    688   V(String)                                    \
    689   V(Symbol)                                    \
    690   V(SeqString)                                 \
    691   V(ExternalString)                            \
    692   V(ConsString)                                \
    693   V(ExternalTwoByteString)                     \
    694   V(ExternalAsciiString)                       \
    695   V(SeqTwoByteString)                          \
    696   V(SeqAsciiString)                            \
    697                                                \
    698   V(ExternalArray)                             \
    699   V(ExternalByteArray)                         \
    700   V(ExternalUnsignedByteArray)                 \
    701   V(ExternalShortArray)                        \
    702   V(ExternalUnsignedShortArray)                \
    703   V(ExternalIntArray)                          \
    704   V(ExternalUnsignedIntArray)                  \
    705   V(ExternalFloatArray)                        \
    706   V(ExternalPixelArray)                        \
    707   V(ByteArray)                                 \
    708   V(JSObject)                                  \
    709   V(JSContextExtensionObject)                  \
    710   V(Map)                                       \
    711   V(DescriptorArray)                           \
    712   V(DeoptimizationInputData)                   \
    713   V(DeoptimizationOutputData)                  \
    714   V(FixedArray)                                \
    715   V(Context)                                   \
    716   V(CatchContext)                              \
    717   V(GlobalContext)                             \
    718   V(JSFunction)                                \
    719   V(Code)                                      \
    720   V(Oddball)                                   \
    721   V(SharedFunctionInfo)                        \
    722   V(JSValue)                                   \
    723   V(JSMessageObject)                           \
    724   V(StringWrapper)                             \
    725   V(Proxy)                                     \
    726   V(Boolean)                                   \
    727   V(JSArray)                                   \
    728   V(JSRegExp)                                  \
    729   V(HashTable)                                 \
    730   V(Dictionary)                                \
    731   V(SymbolTable)                               \
    732   V(JSFunctionResultCache)                     \
    733   V(NormalizedMapCache)                        \
    734   V(CompilationCacheTable)                     \
    735   V(CodeCacheHashTable)                        \
    736   V(MapCache)                                  \
    737   V(Primitive)                                 \
    738   V(GlobalObject)                              \
    739   V(JSGlobalObject)                            \
    740   V(JSBuiltinsObject)                          \
    741   V(JSGlobalProxy)                             \
    742   V(UndetectableObject)                        \
    743   V(AccessCheckNeeded)                         \
    744   V(JSGlobalPropertyCell)                      \
    745 
    746 // Object is the abstract superclass for all classes in the
    747 // object hierarchy.
    748 // Object does not use any virtual functions to avoid the
    749 // allocation of the C++ vtable.
    750 // Since Smi and Failure are subclasses of Object no
    751 // data members can be present in Object.
    752 class Object : public MaybeObject {
    753  public:
    754   // Type testing.
    755 #define IS_TYPE_FUNCTION_DECL(type_)  inline bool Is##type_();
    756   OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
    757   HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
    758 #undef IS_TYPE_FUNCTION_DECL
    759 
    760   // Returns true if this object is an instance of the specified
    761   // function template.
    762   inline bool IsInstanceOf(FunctionTemplateInfo* type);
    763 
    764   inline bool IsStruct();
    765 #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
    766   STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
    767 #undef DECLARE_STRUCT_PREDICATE
    768 
    769   // Oddball testing.
    770   INLINE(bool IsUndefined());
    771   INLINE(bool IsNull());
    772   INLINE(bool IsTheHole());  // Shadows MaybeObject's implementation.
    773   INLINE(bool IsTrue());
    774   INLINE(bool IsFalse());
    775   inline bool IsArgumentsMarker();
    776 
    777   // Extract the number.
    778   inline double Number();
    779 
    780   inline bool HasSpecificClassOf(String* name);
    781 
    782   MUST_USE_RESULT MaybeObject* ToObject();             // ECMA-262 9.9.
    783   Object* ToBoolean();                                 // ECMA-262 9.2.
    784 
    785   // Convert to a JSObject if needed.
    786   // global_context is used when creating wrapper object.
    787   MUST_USE_RESULT MaybeObject* ToObject(Context* global_context);
    788 
    789   // Converts this to a Smi if possible.
    790   // Failure is returned otherwise.
    791   MUST_USE_RESULT inline MaybeObject* ToSmi();
    792 
    793   void Lookup(String* name, LookupResult* result);
    794 
    795   // Property access.
    796   MUST_USE_RESULT inline MaybeObject* GetProperty(String* key);
    797   MUST_USE_RESULT inline MaybeObject* GetProperty(
    798       String* key,
    799       PropertyAttributes* attributes);
    800   MUST_USE_RESULT MaybeObject* GetPropertyWithReceiver(
    801       Object* receiver,
    802       String* key,
    803       PropertyAttributes* attributes);
    804   MUST_USE_RESULT MaybeObject* GetProperty(Object* receiver,
    805                                            LookupResult* result,
    806                                            String* key,
    807                                            PropertyAttributes* attributes);
    808   MUST_USE_RESULT MaybeObject* GetPropertyWithCallback(Object* receiver,
    809                                                        Object* structure,
    810                                                        String* name,
    811                                                        Object* holder);
    812   MUST_USE_RESULT MaybeObject* GetPropertyWithDefinedGetter(Object* receiver,
    813                                                             JSFunction* getter);
    814 
    815   inline MaybeObject* GetElement(uint32_t index);
    816   // For use when we know that no exception can be thrown.
    817   inline Object* GetElementNoExceptionThrown(uint32_t index);
    818   MaybeObject* GetElementWithReceiver(Object* receiver, uint32_t index);
    819 
    820   // Return the object's prototype (might be Heap::null_value()).
    821   Object* GetPrototype();
    822 
    823   // Tries to convert an object to an array index.  Returns true and sets
    824   // the output parameter if it succeeds.
    825   inline bool ToArrayIndex(uint32_t* index);
    826 
    827   // Returns true if this is a JSValue containing a string and the index is
    828   // < the length of the string.  Used to implement [] on strings.
    829   inline bool IsStringObjectWithCharacterAt(uint32_t index);
    830 
    831 #ifdef DEBUG
    832   // Verify a pointer is a valid object pointer.
    833   static void VerifyPointer(Object* p);
    834 #endif
    835 
    836   // Prints this object without details.
    837   inline void ShortPrint() {
    838     ShortPrint(stdout);
    839   }
    840   void ShortPrint(FILE* out);
    841 
    842   // Prints this object without details to a message accumulator.
    843   void ShortPrint(StringStream* accumulator);
    844 
    845   // Casting: This cast is only needed to satisfy macros in objects-inl.h.
    846   static Object* cast(Object* value) { return value; }
    847 
    848   // Layout description.
    849   static const int kHeaderSize = 0;  // Object does not take up any space.
    850 
    851  private:
    852   DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
    853 };
    854 
    855 
    856 // Smi represents integer Numbers that can be stored in 31 bits.
    857 // Smis are immediate which means they are NOT allocated in the heap.
    858 // The this pointer has the following format: [31 bit signed int] 0
    859 // For long smis it has the following format:
    860 //     [32 bit signed int] [31 bits zero padding] 0
    861 // Smi stands for small integer.
    862 class Smi: public Object {
    863  public:
    864   // Returns the integer value.
    865   inline int value();
    866 
    867   // Convert a value to a Smi object.
    868   static inline Smi* FromInt(int value);
    869 
    870   static inline Smi* FromIntptr(intptr_t value);
    871 
    872   // Returns whether value can be represented in a Smi.
    873   static inline bool IsValid(intptr_t value);
    874 
    875   // Casting.
    876   static inline Smi* cast(Object* object);
    877 
    878   // Dispatched behavior.
    879   inline void SmiPrint() {
    880     SmiPrint(stdout);
    881   }
    882   void SmiPrint(FILE* out);
    883   void SmiPrint(StringStream* accumulator);
    884 #ifdef DEBUG
    885   void SmiVerify();
    886 #endif
    887 
    888   static const int kMinValue = (-1 << (kSmiValueSize - 1));
    889   static const int kMaxValue = -(kMinValue + 1);
    890 
    891  private:
    892   DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
    893 };
    894 
    895 
    896 // Failure is used for reporting out of memory situations and
    897 // propagating exceptions through the runtime system.  Failure objects
    898 // are transient and cannot occur as part of the object graph.
    899 //
    900 // Failures are a single word, encoded as follows:
    901 // +-------------------------+---+--+--+
    902 // |.........unused..........|sss|tt|11|
    903 // +-------------------------+---+--+--+
    904 //                          7 6 4 32 10
    905 //
    906 //
    907 // The low two bits, 0-1, are the failure tag, 11.  The next two bits,
    908 // 2-3, are a failure type tag 'tt' with possible values:
    909 //   00 RETRY_AFTER_GC
    910 //   01 EXCEPTION
    911 //   10 INTERNAL_ERROR
    912 //   11 OUT_OF_MEMORY_EXCEPTION
    913 //
    914 // The next three bits, 4-6, are an allocation space tag 'sss'.  The
    915 // allocation space tag is 000 for all failure types except
    916 // RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
    917 // allocation spaces (the encoding is found in globals.h).
    918 
    919 // Failure type tag info.
    920 const int kFailureTypeTagSize = 2;
    921 const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
    922 
    923 class Failure: public MaybeObject {
    924  public:
    925   // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
    926   enum Type {
    927     RETRY_AFTER_GC = 0,
    928     EXCEPTION = 1,       // Returning this marker tells the real exception
    929                          // is in Isolate::pending_exception.
    930     INTERNAL_ERROR = 2,
    931     OUT_OF_MEMORY_EXCEPTION = 3
    932   };
    933 
    934   inline Type type() const;
    935 
    936   // Returns the space that needs to be collected for RetryAfterGC failures.
    937   inline AllocationSpace allocation_space() const;
    938 
    939   inline bool IsInternalError() const;
    940   inline bool IsOutOfMemoryException() const;
    941 
    942   static inline Failure* RetryAfterGC(AllocationSpace space);
    943   static inline Failure* RetryAfterGC();  // NEW_SPACE
    944   static inline Failure* Exception();
    945   static inline Failure* InternalError();
    946   static inline Failure* OutOfMemoryException();
    947   // Casting.
    948   static inline Failure* cast(MaybeObject* object);
    949 
    950   // Dispatched behavior.
    951   inline void FailurePrint() {
    952     FailurePrint(stdout);
    953   }
    954   void FailurePrint(FILE* out);
    955   void FailurePrint(StringStream* accumulator);
    956 #ifdef DEBUG
    957   void FailureVerify();
    958 #endif
    959 
    960  private:
    961   inline intptr_t value() const;
    962   static inline Failure* Construct(Type type, intptr_t value = 0);
    963 
    964   DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
    965 };
    966 
    967 
    968 // Heap objects typically have a map pointer in their first word.  However,
    969 // during GC other data (eg, mark bits, forwarding addresses) is sometimes
    970 // encoded in the first word.  The class MapWord is an abstraction of the
    971 // value in a heap object's first word.
    972 class MapWord BASE_EMBEDDED {
    973  public:
    974   // Normal state: the map word contains a map pointer.
    975 
    976   // Create a map word from a map pointer.
    977   static inline MapWord FromMap(Map* map);
    978 
    979   // View this map word as a map pointer.
    980   inline Map* ToMap();
    981 
    982 
    983   // Scavenge collection: the map word of live objects in the from space
    984   // contains a forwarding address (a heap object pointer in the to space).
    985 
    986   // True if this map word is a forwarding address for a scavenge
    987   // collection.  Only valid during a scavenge collection (specifically,
    988   // when all map words are heap object pointers, ie. not during a full GC).
    989   inline bool IsForwardingAddress();
    990 
    991   // Create a map word from a forwarding address.
    992   static inline MapWord FromForwardingAddress(HeapObject* object);
    993 
    994   // View this map word as a forwarding address.
    995   inline HeapObject* ToForwardingAddress();
    996 
    997   // Marking phase of full collection: the map word of live objects is
    998   // marked, and may be marked as overflowed (eg, the object is live, its
    999   // children have not been visited, and it does not fit in the marking
   1000   // stack).
   1001 
   1002   // True if this map word's mark bit is set.
   1003   inline bool IsMarked();
   1004 
   1005   // Return this map word but with its mark bit set.
   1006   inline void SetMark();
   1007 
   1008   // Return this map word but with its mark bit cleared.
   1009   inline void ClearMark();
   1010 
   1011   // True if this map word's overflow bit is set.
   1012   inline bool IsOverflowed();
   1013 
   1014   // Return this map word but with its overflow bit set.
   1015   inline void SetOverflow();
   1016 
   1017   // Return this map word but with its overflow bit cleared.
   1018   inline void ClearOverflow();
   1019 
   1020 
   1021   // Compacting phase of a full compacting collection: the map word of live
   1022   // objects contains an encoding of the original map address along with the
   1023   // forwarding address (represented as an offset from the first live object
   1024   // in the same page as the (old) object address).
   1025 
   1026   // Create a map word from a map address and a forwarding address offset.
   1027   static inline MapWord EncodeAddress(Address map_address, int offset);
   1028 
   1029   // Return the map address encoded in this map word.
   1030   inline Address DecodeMapAddress(MapSpace* map_space);
   1031 
   1032   // Return the forwarding offset encoded in this map word.
   1033   inline int DecodeOffset();
   1034 
   1035 
   1036   // During serialization: the map word is used to hold an encoded
   1037   // address, and possibly a mark bit (set and cleared with SetMark
   1038   // and ClearMark).
   1039 
   1040   // Create a map word from an encoded address.
   1041   static inline MapWord FromEncodedAddress(Address address);
   1042 
   1043   inline Address ToEncodedAddress();
   1044 
   1045   // Bits used by the marking phase of the garbage collector.
   1046   //
   1047   // The first word of a heap object is normally a map pointer. The last two
   1048   // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
   1049   // mark an object as live and/or overflowed:
   1050   //   last bit = 0, marked as alive
   1051   //   second bit = 1, overflowed
   1052   // An object is only marked as overflowed when it is marked as live while
   1053   // the marking stack is overflowed.
   1054   static const int kMarkingBit = 0;  // marking bit
   1055   static const int kMarkingMask = (1 << kMarkingBit);  // marking mask
   1056   static const int kOverflowBit = 1;  // overflow bit
   1057   static const int kOverflowMask = (1 << kOverflowBit);  // overflow mask
   1058 
   1059   // Forwarding pointers and map pointer encoding. On 32 bit all the bits are
   1060   // used.
   1061   // +-----------------+------------------+-----------------+
   1062   // |forwarding offset|page offset of map|page index of map|
   1063   // +-----------------+------------------+-----------------+
   1064   //          ^                 ^                  ^
   1065   //          |                 |                  |
   1066   //          |                 |          kMapPageIndexBits
   1067   //          |         kMapPageOffsetBits
   1068   // kForwardingOffsetBits
   1069   static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits;
   1070   static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits;
   1071 #ifdef V8_HOST_ARCH_64_BIT
   1072   static const int kMapPageIndexBits = 16;
   1073 #else
   1074   // Use all the 32-bits to encode on a 32-bit platform.
   1075   static const int kMapPageIndexBits =
   1076       32 - (kMapPageOffsetBits + kForwardingOffsetBits);
   1077 #endif
   1078 
   1079   static const int kMapPageIndexShift = 0;
   1080   static const int kMapPageOffsetShift =
   1081       kMapPageIndexShift + kMapPageIndexBits;
   1082   static const int kForwardingOffsetShift =
   1083       kMapPageOffsetShift + kMapPageOffsetBits;
   1084 
   1085   // Bit masks covering the different parts the encoding.
   1086   static const uintptr_t kMapPageIndexMask =
   1087       (1 << kMapPageOffsetShift) - 1;
   1088   static const uintptr_t kMapPageOffsetMask =
   1089       ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
   1090   static const uintptr_t kForwardingOffsetMask =
   1091       ~(kMapPageIndexMask | kMapPageOffsetMask);
   1092 
   1093  private:
   1094   // HeapObject calls the private constructor and directly reads the value.
   1095   friend class HeapObject;
   1096 
   1097   explicit MapWord(uintptr_t value) : value_(value) {}
   1098 
   1099   uintptr_t value_;
   1100 };
   1101 
   1102 
   1103 // HeapObject is the superclass for all classes describing heap allocated
   1104 // objects.
   1105 class HeapObject: public Object {
   1106  public:
   1107   // [map]: Contains a map which contains the object's reflective
   1108   // information.
   1109   inline Map* map();
   1110   inline void set_map(Map* value);
   1111 
   1112   // During garbage collection, the map word of a heap object does not
   1113   // necessarily contain a map pointer.
   1114   inline MapWord map_word();
   1115   inline void set_map_word(MapWord map_word);
   1116 
   1117   // The Heap the object was allocated in. Used also to access Isolate.
   1118   // This method can not be used during GC, it ASSERTs this.
   1119   inline Heap* GetHeap();
   1120   // Convenience method to get current isolate. This method can be
   1121   // accessed only when its result is the same as
   1122   // Isolate::Current(), it ASSERTs this. See also comment for GetHeap.
   1123   inline Isolate* GetIsolate();
   1124 
   1125   // Converts an address to a HeapObject pointer.
   1126   static inline HeapObject* FromAddress(Address address);
   1127 
   1128   // Returns the address of this HeapObject.
   1129   inline Address address();
   1130 
   1131   // Iterates over pointers contained in the object (including the Map)
   1132   void Iterate(ObjectVisitor* v);
   1133 
   1134   // Iterates over all pointers contained in the object except the
   1135   // first map pointer.  The object type is given in the first
   1136   // parameter. This function does not access the map pointer in the
   1137   // object, and so is safe to call while the map pointer is modified.
   1138   void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
   1139 
   1140   // Returns the heap object's size in bytes
   1141   inline int Size();
   1142 
   1143   // Given a heap object's map pointer, returns the heap size in bytes
   1144   // Useful when the map pointer field is used for other purposes.
   1145   // GC internal.
   1146   inline int SizeFromMap(Map* map);
   1147 
   1148   // Support for the marking heap objects during the marking phase of GC.
   1149   // True if the object is marked live.
   1150   inline bool IsMarked();
   1151 
   1152   // Mutate this object's map pointer to indicate that the object is live.
   1153   inline void SetMark();
   1154 
   1155   // Mutate this object's map pointer to remove the indication that the
   1156   // object is live (ie, partially restore the map pointer).
   1157   inline void ClearMark();
   1158 
   1159   // True if this object is marked as overflowed.  Overflowed objects have
   1160   // been reached and marked during marking of the heap, but their children
   1161   // have not necessarily been marked and they have not been pushed on the
   1162   // marking stack.
   1163   inline bool IsOverflowed();
   1164 
   1165   // Mutate this object's map pointer to indicate that the object is
   1166   // overflowed.
   1167   inline void SetOverflow();
   1168 
   1169   // Mutate this object's map pointer to remove the indication that the
   1170   // object is overflowed (ie, partially restore the map pointer).
   1171   inline void ClearOverflow();
   1172 
   1173   // Returns the field at offset in obj, as a read/write Object* reference.
   1174   // Does no checking, and is safe to use during GC, while maps are invalid.
   1175   // Does not invoke write barrier, so should only be assigned to
   1176   // during marking GC.
   1177   static inline Object** RawField(HeapObject* obj, int offset);
   1178 
   1179   // Casting.
   1180   static inline HeapObject* cast(Object* obj);
   1181 
   1182   // Return the write barrier mode for this. Callers of this function
   1183   // must be able to present a reference to an AssertNoAllocation
   1184   // object as a sign that they are not going to use this function
   1185   // from code that allocates and thus invalidates the returned write
   1186   // barrier mode.
   1187   inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&);
   1188 
   1189   // Dispatched behavior.
   1190   void HeapObjectShortPrint(StringStream* accumulator);
   1191 #ifdef OBJECT_PRINT
   1192   inline void HeapObjectPrint() {
   1193     HeapObjectPrint(stdout);
   1194   }
   1195   void HeapObjectPrint(FILE* out);
   1196 #endif
   1197 #ifdef DEBUG
   1198   void HeapObjectVerify();
   1199   inline void VerifyObjectField(int offset);
   1200   inline void VerifySmiField(int offset);
   1201 #endif
   1202 
   1203 #ifdef OBJECT_PRINT
   1204   void PrintHeader(FILE* out, const char* id);
   1205 #endif
   1206 
   1207 #ifdef DEBUG
   1208   // Verify a pointer is a valid HeapObject pointer that points to object
   1209   // areas in the heap.
   1210   static void VerifyHeapPointer(Object* p);
   1211 #endif
   1212 
   1213   // Layout description.
   1214   // First field in a heap object is map.
   1215   static const int kMapOffset = Object::kHeaderSize;
   1216   static const int kHeaderSize = kMapOffset + kPointerSize;
   1217 
   1218   STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
   1219 
   1220  protected:
   1221   // helpers for calling an ObjectVisitor to iterate over pointers in the
   1222   // half-open range [start, end) specified as integer offsets
   1223   inline void IteratePointers(ObjectVisitor* v, int start, int end);
   1224   // as above, for the single element at "offset"
   1225   inline void IteratePointer(ObjectVisitor* v, int offset);
   1226 
   1227  private:
   1228   DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
   1229 };
   1230 
   1231 
   1232 #define SLOT_ADDR(obj, offset) \
   1233   reinterpret_cast<Object**>((obj)->address() + offset)
   1234 
   1235 // This class describes a body of an object of a fixed size
   1236 // in which all pointer fields are located in the [start_offset, end_offset)
   1237 // interval.
   1238 template<int start_offset, int end_offset, int size>
   1239 class FixedBodyDescriptor {
   1240  public:
   1241   static const int kStartOffset = start_offset;
   1242   static const int kEndOffset = end_offset;
   1243   static const int kSize = size;
   1244 
   1245   static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
   1246 
   1247   template<typename StaticVisitor>
   1248   static inline void IterateBody(HeapObject* obj) {
   1249     StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset),
   1250                                  SLOT_ADDR(obj, end_offset));
   1251   }
   1252 };
   1253 
   1254 
   1255 // This class describes a body of an object of a variable size
   1256 // in which all pointer fields are located in the [start_offset, object_size)
   1257 // interval.
   1258 template<int start_offset>
   1259 class FlexibleBodyDescriptor {
   1260  public:
   1261   static const int kStartOffset = start_offset;
   1262 
   1263   static inline void IterateBody(HeapObject* obj,
   1264                                  int object_size,
   1265                                  ObjectVisitor* v);
   1266 
   1267   template<typename StaticVisitor>
   1268   static inline void IterateBody(HeapObject* obj, int object_size) {
   1269     StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset),
   1270                                  SLOT_ADDR(obj, object_size));
   1271   }
   1272 };
   1273 
   1274 #undef SLOT_ADDR
   1275 
   1276 
   1277 // The HeapNumber class describes heap allocated numbers that cannot be
   1278 // represented in a Smi (small integer)
   1279 class HeapNumber: public HeapObject {
   1280  public:
   1281   // [value]: number value.
   1282   inline double value();
   1283   inline void set_value(double value);
   1284 
   1285   // Casting.
   1286   static inline HeapNumber* cast(Object* obj);
   1287 
   1288   // Dispatched behavior.
   1289   Object* HeapNumberToBoolean();
   1290   inline void HeapNumberPrint() {
   1291     HeapNumberPrint(stdout);
   1292   }
   1293   void HeapNumberPrint(FILE* out);
   1294   void HeapNumberPrint(StringStream* accumulator);
   1295 #ifdef DEBUG
   1296   void HeapNumberVerify();
   1297 #endif
   1298 
   1299   inline int get_exponent();
   1300   inline int get_sign();
   1301 
   1302   // Layout description.
   1303   static const int kValueOffset = HeapObject::kHeaderSize;
   1304   // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
   1305   // is a mixture of sign, exponent and mantissa.  Our current platforms are all
   1306   // little endian apart from non-EABI arm which is little endian with big
   1307   // endian floating point word ordering!
   1308   static const int kMantissaOffset = kValueOffset;
   1309   static const int kExponentOffset = kValueOffset + 4;
   1310 
   1311   static const int kSize = kValueOffset + kDoubleSize;
   1312   static const uint32_t kSignMask = 0x80000000u;
   1313   static const uint32_t kExponentMask = 0x7ff00000u;
   1314   static const uint32_t kMantissaMask = 0xfffffu;
   1315   static const int kMantissaBits = 52;
   1316   static const int kExponentBits = 11;
   1317   static const int kExponentBias = 1023;
   1318   static const int kExponentShift = 20;
   1319   static const int kMantissaBitsInTopWord = 20;
   1320   static const int kNonMantissaBitsInTopWord = 12;
   1321 
   1322  private:
   1323   DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
   1324 };
   1325 
   1326 
   1327 // The JSObject describes real heap allocated JavaScript objects with
   1328 // properties.
   1329 // Note that the map of JSObject changes during execution to enable inline
   1330 // caching.
   1331 class JSObject: public HeapObject {
   1332  public:
   1333   enum DeleteMode {
   1334     NORMAL_DELETION,
   1335     STRICT_DELETION,
   1336     FORCE_DELETION
   1337   };
   1338 
   1339   enum ElementsKind {
   1340     // The only "fast" kind.
   1341     FAST_ELEMENTS,
   1342     // All the kinds below are "slow".
   1343     DICTIONARY_ELEMENTS,
   1344     EXTERNAL_BYTE_ELEMENTS,
   1345     EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
   1346     EXTERNAL_SHORT_ELEMENTS,
   1347     EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
   1348     EXTERNAL_INT_ELEMENTS,
   1349     EXTERNAL_UNSIGNED_INT_ELEMENTS,
   1350     EXTERNAL_FLOAT_ELEMENTS,
   1351     EXTERNAL_PIXEL_ELEMENTS
   1352   };
   1353 
   1354   // [properties]: Backing storage for properties.
   1355   // properties is a FixedArray in the fast case and a Dictionary in the
   1356   // slow case.
   1357   DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
   1358   inline void initialize_properties();
   1359   inline bool HasFastProperties();
   1360   inline StringDictionary* property_dictionary();  // Gets slow properties.
   1361 
   1362   // [elements]: The elements (properties with names that are integers).
   1363   //
   1364   // Elements can be in two general modes: fast and slow. Each mode
   1365   // corrensponds to a set of object representations of elements that
   1366   // have something in common.
   1367   //
   1368   // In the fast mode elements is a FixedArray and so each element can
   1369   // be quickly accessed. This fact is used in the generated code. The
   1370   // elements array can have one of the two maps in this mode:
   1371   // fixed_array_map or fixed_cow_array_map (for copy-on-write
   1372   // arrays). In the latter case the elements array may be shared by a
   1373   // few objects and so before writing to any element the array must
   1374   // be copied. Use EnsureWritableFastElements in this case.
   1375   //
   1376   // In the slow mode elements is either a NumberDictionary or an ExternalArray.
   1377   DECL_ACCESSORS(elements, HeapObject)
   1378   inline void initialize_elements();
   1379   MUST_USE_RESULT inline MaybeObject* ResetElements();
   1380   inline ElementsKind GetElementsKind();
   1381   inline bool HasFastElements();
   1382   inline bool HasDictionaryElements();
   1383   inline bool HasExternalPixelElements();
   1384   inline bool HasExternalArrayElements();
   1385   inline bool HasExternalByteElements();
   1386   inline bool HasExternalUnsignedByteElements();
   1387   inline bool HasExternalShortElements();
   1388   inline bool HasExternalUnsignedShortElements();
   1389   inline bool HasExternalIntElements();
   1390   inline bool HasExternalUnsignedIntElements();
   1391   inline bool HasExternalFloatElements();
   1392   inline bool AllowsSetElementsLength();
   1393   inline NumberDictionary* element_dictionary();  // Gets slow elements.
   1394   // Requires: this->HasFastElements().
   1395   MUST_USE_RESULT inline MaybeObject* EnsureWritableFastElements();
   1396 
   1397   // Collects elements starting at index 0.
   1398   // Undefined values are placed after non-undefined values.
   1399   // Returns the number of non-undefined values.
   1400   MUST_USE_RESULT MaybeObject* PrepareElementsForSort(uint32_t limit);
   1401   // As PrepareElementsForSort, but only on objects where elements is
   1402   // a dictionary, and it will stay a dictionary.
   1403   MUST_USE_RESULT MaybeObject* PrepareSlowElementsForSort(uint32_t limit);
   1404 
   1405   MUST_USE_RESULT MaybeObject* SetProperty(String* key,
   1406                                            Object* value,
   1407                                            PropertyAttributes attributes,
   1408                                            StrictModeFlag strict_mode);
   1409   MUST_USE_RESULT MaybeObject* SetProperty(LookupResult* result,
   1410                                            String* key,
   1411                                            Object* value,
   1412                                            PropertyAttributes attributes,
   1413                                            StrictModeFlag strict_mode);
   1414   MUST_USE_RESULT MaybeObject* SetPropertyWithFailedAccessCheck(
   1415       LookupResult* result,
   1416       String* name,
   1417       Object* value,
   1418       bool check_prototype);
   1419   MUST_USE_RESULT MaybeObject* SetPropertyWithCallback(Object* structure,
   1420                                                        String* name,
   1421                                                        Object* value,
   1422                                                        JSObject* holder);
   1423   MUST_USE_RESULT MaybeObject* SetPropertyWithDefinedSetter(JSFunction* setter,
   1424                                                             Object* value);
   1425   MUST_USE_RESULT MaybeObject* SetPropertyWithInterceptor(
   1426       String* name,
   1427       Object* value,
   1428       PropertyAttributes attributes,
   1429       StrictModeFlag strict_mode);
   1430   MUST_USE_RESULT MaybeObject* SetPropertyPostInterceptor(
   1431       String* name,
   1432       Object* value,
   1433       PropertyAttributes attributes,
   1434       StrictModeFlag strict_mode);
   1435   MUST_USE_RESULT MaybeObject* SetLocalPropertyIgnoreAttributes(
   1436       String* key,
   1437       Object* value,
   1438       PropertyAttributes attributes);
   1439 
   1440   // Retrieve a value in a normalized object given a lookup result.
   1441   // Handles the special representation of JS global objects.
   1442   Object* GetNormalizedProperty(LookupResult* result);
   1443 
   1444   // Sets the property value in a normalized object given a lookup result.
   1445   // Handles the special representation of JS global objects.
   1446   Object* SetNormalizedProperty(LookupResult* result, Object* value);
   1447 
   1448   // Sets the property value in a normalized object given (key, value, details).
   1449   // Handles the special representation of JS global objects.
   1450   MUST_USE_RESULT MaybeObject* SetNormalizedProperty(String* name,
   1451                                                      Object* value,
   1452                                                      PropertyDetails details);
   1453 
   1454   // Deletes the named property in a normalized object.
   1455   MUST_USE_RESULT MaybeObject* DeleteNormalizedProperty(String* name,
   1456                                                         DeleteMode mode);
   1457 
   1458   // Returns the class name ([[Class]] property in the specification).
   1459   String* class_name();
   1460 
   1461   // Returns the constructor name (the name (possibly, inferred name) of the
   1462   // function that was used to instantiate the object).
   1463   String* constructor_name();
   1464 
   1465   // Retrieve interceptors.
   1466   InterceptorInfo* GetNamedInterceptor();
   1467   InterceptorInfo* GetIndexedInterceptor();
   1468 
   1469   inline PropertyAttributes GetPropertyAttribute(String* name);
   1470   PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
   1471                                                       String* name);
   1472   PropertyAttributes GetLocalPropertyAttribute(String* name);
   1473 
   1474   MUST_USE_RESULT MaybeObject* DefineAccessor(String* name,
   1475                                               bool is_getter,
   1476                                               Object* fun,
   1477                                               PropertyAttributes attributes);
   1478   Object* LookupAccessor(String* name, bool is_getter);
   1479 
   1480   MUST_USE_RESULT MaybeObject* DefineAccessor(AccessorInfo* info);
   1481 
   1482   // Used from Object::GetProperty().
   1483   MaybeObject* GetPropertyWithFailedAccessCheck(
   1484       Object* receiver,
   1485       LookupResult* result,
   1486       String* name,
   1487       PropertyAttributes* attributes);
   1488   MaybeObject* GetPropertyWithInterceptor(
   1489       JSObject* receiver,
   1490       String* name,
   1491       PropertyAttributes* attributes);
   1492   MaybeObject* GetPropertyPostInterceptor(
   1493       JSObject* receiver,
   1494       String* name,
   1495       PropertyAttributes* attributes);
   1496   MaybeObject* GetLocalPropertyPostInterceptor(JSObject* receiver,
   1497                                                String* name,
   1498                                                PropertyAttributes* attributes);
   1499 
   1500   // Returns true if this is an instance of an api function and has
   1501   // been modified since it was created.  May give false positives.
   1502   bool IsDirty();
   1503 
   1504   bool HasProperty(String* name) {
   1505     return GetPropertyAttribute(name) != ABSENT;
   1506   }
   1507 
   1508   // Can cause a GC if it hits an interceptor.
   1509   bool HasLocalProperty(String* name) {
   1510     return GetLocalPropertyAttribute(name) != ABSENT;
   1511   }
   1512 
   1513   // If the receiver is a JSGlobalProxy this method will return its prototype,
   1514   // otherwise the result is the receiver itself.
   1515   inline Object* BypassGlobalProxy();
   1516 
   1517   // Accessors for hidden properties object.
   1518   //
   1519   // Hidden properties are not local properties of the object itself.
   1520   // Instead they are stored on an auxiliary JSObject stored as a local
   1521   // property with a special name Heap::hidden_symbol(). But if the
   1522   // receiver is a JSGlobalProxy then the auxiliary object is a property
   1523   // of its prototype.
   1524   //
   1525   // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
   1526   // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
   1527   // holder.
   1528   //
   1529   // These accessors do not touch interceptors or accessors.
   1530   inline bool HasHiddenPropertiesObject();
   1531   inline Object* GetHiddenPropertiesObject();
   1532   MUST_USE_RESULT inline MaybeObject* SetHiddenPropertiesObject(
   1533       Object* hidden_obj);
   1534 
   1535   MUST_USE_RESULT MaybeObject* DeleteProperty(String* name, DeleteMode mode);
   1536   MUST_USE_RESULT MaybeObject* DeleteElement(uint32_t index, DeleteMode mode);
   1537 
   1538   // Tests for the fast common case for property enumeration.
   1539   bool IsSimpleEnum();
   1540 
   1541   // Do we want to keep the elements in fast case when increasing the
   1542   // capacity?
   1543   bool ShouldConvertToSlowElements(int new_capacity);
   1544   // Returns true if the backing storage for the slow-case elements of
   1545   // this object takes up nearly as much space as a fast-case backing
   1546   // storage would.  In that case the JSObject should have fast
   1547   // elements.
   1548   bool ShouldConvertToFastElements();
   1549 
   1550   // Return the object's prototype (might be Heap::null_value()).
   1551   inline Object* GetPrototype();
   1552 
   1553   // Set the object's prototype (only JSObject and null are allowed).
   1554   MUST_USE_RESULT MaybeObject* SetPrototype(Object* value,
   1555                                             bool skip_hidden_prototypes);
   1556 
   1557   // Tells whether the index'th element is present.
   1558   inline bool HasElement(uint32_t index);
   1559   bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
   1560 
   1561   // Computes the new capacity when expanding the elements of a JSObject.
   1562   static int NewElementsCapacity(int old_capacity) {
   1563     // (old_capacity + 50%) + 16
   1564     return old_capacity + (old_capacity >> 1) + 16;
   1565   }
   1566 
   1567   // Tells whether the index'th element is present and how it is stored.
   1568   enum LocalElementType {
   1569     // There is no element with given index.
   1570     UNDEFINED_ELEMENT,
   1571 
   1572     // Element with given index is handled by interceptor.
   1573     INTERCEPTED_ELEMENT,
   1574 
   1575     // Element with given index is character in string.
   1576     STRING_CHARACTER_ELEMENT,
   1577 
   1578     // Element with given index is stored in fast backing store.
   1579     FAST_ELEMENT,
   1580 
   1581     // Element with given index is stored in slow backing store.
   1582     DICTIONARY_ELEMENT
   1583   };
   1584 
   1585   LocalElementType HasLocalElement(uint32_t index);
   1586 
   1587   bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
   1588   bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
   1589 
   1590   MUST_USE_RESULT MaybeObject* SetFastElement(uint32_t index,
   1591                                               Object* value,
   1592                                               StrictModeFlag strict_mode,
   1593                                               bool check_prototype = true);
   1594 
   1595   // Set the index'th array element.
   1596   // A Failure object is returned if GC is needed.
   1597   MUST_USE_RESULT MaybeObject* SetElement(uint32_t index,
   1598                                           Object* value,
   1599                                           StrictModeFlag strict_mode,
   1600                                           bool check_prototype = true);
   1601 
   1602   // Returns the index'th element.
   1603   // The undefined object if index is out of bounds.
   1604   MaybeObject* GetElementWithReceiver(Object* receiver, uint32_t index);
   1605   MaybeObject* GetElementWithInterceptor(Object* receiver, uint32_t index);
   1606 
   1607   // Get external element value at index if there is one and undefined
   1608   // otherwise. Can return a failure if allocation of a heap number
   1609   // failed.
   1610   MaybeObject* GetExternalElement(uint32_t index);
   1611 
   1612   MUST_USE_RESULT MaybeObject* SetFastElementsCapacityAndLength(int capacity,
   1613                                                                 int length);
   1614   MUST_USE_RESULT MaybeObject* SetSlowElements(Object* length);
   1615 
   1616   // Lookup interceptors are used for handling properties controlled by host
   1617   // objects.
   1618   inline bool HasNamedInterceptor();
   1619   inline bool HasIndexedInterceptor();
   1620 
   1621   // Support functions for v8 api (needed for correct interceptor behavior).
   1622   bool HasRealNamedProperty(String* key);
   1623   bool HasRealElementProperty(uint32_t index);
   1624   bool HasRealNamedCallbackProperty(String* key);
   1625 
   1626   // Initializes the array to a certain length
   1627   MUST_USE_RESULT MaybeObject* SetElementsLength(Object* length);
   1628 
   1629   // Get the header size for a JSObject.  Used to compute the index of
   1630   // internal fields as well as the number of internal fields.
   1631   inline int GetHeaderSize();
   1632 
   1633   inline int GetInternalFieldCount();
   1634   inline int GetInternalFieldOffset(int index);
   1635   inline Object* GetInternalField(int index);
   1636   inline void SetInternalField(int index, Object* value);
   1637 
   1638   // Lookup a property.  If found, the result is valid and has
   1639   // detailed information.
   1640   void LocalLookup(String* name, LookupResult* result);
   1641   void Lookup(String* name, LookupResult* result);
   1642 
   1643   // The following lookup functions skip interceptors.
   1644   void LocalLookupRealNamedProperty(String* name, LookupResult* result);
   1645   void LookupRealNamedProperty(String* name, LookupResult* result);
   1646   void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
   1647   void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
   1648   MUST_USE_RESULT MaybeObject* SetElementWithCallbackSetterInPrototypes(
   1649       uint32_t index, Object* value, bool* found);
   1650   void LookupCallback(String* name, LookupResult* result);
   1651 
   1652   // Returns the number of properties on this object filtering out properties
   1653   // with the specified attributes (ignoring interceptors).
   1654   int NumberOfLocalProperties(PropertyAttributes filter);
   1655   // Returns the number of enumerable properties (ignoring interceptors).
   1656   int NumberOfEnumProperties();
   1657   // Fill in details for properties into storage starting at the specified
   1658   // index.
   1659   void GetLocalPropertyNames(FixedArray* storage, int index);
   1660 
   1661   // Returns the number of properties on this object filtering out properties
   1662   // with the specified attributes (ignoring interceptors).
   1663   int NumberOfLocalElements(PropertyAttributes filter);
   1664   // Returns the number of enumerable elements (ignoring interceptors).
   1665   int NumberOfEnumElements();
   1666   // Returns the number of elements on this object filtering out elements
   1667   // with the specified attributes (ignoring interceptors).
   1668   int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
   1669   // Count and fill in the enumerable elements into storage.
   1670   // (storage->length() == NumberOfEnumElements()).
   1671   // If storage is NULL, will count the elements without adding
   1672   // them to any storage.
   1673   // Returns the number of enumerable elements.
   1674   int GetEnumElementKeys(FixedArray* storage);
   1675 
   1676   // Add a property to a fast-case object using a map transition to
   1677   // new_map.
   1678   MUST_USE_RESULT MaybeObject* AddFastPropertyUsingMap(Map* new_map,
   1679                                                        String* name,
   1680                                                        Object* value);
   1681 
   1682   // Add a constant function property to a fast-case object.
   1683   // This leaves a CONSTANT_TRANSITION in the old map, and
   1684   // if it is called on a second object with this map, a
   1685   // normal property is added instead, with a map transition.
   1686   // This avoids the creation of many maps with the same constant
   1687   // function, all orphaned.
   1688   MUST_USE_RESULT MaybeObject* AddConstantFunctionProperty(
   1689       String* name,
   1690       JSFunction* function,
   1691       PropertyAttributes attributes);
   1692 
   1693   MUST_USE_RESULT MaybeObject* ReplaceSlowProperty(
   1694       String* name,
   1695       Object* value,
   1696       PropertyAttributes attributes);
   1697 
   1698   // Converts a descriptor of any other type to a real field,
   1699   // backed by the properties array.  Descriptors of visible
   1700   // types, such as CONSTANT_FUNCTION, keep their enumeration order.
   1701   // Converts the descriptor on the original object's map to a
   1702   // map transition, and the the new field is on the object's new map.
   1703   MUST_USE_RESULT MaybeObject* ConvertDescriptorToFieldAndMapTransition(
   1704       String* name,
   1705       Object* new_value,
   1706       PropertyAttributes attributes);
   1707 
   1708   // Converts a descriptor of any other type to a real field,
   1709   // backed by the properties array.  Descriptors of visible
   1710   // types, such as CONSTANT_FUNCTION, keep their enumeration order.
   1711   MUST_USE_RESULT MaybeObject* ConvertDescriptorToField(
   1712       String* name,
   1713       Object* new_value,
   1714       PropertyAttributes attributes);
   1715 
   1716   // Add a property to a fast-case object.
   1717   MUST_USE_RESULT MaybeObject* AddFastProperty(String* name,
   1718                                                Object* value,
   1719                                                PropertyAttributes attributes);
   1720 
   1721   // Add a property to a slow-case object.
   1722   MUST_USE_RESULT MaybeObject* AddSlowProperty(String* name,
   1723                                                Object* value,
   1724                                                PropertyAttributes attributes);
   1725 
   1726   // Add a property to an object.
   1727   MUST_USE_RESULT MaybeObject* AddProperty(String* name,
   1728                                            Object* value,
   1729                                            PropertyAttributes attributes,
   1730                                            StrictModeFlag strict_mode);
   1731 
   1732   // Convert the object to use the canonical dictionary
   1733   // representation. If the object is expected to have additional properties
   1734   // added this number can be indicated to have the backing store allocated to
   1735   // an initial capacity for holding these properties.
   1736   MUST_USE_RESULT MaybeObject* NormalizeProperties(
   1737       PropertyNormalizationMode mode,
   1738       int expected_additional_properties);
   1739   MUST_USE_RESULT MaybeObject* NormalizeElements();
   1740 
   1741   MUST_USE_RESULT MaybeObject* UpdateMapCodeCache(String* name, Code* code);
   1742 
   1743   // Transform slow named properties to fast variants.
   1744   // Returns failure if allocation failed.
   1745   MUST_USE_RESULT MaybeObject* TransformToFastProperties(
   1746       int unused_property_fields);
   1747 
   1748   // Access fast-case object properties at index.
   1749   inline Object* FastPropertyAt(int index);
   1750   inline Object* FastPropertyAtPut(int index, Object* value);
   1751 
   1752   // Access to in object properties.
   1753   inline int GetInObjectPropertyOffset(int index);
   1754   inline Object* InObjectPropertyAt(int index);
   1755   inline Object* InObjectPropertyAtPut(int index,
   1756                                        Object* value,
   1757                                        WriteBarrierMode mode
   1758                                        = UPDATE_WRITE_BARRIER);
   1759 
   1760   // initializes the body after properties slot, properties slot is
   1761   // initialized by set_properties
   1762   // Note: this call does not update write barrier, it is caller's
   1763   // reponsibility to ensure that *v* can be collected without WB here.
   1764   inline void InitializeBody(int object_size, Object* value);
   1765 
   1766   // Check whether this object references another object
   1767   bool ReferencesObject(Object* obj);
   1768 
   1769   // Casting.
   1770   static inline JSObject* cast(Object* obj);
   1771 
   1772   // Disalow further properties to be added to the object.
   1773   MUST_USE_RESULT MaybeObject* PreventExtensions();
   1774 
   1775 
   1776   // Dispatched behavior.
   1777   void JSObjectShortPrint(StringStream* accumulator);
   1778 #ifdef OBJECT_PRINT
   1779   inline void JSObjectPrint() {
   1780     JSObjectPrint(stdout);
   1781   }
   1782   void JSObjectPrint(FILE* out);
   1783 #endif
   1784 #ifdef DEBUG
   1785   void JSObjectVerify();
   1786 #endif
   1787 #ifdef OBJECT_PRINT
   1788   inline void PrintProperties() {
   1789     PrintProperties(stdout);
   1790   }
   1791   void PrintProperties(FILE* out);
   1792 
   1793   inline void PrintElements() {
   1794     PrintElements(stdout);
   1795   }
   1796   void PrintElements(FILE* out);
   1797 #endif
   1798 
   1799 #ifdef DEBUG
   1800   // Structure for collecting spill information about JSObjects.
   1801   class SpillInformation {
   1802    public:
   1803     void Clear();
   1804     void Print();
   1805     int number_of_objects_;
   1806     int number_of_objects_with_fast_properties_;
   1807     int number_of_objects_with_fast_elements_;
   1808     int number_of_fast_used_fields_;
   1809     int number_of_fast_unused_fields_;
   1810     int number_of_slow_used_properties_;
   1811     int number_of_slow_unused_properties_;
   1812     int number_of_fast_used_elements_;
   1813     int number_of_fast_unused_elements_;
   1814     int number_of_slow_used_elements_;
   1815     int number_of_slow_unused_elements_;
   1816   };
   1817 
   1818   void IncrementSpillStatistics(SpillInformation* info);
   1819 #endif
   1820   Object* SlowReverseLookup(Object* value);
   1821 
   1822   // Maximal number of fast properties for the JSObject. Used to
   1823   // restrict the number of map transitions to avoid an explosion in
   1824   // the number of maps for objects used as dictionaries.
   1825   inline int MaxFastProperties();
   1826 
   1827   // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
   1828   // Also maximal value of JSArray's length property.
   1829   static const uint32_t kMaxElementCount = 0xffffffffu;
   1830 
   1831   static const uint32_t kMaxGap = 1024;
   1832   static const int kMaxFastElementsLength = 5000;
   1833   static const int kInitialMaxFastElementArray = 100000;
   1834   static const int kMaxFastProperties = 12;
   1835   static const int kMaxInstanceSize = 255 * kPointerSize;
   1836   // When extending the backing storage for property values, we increase
   1837   // its size by more than the 1 entry necessary, so sequentially adding fields
   1838   // to the same object requires fewer allocations and copies.
   1839   static const int kFieldsAdded = 3;
   1840 
   1841   // Layout description.
   1842   static const int kPropertiesOffset = HeapObject::kHeaderSize;
   1843   static const int kElementsOffset = kPropertiesOffset + kPointerSize;
   1844   static const int kHeaderSize = kElementsOffset + kPointerSize;
   1845 
   1846   STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
   1847 
   1848   class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
   1849    public:
   1850     static inline int SizeOf(Map* map, HeapObject* object);
   1851   };
   1852 
   1853  private:
   1854   MUST_USE_RESULT MaybeObject* GetElementWithCallback(Object* receiver,
   1855                                                       Object* structure,
   1856                                                       uint32_t index,
   1857                                                       Object* holder);
   1858   MaybeObject* SetElementWithCallback(Object* structure,
   1859                                       uint32_t index,
   1860                                       Object* value,
   1861                                       JSObject* holder);
   1862   MUST_USE_RESULT MaybeObject* SetElementWithInterceptor(
   1863       uint32_t index,
   1864       Object* value,
   1865       StrictModeFlag strict_mode,
   1866       bool check_prototype);
   1867   MUST_USE_RESULT MaybeObject* SetElementWithoutInterceptor(
   1868       uint32_t index,
   1869       Object* value,
   1870       StrictModeFlag strict_mode,
   1871       bool check_prototype);
   1872 
   1873   MaybeObject* GetElementPostInterceptor(Object* receiver, uint32_t index);
   1874 
   1875   MUST_USE_RESULT MaybeObject* DeletePropertyPostInterceptor(String* name,
   1876                                                              DeleteMode mode);
   1877   MUST_USE_RESULT MaybeObject* DeletePropertyWithInterceptor(String* name);
   1878 
   1879   MUST_USE_RESULT MaybeObject* DeleteElementPostInterceptor(uint32_t index,
   1880                                                             DeleteMode mode);
   1881   MUST_USE_RESULT MaybeObject* DeleteElementWithInterceptor(uint32_t index);
   1882 
   1883   PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
   1884                                                          String* name,
   1885                                                          bool continue_search);
   1886   PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
   1887                                                          String* name,
   1888                                                          bool continue_search);
   1889   PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
   1890       Object* receiver,
   1891       LookupResult* result,
   1892       String* name,
   1893       bool continue_search);
   1894   PropertyAttributes GetPropertyAttribute(JSObject* receiver,
   1895                                           LookupResult* result,
   1896                                           String* name,
   1897                                           bool continue_search);
   1898 
   1899   // Returns true if most of the elements backing storage is used.
   1900   bool HasDenseElements();
   1901 
   1902   bool CanSetCallback(String* name);
   1903   MUST_USE_RESULT MaybeObject* SetElementCallback(
   1904       uint32_t index,
   1905       Object* structure,
   1906       PropertyAttributes attributes);
   1907   MUST_USE_RESULT MaybeObject* SetPropertyCallback(
   1908       String* name,
   1909       Object* structure,
   1910       PropertyAttributes attributes);
   1911   MUST_USE_RESULT MaybeObject* DefineGetterSetter(
   1912       String* name,
   1913       PropertyAttributes attributes);
   1914 
   1915   void LookupInDescriptor(String* name, LookupResult* result);
   1916 
   1917   DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
   1918 };
   1919 
   1920 
   1921 // FixedArray describes fixed-sized arrays with element type Object*.
   1922 class FixedArray: public HeapObject {
   1923  public:
   1924   // [length]: length of the array.
   1925   inline int length();
   1926   inline void set_length(int value);
   1927 
   1928   // Setter and getter for elements.
   1929   inline Object* get(int index);
   1930   // Setter that uses write barrier.
   1931   inline void set(int index, Object* value);
   1932 
   1933   // Setter that doesn't need write barrier).
   1934   inline void set(int index, Smi* value);
   1935   // Setter with explicit barrier mode.
   1936   inline void set(int index, Object* value, WriteBarrierMode mode);
   1937 
   1938   // Setters for frequently used oddballs located in old space.
   1939   inline void set_undefined(int index);
   1940   // TODO(isolates): duplicate.
   1941   inline void set_undefined(Heap* heap, int index);
   1942   inline void set_null(int index);
   1943   // TODO(isolates): duplicate.
   1944   inline void set_null(Heap* heap, int index);
   1945   inline void set_the_hole(int index);
   1946 
   1947   // Setters with less debug checks for the GC to use.
   1948   inline void set_unchecked(int index, Smi* value);
   1949   inline void set_null_unchecked(Heap* heap, int index);
   1950   inline void set_unchecked(Heap* heap, int index, Object* value,
   1951                             WriteBarrierMode mode);
   1952 
   1953   // Gives access to raw memory which stores the array's data.
   1954   inline Object** data_start();
   1955 
   1956   // Copy operations.
   1957   MUST_USE_RESULT inline MaybeObject* Copy();
   1958   MUST_USE_RESULT MaybeObject* CopySize(int new_length);
   1959 
   1960   // Add the elements of a JSArray to this FixedArray.
   1961   MUST_USE_RESULT MaybeObject* AddKeysFromJSArray(JSArray* array);
   1962 
   1963   // Compute the union of this and other.
   1964   MUST_USE_RESULT MaybeObject* UnionOfKeys(FixedArray* other);
   1965 
   1966   // Copy a sub array from the receiver to dest.
   1967   void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
   1968 
   1969   // Garbage collection support.
   1970   static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
   1971 
   1972   // Code Generation support.
   1973   static int OffsetOfElementAt(int index) { return SizeFor(index); }
   1974 
   1975   // Casting.
   1976   static inline FixedArray* cast(Object* obj);
   1977 
   1978   // Layout description.
   1979   // Length is smi tagged when it is stored.
   1980   static const int kLengthOffset = HeapObject::kHeaderSize;
   1981   static const int kHeaderSize = kLengthOffset + kPointerSize;
   1982 
   1983   // Maximal allowed size, in bytes, of a single FixedArray.
   1984   // Prevents overflowing size computations, as well as extreme memory
   1985   // consumption.
   1986   static const int kMaxSize = 512 * MB;
   1987   // Maximally allowed length of a FixedArray.
   1988   static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
   1989 
   1990   // Dispatched behavior.
   1991 #ifdef OBJECT_PRINT
   1992   inline void FixedArrayPrint() {
   1993     FixedArrayPrint(stdout);
   1994   }
   1995   void FixedArrayPrint(FILE* out);
   1996 #endif
   1997 #ifdef DEBUG
   1998   void FixedArrayVerify();
   1999   // Checks if two FixedArrays have identical contents.
   2000   bool IsEqualTo(FixedArray* other);
   2001 #endif
   2002 
   2003   // Swap two elements in a pair of arrays.  If this array and the
   2004   // numbers array are the same object, the elements are only swapped
   2005   // once.
   2006   void SwapPairs(FixedArray* numbers, int i, int j);
   2007 
   2008   // Sort prefix of this array and the numbers array as pairs wrt. the
   2009   // numbers.  If the numbers array and the this array are the same
   2010   // object, the prefix of this array is sorted.
   2011   void SortPairs(FixedArray* numbers, uint32_t len);
   2012 
   2013   class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
   2014    public:
   2015     static inline int SizeOf(Map* map, HeapObject* object) {
   2016       return SizeFor(reinterpret_cast<FixedArray*>(object)->length());
   2017     }
   2018   };
   2019 
   2020  protected:
   2021   // Set operation on FixedArray without using write barriers. Can
   2022   // only be used for storing old space objects or smis.
   2023   static inline void fast_set(FixedArray* array, int index, Object* value);
   2024 
   2025  private:
   2026   DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
   2027 };
   2028 
   2029 
   2030 // DescriptorArrays are fixed arrays used to hold instance descriptors.
   2031 // The format of the these objects is:
   2032 //   [0]: point to a fixed array with (value, detail) pairs.
   2033 //   [1]: next enumeration index (Smi), or pointer to small fixed array:
   2034 //          [0]: next enumeration index (Smi)
   2035 //          [1]: pointer to fixed array with enum cache
   2036 //   [2]: first key
   2037 //   [length() - 1]: last key
   2038 //
   2039 class DescriptorArray: public FixedArray {
   2040  public:
   2041   // Is this the singleton empty_descriptor_array?
   2042   inline bool IsEmpty();
   2043 
   2044   // Returns the number of descriptors in the array.
   2045   int number_of_descriptors() {
   2046     ASSERT(length() > kFirstIndex || IsEmpty());
   2047     int len = length();
   2048     return len <= kFirstIndex ? 0 : len - kFirstIndex;
   2049   }
   2050 
   2051   int NextEnumerationIndex() {
   2052     if (IsEmpty()) return PropertyDetails::kInitialIndex;
   2053     Object* obj = get(kEnumerationIndexIndex);
   2054     if (obj->IsSmi()) {
   2055       return Smi::cast(obj)->value();
   2056     } else {
   2057       Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
   2058       return Smi::cast(index)->value();
   2059     }
   2060   }
   2061 
   2062   // Set next enumeration index and flush any enum cache.
   2063   void SetNextEnumerationIndex(int value) {
   2064     if (!IsEmpty()) {
   2065       fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
   2066     }
   2067   }
   2068   bool HasEnumCache() {
   2069     return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
   2070   }
   2071 
   2072   Object* GetEnumCache() {
   2073     ASSERT(HasEnumCache());
   2074     FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
   2075     return bridge->get(kEnumCacheBridgeCacheIndex);
   2076   }
   2077 
   2078   // Initialize or change the enum cache,
   2079   // using the supplied storage for the small "bridge".
   2080   void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
   2081 
   2082   // Accessors for fetching instance descriptor at descriptor number.
   2083   inline String* GetKey(int descriptor_number);
   2084   inline Object* GetValue(int descriptor_number);
   2085   inline Smi* GetDetails(int descriptor_number);
   2086   inline PropertyType GetType(int descriptor_number);
   2087   inline int GetFieldIndex(int descriptor_number);
   2088   inline JSFunction* GetConstantFunction(int descriptor_number);
   2089   inline Object* GetCallbacksObject(int descriptor_number);
   2090   inline AccessorDescriptor* GetCallbacks(int descriptor_number);
   2091   inline bool IsProperty(int descriptor_number);
   2092   inline bool IsTransition(int descriptor_number);
   2093   inline bool IsNullDescriptor(int descriptor_number);
   2094   inline bool IsDontEnum(int descriptor_number);
   2095 
   2096   // Accessor for complete descriptor.
   2097   inline void Get(int descriptor_number, Descriptor* desc);
   2098   inline void Set(int descriptor_number, Descriptor* desc);
   2099 
   2100   // Transfer complete descriptor from another descriptor array to
   2101   // this one.
   2102   inline void CopyFrom(int index, DescriptorArray* src, int src_index);
   2103 
   2104   // Copy the descriptor array, insert a new descriptor and optionally
   2105   // remove map transitions.  If the descriptor is already present, it is
   2106   // replaced.  If a replaced descriptor is a real property (not a transition
   2107   // or null), its enumeration index is kept as is.
   2108   // If adding a real property, map transitions must be removed.  If adding
   2109   // a transition, they must not be removed.  All null descriptors are removed.
   2110   MUST_USE_RESULT MaybeObject* CopyInsert(Descriptor* descriptor,
   2111                                           TransitionFlag transition_flag);
   2112 
   2113   // Remove all transitions.  Return  a copy of the array with all transitions
   2114   // removed, or a Failure object if the new array could not be allocated.
   2115   MUST_USE_RESULT MaybeObject* RemoveTransitions();
   2116 
   2117   // Sort the instance descriptors by the hash codes of their keys.
   2118   // Does not check for duplicates.
   2119   void SortUnchecked();
   2120 
   2121   // Sort the instance descriptors by the hash codes of their keys.
   2122   // Checks the result for duplicates.
   2123   void Sort();
   2124 
   2125   // Search the instance descriptors for given name.
   2126   inline int Search(String* name);
   2127 
   2128   // As the above, but uses DescriptorLookupCache and updates it when
   2129   // necessary.
   2130   inline int SearchWithCache(String* name);
   2131 
   2132   // Tells whether the name is present int the array.
   2133   bool Contains(String* name) { return kNotFound != Search(name); }
   2134 
   2135   // Perform a binary search in the instance descriptors represented
   2136   // by this fixed array.  low and high are descriptor indices.  If there
   2137   // are three instance descriptors in this array it should be called
   2138   // with low=0 and high=2.
   2139   int BinarySearch(String* name, int low, int high);
   2140 
   2141   // Perform a linear search in the instance descriptors represented
   2142   // by this fixed array.  len is the number of descriptor indices that are
   2143   // valid.  Does not require the descriptors to be sorted.
   2144   int LinearSearch(String* name, int len);
   2145 
   2146   // Allocates a DescriptorArray, but returns the singleton
   2147   // empty descriptor array object if number_of_descriptors is 0.
   2148   MUST_USE_RESULT static MaybeObject* Allocate(int number_of_descriptors);
   2149 
   2150   // Casting.
   2151   static inline DescriptorArray* cast(Object* obj);
   2152 
   2153   // Constant for denoting key was not found.
   2154   static const int kNotFound = -1;
   2155 
   2156   static const int kContentArrayIndex = 0;
   2157   static const int kEnumerationIndexIndex = 1;
   2158   static const int kFirstIndex = 2;
   2159 
   2160   // The length of the "bridge" to the enum cache.
   2161   static const int kEnumCacheBridgeLength = 2;
   2162   static const int kEnumCacheBridgeEnumIndex = 0;
   2163   static const int kEnumCacheBridgeCacheIndex = 1;
   2164 
   2165   // Layout description.
   2166   static const int kContentArrayOffset = FixedArray::kHeaderSize;
   2167   static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
   2168   static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
   2169 
   2170   // Layout description for the bridge array.
   2171   static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
   2172   static const int kEnumCacheBridgeCacheOffset =
   2173     kEnumCacheBridgeEnumOffset + kPointerSize;
   2174 
   2175 #ifdef OBJECT_PRINT
   2176   // Print all the descriptors.
   2177   inline void PrintDescriptors() {
   2178     PrintDescriptors(stdout);
   2179   }
   2180   void PrintDescriptors(FILE* out);
   2181 #endif
   2182 
   2183 #ifdef DEBUG
   2184   // Is the descriptor array sorted and without duplicates?
   2185   bool IsSortedNoDuplicates();
   2186 
   2187   // Are two DescriptorArrays equal?
   2188   bool IsEqualTo(DescriptorArray* other);
   2189 #endif
   2190 
   2191   // The maximum number of descriptors we want in a descriptor array (should
   2192   // fit in a page).
   2193   static const int kMaxNumberOfDescriptors = 1024 + 512;
   2194 
   2195  private:
   2196   // Conversion from descriptor number to array indices.
   2197   static int ToKeyIndex(int descriptor_number) {
   2198     return descriptor_number+kFirstIndex;
   2199   }
   2200 
   2201   static int ToDetailsIndex(int descriptor_number) {
   2202     return (descriptor_number << 1) + 1;
   2203   }
   2204 
   2205   static int ToValueIndex(int descriptor_number) {
   2206     return descriptor_number << 1;
   2207   }
   2208 
   2209   bool is_null_descriptor(int descriptor_number) {
   2210     return PropertyDetails(GetDetails(descriptor_number)).type() ==
   2211         NULL_DESCRIPTOR;
   2212   }
   2213   // Swap operation on FixedArray without using write barriers.
   2214   static inline void fast_swap(FixedArray* array, int first, int second);
   2215 
   2216   // Swap descriptor first and second.
   2217   inline void Swap(int first, int second);
   2218 
   2219   FixedArray* GetContentArray() {
   2220     return FixedArray::cast(get(kContentArrayIndex));
   2221   }
   2222   DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
   2223 };
   2224 
   2225 
   2226 // HashTable is a subclass of FixedArray that implements a hash table
   2227 // that uses open addressing and quadratic probing.
   2228 //
   2229 // In order for the quadratic probing to work, elements that have not
   2230 // yet been used and elements that have been deleted are
   2231 // distinguished.  Probing continues when deleted elements are
   2232 // encountered and stops when unused elements are encountered.
   2233 //
   2234 // - Elements with key == undefined have not been used yet.
   2235 // - Elements with key == null have been deleted.
   2236 //
   2237 // The hash table class is parameterized with a Shape and a Key.
   2238 // Shape must be a class with the following interface:
   2239 //   class ExampleShape {
   2240 //    public:
   2241 //      // Tells whether key matches other.
   2242 //     static bool IsMatch(Key key, Object* other);
   2243 //     // Returns the hash value for key.
   2244 //     static uint32_t Hash(Key key);
   2245 //     // Returns the hash value for object.
   2246 //     static uint32_t HashForObject(Key key, Object* object);
   2247 //     // Convert key to an object.
   2248 //     static inline Object* AsObject(Key key);
   2249 //     // The prefix size indicates number of elements in the beginning
   2250 //     // of the backing storage.
   2251 //     static const int kPrefixSize = ..;
   2252 //     // The Element size indicates number of elements per entry.
   2253 //     static const int kEntrySize = ..;
   2254 //   };
   2255 // The prefix size indicates an amount of memory in the
   2256 // beginning of the backing storage that can be used for non-element
   2257 // information by subclasses.
   2258 
   2259 template<typename Shape, typename Key>
   2260 class HashTable: public FixedArray {
   2261  public:
   2262   // Returns the number of elements in the hash table.
   2263   int NumberOfElements() {
   2264     return Smi::cast(get(kNumberOfElementsIndex))->value();
   2265   }
   2266 
   2267   // Returns the number of deleted elements in the hash table.
   2268   int NumberOfDeletedElements() {
   2269     return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
   2270   }
   2271 
   2272   // Returns the capacity of the hash table.
   2273   int Capacity() {
   2274     return Smi::cast(get(kCapacityIndex))->value();
   2275   }
   2276 
   2277   // ElementAdded should be called whenever an element is added to a
   2278   // hash table.
   2279   void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
   2280 
   2281   // ElementRemoved should be called whenever an element is removed from
   2282   // a hash table.
   2283   void ElementRemoved() {
   2284     SetNumberOfElements(NumberOfElements() - 1);
   2285     SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
   2286   }
   2287   void ElementsRemoved(int n) {
   2288     SetNumberOfElements(NumberOfElements() - n);
   2289     SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
   2290   }
   2291 
   2292   // Returns a new HashTable object. Might return Failure.
   2293   MUST_USE_RESULT static MaybeObject* Allocate(
   2294       int at_least_space_for,
   2295       PretenureFlag pretenure = NOT_TENURED);
   2296 
   2297   // Returns the key at entry.
   2298   Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
   2299 
   2300   // Tells whether k is a real key.  Null and undefined are not allowed
   2301   // as keys and can be used to indicate missing or deleted elements.
   2302   bool IsKey(Object* k) {
   2303     return !k->IsNull() && !k->IsUndefined();
   2304   }
   2305 
   2306   // Garbage collection support.
   2307   void IteratePrefix(ObjectVisitor* visitor);
   2308   void IterateElements(ObjectVisitor* visitor);
   2309 
   2310   // Casting.
   2311   static inline HashTable* cast(Object* obj);
   2312 
   2313   // Compute the probe offset (quadratic probing).
   2314   INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
   2315     return (n + n * n) >> 1;
   2316   }
   2317 
   2318   static const int kNumberOfElementsIndex = 0;
   2319   static const int kNumberOfDeletedElementsIndex = 1;
   2320   static const int kCapacityIndex = 2;
   2321   static const int kPrefixStartIndex = 3;
   2322   static const int kElementsStartIndex =
   2323       kPrefixStartIndex + Shape::kPrefixSize;
   2324   static const int kEntrySize = Shape::kEntrySize;
   2325   static const int kElementsStartOffset =
   2326       kHeaderSize + kElementsStartIndex * kPointerSize;
   2327   static const int kCapacityOffset =
   2328       kHeaderSize + kCapacityIndex * kPointerSize;
   2329 
   2330   // Constant used for denoting a absent entry.
   2331   static const int kNotFound = -1;
   2332 
   2333   // Maximal capacity of HashTable. Based on maximal length of underlying
   2334   // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
   2335   // cannot overflow.
   2336   static const int kMaxCapacity =
   2337       (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
   2338 
   2339   // Find entry for key otherwise return kNotFound.
   2340   inline int FindEntry(Key key);
   2341   int FindEntry(Isolate* isolate, Key key);
   2342 
   2343  protected:
   2344 
   2345   // Find the entry at which to insert element with the given key that
   2346   // has the given hash value.
   2347   uint32_t FindInsertionEntry(uint32_t hash);
   2348 
   2349   // Returns the index for an entry (of the key)
   2350   static inline int EntryToIndex(int entry) {
   2351     return (entry * kEntrySize) + kElementsStartIndex;
   2352   }
   2353 
   2354   // Update the number of elements in the hash table.
   2355   void SetNumberOfElements(int nof) {
   2356     fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
   2357   }
   2358 
   2359   // Update the number of deleted elements in the hash table.
   2360   void SetNumberOfDeletedElements(int nod) {
   2361     fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
   2362   }
   2363 
   2364   // Sets the capacity of the hash table.
   2365   void SetCapacity(int capacity) {
   2366     // To scale a computed hash code to fit within the hash table, we
   2367     // use bit-wise AND with a mask, so the capacity must be positive
   2368     // and non-zero.
   2369     ASSERT(capacity > 0);
   2370     ASSERT(capacity <= kMaxCapacity);
   2371     fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
   2372   }
   2373 
   2374 
   2375   // Returns probe entry.
   2376   static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
   2377     ASSERT(IsPowerOf2(size));
   2378     return (hash + GetProbeOffset(number)) & (size - 1);
   2379   }
   2380 
   2381   static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
   2382     return hash & (size - 1);
   2383   }
   2384 
   2385   static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
   2386     return (last + number) & (size - 1);
   2387   }
   2388 
   2389   // Ensure enough space for n additional elements.
   2390   MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
   2391 };
   2392 
   2393 
   2394 
   2395 // HashTableKey is an abstract superclass for virtual key behavior.
   2396 class HashTableKey {
   2397  public:
   2398   // Returns whether the other object matches this key.
   2399   virtual bool IsMatch(Object* other) = 0;
   2400   // Returns the hash value for this key.
   2401   virtual uint32_t Hash() = 0;
   2402   // Returns the hash value for object.
   2403   virtual uint32_t HashForObject(Object* key) = 0;
   2404   // Returns the key object for storing into the hash table.
   2405   // If allocations fails a failure object is returned.
   2406   MUST_USE_RESULT virtual MaybeObject* AsObject() = 0;
   2407   // Required.
   2408   virtual ~HashTableKey() {}
   2409 };
   2410 
   2411 class SymbolTableShape {
   2412  public:
   2413   static inline bool IsMatch(HashTableKey* key, Object* value) {
   2414     return key->IsMatch(value);
   2415   }
   2416   static inline uint32_t Hash(HashTableKey* key) {
   2417     return key->Hash();
   2418   }
   2419   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
   2420     return key->HashForObject(object);
   2421   }
   2422   MUST_USE_RESULT static inline MaybeObject* AsObject(HashTableKey* key) {
   2423     return key->AsObject();
   2424   }
   2425 
   2426   static const int kPrefixSize = 0;
   2427   static const int kEntrySize = 1;
   2428 };
   2429 
   2430 // SymbolTable.
   2431 //
   2432 // No special elements in the prefix and the element size is 1
   2433 // because only the symbol itself (the key) needs to be stored.
   2434 class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
   2435  public:
   2436   // Find symbol in the symbol table.  If it is not there yet, it is
   2437   // added.  The return value is the symbol table which might have
   2438   // been enlarged.  If the return value is not a failure, the symbol
   2439   // pointer *s is set to the symbol found.
   2440   MUST_USE_RESULT MaybeObject* LookupSymbol(Vector<const char> str, Object** s);
   2441   MUST_USE_RESULT MaybeObject* LookupAsciiSymbol(Vector<const char> str,
   2442                                                  Object** s);
   2443   MUST_USE_RESULT MaybeObject* LookupTwoByteSymbol(Vector<const uc16> str,
   2444                                                    Object** s);
   2445   MUST_USE_RESULT MaybeObject* LookupString(String* key, Object** s);
   2446 
   2447   // Looks up a symbol that is equal to the given string and returns
   2448   // true if it is found, assigning the symbol to the given output
   2449   // parameter.
   2450   bool LookupSymbolIfExists(String* str, String** symbol);
   2451   bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
   2452 
   2453   // Casting.
   2454   static inline SymbolTable* cast(Object* obj);
   2455 
   2456  private:
   2457   MUST_USE_RESULT MaybeObject* LookupKey(HashTableKey* key, Object** s);
   2458 
   2459   DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
   2460 };
   2461 
   2462 
   2463 class MapCacheShape {
   2464  public:
   2465   static inline bool IsMatch(HashTableKey* key, Object* value) {
   2466     return key->IsMatch(value);
   2467   }
   2468   static inline uint32_t Hash(HashTableKey* key) {
   2469     return key->Hash();
   2470   }
   2471 
   2472   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
   2473     return key->HashForObject(object);
   2474   }
   2475 
   2476   MUST_USE_RESULT static inline MaybeObject* AsObject(HashTableKey* key) {
   2477     return key->AsObject();
   2478   }
   2479 
   2480   static const int kPrefixSize = 0;
   2481   static const int kEntrySize = 2;
   2482 };
   2483 
   2484 
   2485 // MapCache.
   2486 //
   2487 // Maps keys that are a fixed array of symbols to a map.
   2488 // Used for canonicalize maps for object literals.
   2489 class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
   2490  public:
   2491   // Find cached value for a string key, otherwise return null.
   2492   Object* Lookup(FixedArray* key);
   2493   MUST_USE_RESULT MaybeObject* Put(FixedArray* key, Map* value);
   2494   static inline MapCache* cast(Object* obj);
   2495 
   2496  private:
   2497   DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
   2498 };
   2499 
   2500 
   2501 template <typename Shape, typename Key>
   2502 class Dictionary: public HashTable<Shape, Key> {
   2503  public:
   2504 
   2505   static inline Dictionary<Shape, Key>* cast(Object* obj) {
   2506     return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
   2507   }
   2508 
   2509   // Returns the value at entry.
   2510   Object* ValueAt(int entry) {
   2511     return this->get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
   2512   }
   2513 
   2514   // Set the value for entry.
   2515   // Returns false if the put wasn't performed due to property being read only.
   2516   // Returns true on successful put.
   2517   bool ValueAtPut(int entry, Object* value) {
   2518     // Check that this value can actually be written.
   2519     PropertyDetails details = DetailsAt(entry);
   2520     // If a value has not been initilized we allow writing to it even if
   2521     // it is read only (a declared const that has not been initialized).
   2522     if (details.IsReadOnly() && !ValueAt(entry)->IsTheHole()) {
   2523       return false;
   2524     }
   2525     this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 1, value);
   2526     return true;
   2527   }
   2528 
   2529   // Returns the property details for the property at entry.
   2530   PropertyDetails DetailsAt(int entry) {
   2531     ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
   2532     return PropertyDetails(
   2533         Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
   2534   }
   2535 
   2536   // Set the details for entry.
   2537   void DetailsAtPut(int entry, PropertyDetails value) {
   2538     this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
   2539   }
   2540 
   2541   // Sorting support
   2542   void CopyValuesTo(FixedArray* elements);
   2543 
   2544   // Delete a property from the dictionary.
   2545   Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
   2546 
   2547   // Returns the number of elements in the dictionary filtering out properties
   2548   // with the specified attributes.
   2549   int NumberOfElementsFilterAttributes(PropertyAttributes filter);
   2550 
   2551   // Returns the number of enumerable elements in the dictionary.
   2552   int NumberOfEnumElements();
   2553 
   2554   // Copies keys to preallocated fixed array.
   2555   void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
   2556   // Fill in details for properties into storage.
   2557   void CopyKeysTo(FixedArray* storage, int index);
   2558 
   2559   // Accessors for next enumeration index.
   2560   void SetNextEnumerationIndex(int index) {
   2561     this->fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
   2562   }
   2563 
   2564   int NextEnumerationIndex() {
   2565     return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
   2566   }
   2567 
   2568   // Returns a new array for dictionary usage. Might return Failure.
   2569   MUST_USE_RESULT static MaybeObject* Allocate(int at_least_space_for);
   2570 
   2571   // Ensure enough space for n additional elements.
   2572   MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
   2573 
   2574 #ifdef OBJECT_PRINT
   2575   inline void Print() {
   2576     Print(stdout);
   2577   }
   2578   void Print(FILE* out);
   2579 #endif
   2580   // Returns the key (slow).
   2581   Object* SlowReverseLookup(Object* value);
   2582 
   2583   // Sets the entry to (key, value) pair.
   2584   inline void SetEntry(int entry,
   2585                        Object* key,
   2586                        Object* value);
   2587   inline void SetEntry(int entry,
   2588                        Object* key,
   2589                        Object* value,
   2590                        PropertyDetails details);
   2591 
   2592   MUST_USE_RESULT MaybeObject* Add(Key key,
   2593                                    Object* value,
   2594                                    PropertyDetails details);
   2595 
   2596  protected:
   2597   // Generic at put operation.
   2598   MUST_USE_RESULT MaybeObject* AtPut(Key key, Object* value);
   2599 
   2600   // Add entry to dictionary.
   2601   MUST_USE_RESULT MaybeObject* AddEntry(Key key,
   2602                                         Object* value,
   2603                                         PropertyDetails details,
   2604                                         uint32_t hash);
   2605 
   2606   // Generate new enumeration indices to avoid enumeration index overflow.
   2607   MUST_USE_RESULT MaybeObject* GenerateNewEnumerationIndices();
   2608   static const int kMaxNumberKeyIndex =
   2609       HashTable<Shape, Key>::kPrefixStartIndex;
   2610   static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
   2611 };
   2612 
   2613 
   2614 class StringDictionaryShape {
   2615  public:
   2616   static inline bool IsMatch(String* key, Object* other);
   2617   static inline uint32_t Hash(String* key);
   2618   static inline uint32_t HashForObject(String* key, Object* object);
   2619   MUST_USE_RESULT static inline MaybeObject* AsObject(String* key);
   2620   static const int kPrefixSize = 2;
   2621   static const int kEntrySize = 3;
   2622   static const bool kIsEnumerable = true;
   2623 };
   2624 
   2625 
   2626 class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
   2627  public:
   2628   static inline StringDictionary* cast(Object* obj) {
   2629     ASSERT(obj->IsDictionary());
   2630     return reinterpret_cast<StringDictionary*>(obj);
   2631   }
   2632 
   2633   // Copies enumerable keys to preallocated fixed array.
   2634   void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
   2635 
   2636   // For transforming properties of a JSObject.
   2637   MUST_USE_RESULT MaybeObject* TransformPropertiesToFastFor(
   2638       JSObject* obj,
   2639       int unused_property_fields);
   2640 
   2641   // Find entry for key otherwise return kNotFound. Optimzed version of
   2642   // HashTable::FindEntry.
   2643   int FindEntry(String* key);
   2644 };
   2645 
   2646 
   2647 class NumberDictionaryShape {
   2648  public:
   2649   static inline bool IsMatch(uint32_t key, Object* other);
   2650   static inline uint32_t Hash(uint32_t key);
   2651   static inline uint32_t HashForObject(uint32_t key, Object* object);
   2652   MUST_USE_RESULT static inline MaybeObject* AsObject(uint32_t key);
   2653   static const int kPrefixSize = 2;
   2654   static const int kEntrySize = 3;
   2655   static const bool kIsEnumerable = false;
   2656 };
   2657 
   2658 
   2659 class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
   2660  public:
   2661   static NumberDictionary* cast(Object* obj) {
   2662     ASSERT(obj->IsDictionary());
   2663     return reinterpret_cast<NumberDictionary*>(obj);
   2664   }
   2665 
   2666   // Type specific at put (default NONE attributes is used when adding).
   2667   MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
   2668   MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key,
   2669                                               Object* value,
   2670                                               PropertyDetails details);
   2671 
   2672   // Set an existing entry or add a new one if needed.
   2673   MUST_USE_RESULT MaybeObject* Set(uint32_t key,
   2674                                    Object* value,
   2675                                    PropertyDetails details);
   2676 
   2677   void UpdateMaxNumberKey(uint32_t key);
   2678 
   2679   // If slow elements are required we will never go back to fast-case
   2680   // for the elements kept in this dictionary.  We require slow
   2681   // elements if an element has been added at an index larger than
   2682   // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
   2683   // when defining a getter or setter with a number key.
   2684   inline bool requires_slow_elements();
   2685   inline void set_requires_slow_elements();
   2686 
   2687   // Get the value of the max number key that has been added to this
   2688   // dictionary.  max_number_key can only be called if
   2689   // requires_slow_elements returns false.
   2690   inline uint32_t max_number_key();
   2691 
   2692   // Remove all entries were key is a number and (from <= key && key < to).
   2693   void RemoveNumberEntries(uint32_t from, uint32_t to);
   2694 
   2695   // Bit masks.
   2696   static const int kRequiresSlowElementsMask = 1;
   2697   static const int kRequiresSlowElementsTagSize = 1;
   2698   static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
   2699 };
   2700 
   2701 
   2702 // JSFunctionResultCache caches results of some JSFunction invocation.
   2703 // It is a fixed array with fixed structure:
   2704 //   [0]: factory function
   2705 //   [1]: finger index
   2706 //   [2]: current cache size
   2707 //   [3]: dummy field.
   2708 // The rest of array are key/value pairs.
   2709 class JSFunctionResultCache: public FixedArray {
   2710  public:
   2711   static const int kFactoryIndex = 0;
   2712   static const int kFingerIndex = kFactoryIndex + 1;
   2713   static const int kCacheSizeIndex = kFingerIndex + 1;
   2714   static const int kDummyIndex = kCacheSizeIndex + 1;
   2715   static const int kEntriesIndex = kDummyIndex + 1;
   2716 
   2717   static const int kEntrySize = 2;  // key + value
   2718 
   2719   static const int kFactoryOffset = kHeaderSize;
   2720   static const int kFingerOffset = kFactoryOffset + kPointerSize;
   2721   static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
   2722 
   2723   inline void MakeZeroSize();
   2724   inline void Clear();
   2725 
   2726   inline int size();
   2727   inline void set_size(int size);
   2728   inline int finger_index();
   2729   inline void set_finger_index(int finger_index);
   2730 
   2731   // Casting
   2732   static inline JSFunctionResultCache* cast(Object* obj);
   2733 
   2734 #ifdef DEBUG
   2735   void JSFunctionResultCacheVerify();
   2736 #endif
   2737 };
   2738 
   2739 
   2740 // The cache for maps used by normalized (dictionary mode) objects.
   2741 // Such maps do not have property descriptors, so a typical program
   2742 // needs very limited number of distinct normalized maps.
   2743 class NormalizedMapCache: public FixedArray {
   2744  public:
   2745   static const int kEntries = 64;
   2746 
   2747   MUST_USE_RESULT MaybeObject* Get(JSObject* object,
   2748                                    PropertyNormalizationMode mode);
   2749 
   2750   void Clear();
   2751 
   2752   // Casting
   2753   static inline NormalizedMapCache* cast(Object* obj);
   2754 
   2755 #ifdef DEBUG
   2756   void NormalizedMapCacheVerify();
   2757 #endif
   2758 
   2759  private:
   2760   static int Hash(Map* fast);
   2761 
   2762   static bool CheckHit(Map* slow, Map* fast, PropertyNormalizationMode mode);
   2763 };
   2764 
   2765 
   2766 // ByteArray represents fixed sized byte arrays.  Used by the outside world,
   2767 // such as PCRE, and also by the memory allocator and garbage collector to
   2768 // fill in free blocks in the heap.
   2769 class ByteArray: public HeapObject {
   2770  public:
   2771   // [length]: length of the array.
   2772   inline int length();
   2773   inline void set_length(int value);
   2774 
   2775   // Setter and getter.
   2776   inline byte get(int index);
   2777   inline void set(int index, byte value);
   2778 
   2779   // Treat contents as an int array.
   2780   inline int get_int(int index);
   2781 
   2782   static int SizeFor(int length) {
   2783     return OBJECT_POINTER_ALIGN(kHeaderSize + length);
   2784   }
   2785   // We use byte arrays for free blocks in the heap.  Given a desired size in
   2786   // bytes that is a multiple of the word size and big enough to hold a byte
   2787   // array, this function returns the number of elements a byte array should
   2788   // have.
   2789   static int LengthFor(int size_in_bytes) {
   2790     ASSERT(IsAligned(size_in_bytes, kPointerSize));
   2791     ASSERT(size_in_bytes >= kHeaderSize);
   2792     return size_in_bytes - kHeaderSize;
   2793   }
   2794 
   2795   // Returns data start address.
   2796   inline Address GetDataStartAddress();
   2797 
   2798   // Returns a pointer to the ByteArray object for a given data start address.
   2799   static inline ByteArray* FromDataStartAddress(Address address);
   2800 
   2801   // Casting.
   2802   static inline ByteArray* cast(Object* obj);
   2803 
   2804   // Dispatched behavior.
   2805   inline int ByteArraySize() {
   2806     return SizeFor(this->length());
   2807   }
   2808 #ifdef OBJECT_PRINT
   2809   inline void ByteArrayPrint() {
   2810     ByteArrayPrint(stdout);
   2811   }
   2812   void ByteArrayPrint(FILE* out);
   2813 #endif
   2814 #ifdef DEBUG
   2815   void ByteArrayVerify();
   2816 #endif
   2817 
   2818   // Layout description.
   2819   // Length is smi tagged when it is stored.
   2820   static const int kLengthOffset = HeapObject::kHeaderSize;
   2821   static const int kHeaderSize = kLengthOffset + kPointerSize;
   2822 
   2823   static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
   2824 
   2825   // Maximal memory consumption for a single ByteArray.
   2826   static const int kMaxSize = 512 * MB;
   2827   // Maximal length of a single ByteArray.
   2828   static const int kMaxLength = kMaxSize - kHeaderSize;
   2829 
   2830  private:
   2831   DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
   2832 };
   2833 
   2834 
   2835 // An ExternalArray represents a fixed-size array of primitive values
   2836 // which live outside the JavaScript heap. Its subclasses are used to
   2837 // implement the CanvasArray types being defined in the WebGL
   2838 // specification. As of this writing the first public draft is not yet
   2839 // available, but Khronos members can access the draft at:
   2840 //   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
   2841 //
   2842 // The semantics of these arrays differ from CanvasPixelArray.
   2843 // Out-of-range values passed to the setter are converted via a C
   2844 // cast, not clamping. Out-of-range indices cause exceptions to be
   2845 // raised rather than being silently ignored.
   2846 class ExternalArray: public HeapObject {
   2847  public:
   2848   // [length]: length of the array.
   2849   inline int length();
   2850   inline void set_length(int value);
   2851 
   2852   // [external_pointer]: The pointer to the external memory area backing this
   2853   // external array.
   2854   DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.
   2855 
   2856   // Casting.
   2857   static inline ExternalArray* cast(Object* obj);
   2858 
   2859   // Maximal acceptable length for an external array.
   2860   static const int kMaxLength = 0x3fffffff;
   2861 
   2862   // ExternalArray headers are not quadword aligned.
   2863   static const int kLengthOffset = HeapObject::kHeaderSize;
   2864   static const int kExternalPointerOffset =
   2865       POINTER_SIZE_ALIGN(kLengthOffset + kIntSize);
   2866   static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
   2867   static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
   2868 
   2869  private:
   2870   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
   2871 };
   2872 
   2873 
   2874 // A ExternalPixelArray represents a fixed-size byte array with special
   2875 // semantics used for implementing the CanvasPixelArray object. Please see the
   2876 // specification at:
   2877 
   2878 // http://www.whatwg.org/specs/web-apps/current-work/
   2879 //                      multipage/the-canvas-element.html#canvaspixelarray
   2880 // In particular, write access clamps the value written to 0 or 255 if the
   2881 // value written is outside this range.
   2882 class ExternalPixelArray: public ExternalArray {
   2883  public:
   2884   inline uint8_t* external_pixel_pointer();
   2885 
   2886   // Setter and getter.
   2887   inline uint8_t get(int index);
   2888   inline void set(int index, uint8_t value);
   2889 
   2890   // This accessor applies the correct conversion from Smi, HeapNumber and
   2891   // undefined and clamps the converted value between 0 and 255.
   2892   Object* SetValue(uint32_t index, Object* value);
   2893 
   2894   // Casting.
   2895   static inline ExternalPixelArray* cast(Object* obj);
   2896 
   2897 #ifdef OBJECT_PRINT
   2898   inline void ExternalPixelArrayPrint() {
   2899     ExternalPixelArrayPrint(stdout);
   2900   }
   2901   void ExternalPixelArrayPrint(FILE* out);
   2902 #endif
   2903 #ifdef DEBUG
   2904   void ExternalPixelArrayVerify();
   2905 #endif  // DEBUG
   2906 
   2907  private:
   2908   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalPixelArray);
   2909 };
   2910 
   2911 
   2912 class ExternalByteArray: public ExternalArray {
   2913  public:
   2914   // Setter and getter.
   2915   inline int8_t get(int index);
   2916   inline void set(int index, int8_t value);
   2917 
   2918   // This accessor applies the correct conversion from Smi, HeapNumber
   2919   // and undefined.
   2920   MaybeObject* SetValue(uint32_t index, Object* value);
   2921 
   2922   // Casting.
   2923   static inline ExternalByteArray* cast(Object* obj);
   2924 
   2925 #ifdef OBJECT_PRINT
   2926   inline void ExternalByteArrayPrint() {
   2927     ExternalByteArrayPrint(stdout);
   2928   }
   2929   void ExternalByteArrayPrint(FILE* out);
   2930 #endif
   2931 #ifdef DEBUG
   2932   void ExternalByteArrayVerify();
   2933 #endif  // DEBUG
   2934 
   2935  private:
   2936   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
   2937 };
   2938 
   2939 
   2940 class ExternalUnsignedByteArray: public ExternalArray {
   2941  public:
   2942   // Setter and getter.
   2943   inline uint8_t get(int index);
   2944   inline void set(int index, uint8_t value);
   2945 
   2946   // This accessor applies the correct conversion from Smi, HeapNumber
   2947   // and undefined.
   2948   MaybeObject* SetValue(uint32_t index, Object* value);
   2949 
   2950   // Casting.
   2951   static inline ExternalUnsignedByteArray* cast(Object* obj);
   2952 
   2953 #ifdef OBJECT_PRINT
   2954   inline void ExternalUnsignedByteArrayPrint() {
   2955     ExternalUnsignedByteArrayPrint(stdout);
   2956   }
   2957   void ExternalUnsignedByteArrayPrint(FILE* out);
   2958 #endif
   2959 #ifdef DEBUG
   2960   void ExternalUnsignedByteArrayVerify();
   2961 #endif  // DEBUG
   2962 
   2963  private:
   2964   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
   2965 };
   2966 
   2967 
   2968 class ExternalShortArray: public ExternalArray {
   2969  public:
   2970   // Setter and getter.
   2971   inline int16_t get(int index);
   2972   inline void set(int index, int16_t value);
   2973 
   2974   // This accessor applies the correct conversion from Smi, HeapNumber
   2975   // and undefined.
   2976   MaybeObject* SetValue(uint32_t index, Object* value);
   2977 
   2978   // Casting.
   2979   static inline ExternalShortArray* cast(Object* obj);
   2980 
   2981 #ifdef OBJECT_PRINT
   2982   inline void ExternalShortArrayPrint() {
   2983     ExternalShortArrayPrint(stdout);
   2984   }
   2985   void ExternalShortArrayPrint(FILE* out);
   2986 #endif
   2987 #ifdef DEBUG
   2988   void ExternalShortArrayVerify();
   2989 #endif  // DEBUG
   2990 
   2991  private:
   2992   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
   2993 };
   2994 
   2995 
   2996 class ExternalUnsignedShortArray: public ExternalArray {
   2997  public:
   2998   // Setter and getter.
   2999   inline uint16_t get(int index);
   3000   inline void set(int index, uint16_t value);
   3001 
   3002   // This accessor applies the correct conversion from Smi, HeapNumber
   3003   // and undefined.
   3004   MaybeObject* SetValue(uint32_t index, Object* value);
   3005 
   3006   // Casting.
   3007   static inline ExternalUnsignedShortArray* cast(Object* obj);
   3008 
   3009 #ifdef OBJECT_PRINT
   3010   inline void ExternalUnsignedShortArrayPrint() {
   3011     ExternalUnsignedShortArrayPrint(stdout);
   3012   }
   3013   void ExternalUnsignedShortArrayPrint(FILE* out);
   3014 #endif
   3015 #ifdef DEBUG
   3016   void ExternalUnsignedShortArrayVerify();
   3017 #endif  // DEBUG
   3018 
   3019  private:
   3020   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
   3021 };
   3022 
   3023 
   3024 class ExternalIntArray: public ExternalArray {
   3025  public:
   3026   // Setter and getter.
   3027   inline int32_t get(int index);
   3028   inline void set(int index, int32_t value);
   3029 
   3030   // This accessor applies the correct conversion from Smi, HeapNumber
   3031   // and undefined.
   3032   MaybeObject* SetValue(uint32_t index, Object* value);
   3033 
   3034   // Casting.
   3035   static inline ExternalIntArray* cast(Object* obj);
   3036 
   3037 #ifdef OBJECT_PRINT
   3038   inline void ExternalIntArrayPrint() {
   3039     ExternalIntArrayPrint(stdout);
   3040   }
   3041   void ExternalIntArrayPrint(FILE* out);
   3042 #endif
   3043 #ifdef DEBUG
   3044   void ExternalIntArrayVerify();
   3045 #endif  // DEBUG
   3046 
   3047  private:
   3048   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
   3049 };
   3050 
   3051 
   3052 class ExternalUnsignedIntArray: public ExternalArray {
   3053  public:
   3054   // Setter and getter.
   3055   inline uint32_t get(int index);
   3056   inline void set(int index, uint32_t value);
   3057 
   3058   // This accessor applies the correct conversion from Smi, HeapNumber
   3059   // and undefined.
   3060   MaybeObject* SetValue(uint32_t index, Object* value);
   3061 
   3062   // Casting.
   3063   static inline ExternalUnsignedIntArray* cast(Object* obj);
   3064 
   3065 #ifdef OBJECT_PRINT
   3066   inline void ExternalUnsignedIntArrayPrint() {
   3067     ExternalUnsignedIntArrayPrint(stdout);
   3068   }
   3069   void ExternalUnsignedIntArrayPrint(FILE* out);
   3070 #endif
   3071 #ifdef DEBUG
   3072   void ExternalUnsignedIntArrayVerify();
   3073 #endif  // DEBUG
   3074 
   3075  private:
   3076   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
   3077 };
   3078 
   3079 
   3080 class ExternalFloatArray: public ExternalArray {
   3081  public:
   3082   // Setter and getter.
   3083   inline float get(int index);
   3084   inline void set(int index, float value);
   3085 
   3086   // This accessor applies the correct conversion from Smi, HeapNumber
   3087   // and undefined.
   3088   MaybeObject* SetValue(uint32_t index, Object* value);
   3089 
   3090   // Casting.
   3091   static inline ExternalFloatArray* cast(Object* obj);
   3092 
   3093 #ifdef OBJECT_PRINT
   3094   inline void ExternalFloatArrayPrint() {
   3095     ExternalFloatArrayPrint(stdout);
   3096   }
   3097   void ExternalFloatArrayPrint(FILE* out);
   3098 #endif
   3099 #ifdef DEBUG
   3100   void ExternalFloatArrayVerify();
   3101 #endif  // DEBUG
   3102 
   3103  private:
   3104   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
   3105 };
   3106 
   3107 
   3108 // DeoptimizationInputData is a fixed array used to hold the deoptimization
   3109 // data for code generated by the Hydrogen/Lithium compiler.  It also
   3110 // contains information about functions that were inlined.  If N different
   3111 // functions were inlined then first N elements of the literal array will
   3112 // contain these functions.
   3113 //
   3114 // It can be empty.
   3115 class DeoptimizationInputData: public FixedArray {
   3116  public:
   3117   // Layout description.  Indices in the array.
   3118   static const int kTranslationByteArrayIndex = 0;
   3119   static const int kInlinedFunctionCountIndex = 1;
   3120   static const int kLiteralArrayIndex = 2;
   3121   static const int kOsrAstIdIndex = 3;
   3122   static const int kOsrPcOffsetIndex = 4;
   3123   static const int kFirstDeoptEntryIndex = 5;
   3124 
   3125   // Offsets of deopt entry elements relative to the start of the entry.
   3126   static const int kAstIdOffset = 0;
   3127   static const int kTranslationIndexOffset = 1;
   3128   static const int kArgumentsStackHeightOffset = 2;
   3129   static const int kDeoptEntrySize = 3;
   3130 
   3131   // Simple element accessors.
   3132 #define DEFINE_ELEMENT_ACCESSORS(name, type)      \
   3133   type* name() {                                  \
   3134     return type::cast(get(k##name##Index));       \
   3135   }                                               \
   3136   void Set##name(type* value) {                   \
   3137     set(k##name##Index, value);                   \
   3138   }
   3139 
   3140   DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
   3141   DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
   3142   DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
   3143   DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi)
   3144   DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
   3145 
   3146   // Unchecked accessor to be used during GC.
   3147   FixedArray* UncheckedLiteralArray() {
   3148     return reinterpret_cast<FixedArray*>(get(kLiteralArrayIndex));
   3149   }
   3150 
   3151 #undef DEFINE_ELEMENT_ACCESSORS
   3152 
   3153   // Accessors for elements of the ith deoptimization entry.
   3154 #define DEFINE_ENTRY_ACCESSORS(name, type)                       \
   3155   type* name(int i) {                                            \
   3156     return type::cast(get(IndexForEntry(i) + k##name##Offset));  \
   3157   }                                                              \
   3158   void Set##name(int i, type* value) {                           \
   3159     set(IndexForEntry(i) + k##name##Offset, value);              \
   3160   }
   3161 
   3162   DEFINE_ENTRY_ACCESSORS(AstId, Smi)
   3163   DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi)
   3164   DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
   3165 
   3166 #undef DEFINE_ENTRY_ACCESSORS
   3167 
   3168   int DeoptCount() {
   3169     return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
   3170   }
   3171 
   3172   // Allocates a DeoptimizationInputData.
   3173   MUST_USE_RESULT static MaybeObject* Allocate(int deopt_entry_count,
   3174                                                PretenureFlag pretenure);
   3175 
   3176   // Casting.
   3177   static inline DeoptimizationInputData* cast(Object* obj);
   3178 
   3179 #ifdef OBJECT_PRINT
   3180   void DeoptimizationInputDataPrint(FILE* out);
   3181 #endif
   3182 
   3183  private:
   3184   static int IndexForEntry(int i) {
   3185     return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
   3186   }
   3187 
   3188   static int LengthFor(int entry_count) {
   3189     return IndexForEntry(entry_count);
   3190   }
   3191 };
   3192 
   3193 
   3194 // DeoptimizationOutputData is a fixed array used to hold the deoptimization
   3195 // data for code generated by the full compiler.
   3196 // The format of the these objects is
   3197 //   [i * 2]: Ast ID for ith deoptimization.
   3198 //   [i * 2 + 1]: PC and state of ith deoptimization
   3199 class DeoptimizationOutputData: public FixedArray {
   3200  public:
   3201   int DeoptPoints() { return length() / 2; }
   3202   Smi* AstId(int index) { return Smi::cast(get(index * 2)); }
   3203   void SetAstId(int index, Smi* id) { set(index * 2, id); }
   3204   Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); }
   3205   void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); }
   3206 
   3207   static int LengthOfFixedArray(int deopt_points) {
   3208     return deopt_points * 2;
   3209   }
   3210 
   3211   // Allocates a DeoptimizationOutputData.
   3212   MUST_USE_RESULT static MaybeObject* Allocate(int number_of_deopt_points,
   3213                                                PretenureFlag pretenure);
   3214 
   3215   // Casting.
   3216   static inline DeoptimizationOutputData* cast(Object* obj);
   3217 
   3218 #ifdef OBJECT_PRINT
   3219   void DeoptimizationOutputDataPrint(FILE* out);
   3220 #endif
   3221 };
   3222 
   3223 
   3224 class SafepointEntry;
   3225 
   3226 
   3227 // Code describes objects with on-the-fly generated machine code.
   3228 class Code: public HeapObject {
   3229  public:
   3230   // Opaque data type for encapsulating code flags like kind, inline
   3231   // cache state, and arguments count.
   3232   // FLAGS_MIN_VALUE and FLAGS_MAX_VALUE are specified to ensure that
   3233   // enumeration type has correct value range (see Issue 830 for more details).
   3234   enum Flags {
   3235     FLAGS_MIN_VALUE = kMinInt,
   3236     FLAGS_MAX_VALUE = kMaxInt
   3237   };
   3238 
   3239   enum Kind {
   3240     FUNCTION,
   3241     OPTIMIZED_FUNCTION,
   3242     STUB,
   3243     BUILTIN,
   3244     LOAD_IC,
   3245     KEYED_LOAD_IC,
   3246     KEYED_EXTERNAL_ARRAY_LOAD_IC,
   3247     CALL_IC,
   3248     KEYED_CALL_IC,
   3249     STORE_IC,
   3250     KEYED_STORE_IC,
   3251     KEYED_EXTERNAL_ARRAY_STORE_IC,
   3252     TYPE_RECORDING_BINARY_OP_IC,
   3253     COMPARE_IC,
   3254     // No more than 16 kinds. The value currently encoded in four bits in
   3255     // Flags.
   3256 
   3257     // Pseudo-kinds.
   3258     REGEXP = BUILTIN,
   3259     FIRST_IC_KIND = LOAD_IC,
   3260     LAST_IC_KIND = COMPARE_IC
   3261   };
   3262 
   3263   enum {
   3264     NUMBER_OF_KINDS = LAST_IC_KIND + 1
   3265   };
   3266 
   3267   typedef int ExtraICState;
   3268 
   3269   static const ExtraICState kNoExtraICState = 0;
   3270 
   3271 #ifdef ENABLE_DISASSEMBLER
   3272   // Printing
   3273   static const char* Kind2String(Kind kind);
   3274   static const char* ICState2String(InlineCacheState state);
   3275   static const char* PropertyType2String(PropertyType type);
   3276   static void PrintExtraICState(FILE* out, Kind kind, ExtraICState extra);
   3277   inline void Disassemble(const char* name) {
   3278     Disassemble(name, stdout);
   3279   }
   3280   void Disassemble(const char* name, FILE* out);
   3281 #endif  // ENABLE_DISASSEMBLER
   3282 
   3283   // [instruction_size]: Size of the native instructions
   3284   inline int instruction_size();
   3285   inline void set_instruction_size(int value);
   3286 
   3287   // [relocation_info]: Code relocation information
   3288   DECL_ACCESSORS(relocation_info, ByteArray)
   3289   void InvalidateRelocation();
   3290 
   3291   // [deoptimization_data]: Array containing data for deopt.
   3292   DECL_ACCESSORS(deoptimization_data, FixedArray)
   3293 
   3294   // Unchecked accessors to be used during GC.
   3295   inline ByteArray* unchecked_relocation_info();
   3296   inline FixedArray* unchecked_deoptimization_data();
   3297 
   3298   inline int relocation_size();
   3299 
   3300   // [flags]: Various code flags.
   3301   inline Flags flags();
   3302   inline void set_flags(Flags flags);
   3303 
   3304   // [flags]: Access to specific code flags.
   3305   inline Kind kind();
   3306   inline InlineCacheState ic_state();  // Only valid for IC stubs.
   3307   inline ExtraICState extra_ic_state();  // Only valid for IC stubs.
   3308   inline InLoopFlag ic_in_loop();  // Only valid for IC stubs.
   3309   inline PropertyType type();  // Only valid for monomorphic IC stubs.
   3310   inline int arguments_count();  // Only valid for call IC stubs.
   3311 
   3312   // Testers for IC stub kinds.
   3313   inline bool is_inline_cache_stub();
   3314   inline bool is_load_stub() { return kind() == LOAD_IC; }
   3315   inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
   3316   inline bool is_store_stub() { return kind() == STORE_IC; }
   3317   inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
   3318   inline bool is_call_stub() { return kind() == CALL_IC; }
   3319   inline bool is_keyed_call_stub() { return kind() == KEYED_CALL_IC; }
   3320   inline bool is_type_recording_binary_op_stub() {
   3321     return kind() == TYPE_RECORDING_BINARY_OP_IC;
   3322   }
   3323   inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; }
   3324   inline bool is_external_array_load_stub() {
   3325     return kind() == KEYED_EXTERNAL_ARRAY_LOAD_IC;
   3326   }
   3327   inline bool is_external_array_store_stub() {
   3328     return kind() == KEYED_EXTERNAL_ARRAY_STORE_IC;
   3329   }
   3330 
   3331   // [major_key]: For kind STUB or BINARY_OP_IC, the major key.
   3332   inline int major_key();
   3333   inline void set_major_key(int value);
   3334 
   3335   // [optimizable]: For FUNCTION kind, tells if it is optimizable.
   3336   inline bool optimizable();
   3337   inline void set_optimizable(bool value);
   3338 
   3339   // [has_deoptimization_support]: For FUNCTION kind, tells if it has
   3340   // deoptimization support.
   3341   inline bool has_deoptimization_support();
   3342   inline void set_has_deoptimization_support(bool value);
   3343 
   3344   // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
   3345   // how long the function has been marked for OSR and therefore which
   3346   // level of loop nesting we are willing to do on-stack replacement
   3347   // for.
   3348   inline void set_allow_osr_at_loop_nesting_level(int level);
   3349   inline int allow_osr_at_loop_nesting_level();
   3350 
   3351   // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
   3352   // reserved in the code prologue.
   3353   inline unsigned stack_slots();
   3354   inline void set_stack_slots(unsigned slots);
   3355 
   3356   // [safepoint_table_start]: For kind OPTIMIZED_CODE, the offset in
   3357   // the instruction stream where the safepoint table starts.
   3358   inline unsigned safepoint_table_offset();
   3359   inline void set_safepoint_table_offset(unsigned offset);
   3360 
   3361   // [stack_check_table_start]: For kind FUNCTION, the offset in the
   3362   // instruction stream where the stack check table starts.
   3363   inline unsigned stack_check_table_offset();
   3364   inline void set_stack_check_table_offset(unsigned offset);
   3365 
   3366   // [check type]: For kind CALL_IC, tells how to check if the
   3367   // receiver is valid for the given call.
   3368   inline CheckType check_type();
   3369   inline void set_check_type(CheckType value);
   3370 
   3371   // [external array type]: For kind KEYED_EXTERNAL_ARRAY_LOAD_IC and
   3372   // KEYED_EXTERNAL_ARRAY_STORE_IC, identifies the type of external
   3373   // array that the code stub is specialized for.
   3374   inline ExternalArrayType external_array_type();
   3375   inline void set_external_array_type(ExternalArrayType value);
   3376 
   3377   // [type-recording binary op type]: For all TYPE_RECORDING_BINARY_OP_IC.
   3378   inline byte type_recording_binary_op_type();
   3379   inline void set_type_recording_binary_op_type(byte value);
   3380   inline byte type_recording_binary_op_result_type();
   3381   inline void set_type_recording_binary_op_result_type(byte value);
   3382 
   3383   // [compare state]: For kind compare IC stubs, tells what state the
   3384   // stub is in.
   3385   inline byte compare_state();
   3386   inline void set_compare_state(byte value);
   3387 
   3388   // Get the safepoint entry for the given pc.
   3389   SafepointEntry GetSafepointEntry(Address pc);
   3390 
   3391   // Mark this code object as not having a stack check table.  Assumes kind
   3392   // is FUNCTION.
   3393   void SetNoStackCheckTable();
   3394 
   3395   // Find the first map in an IC stub.
   3396   Map* FindFirstMap();
   3397 
   3398   // Flags operations.
   3399   static inline Flags ComputeFlags(
   3400       Kind kind,
   3401       InLoopFlag in_loop = NOT_IN_LOOP,
   3402       InlineCacheState ic_state = UNINITIALIZED,
   3403       ExtraICState extra_ic_state = kNoExtraICState,
   3404       PropertyType type = NORMAL,
   3405       int argc = -1,
   3406       InlineCacheHolderFlag holder = OWN_MAP);
   3407 
   3408   static inline Flags ComputeMonomorphicFlags(
   3409       Kind kind,
   3410       PropertyType type,
   3411       ExtraICState extra_ic_state = kNoExtraICState,
   3412       InlineCacheHolderFlag holder = OWN_MAP,
   3413       InLoopFlag in_loop = NOT_IN_LOOP,
   3414       int argc = -1);
   3415 
   3416   static inline Kind ExtractKindFromFlags(Flags flags);
   3417   static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
   3418   static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
   3419   static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
   3420   static inline PropertyType ExtractTypeFromFlags(Flags flags);
   3421   static inline int ExtractArgumentsCountFromFlags(Flags flags);
   3422   static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
   3423   static inline Flags RemoveTypeFromFlags(Flags flags);
   3424 
   3425   // Convert a target address into a code object.
   3426   static inline Code* GetCodeFromTargetAddress(Address address);
   3427 
   3428   // Convert an entry address into an object.
   3429   static inline Object* GetObjectFromEntryAddress(Address location_of_address);
   3430 
   3431   // Returns the address of the first instruction.
   3432   inline byte* instruction_start();
   3433 
   3434   // Returns the address right after the last instruction.
   3435   inline byte* instruction_end();
   3436 
   3437   // Returns the size of the instructions, padding, and relocation information.
   3438   inline int body_size();
   3439 
   3440   // Returns the address of the first relocation info (read backwards!).
   3441   inline byte* relocation_start();
   3442 
   3443   // Code entry point.
   3444   inline byte* entry();
   3445 
   3446   // Returns true if pc is inside this object's instructions.
   3447   inline bool contains(byte* pc);
   3448 
   3449   // Relocate the code by delta bytes. Called to signal that this code
   3450   // object has been moved by delta bytes.
   3451   void Relocate(intptr_t delta);
   3452 
   3453   // Migrate code described by desc.
   3454   void CopyFrom(const CodeDesc& desc);
   3455 
   3456   // Returns the object size for a given body (used for allocation).
   3457   static int SizeFor(int body_size) {
   3458     ASSERT_SIZE_TAG_ALIGNED(body_size);
   3459     return RoundUp(kHeaderSize + body_size, kCodeAlignment);
   3460   }
   3461 
   3462   // Calculate the size of the code object to report for log events. This takes
   3463   // the layout of the code object into account.
   3464   int ExecutableSize() {
   3465     // Check that the assumptions about the layout of the code object holds.
   3466     ASSERT_EQ(static_cast<int>(instruction_start() - address()),
   3467               Code::kHeaderSize);
   3468     return instruction_size() + Code::kHeaderSize;
   3469   }
   3470 
   3471   // Locating source position.
   3472   int SourcePosition(Address pc);
   3473   int SourceStatementPosition(Address pc);
   3474 
   3475   // Casting.
   3476   static inline Code* cast(Object* obj);
   3477 
   3478   // Dispatched behavior.
   3479   int CodeSize() { return SizeFor(body_size()); }
   3480   inline void CodeIterateBody(ObjectVisitor* v);
   3481 
   3482   template<typename StaticVisitor>
   3483   inline void CodeIterateBody(Heap* heap);
   3484 #ifdef OBJECT_PRINT
   3485   inline void CodePrint() {
   3486     CodePrint(stdout);
   3487   }
   3488   void CodePrint(FILE* out);
   3489 #endif
   3490 #ifdef DEBUG
   3491   void CodeVerify();
   3492 #endif
   3493 
   3494   // Returns the isolate/heap this code object belongs to.
   3495   inline Isolate* isolate();
   3496   inline Heap* heap();
   3497 
   3498   // Max loop nesting marker used to postpose OSR. We don't take loop
   3499   // nesting that is deeper than 5 levels into account.
   3500   static const int kMaxLoopNestingMarker = 6;
   3501 
   3502   // Layout description.
   3503   static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
   3504   static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize;
   3505   static const int kDeoptimizationDataOffset =
   3506       kRelocationInfoOffset + kPointerSize;
   3507   static const int kFlagsOffset = kDeoptimizationDataOffset + kPointerSize;
   3508   static const int kKindSpecificFlagsOffset  = kFlagsOffset + kIntSize;
   3509 
   3510   static const int kKindSpecificFlagsSize = 2 * kIntSize;
   3511 
   3512   static const int kHeaderPaddingStart = kKindSpecificFlagsOffset +
   3513       kKindSpecificFlagsSize;
   3514 
   3515   // Add padding to align the instruction start following right after
   3516   // the Code object header.
   3517   static const int kHeaderSize =
   3518       (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
   3519 
   3520   // Byte offsets within kKindSpecificFlagsOffset.
   3521   static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset;
   3522   static const int kOptimizableOffset = kKindSpecificFlagsOffset;
   3523   static const int kStackSlotsOffset = kKindSpecificFlagsOffset;
   3524   static const int kCheckTypeOffset = kKindSpecificFlagsOffset;
   3525   static const int kExternalArrayTypeOffset = kKindSpecificFlagsOffset;
   3526 
   3527   static const int kCompareStateOffset = kStubMajorKeyOffset + 1;
   3528   static const int kBinaryOpTypeOffset = kStubMajorKeyOffset + 1;
   3529   static const int kHasDeoptimizationSupportOffset = kOptimizableOffset + 1;
   3530 
   3531   static const int kBinaryOpReturnTypeOffset = kBinaryOpTypeOffset + 1;
   3532   static const int kAllowOSRAtLoopNestingLevelOffset =
   3533       kHasDeoptimizationSupportOffset + 1;
   3534 
   3535   static const int kSafepointTableOffsetOffset = kStackSlotsOffset + kIntSize;
   3536   static const int kStackCheckTableOffsetOffset = kStackSlotsOffset + kIntSize;
   3537 
   3538   // Flags layout.
   3539   static const int kFlagsICStateShift        = 0;
   3540   static const int kFlagsICInLoopShift       = 3;
   3541   static const int kFlagsTypeShift           = 4;
   3542   static const int kFlagsKindShift           = 8;
   3543   static const int kFlagsICHolderShift       = 12;
   3544   static const int kFlagsExtraICStateShift   = 13;
   3545   static const int kFlagsArgumentsCountShift = 15;
   3546 
   3547   static const int kFlagsICStateMask        = 0x00000007;  // 00000000111
   3548   static const int kFlagsICInLoopMask       = 0x00000008;  // 00000001000
   3549   static const int kFlagsTypeMask           = 0x000000F0;  // 00001110000
   3550   static const int kFlagsKindMask           = 0x00000F00;  // 11110000000
   3551   static const int kFlagsCacheInPrototypeMapMask = 0x00001000;
   3552   static const int kFlagsExtraICStateMask   = 0x00006000;
   3553   static const int kFlagsArgumentsCountMask = 0xFFFF8000;
   3554 
   3555   static const int kFlagsNotUsedInLookup =
   3556       (kFlagsICInLoopMask | kFlagsTypeMask | kFlagsCacheInPrototypeMapMask);
   3557 
   3558  private:
   3559   DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
   3560 };
   3561 
   3562 
   3563 // All heap objects have a Map that describes their structure.
   3564 //  A Map contains information about:
   3565 //  - Size information about the object
   3566 //  - How to iterate over an object (for garbage collection)
   3567 class Map: public HeapObject {
   3568  public:
   3569   // Instance size.
   3570   // Size in bytes or kVariableSizeSentinel if instances do not have
   3571   // a fixed size.
   3572   inline int instance_size();
   3573   inline void set_instance_size(int value);
   3574 
   3575   // Count of properties allocated in the object.
   3576   inline int inobject_properties();
   3577   inline void set_inobject_properties(int value);
   3578 
   3579   // Count of property fields pre-allocated in the object when first allocated.
   3580   inline int pre_allocated_property_fields();
   3581   inline void set_pre_allocated_property_fields(int value);
   3582 
   3583   // Instance type.
   3584   inline InstanceType instance_type();
   3585   inline void set_instance_type(InstanceType value);
   3586 
   3587   // Tells how many unused property fields are available in the
   3588   // instance (only used for JSObject in fast mode).
   3589   inline int unused_property_fields();
   3590   inline void set_unused_property_fields(int value);
   3591 
   3592   // Bit field.
   3593   inline byte bit_field();
   3594   inline void set_bit_field(byte value);
   3595 
   3596   // Bit field 2.
   3597   inline byte bit_field2();
   3598   inline void set_bit_field2(byte value);
   3599 
   3600   // Tells whether the object in the prototype property will be used
   3601   // for instances created from this function.  If the prototype
   3602   // property is set to a value that is not a JSObject, the prototype
   3603   // property will not be used to create instances of the function.
   3604   // See ECMA-262, 13.2.2.
   3605   inline void set_non_instance_prototype(bool value);
   3606   inline bool has_non_instance_prototype();
   3607 
   3608   // Tells whether function has special prototype property. If not, prototype
   3609   // property will not be created when accessed (will return undefined),
   3610   // and construction from this function will not be allowed.
   3611   inline void set_function_with_prototype(bool value);
   3612   inline bool function_with_prototype();
   3613 
   3614   // Tells whether the instance with this map should be ignored by the
   3615   // __proto__ accessor.
   3616   inline void set_is_hidden_prototype() {
   3617     set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
   3618   }
   3619 
   3620   inline bool is_hidden_prototype() {
   3621     return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
   3622   }
   3623 
   3624   // Records and queries whether the instance has a named interceptor.
   3625   inline void set_has_named_interceptor() {
   3626     set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
   3627   }
   3628 
   3629   inline bool has_named_interceptor() {
   3630     return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
   3631   }
   3632 
   3633   // Records and queries whether the instance has an indexed interceptor.
   3634   inline void set_has_indexed_interceptor() {
   3635     set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
   3636   }
   3637 
   3638   inline bool has_indexed_interceptor() {
   3639     return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
   3640   }
   3641 
   3642   // Tells whether the instance is undetectable.
   3643   // An undetectable object is a special class of JSObject: 'typeof' operator
   3644   // returns undefined, ToBoolean returns false. Otherwise it behaves like
   3645   // a normal JS object.  It is useful for implementing undetectable
   3646   // document.all in Firefox & Safari.
   3647   // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
   3648   inline void set_is_undetectable() {
   3649     set_bit_field(bit_field() | (1 << kIsUndetectable));
   3650   }
   3651 
   3652   inline bool is_undetectable() {
   3653     return ((1 << kIsUndetectable) & bit_field()) != 0;
   3654   }
   3655 
   3656   // Tells whether the instance has a call-as-function handler.
   3657   inline void set_has_instance_call_handler() {
   3658     set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
   3659   }
   3660 
   3661   inline bool has_instance_call_handler() {
   3662     return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
   3663   }
   3664 
   3665   inline void set_is_extensible(bool value);
   3666   inline bool is_extensible();
   3667 
   3668   // Tells whether the instance has fast elements.
   3669   // Equivalent to instance->GetElementsKind() == FAST_ELEMENTS.
   3670   inline void set_has_fast_elements(bool value) {
   3671     if (value) {
   3672       set_bit_field2(bit_field2() | (1 << kHasFastElements));
   3673     } else {
   3674       set_bit_field2(bit_field2() & ~(1 << kHasFastElements));
   3675     }
   3676   }
   3677 
   3678   inline bool has_fast_elements() {
   3679     return ((1 << kHasFastElements) & bit_field2()) != 0;
   3680   }
   3681 
   3682   // Tells whether an instance has pixel array elements.
   3683   inline void set_has_external_array_elements(bool value) {
   3684     if (value) {
   3685       set_bit_field2(bit_field2() | (1 << kHasExternalArrayElements));
   3686     } else {
   3687       set_bit_field2(bit_field2() & ~(1 << kHasExternalArrayElements));
   3688     }
   3689   }
   3690 
   3691   inline bool has_external_array_elements() {
   3692     return ((1 << kHasExternalArrayElements) & bit_field2()) != 0;
   3693   }
   3694 
   3695   // Tells whether the map is attached to SharedFunctionInfo
   3696   // (for inobject slack tracking).
   3697   inline void set_attached_to_shared_function_info(bool value);
   3698 
   3699   inline bool attached_to_shared_function_info();
   3700 
   3701   // Tells whether the map is shared between objects that may have different
   3702   // behavior. If true, the map should never be modified, instead a clone
   3703   // should be created and modified.
   3704   inline void set_is_shared(bool value);
   3705 
   3706   inline bool is_shared();
   3707 
   3708   // Tells whether the instance needs security checks when accessing its
   3709   // properties.
   3710   inline void set_is_access_check_needed(bool access_check_needed);
   3711   inline bool is_access_check_needed();
   3712 
   3713   // [prototype]: implicit prototype object.
   3714   DECL_ACCESSORS(prototype, Object)
   3715 
   3716   // [constructor]: points back to the function responsible for this map.
   3717   DECL_ACCESSORS(constructor, Object)
   3718 
   3719   inline JSFunction* unchecked_constructor();
   3720 
   3721   // [instance descriptors]: describes the object.
   3722   DECL_ACCESSORS(instance_descriptors, DescriptorArray)
   3723 
   3724   // [stub cache]: contains stubs compiled for this map.
   3725   DECL_ACCESSORS(code_cache, Object)
   3726 
   3727   // [prototype transitions]: cache of prototype transitions.
   3728   // Prototype transition is a transition that happens
   3729   // when we change object's prototype to a new one.
   3730   // Cache format:
   3731   //    0: finger - index of the first free cell in the cache
   3732   //    1 + 2 * i: prototype
   3733   //    2 + 2 * i: target map
   3734   DECL_ACCESSORS(prototype_transitions, FixedArray)
   3735   inline FixedArray* unchecked_prototype_transitions();
   3736 
   3737   // Lookup in the map's instance descriptors and fill out the result
   3738   // with the given holder if the name is found. The holder may be
   3739   // NULL when this function is used from the compiler.
   3740   void LookupInDescriptors(JSObject* holder,
   3741                            String* name,
   3742                            LookupResult* result);
   3743 
   3744   MUST_USE_RESULT MaybeObject* CopyDropDescriptors();
   3745 
   3746   MUST_USE_RESULT MaybeObject* CopyNormalized(PropertyNormalizationMode mode,
   3747                                               NormalizedMapSharingMode sharing);
   3748 
   3749   // Returns a copy of the map, with all transitions dropped from the
   3750   // instance descriptors.
   3751   MUST_USE_RESULT MaybeObject* CopyDropTransitions();
   3752 
   3753   // Returns this map if it has the fast elements bit set, otherwise
   3754   // returns a copy of the map, with all transitions dropped from the
   3755   // descriptors and the fast elements bit set.
   3756   MUST_USE_RESULT inline MaybeObject* GetFastElementsMap();
   3757 
   3758   // Returns this map if it has the fast elements bit cleared,
   3759   // otherwise returns a copy of the map, with all transitions dropped
   3760   // from the descriptors and the fast elements bit cleared.
   3761   MUST_USE_RESULT inline MaybeObject* GetSlowElementsMap();
   3762 
   3763   // Returns a new map with all transitions dropped from the descriptors and the
   3764   // external array elements bit set.
   3765   MUST_USE_RESULT MaybeObject* GetExternalArrayElementsMap(
   3766       ExternalArrayType array_type,
   3767       bool safe_to_add_transition);
   3768 
   3769   // Returns the property index for name (only valid for FAST MODE).
   3770   int PropertyIndexFor(String* name);
   3771 
   3772   // Returns the next free property index (only valid for FAST MODE).
   3773   int NextFreePropertyIndex();
   3774 
   3775   // Returns the number of properties described in instance_descriptors.
   3776   int NumberOfDescribedProperties();
   3777 
   3778   // Casting.
   3779   static inline Map* cast(Object* obj);
   3780 
   3781   // Locate an accessor in the instance descriptor.
   3782   AccessorDescriptor* FindAccessor(String* name);
   3783 
   3784   // Code cache operations.
   3785 
   3786   // Clears the code cache.
   3787   inline void ClearCodeCache(Heap* heap);
   3788 
   3789   // Update code cache.
   3790   MUST_USE_RESULT MaybeObject* UpdateCodeCache(String* name, Code* code);
   3791 
   3792   // Returns the found code or undefined if absent.
   3793   Object* FindInCodeCache(String* name, Code::Flags flags);
   3794 
   3795   // Returns the non-negative index of the code object if it is in the
   3796   // cache and -1 otherwise.
   3797   int IndexInCodeCache(Object* name, Code* code);
   3798 
   3799   // Removes a code object from the code cache at the given index.
   3800   void RemoveFromCodeCache(String* name, Code* code, int index);
   3801 
   3802   // For every transition in this map, makes the transition's
   3803   // target's prototype pointer point back to this map.
   3804   // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
   3805   void CreateBackPointers();
   3806 
   3807   // Set all map transitions from this map to dead maps to null.
   3808   // Also, restore the original prototype on the targets of these
   3809   // transitions, so that we do not process this map again while
   3810   // following back pointers.
   3811   void ClearNonLiveTransitions(Heap* heap, Object* real_prototype);
   3812 
   3813   // Dispatched behavior.
   3814 #ifdef OBJECT_PRINT
   3815   inline void MapPrint() {
   3816     MapPrint(stdout);
   3817   }
   3818   void MapPrint(FILE* out);
   3819 #endif
   3820 #ifdef DEBUG
   3821   void MapVerify();
   3822   void SharedMapVerify();
   3823 #endif
   3824 
   3825   inline int visitor_id();
   3826   inline void set_visitor_id(int visitor_id);
   3827 
   3828   // Returns the isolate/heap this map belongs to.
   3829   inline Isolate* isolate();
   3830   inline Heap* heap();
   3831 
   3832   typedef void (*TraverseCallback)(Map* map, void* data);
   3833 
   3834   void TraverseTransitionTree(TraverseCallback callback, void* data);
   3835 
   3836   static const int kMaxCachedPrototypeTransitions = 256;
   3837 
   3838   Object* GetPrototypeTransition(Object* prototype);
   3839 
   3840   MaybeObject* PutPrototypeTransition(Object* prototype, Map* map);
   3841 
   3842   static const int kMaxPreAllocatedPropertyFields = 255;
   3843 
   3844   // Layout description.
   3845   static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
   3846   static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
   3847   static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
   3848   static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
   3849   static const int kInstanceDescriptorsOffset =
   3850       kConstructorOffset + kPointerSize;
   3851   static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
   3852   static const int kPrototypeTransitionsOffset =
   3853       kCodeCacheOffset + kPointerSize;
   3854   static const int kPadStart = kPrototypeTransitionsOffset + kPointerSize;
   3855   static const int kSize = MAP_POINTER_ALIGN(kPadStart);
   3856 
   3857   // Layout of pointer fields. Heap iteration code relies on them
   3858   // being continiously allocated.
   3859   static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
   3860   static const int kPointerFieldsEndOffset =
   3861       Map::kPrototypeTransitionsOffset + kPointerSize;
   3862 
   3863   // Byte offsets within kInstanceSizesOffset.
   3864   static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
   3865   static const int kInObjectPropertiesByte = 1;
   3866   static const int kInObjectPropertiesOffset =
   3867       kInstanceSizesOffset + kInObjectPropertiesByte;
   3868   static const int kPreAllocatedPropertyFieldsByte = 2;
   3869   static const int kPreAllocatedPropertyFieldsOffset =
   3870       kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
   3871   static const int kVisitorIdByte = 3;
   3872   static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
   3873 
   3874   // Byte offsets within kInstanceAttributesOffset attributes.
   3875   static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
   3876   static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
   3877   static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
   3878   static const int kBitField2Offset = kInstanceAttributesOffset + 3;
   3879 
   3880   STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
   3881 
   3882   // Bit positions for bit field.
   3883   static const int kUnused = 0;  // To be used for marking recently used maps.
   3884   static const int kHasNonInstancePrototype = 1;
   3885   static const int kIsHiddenPrototype = 2;
   3886   static const int kHasNamedInterceptor = 3;
   3887   static const int kHasIndexedInterceptor = 4;
   3888   static const int kIsUndetectable = 5;
   3889   static const int kHasInstanceCallHandler = 6;
   3890   static const int kIsAccessCheckNeeded = 7;
   3891 
   3892   // Bit positions for bit field 2
   3893   static const int kIsExtensible = 0;
   3894   static const int kFunctionWithPrototype = 1;
   3895   static const int kHasFastElements = 2;
   3896   static const int kStringWrapperSafeForDefaultValueOf = 3;
   3897   static const int kAttachedToSharedFunctionInfo = 4;
   3898   static const int kIsShared = 5;
   3899   static const int kHasExternalArrayElements = 6;
   3900 
   3901   // Layout of the default cache. It holds alternating name and code objects.
   3902   static const int kCodeCacheEntrySize = 2;
   3903   static const int kCodeCacheEntryNameOffset = 0;
   3904   static const int kCodeCacheEntryCodeOffset = 1;
   3905 
   3906   typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
   3907                               kPointerFieldsEndOffset,
   3908                               kSize> BodyDescriptor;
   3909 
   3910  private:
   3911   DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
   3912 };
   3913 
   3914 
   3915 // An abstract superclass, a marker class really, for simple structure classes.
   3916 // It doesn't carry much functionality but allows struct classes to me
   3917 // identified in the type system.
   3918 class Struct: public HeapObject {
   3919  public:
   3920   inline void InitializeBody(int object_size);
   3921   static inline Struct* cast(Object* that);
   3922 };
   3923 
   3924 
   3925 // Script describes a script which has been added to the VM.
   3926 class Script: public Struct {
   3927  public:
   3928   // Script types.
   3929   enum Type {
   3930     TYPE_NATIVE = 0,
   3931     TYPE_EXTENSION = 1,
   3932     TYPE_NORMAL = 2
   3933   };
   3934 
   3935   // Script compilation types.
   3936   enum CompilationType {
   3937     COMPILATION_TYPE_HOST = 0,
   3938     COMPILATION_TYPE_EVAL = 1
   3939   };
   3940 
   3941   // [source]: the script source.
   3942   DECL_ACCESSORS(source, Object)
   3943 
   3944   // [name]: the script name.
   3945   DECL_ACCESSORS(name, Object)
   3946 
   3947   // [id]: the script id.
   3948   DECL_ACCESSORS(id, Object)
   3949 
   3950   // [line_offset]: script line offset in resource from where it was extracted.
   3951   DECL_ACCESSORS(line_offset, Smi)
   3952 
   3953   // [column_offset]: script column offset in resource from where it was
   3954   // extracted.
   3955   DECL_ACCESSORS(column_offset, Smi)
   3956 
   3957   // [data]: additional data associated with this script.
   3958   DECL_ACCESSORS(data, Object)
   3959 
   3960   // [context_data]: context data for the context this script was compiled in.
   3961   DECL_ACCESSORS(context_data, Object)
   3962 
   3963   // [wrapper]: the wrapper cache.
   3964   DECL_ACCESSORS(wrapper, Proxy)
   3965 
   3966   // [type]: the script type.
   3967   DECL_ACCESSORS(type, Smi)
   3968 
   3969   // [compilation]: how the the script was compiled.
   3970   DECL_ACCESSORS(compilation_type, Smi)
   3971 
   3972   // [line_ends]: FixedArray of line ends positions.
   3973   DECL_ACCESSORS(line_ends, Object)
   3974 
   3975   // [eval_from_shared]: for eval scripts the shared funcion info for the
   3976   // function from which eval was called.
   3977   DECL_ACCESSORS(eval_from_shared, Object)
   3978 
   3979   // [eval_from_instructions_offset]: the instruction offset in the code for the
   3980   // function from which eval was called where eval was called.
   3981   DECL_ACCESSORS(eval_from_instructions_offset, Smi)
   3982 
   3983   static inline Script* cast(Object* obj);
   3984 
   3985   // If script source is an external string, check that the underlying
   3986   // resource is accessible. Otherwise, always return true.
   3987   inline bool HasValidSource();
   3988 
   3989 #ifdef OBJECT_PRINT
   3990   inline void ScriptPrint() {
   3991     ScriptPrint(stdout);
   3992   }
   3993   void ScriptPrint(FILE* out);
   3994 #endif
   3995 #ifdef DEBUG
   3996   void ScriptVerify();
   3997 #endif
   3998 
   3999   static const int kSourceOffset = HeapObject::kHeaderSize;
   4000   static const int kNameOffset = kSourceOffset + kPointerSize;
   4001   static const int kLineOffsetOffset = kNameOffset + kPointerSize;
   4002   static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
   4003   static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
   4004   static const int kContextOffset = kDataOffset + kPointerSize;
   4005   static const int kWrapperOffset = kContextOffset + kPointerSize;
   4006   static const int kTypeOffset = kWrapperOffset + kPointerSize;
   4007   static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
   4008   static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
   4009   static const int kIdOffset = kLineEndsOffset + kPointerSize;
   4010   static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
   4011   static const int kEvalFrominstructionsOffsetOffset =
   4012       kEvalFromSharedOffset + kPointerSize;
   4013   static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
   4014 
   4015  private:
   4016   DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
   4017 };
   4018 
   4019 
   4020 // List of builtin functions we want to identify to improve code
   4021 // generation.
   4022 //
   4023 // Each entry has a name of a global object property holding an object
   4024 // optionally followed by ".prototype", a name of a builtin function
   4025 // on the object (the one the id is set for), and a label.
   4026 //
   4027 // Installation of ids for the selected builtin functions is handled
   4028 // by the bootstrapper.
   4029 //
   4030 // NOTE: Order is important: math functions should be at the end of
   4031 // the list and MathFloor should be the first math function.
   4032 #define FUNCTIONS_WITH_ID_LIST(V)                   \
   4033   V(Array.prototype, push, ArrayPush)               \
   4034   V(Array.prototype, pop, ArrayPop)                 \
   4035   V(Function.prototype, apply, FunctionApply)       \
   4036   V(String.prototype, charCodeAt, StringCharCodeAt) \
   4037   V(String.prototype, charAt, StringCharAt)         \
   4038   V(String, fromCharCode, StringFromCharCode)       \
   4039   V(Math, floor, MathFloor)                         \
   4040   V(Math, round, MathRound)                         \
   4041   V(Math, ceil, MathCeil)                           \
   4042   V(Math, abs, MathAbs)                             \
   4043   V(Math, log, MathLog)                             \
   4044   V(Math, sin, MathSin)                             \
   4045   V(Math, cos, MathCos)                             \
   4046   V(Math, tan, MathTan)                             \
   4047   V(Math, asin, MathASin)                           \
   4048   V(Math, acos, MathACos)                           \
   4049   V(Math, atan, MathATan)                           \
   4050   V(Math, exp, MathExp)                             \
   4051   V(Math, sqrt, MathSqrt)                           \
   4052   V(Math, pow, MathPow)
   4053 
   4054 
   4055 enum BuiltinFunctionId {
   4056 #define DECLARE_FUNCTION_ID(ignored1, ignore2, name)    \
   4057   k##name,
   4058   FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
   4059 #undef DECLARE_FUNCTION_ID
   4060   // Fake id for a special case of Math.pow. Note, it continues the
   4061   // list of math functions.
   4062   kMathPowHalf,
   4063   kFirstMathFunctionId = kMathFloor
   4064 };
   4065 
   4066 
   4067 // SharedFunctionInfo describes the JSFunction information that can be
   4068 // shared by multiple instances of the function.
   4069 class SharedFunctionInfo: public HeapObject {
   4070  public:
   4071   // [name]: Function name.
   4072   DECL_ACCESSORS(name, Object)
   4073 
   4074   // [code]: Function code.
   4075   DECL_ACCESSORS(code, Code)
   4076 
   4077   // [scope_info]: Scope info.
   4078   DECL_ACCESSORS(scope_info, SerializedScopeInfo)
   4079 
   4080   // [construct stub]: Code stub for constructing instances of this function.
   4081   DECL_ACCESSORS(construct_stub, Code)
   4082 
   4083   inline Code* unchecked_code();
   4084 
   4085   // Returns if this function has been compiled to native code yet.
   4086   inline bool is_compiled();
   4087 
   4088   // [length]: The function length - usually the number of declared parameters.
   4089   // Use up to 2^30 parameters.
   4090   inline int length();
   4091   inline void set_length(int value);
   4092 
   4093   // [formal parameter count]: The declared number of parameters.
   4094   inline int formal_parameter_count();
   4095   inline void set_formal_parameter_count(int value);
   4096 
   4097   // Set the formal parameter count so the function code will be
   4098   // called without using argument adaptor frames.
   4099   inline void DontAdaptArguments();
   4100 
   4101   // [expected_nof_properties]: Expected number of properties for the function.
   4102   inline int expected_nof_properties();
   4103   inline void set_expected_nof_properties(int value);
   4104 
   4105   // Inobject slack tracking is the way to reclaim unused inobject space.
   4106   //
   4107   // The instance size is initially determined by adding some slack to
   4108   // expected_nof_properties (to allow for a few extra properties added
   4109   // after the constructor). There is no guarantee that the extra space
   4110   // will not be wasted.
   4111   //
   4112   // Here is the algorithm to reclaim the unused inobject space:
   4113   // - Detect the first constructor call for this SharedFunctionInfo.
   4114   //   When it happens enter the "in progress" state: remember the
   4115   //   constructor's initial_map and install a special construct stub that
   4116   //   counts constructor calls.
   4117   // - While the tracking is in progress create objects filled with
   4118   //   one_pointer_filler_map instead of undefined_value. This way they can be
   4119   //   resized quickly and safely.
   4120   // - Once enough (kGenerousAllocationCount) objects have been created
   4121   //   compute the 'slack' (traverse the map transition tree starting from the
   4122   //   initial_map and find the lowest value of unused_property_fields).
   4123   // - Traverse the transition tree again and decrease the instance size
   4124   //   of every map. Existing objects will resize automatically (they are
   4125   //   filled with one_pointer_filler_map). All further allocations will
   4126   //   use the adjusted instance size.
   4127   // - Decrease expected_nof_properties so that an allocations made from
   4128   //   another context will use the adjusted instance size too.
   4129   // - Exit "in progress" state by clearing the reference to the initial_map
   4130   //   and setting the regular construct stub (generic or inline).
   4131   //
   4132   //  The above is the main event sequence. Some special cases are possible
   4133   //  while the tracking is in progress:
   4134   //
   4135   // - GC occurs.
   4136   //   Check if the initial_map is referenced by any live objects (except this
   4137   //   SharedFunctionInfo). If it is, continue tracking as usual.
   4138   //   If it is not, clear the reference and reset the tracking state. The
   4139   //   tracking will be initiated again on the next constructor call.
   4140   //
   4141   // - The constructor is called from another context.
   4142   //   Immediately complete the tracking, perform all the necessary changes
   4143   //   to maps. This is  necessary because there is no efficient way to track
   4144   //   multiple initial_maps.
   4145   //   Proceed to create an object in the current context (with the adjusted
   4146   //   size).
   4147   //
   4148   // - A different constructor function sharing the same SharedFunctionInfo is
   4149   //   called in the same context. This could be another closure in the same
   4150   //   context, or the first function could have been disposed.
   4151   //   This is handled the same way as the previous case.
   4152   //
   4153   //  Important: inobject slack tracking is not attempted during the snapshot
   4154   //  creation.
   4155 
   4156   static const int kGenerousAllocationCount = 8;
   4157 
   4158   // [construction_count]: Counter for constructor calls made during
   4159   // the tracking phase.
   4160   inline int construction_count();
   4161   inline void set_construction_count(int value);
   4162 
   4163   // [initial_map]: initial map of the first function called as a constructor.
   4164   // Saved for the duration of the tracking phase.
   4165   // This is a weak link (GC resets it to undefined_value if no other live
   4166   // object reference this map).
   4167   DECL_ACCESSORS(initial_map, Object)
   4168 
   4169   // True if the initial_map is not undefined and the countdown stub is
   4170   // installed.
   4171   inline bool IsInobjectSlackTrackingInProgress();
   4172 
   4173   // Starts the tracking.
   4174   // Stores the initial map and installs the countdown stub.
   4175   // IsInobjectSlackTrackingInProgress is normally true after this call,
   4176   // except when tracking have not been started (e.g. the map has no unused
   4177   // properties or the snapshot is being built).
   4178   void StartInobjectSlackTracking(Map* map);
   4179 
   4180   // Completes the tracking.
   4181   // IsInobjectSlackTrackingInProgress is false after this call.
   4182   void CompleteInobjectSlackTracking();
   4183 
   4184   // Clears the initial_map before the GC marking phase to ensure the reference
   4185   // is weak. IsInobjectSlackTrackingInProgress is false after this call.
   4186   void DetachInitialMap();
   4187 
   4188   // Restores the link to the initial map after the GC marking phase.
   4189   // IsInobjectSlackTrackingInProgress is true after this call.
   4190   void AttachInitialMap(Map* map);
   4191 
   4192   // False if there are definitely no live objects created from this function.
   4193   // True if live objects _may_ exist (existence not guaranteed).
   4194   // May go back from true to false after GC.
   4195   inline bool live_objects_may_exist();
   4196 
   4197   inline void set_live_objects_may_exist(bool value);
   4198 
   4199   // [instance class name]: class name for instances.
   4200   DECL_ACCESSORS(instance_class_name, Object)
   4201 
   4202   // [function data]: This field holds some additional data for function.
   4203   // Currently it either has FunctionTemplateInfo to make benefit the API
   4204   // or Smi identifying a builtin function.
   4205   // In the long run we don't want all functions to have this field but
   4206   // we can fix that when we have a better model for storing hidden data
   4207   // on objects.
   4208   DECL_ACCESSORS(function_data, Object)
   4209 
   4210   inline bool IsApiFunction();
   4211   inline FunctionTemplateInfo* get_api_func_data();
   4212   inline bool HasBuiltinFunctionId();
   4213   inline BuiltinFunctionId builtin_function_id();
   4214 
   4215   // [script info]: Script from which the function originates.
   4216   DECL_ACCESSORS(script, Object)
   4217 
   4218   // [num_literals]: Number of literals used by this function.
   4219   inline int num_literals();
   4220   inline void set_num_literals(int value);
   4221 
   4222   // [start_position_and_type]: Field used to store both the source code
   4223   // position, whether or not the function is a function expression,
   4224   // and whether or not the function is a toplevel function. The two
   4225   // least significants bit indicates whether the function is an
   4226   // expression and the rest contains the source code position.
   4227   inline int start_position_and_type();
   4228   inline void set_start_position_and_type(int value);
   4229 
   4230   // [debug info]: Debug information.
   4231   DECL_ACCESSORS(debug_info, Object)
   4232 
   4233   // [inferred name]: Name inferred from variable or property
   4234   // assignment of this function. Used to facilitate debugging and
   4235   // profiling of JavaScript code written in OO style, where almost
   4236   // all functions are anonymous but are assigned to object
   4237   // properties.
   4238   DECL_ACCESSORS(inferred_name, String)
   4239 
   4240   // The function's name if it is non-empty, otherwise the inferred name.
   4241   String* DebugName();
   4242 
   4243   // Position of the 'function' token in the script source.
   4244   inline int function_token_position();
   4245   inline void set_function_token_position(int function_token_position);
   4246 
   4247   // Position of this function in the script source.
   4248   inline int start_position();
   4249   inline void set_start_position(int start_position);
   4250 
   4251   // End position of this function in the script source.
   4252   inline int end_position();
   4253   inline void set_end_position(int end_position);
   4254 
   4255   // Is this function a function expression in the source code.
   4256   inline bool is_expression();
   4257   inline void set_is_expression(bool value);
   4258 
   4259   // Is this function a top-level function (scripts, evals).
   4260   inline bool is_toplevel();
   4261   inline void set_is_toplevel(bool value);
   4262 
   4263   // Bit field containing various information collected by the compiler to
   4264   // drive optimization.
   4265   inline int compiler_hints();
   4266   inline void set_compiler_hints(int value);
   4267 
   4268   // A counter used to determine when to stress the deoptimizer with a
   4269   // deopt.
   4270   inline Smi* deopt_counter();
   4271   inline void set_deopt_counter(Smi* counter);
   4272 
   4273   // Add information on assignments of the form this.x = ...;
   4274   void SetThisPropertyAssignmentsInfo(
   4275       bool has_only_simple_this_property_assignments,
   4276       FixedArray* this_property_assignments);
   4277 
   4278   // Clear information on assignments of the form this.x = ...;
   4279   void ClearThisPropertyAssignmentsInfo();
   4280 
   4281   // Indicate that this function only consists of assignments of the form
   4282   // this.x = y; where y is either a constant or refers to an argument.
   4283   inline bool has_only_simple_this_property_assignments();
   4284 
   4285   // Indicates if this function can be lazy compiled.
   4286   // This is used to determine if we can safely flush code from a function
   4287   // when doing GC if we expect that the function will no longer be used.
   4288   inline bool allows_lazy_compilation();
   4289   inline void set_allows_lazy_compilation(bool flag);
   4290 
   4291   // Indicates how many full GCs this function has survived with assigned
   4292   // code object. Used to determine when it is relatively safe to flush
   4293   // this code object and replace it with lazy compilation stub.
   4294   // Age is reset when GC notices that the code object is referenced
   4295   // from the stack or compilation cache.
   4296   inline int code_age();
   4297   inline void set_code_age(int age);
   4298 
   4299   // Indicates whether optimizations have been disabled for this
   4300   // shared function info. If a function is repeatedly optimized or if
   4301   // we cannot optimize the function we disable optimization to avoid
   4302   // spending time attempting to optimize it again.
   4303   inline bool optimization_disabled();
   4304   inline void set_optimization_disabled(bool value);
   4305 
   4306   // Indicates whether the function is a strict mode function.
   4307   inline bool strict_mode();
   4308   inline void set_strict_mode(bool value);
   4309 
   4310   // Indicates whether or not the code in the shared function support
   4311   // deoptimization.
   4312   inline bool has_deoptimization_support();
   4313 
   4314   // Enable deoptimization support through recompiled code.
   4315   void EnableDeoptimizationSupport(Code* recompiled);
   4316 
   4317   // Lookup the bailout ID and ASSERT that it exists in the non-optimized
   4318   // code, returns whether it asserted (i.e., always true if assertions are
   4319   // disabled).
   4320   bool VerifyBailoutId(int id);
   4321 
   4322   // Check whether a inlined constructor can be generated with the given
   4323   // prototype.
   4324   bool CanGenerateInlineConstructor(Object* prototype);
   4325 
   4326   // Prevents further attempts to generate inline constructors.
   4327   // To be called if generation failed for any reason.
   4328   void ForbidInlineConstructor();
   4329 
   4330   // For functions which only contains this property assignments this provides
   4331   // access to the names for the properties assigned.
   4332   DECL_ACCESSORS(this_property_assignments, Object)
   4333   inline int this_property_assignments_count();
   4334   inline void set_this_property_assignments_count(int value);
   4335   String* GetThisPropertyAssignmentName(int index);
   4336   bool IsThisPropertyAssignmentArgument(int index);
   4337   int GetThisPropertyAssignmentArgument(int index);
   4338   Object* GetThisPropertyAssignmentConstant(int index);
   4339 
   4340   // [source code]: Source code for the function.
   4341   bool HasSourceCode();
   4342   Object* GetSourceCode();
   4343 
   4344   inline int opt_count();
   4345   inline void set_opt_count(int opt_count);
   4346 
   4347   // Source size of this function.
   4348   int SourceSize();
   4349 
   4350   // Calculate the instance size.
   4351   int CalculateInstanceSize();
   4352 
   4353   // Calculate the number of in-object properties.
   4354   int CalculateInObjectProperties();
   4355 
   4356   // Dispatched behavior.
   4357   // Set max_length to -1 for unlimited length.
   4358   void SourceCodePrint(StringStream* accumulator, int max_length);
   4359 #ifdef OBJECT_PRINT
   4360   inline void SharedFunctionInfoPrint() {
   4361     SharedFunctionInfoPrint(stdout);
   4362   }
   4363   void SharedFunctionInfoPrint(FILE* out);
   4364 #endif
   4365 #ifdef DEBUG
   4366   void SharedFunctionInfoVerify();
   4367 #endif
   4368 
   4369   // Casting.
   4370   static inline SharedFunctionInfo* cast(Object* obj);
   4371 
   4372   // Constants.
   4373   static const int kDontAdaptArgumentsSentinel = -1;
   4374 
   4375   // Layout description.
   4376   // Pointer fields.
   4377   static const int kNameOffset = HeapObject::kHeaderSize;
   4378   static const int kCodeOffset = kNameOffset + kPointerSize;
   4379   static const int kScopeInfoOffset = kCodeOffset + kPointerSize;
   4380   static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
   4381   static const int kInstanceClassNameOffset =
   4382       kConstructStubOffset + kPointerSize;
   4383   static const int kFunctionDataOffset =
   4384       kInstanceClassNameOffset + kPointerSize;
   4385   static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
   4386   static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
   4387   static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
   4388   static const int kInitialMapOffset =
   4389       kInferredNameOffset + kPointerSize;
   4390   static const int kThisPropertyAssignmentsOffset =
   4391       kInitialMapOffset + kPointerSize;
   4392   static const int kDeoptCounterOffset =
   4393       kThisPropertyAssignmentsOffset + kPointerSize;
   4394 #if V8_HOST_ARCH_32_BIT
   4395   // Smi fields.
   4396   static const int kLengthOffset =
   4397       kDeoptCounterOffset + kPointerSize;
   4398   static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
   4399   static const int kExpectedNofPropertiesOffset =
   4400       kFormalParameterCountOffset + kPointerSize;
   4401   static const int kNumLiteralsOffset =
   4402       kExpectedNofPropertiesOffset + kPointerSize;
   4403   static const int kStartPositionAndTypeOffset =
   4404       kNumLiteralsOffset + kPointerSize;
   4405   static const int kEndPositionOffset =
   4406       kStartPositionAndTypeOffset + kPointerSize;
   4407   static const int kFunctionTokenPositionOffset =
   4408       kEndPositionOffset + kPointerSize;
   4409   static const int kCompilerHintsOffset =
   4410       kFunctionTokenPositionOffset + kPointerSize;
   4411   static const int kThisPropertyAssignmentsCountOffset =
   4412       kCompilerHintsOffset + kPointerSize;
   4413   static const int kOptCountOffset =
   4414       kThisPropertyAssignmentsCountOffset + kPointerSize;
   4415   // Total size.
   4416   static const int kSize = kOptCountOffset + kPointerSize;
   4417 #else
   4418   // The only reason to use smi fields instead of int fields
   4419   // is to allow iteration without maps decoding during
   4420   // garbage collections.
   4421   // To avoid wasting space on 64-bit architectures we use
   4422   // the following trick: we group integer fields into pairs
   4423   // First integer in each pair is shifted left by 1.
   4424   // By doing this we guarantee that LSB of each kPointerSize aligned
   4425   // word is not set and thus this word cannot be treated as pointer
   4426   // to HeapObject during old space traversal.
   4427   static const int kLengthOffset =
   4428       kDeoptCounterOffset + kPointerSize;
   4429   static const int kFormalParameterCountOffset =
   4430       kLengthOffset + kIntSize;
   4431 
   4432   static const int kExpectedNofPropertiesOffset =
   4433       kFormalParameterCountOffset + kIntSize;
   4434   static const int kNumLiteralsOffset =
   4435       kExpectedNofPropertiesOffset + kIntSize;
   4436 
   4437   static const int kEndPositionOffset =
   4438       kNumLiteralsOffset + kIntSize;
   4439   static const int kStartPositionAndTypeOffset =
   4440       kEndPositionOffset + kIntSize;
   4441 
   4442   static const int kFunctionTokenPositionOffset =
   4443       kStartPositionAndTypeOffset + kIntSize;
   4444   static const int kCompilerHintsOffset =
   4445       kFunctionTokenPositionOffset + kIntSize;
   4446 
   4447   static const int kThisPropertyAssignmentsCountOffset =
   4448       kCompilerHintsOffset + kIntSize;
   4449   static const int kOptCountOffset =
   4450       kThisPropertyAssignmentsCountOffset + kIntSize;
   4451 
   4452   // Total size.
   4453   static const int kSize = kOptCountOffset + kIntSize;
   4454 
   4455 #endif
   4456 
   4457   // The construction counter for inobject slack tracking is stored in the
   4458   // most significant byte of compiler_hints which is otherwise unused.
   4459   // Its offset depends on the endian-ness of the architecture.
   4460 #if __BYTE_ORDER == __LITTLE_ENDIAN
   4461   static const int kConstructionCountOffset = kCompilerHintsOffset + 3;
   4462 #elif __BYTE_ORDER == __BIG_ENDIAN
   4463   static const int kConstructionCountOffset = kCompilerHintsOffset + 0;
   4464 #else
   4465 #error Unknown byte ordering
   4466 #endif
   4467 
   4468   static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
   4469 
   4470   typedef FixedBodyDescriptor<kNameOffset,
   4471                               kThisPropertyAssignmentsOffset + kPointerSize,
   4472                               kSize> BodyDescriptor;
   4473 
   4474   // Bit positions in start_position_and_type.
   4475   // The source code start position is in the 30 most significant bits of
   4476   // the start_position_and_type field.
   4477   static const int kIsExpressionBit = 0;
   4478   static const int kIsTopLevelBit   = 1;
   4479   static const int kStartPositionShift = 2;
   4480   static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
   4481 
   4482   // Bit positions in compiler_hints.
   4483   static const int kHasOnlySimpleThisPropertyAssignments = 0;
   4484   static const int kAllowLazyCompilation = 1;
   4485   static const int kLiveObjectsMayExist = 2;
   4486   static const int kCodeAgeShift = 3;
   4487   static const int kCodeAgeMask = 0x7;
   4488   static const int kOptimizationDisabled = 6;
   4489   static const int kStrictModeFunction = 7;
   4490 
   4491  private:
   4492 #if V8_HOST_ARCH_32_BIT
   4493   // On 32 bit platforms, compiler hints is a smi.
   4494   static const int kCompilerHintsSmiTagSize = kSmiTagSize;
   4495   static const int kCompilerHintsSize = kPointerSize;
   4496 #else
   4497   // On 64 bit platforms, compiler hints is not a smi, see comment above.
   4498   static const int kCompilerHintsSmiTagSize = 0;
   4499   static const int kCompilerHintsSize = kIntSize;
   4500 #endif
   4501 
   4502  public:
   4503   // Constants for optimizing codegen for strict mode function tests.
   4504   // Allows to use byte-widgh instructions.
   4505   static const int kStrictModeBitWithinByte =
   4506       (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
   4507 
   4508 #if __BYTE_ORDER == __LITTLE_ENDIAN
   4509   static const int kStrictModeByteOffset = kCompilerHintsOffset +
   4510     (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
   4511 #elif __BYTE_ORDER == __BIG_ENDIAN
   4512   static const int kStrictModeByteOffset = kCompilerHintsOffset +
   4513     (kCompilerHintsSize - 1) -
   4514     ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
   4515 #else
   4516 #error Unknown byte ordering
   4517 #endif
   4518 
   4519  private:
   4520   DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
   4521 };
   4522 
   4523 
   4524 // JSFunction describes JavaScript functions.
   4525 class JSFunction: public JSObject {
   4526  public:
   4527   // [prototype_or_initial_map]:
   4528   DECL_ACCESSORS(prototype_or_initial_map, Object)
   4529 
   4530   // [shared_function_info]: The information about the function that
   4531   // can be shared by instances.
   4532   DECL_ACCESSORS(shared, SharedFunctionInfo)
   4533 
   4534   inline SharedFunctionInfo* unchecked_shared();
   4535 
   4536   // [context]: The context for this function.
   4537   inline Context* context();
   4538   inline Object* unchecked_context();
   4539   inline void set_context(Object* context);
   4540 
   4541   // [code]: The generated code object for this function.  Executed
   4542   // when the function is invoked, e.g. foo() or new foo(). See
   4543   // [[Call]] and [[Construct]] description in ECMA-262, section
   4544   // 8.6.2, page 27.
   4545   inline Code* code();
   4546   inline void set_code(Code* code);
   4547   inline void ReplaceCode(Code* code);
   4548 
   4549   inline Code* unchecked_code();
   4550 
   4551   // Tells whether this function is builtin.
   4552   inline bool IsBuiltin();
   4553 
   4554   // Tells whether or not the function needs arguments adaption.
   4555   inline bool NeedsArgumentsAdaption();
   4556 
   4557   // Tells whether or not this function has been optimized.
   4558   inline bool IsOptimized();
   4559 
   4560   // Tells whether or not this function can be optimized.
   4561   inline bool IsOptimizable();
   4562 
   4563   // Mark this function for lazy recompilation. The function will be
   4564   // recompiled the next time it is executed.
   4565   void MarkForLazyRecompilation();
   4566 
   4567   // Tells whether or not the function is already marked for lazy
   4568   // recompilation.
   4569   inline bool IsMarkedForLazyRecompilation();
   4570 
   4571   // Compute a hash code for the source code of this function.
   4572   uint32_t SourceHash();
   4573 
   4574   // Check whether or not this function is inlineable.
   4575   bool IsInlineable();
   4576 
   4577   // [literals]: Fixed array holding the materialized literals.
   4578   //
   4579   // If the function contains object, regexp or array literals, the
   4580   // literals array prefix contains the object, regexp, and array
   4581   // function to be used when creating these literals.  This is
   4582   // necessary so that we do not dynamically lookup the object, regexp
   4583   // or array functions.  Performing a dynamic lookup, we might end up
   4584   // using the functions from a new context that we should not have
   4585   // access to.
   4586   DECL_ACCESSORS(literals, FixedArray)
   4587 
   4588   // The initial map for an object created by this constructor.
   4589   inline Map* initial_map();
   4590   inline void set_initial_map(Map* value);
   4591   inline bool has_initial_map();
   4592 
   4593   // Get and set the prototype property on a JSFunction. If the
   4594   // function has an initial map the prototype is set on the initial
   4595   // map. Otherwise, the prototype is put in the initial map field
   4596   // until an initial map is needed.
   4597   inline bool has_prototype();
   4598   inline bool has_instance_prototype();
   4599   inline Object* prototype();
   4600   inline Object* instance_prototype();
   4601   Object* SetInstancePrototype(Object* value);
   4602   MUST_USE_RESULT MaybeObject* SetPrototype(Object* value);
   4603 
   4604   // After prototype is removed, it will not be created when accessed, and
   4605   // [[Construct]] from this function will not be allowed.
   4606   Object* RemovePrototype();
   4607   inline bool should_have_prototype();
   4608 
   4609   // Accessor for this function's initial map's [[class]]
   4610   // property. This is primarily used by ECMA native functions.  This
   4611   // method sets the class_name field of this function's initial map
   4612   // to a given value. It creates an initial map if this function does
   4613   // not have one. Note that this method does not copy the initial map
   4614   // if it has one already, but simply replaces it with the new value.
   4615   // Instances created afterwards will have a map whose [[class]] is
   4616   // set to 'value', but there is no guarantees on instances created
   4617   // before.
   4618   Object* SetInstanceClassName(String* name);
   4619 
   4620   // Returns if this function has been compiled to native code yet.
   4621   inline bool is_compiled();
   4622 
   4623   // [next_function_link]: Field for linking functions. This list is treated as
   4624   // a weak list by the GC.
   4625   DECL_ACCESSORS(next_function_link, Object)
   4626 
   4627   // Prints the name of the function using PrintF.
   4628   inline void PrintName() {
   4629     PrintName(stdout);
   4630   }
   4631   void PrintName(FILE* out);
   4632 
   4633   // Casting.
   4634   static inline JSFunction* cast(Object* obj);
   4635 
   4636   // Iterates the objects, including code objects indirectly referenced
   4637   // through pointers to the first instruction in the code object.
   4638   void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
   4639 
   4640   // Dispatched behavior.
   4641 #ifdef OBJECT_PRINT
   4642   inline void JSFunctionPrint() {
   4643     JSFunctionPrint(stdout);
   4644   }
   4645   void JSFunctionPrint(FILE* out);
   4646 #endif
   4647 #ifdef DEBUG
   4648   void JSFunctionVerify();
   4649 #endif
   4650 
   4651   // Returns the number of allocated literals.
   4652   inline int NumberOfLiterals();
   4653 
   4654   // Retrieve the global context from a function's literal array.
   4655   static Context* GlobalContextFromLiterals(FixedArray* literals);
   4656 
   4657   // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
   4658   // kSize) is weak and has special handling during garbage collection.
   4659   static const int kCodeEntryOffset = JSObject::kHeaderSize;
   4660   static const int kPrototypeOrInitialMapOffset =
   4661       kCodeEntryOffset + kPointerSize;
   4662   static const int kSharedFunctionInfoOffset =
   4663       kPrototypeOrInitialMapOffset + kPointerSize;
   4664   static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
   4665   static const int kLiteralsOffset = kContextOffset + kPointerSize;
   4666   static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
   4667   static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
   4668   static const int kSize = kNextFunctionLinkOffset + kPointerSize;
   4669 
   4670   // Layout of the literals array.
   4671   static const int kLiteralsPrefixSize = 1;
   4672   static const int kLiteralGlobalContextIndex = 0;
   4673  private:
   4674   DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
   4675 };
   4676 
   4677 
   4678 // JSGlobalProxy's prototype must be a JSGlobalObject or null,
   4679 // and the prototype is hidden. JSGlobalProxy always delegates
   4680 // property accesses to its prototype if the prototype is not null.
   4681 //
   4682 // A JSGlobalProxy can be reinitialized which will preserve its identity.
   4683 //
   4684 // Accessing a JSGlobalProxy requires security check.
   4685 
   4686 class JSGlobalProxy : public JSObject {
   4687  public:
   4688   // [context]: the owner global context of this proxy object.
   4689   // It is null value if this object is not used by any context.
   4690   DECL_ACCESSORS(context, Object)
   4691 
   4692   // Casting.
   4693   static inline JSGlobalProxy* cast(Object* obj);
   4694 
   4695   // Dispatched behavior.
   4696 #ifdef OBJECT_PRINT
   4697   inline void JSGlobalProxyPrint() {
   4698     JSGlobalProxyPrint(stdout);
   4699   }
   4700   void JSGlobalProxyPrint(FILE* out);
   4701 #endif
   4702 #ifdef DEBUG
   4703   void JSGlobalProxyVerify();
   4704 #endif
   4705 
   4706   // Layout description.
   4707   static const int kContextOffset = JSObject::kHeaderSize;
   4708   static const int kSize = kContextOffset + kPointerSize;
   4709 
   4710  private:
   4711 
   4712   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
   4713 };
   4714 
   4715 
   4716 // Forward declaration.
   4717 class JSBuiltinsObject;
   4718 class JSGlobalPropertyCell;
   4719 
   4720 // Common super class for JavaScript global objects and the special
   4721 // builtins global objects.
   4722 class GlobalObject: public JSObject {
   4723  public:
   4724   // [builtins]: the object holding the runtime routines written in JS.
   4725   DECL_ACCESSORS(builtins, JSBuiltinsObject)
   4726 
   4727   // [global context]: the global context corresponding to this global object.
   4728   DECL_ACCESSORS(global_context, Context)
   4729 
   4730   // [global receiver]: the global receiver object of the context
   4731   DECL_ACCESSORS(global_receiver, JSObject)
   4732 
   4733   // Retrieve the property cell used to store a property.
   4734   JSGlobalPropertyCell* GetPropertyCell(LookupResult* result);
   4735 
   4736   // This is like GetProperty, but is used when you know the lookup won't fail
   4737   // by throwing an exception.  This is for the debug and builtins global
   4738   // objects, where it is known which properties can be expected to be present
   4739   // on the object.
   4740   Object* GetPropertyNoExceptionThrown(String* key) {
   4741     Object* answer = GetProperty(key)->ToObjectUnchecked();
   4742     return answer;
   4743   }
   4744 
   4745   // Ensure that the global object has a cell for the given property name.
   4746   MUST_USE_RESULT MaybeObject* EnsurePropertyCell(String* name);
   4747 
   4748   // Casting.
   4749   static inline GlobalObject* cast(Object* obj);
   4750 
   4751   // Layout description.
   4752   static const int kBuiltinsOffset = JSObject::kHeaderSize;
   4753   static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
   4754   static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
   4755   static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
   4756 
   4757  private:
   4758   friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
   4759 
   4760   DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
   4761 };
   4762 
   4763 
   4764 // JavaScript global object.
   4765 class JSGlobalObject: public GlobalObject {
   4766  public:
   4767 
   4768   // Casting.
   4769   static inline JSGlobalObject* cast(Object* obj);
   4770 
   4771   // Dispatched behavior.
   4772 #ifdef OBJECT_PRINT
   4773   inline void JSGlobalObjectPrint() {
   4774     JSGlobalObjectPrint(stdout);
   4775   }
   4776   void JSGlobalObjectPrint(FILE* out);
   4777 #endif
   4778 #ifdef DEBUG
   4779   void JSGlobalObjectVerify();
   4780 #endif
   4781 
   4782   // Layout description.
   4783   static const int kSize = GlobalObject::kHeaderSize;
   4784 
   4785  private:
   4786   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
   4787 };
   4788 
   4789 
   4790 // Builtins global object which holds the runtime routines written in
   4791 // JavaScript.
   4792 class JSBuiltinsObject: public GlobalObject {
   4793  public:
   4794   // Accessors for the runtime routines written in JavaScript.
   4795   inline Object* javascript_builtin(Builtins::JavaScript id);
   4796   inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
   4797 
   4798   // Accessors for code of the runtime routines written in JavaScript.
   4799   inline Code* javascript_builtin_code(Builtins::JavaScript id);
   4800   inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
   4801 
   4802   // Casting.
   4803   static inline JSBuiltinsObject* cast(Object* obj);
   4804 
   4805   // Dispatched behavior.
   4806 #ifdef OBJECT_PRINT
   4807   inline void JSBuiltinsObjectPrint() {
   4808     JSBuiltinsObjectPrint(stdout);
   4809   }
   4810   void JSBuiltinsObjectPrint(FILE* out);
   4811 #endif
   4812 #ifdef DEBUG
   4813   void JSBuiltinsObjectVerify();
   4814 #endif
   4815 
   4816   // Layout description.  The size of the builtins object includes
   4817   // room for two pointers per runtime routine written in javascript
   4818   // (function and code object).
   4819   static const int kJSBuiltinsCount = Builtins::id_count;
   4820   static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
   4821   static const int kJSBuiltinsCodeOffset =
   4822       GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
   4823   static const int kSize =
   4824       kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
   4825 
   4826   static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
   4827     return kJSBuiltinsOffset + id * kPointerSize;
   4828   }
   4829 
   4830   static int OffsetOfCodeWithId(Builtins::JavaScript id) {
   4831     return kJSBuiltinsCodeOffset + id * kPointerSize;
   4832   }
   4833 
   4834  private:
   4835   DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
   4836 };
   4837 
   4838 
   4839 // Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
   4840 class JSValue: public JSObject {
   4841  public:
   4842   // [value]: the object being wrapped.
   4843   DECL_ACCESSORS(value, Object)
   4844 
   4845   // Casting.
   4846   static inline JSValue* cast(Object* obj);
   4847 
   4848   // Dispatched behavior.
   4849 #ifdef OBJECT_PRINT
   4850   inline void JSValuePrint() {
   4851     JSValuePrint(stdout);
   4852   }
   4853   void JSValuePrint(FILE* out);
   4854 #endif
   4855 #ifdef DEBUG
   4856   void JSValueVerify();
   4857 #endif
   4858 
   4859   // Layout description.
   4860   static const int kValueOffset = JSObject::kHeaderSize;
   4861   static const int kSize = kValueOffset + kPointerSize;
   4862 
   4863  private:
   4864   DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
   4865 };
   4866 
   4867 
   4868 // Representation of message objects used for error reporting through
   4869 // the API. The messages are formatted in JavaScript so this object is
   4870 // a real JavaScript object. The information used for formatting the
   4871 // error messages are not directly accessible from JavaScript to
   4872 // prevent leaking information to user code called during error
   4873 // formatting.
   4874 class JSMessageObject: public JSObject {
   4875  public:
   4876   // [type]: the type of error message.
   4877   DECL_ACCESSORS(type, String)
   4878 
   4879   // [arguments]: the arguments for formatting the error message.
   4880   DECL_ACCESSORS(arguments, JSArray)
   4881 
   4882   // [script]: the script from which the error message originated.
   4883   DECL_ACCESSORS(script, Object)
   4884 
   4885   // [stack_trace]: the stack trace for this error message.
   4886   DECL_ACCESSORS(stack_trace, Object)
   4887 
   4888   // [stack_frames]: an array of stack frames for this error object.
   4889   DECL_ACCESSORS(stack_frames, Object)
   4890 
   4891   // [start_position]: the start position in the script for the error message.
   4892   inline int start_position();
   4893   inline void set_start_position(int value);
   4894 
   4895   // [end_position]: the end position in the script for the error message.
   4896   inline int end_position();
   4897   inline void set_end_position(int value);
   4898 
   4899   // Casting.
   4900   static inline JSMessageObject* cast(Object* obj);
   4901 
   4902   // Dispatched behavior.
   4903 #ifdef OBJECT_PRINT
   4904   inline void JSMessageObjectPrint() {
   4905     JSMessageObjectPrint(stdout);
   4906   }
   4907   void JSMessageObjectPrint(FILE* out);
   4908 #endif
   4909 #ifdef DEBUG
   4910   void JSMessageObjectVerify();
   4911 #endif
   4912 
   4913   // Layout description.
   4914   static const int kTypeOffset = JSObject::kHeaderSize;
   4915   static const int kArgumentsOffset = kTypeOffset + kPointerSize;
   4916   static const int kScriptOffset = kArgumentsOffset + kPointerSize;
   4917   static const int kStackTraceOffset = kScriptOffset + kPointerSize;
   4918   static const int kStackFramesOffset = kStackTraceOffset + kPointerSize;
   4919   static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
   4920   static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
   4921   static const int kSize = kEndPositionOffset + kPointerSize;
   4922 
   4923   typedef FixedBodyDescriptor<HeapObject::kMapOffset,
   4924                               kStackFramesOffset + kPointerSize,
   4925                               kSize> BodyDescriptor;
   4926 };
   4927 
   4928 
   4929 // Regular expressions
   4930 // The regular expression holds a single reference to a FixedArray in
   4931 // the kDataOffset field.
   4932 // The FixedArray contains the following data:
   4933 // - tag : type of regexp implementation (not compiled yet, atom or irregexp)
   4934 // - reference to the original source string
   4935 // - reference to the original flag string
   4936 // If it is an atom regexp
   4937 // - a reference to a literal string to search for
   4938 // If it is an irregexp regexp:
   4939 // - a reference to code for ASCII inputs (bytecode or compiled).
   4940 // - a reference to code for UC16 inputs (bytecode or compiled).
   4941 // - max number of registers used by irregexp implementations.
   4942 // - number of capture registers (output values) of the regexp.
   4943 class JSRegExp: public JSObject {
   4944  public:
   4945   // Meaning of Type:
   4946   // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
   4947   // ATOM: A simple string to match against using an indexOf operation.
   4948   // IRREGEXP: Compiled with Irregexp.
   4949   // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
   4950   enum Type { NOT_COMPILED, ATOM, IRREGEXP };
   4951   enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
   4952 
   4953   class Flags {
   4954    public:
   4955     explicit Flags(uint32_t value) : value_(value) { }
   4956     bool is_global() { return (value_ & GLOBAL) != 0; }
   4957     bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
   4958     bool is_multiline() { return (value_ & MULTILINE) != 0; }
   4959     uint32_t value() { return value_; }
   4960    private:
   4961     uint32_t value_;
   4962   };
   4963 
   4964   DECL_ACCESSORS(data, Object)
   4965 
   4966   inline Type TypeTag();
   4967   inline int CaptureCount();
   4968   inline Flags GetFlags();
   4969   inline String* Pattern();
   4970   inline Object* DataAt(int index);
   4971   // Set implementation data after the object has been prepared.
   4972   inline void SetDataAt(int index, Object* value);
   4973   static int code_index(bool is_ascii) {
   4974     if (is_ascii) {
   4975       return kIrregexpASCIICodeIndex;
   4976     } else {
   4977       return kIrregexpUC16CodeIndex;
   4978     }
   4979   }
   4980 
   4981   static inline JSRegExp* cast(Object* obj);
   4982 
   4983   // Dispatched behavior.
   4984 #ifdef DEBUG
   4985   void JSRegExpVerify();
   4986 #endif
   4987 
   4988   static const int kDataOffset = JSObject::kHeaderSize;
   4989   static const int kSize = kDataOffset + kPointerSize;
   4990 
   4991   // Indices in the data array.
   4992   static const int kTagIndex = 0;
   4993   static const int kSourceIndex = kTagIndex + 1;
   4994   static const int kFlagsIndex = kSourceIndex + 1;
   4995   static const int kDataIndex = kFlagsIndex + 1;
   4996   // The data fields are used in different ways depending on the
   4997   // value of the tag.
   4998   // Atom regexps (literal strings).
   4999   static const int kAtomPatternIndex = kDataIndex;
   5000 
   5001   static const int kAtomDataSize = kAtomPatternIndex + 1;
   5002 
   5003   // Irregexp compiled code or bytecode for ASCII. If compilation
   5004   // fails, this fields hold an exception object that should be
   5005   // thrown if the regexp is used again.
   5006   static const int kIrregexpASCIICodeIndex = kDataIndex;
   5007   // Irregexp compiled code or bytecode for UC16.  If compilation
   5008   // fails, this fields hold an exception object that should be
   5009   // thrown if the regexp is used again.
   5010   static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
   5011   // Maximal number of registers used by either ASCII or UC16.
   5012   // Only used to check that there is enough stack space
   5013   static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
   5014   // Number of captures in the compiled regexp.
   5015   static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
   5016 
   5017   static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
   5018 
   5019   // Offsets directly into the data fixed array.
   5020   static const int kDataTagOffset =
   5021       FixedArray::kHeaderSize + kTagIndex * kPointerSize;
   5022   static const int kDataAsciiCodeOffset =
   5023       FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
   5024   static const int kDataUC16CodeOffset =
   5025       FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
   5026   static const int kIrregexpCaptureCountOffset =
   5027       FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
   5028 
   5029   // In-object fields.
   5030   static const int kSourceFieldIndex = 0;
   5031   static const int kGlobalFieldIndex = 1;
   5032   static const int kIgnoreCaseFieldIndex = 2;
   5033   static const int kMultilineFieldIndex = 3;
   5034   static const int kLastIndexFieldIndex = 4;
   5035   static const int kInObjectFieldCount = 5;
   5036 };
   5037 
   5038 
   5039 class CompilationCacheShape {
   5040  public:
   5041   static inline bool IsMatch(HashTableKey* key, Object* value) {
   5042     return key->IsMatch(value);
   5043   }
   5044 
   5045   static inline uint32_t Hash(HashTableKey* key) {
   5046     return key->Hash();
   5047   }
   5048 
   5049   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
   5050     return key->HashForObject(object);
   5051   }
   5052 
   5053   MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
   5054     return key->AsObject();
   5055   }
   5056 
   5057   static const int kPrefixSize = 0;
   5058   static const int kEntrySize = 2;
   5059 };
   5060 
   5061 
   5062 class CompilationCacheTable: public HashTable<CompilationCacheShape,
   5063                                               HashTableKey*> {
   5064  public:
   5065   // Find cached value for a string key, otherwise return null.
   5066   Object* Lookup(String* src);
   5067   Object* LookupEval(String* src, Context* context, StrictModeFlag strict_mode);
   5068   Object* LookupRegExp(String* source, JSRegExp::Flags flags);
   5069   MaybeObject* Put(String* src, Object* value);
   5070   MaybeObject* PutEval(String* src,
   5071                        Context* context,
   5072                        SharedFunctionInfo* value);
   5073   MaybeObject* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
   5074 
   5075   // Remove given value from cache.
   5076   void Remove(Object* value);
   5077 
   5078   static inline CompilationCacheTable* cast(Object* obj);
   5079 
   5080  private:
   5081   DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
   5082 };
   5083 
   5084 
   5085 class CodeCache: public Struct {
   5086  public:
   5087   DECL_ACCESSORS(default_cache, FixedArray)
   5088   DECL_ACCESSORS(normal_type_cache, Object)
   5089 
   5090   // Add the code object to the cache.
   5091   MUST_USE_RESULT MaybeObject* Update(String* name, Code* code);
   5092 
   5093   // Lookup code object in the cache. Returns code object if found and undefined
   5094   // if not.
   5095   Object* Lookup(String* name, Code::Flags flags);
   5096 
   5097   // Get the internal index of a code object in the cache. Returns -1 if the
   5098   // code object is not in that cache. This index can be used to later call
   5099   // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
   5100   // RemoveByIndex.
   5101   int GetIndex(Object* name, Code* code);
   5102 
   5103   // Remove an object from the cache with the provided internal index.
   5104   void RemoveByIndex(Object* name, Code* code, int index);
   5105 
   5106   static inline CodeCache* cast(Object* obj);
   5107 
   5108 #ifdef OBJECT_PRINT
   5109   inline void CodeCachePrint() {
   5110     CodeCachePrint(stdout);
   5111   }
   5112   void CodeCachePrint(FILE* out);
   5113 #endif
   5114 #ifdef DEBUG
   5115   void CodeCacheVerify();
   5116 #endif
   5117 
   5118   static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
   5119   static const int kNormalTypeCacheOffset =
   5120       kDefaultCacheOffset + kPointerSize;
   5121   static const int kSize = kNormalTypeCacheOffset + kPointerSize;
   5122 
   5123  private:
   5124   MUST_USE_RESULT MaybeObject* UpdateDefaultCache(String* name, Code* code);
   5125   MUST_USE_RESULT MaybeObject* UpdateNormalTypeCache(String* name, Code* code);
   5126   Object* LookupDefaultCache(String* name, Code::Flags flags);
   5127   Object* LookupNormalTypeCache(String* name, Code::Flags flags);
   5128 
   5129   // Code cache layout of the default cache. Elements are alternating name and
   5130   // code objects for non normal load/store/call IC's.
   5131   static const int kCodeCacheEntrySize = 2;
   5132   static const int kCodeCacheEntryNameOffset = 0;
   5133   static const int kCodeCacheEntryCodeOffset = 1;
   5134 
   5135   DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
   5136 };
   5137 
   5138 
   5139 class CodeCacheHashTableShape {
   5140  public:
   5141   static inline bool IsMatch(HashTableKey* key, Object* value) {
   5142     return key->IsMatch(value);
   5143   }
   5144 
   5145   static inline uint32_t Hash(HashTableKey* key) {
   5146     return key->Hash();
   5147   }
   5148 
   5149   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
   5150     return key->HashForObject(object);
   5151   }
   5152 
   5153   MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
   5154     return key->AsObject();
   5155   }
   5156 
   5157   static const int kPrefixSize = 0;
   5158   static const int kEntrySize = 2;
   5159 };
   5160 
   5161 
   5162 class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
   5163                                            HashTableKey*> {
   5164  public:
   5165   Object* Lookup(String* name, Code::Flags flags);
   5166   MUST_USE_RESULT MaybeObject* Put(String* name, Code* code);
   5167 
   5168   int GetIndex(String* name, Code::Flags flags);
   5169   void RemoveByIndex(int index);
   5170 
   5171   static inline CodeCacheHashTable* cast(Object* obj);
   5172 
   5173   // Initial size of the fixed array backing the hash table.
   5174   static const int kInitialSize = 64;
   5175 
   5176  private:
   5177   DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
   5178 };
   5179 
   5180 
   5181 enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
   5182 enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
   5183 
   5184 
   5185 class StringHasher {
   5186  public:
   5187   explicit inline StringHasher(int length);
   5188 
   5189   // Returns true if the hash of this string can be computed without
   5190   // looking at the contents.
   5191   inline bool has_trivial_hash();
   5192 
   5193   // Add a character to the hash and update the array index calculation.
   5194   inline void AddCharacter(uc32 c);
   5195 
   5196   // Adds a character to the hash but does not update the array index
   5197   // calculation.  This can only be called when it has been verified
   5198   // that the input is not an array index.
   5199   inline void AddCharacterNoIndex(uc32 c);
   5200 
   5201   // Returns the value to store in the hash field of a string with
   5202   // the given length and contents.
   5203   uint32_t GetHashField();
   5204 
   5205   // Returns true if the characters seen so far make up a legal array
   5206   // index.
   5207   bool is_array_index() { return is_array_index_; }
   5208 
   5209   bool is_valid() { return is_valid_; }
   5210 
   5211   void invalidate() { is_valid_ = false; }
   5212 
   5213   // Calculated hash value for a string consisting of 1 to
   5214   // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
   5215   // value is represented decimal value.
   5216   static uint32_t MakeArrayIndexHash(uint32_t value, int length);
   5217 
   5218  private:
   5219 
   5220   uint32_t array_index() {
   5221     ASSERT(is_array_index());
   5222     return array_index_;
   5223   }
   5224 
   5225   inline uint32_t GetHash();
   5226 
   5227   int length_;
   5228   uint32_t raw_running_hash_;
   5229   uint32_t array_index_;
   5230   bool is_array_index_;
   5231   bool is_first_char_;
   5232   bool is_valid_;
   5233   friend class TwoCharHashTableKey;
   5234 };
   5235 
   5236 
   5237 // Calculates string hash.
   5238 template <typename schar>
   5239 inline uint32_t HashSequentialString(const schar* chars, int length);
   5240 
   5241 
   5242 // The characteristics of a string are stored in its map.  Retrieving these
   5243 // few bits of information is moderately expensive, involving two memory
   5244 // loads where the second is dependent on the first.  To improve efficiency
   5245 // the shape of the string is given its own class so that it can be retrieved
   5246 // once and used for several string operations.  A StringShape is small enough
   5247 // to be passed by value and is immutable, but be aware that flattening a
   5248 // string can potentially alter its shape.  Also be aware that a GC caused by
   5249 // something else can alter the shape of a string due to ConsString
   5250 // shortcutting.  Keeping these restrictions in mind has proven to be error-
   5251 // prone and so we no longer put StringShapes in variables unless there is a
   5252 // concrete performance benefit at that particular point in the code.
   5253 class StringShape BASE_EMBEDDED {
   5254  public:
   5255   inline explicit StringShape(String* s);
   5256   inline explicit StringShape(Map* s);
   5257   inline explicit StringShape(InstanceType t);
   5258   inline bool IsSequential();
   5259   inline bool IsExternal();
   5260   inline bool IsCons();
   5261   inline bool IsExternalAscii();
   5262   inline bool IsExternalTwoByte();
   5263   inline bool IsSequentialAscii();
   5264   inline bool IsSequentialTwoByte();
   5265   inline bool IsSymbol();
   5266   inline StringRepresentationTag representation_tag();
   5267   inline uint32_t full_representation_tag();
   5268   inline uint32_t size_tag();
   5269 #ifdef DEBUG
   5270   inline uint32_t type() { return type_; }
   5271   inline void invalidate() { valid_ = false; }
   5272   inline bool valid() { return valid_; }
   5273 #else
   5274   inline void invalidate() { }
   5275 #endif
   5276  private:
   5277   uint32_t type_;
   5278 #ifdef DEBUG
   5279   inline void set_valid() { valid_ = true; }
   5280   bool valid_;
   5281 #else
   5282   inline void set_valid() { }
   5283 #endif
   5284 };
   5285 
   5286 
   5287 // The String abstract class captures JavaScript string values:
   5288 //
   5289 // Ecma-262:
   5290 //  4.3.16 String Value
   5291 //    A string value is a member of the type String and is a finite
   5292 //    ordered sequence of zero or more 16-bit unsigned integer values.
   5293 //
   5294 // All string values have a length field.
   5295 class String: public HeapObject {
   5296  public:
   5297   // Get and set the length of the string.
   5298   inline int length();
   5299   inline void set_length(int value);
   5300 
   5301   // Get and set the hash field of the string.
   5302   inline uint32_t hash_field();
   5303   inline void set_hash_field(uint32_t value);
   5304 
   5305   inline bool IsAsciiRepresentation();
   5306   inline bool IsTwoByteRepresentation();
   5307 
   5308   // Returns whether this string has ascii chars, i.e. all of them can
   5309   // be ascii encoded.  This might be the case even if the string is
   5310   // two-byte.  Such strings may appear when the embedder prefers
   5311   // two-byte external representations even for ascii data.
   5312   //
   5313   // NOTE: this should be considered only a hint.  False negatives are
   5314   // possible.
   5315   inline bool HasOnlyAsciiChars();
   5316 
   5317   // Get and set individual two byte chars in the string.
   5318   inline void Set(int index, uint16_t value);
   5319   // Get individual two byte char in the string.  Repeated calls
   5320   // to this method are not efficient unless the string is flat.
   5321   inline uint16_t Get(int index);
   5322 
   5323   // Try to flatten the string.  Checks first inline to see if it is
   5324   // necessary.  Does nothing if the string is not a cons string.
   5325   // Flattening allocates a sequential string with the same data as
   5326   // the given string and mutates the cons string to a degenerate
   5327   // form, where the first component is the new sequential string and
   5328   // the second component is the empty string.  If allocation fails,
   5329   // this function returns a failure.  If flattening succeeds, this
   5330   // function returns the sequential string that is now the first
   5331   // component of the cons string.
   5332   //
   5333   // Degenerate cons strings are handled specially by the garbage
   5334   // collector (see IsShortcutCandidate).
   5335   //
   5336   // Use FlattenString from Handles.cc to flatten even in case an
   5337   // allocation failure happens.
   5338   inline MaybeObject* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
   5339 
   5340   // Convenience function.  Has exactly the same behavior as
   5341   // TryFlatten(), except in the case of failure returns the original
   5342   // string.
   5343   inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED);
   5344 
   5345   Vector<const char> ToAsciiVector();
   5346   Vector<const uc16> ToUC16Vector();
   5347 
   5348   // Mark the string as an undetectable object. It only applies to
   5349   // ascii and two byte string types.
   5350   bool MarkAsUndetectable();
   5351 
   5352   // Return a substring.
   5353   MUST_USE_RESULT MaybeObject* SubString(int from,
   5354                                          int to,
   5355                                          PretenureFlag pretenure = NOT_TENURED);
   5356 
   5357   // String equality operations.
   5358   inline bool Equals(String* other);
   5359   bool IsEqualTo(Vector<const char> str);
   5360   bool IsAsciiEqualTo(Vector<const char> str);
   5361   bool IsTwoByteEqualTo(Vector<const uc16> str);
   5362 
   5363   // Return a UTF8 representation of the string.  The string is null
   5364   // terminated but may optionally contain nulls.  Length is returned
   5365   // in length_output if length_output is not a null pointer  The string
   5366   // should be nearly flat, otherwise the performance of this method may
   5367   // be very slow (quadratic in the length).  Setting robustness_flag to
   5368   // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
   5369   // handles unexpected data without causing assert failures and it does not
   5370   // do any heap allocations.  This is useful when printing stack traces.
   5371   SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
   5372                                RobustnessFlag robustness_flag,
   5373                                int offset,
   5374                                int length,
   5375                                int* length_output = 0);
   5376   SmartPointer<char> ToCString(
   5377       AllowNullsFlag allow_nulls = DISALLOW_NULLS,
   5378       RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
   5379       int* length_output = 0);
   5380 
   5381   int Utf8Length();
   5382 
   5383   // Return a 16 bit Unicode representation of the string.
   5384   // The string should be nearly flat, otherwise the performance of
   5385   // of this method may be very bad.  Setting robustness_flag to
   5386   // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
   5387   // handles unexpected data without causing assert failures and it does not
   5388   // do any heap allocations.  This is useful when printing stack traces.
   5389   SmartPointer<uc16> ToWideCString(
   5390       RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
   5391 
   5392   // Tells whether the hash code has been computed.
   5393   inline bool HasHashCode();
   5394 
   5395   // Returns a hash value used for the property table
   5396   inline uint32_t Hash();
   5397 
   5398   static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
   5399                                    int length);
   5400 
   5401   static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
   5402                                 uint32_t* index,
   5403                                 int length);
   5404 
   5405   // Externalization.
   5406   bool MakeExternal(v8::String::ExternalStringResource* resource);
   5407   bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
   5408 
   5409   // Conversion.
   5410   inline bool AsArrayIndex(uint32_t* index);
   5411 
   5412   // Casting.
   5413   static inline String* cast(Object* obj);
   5414 
   5415   void PrintOn(FILE* out);
   5416 
   5417   // For use during stack traces.  Performs rudimentary sanity check.
   5418   bool LooksValid();
   5419 
   5420   // Dispatched behavior.
   5421   void StringShortPrint(StringStream* accumulator);
   5422 #ifdef OBJECT_PRINT
   5423   inline void StringPrint() {
   5424     StringPrint(stdout);
   5425   }
   5426   void StringPrint(FILE* out);
   5427 #endif
   5428 #ifdef DEBUG
   5429   void StringVerify();
   5430 #endif
   5431   inline bool IsFlat();
   5432 
   5433   // Layout description.
   5434   static const int kLengthOffset = HeapObject::kHeaderSize;
   5435   static const int kHashFieldOffset = kLengthOffset + kPointerSize;
   5436   static const int kSize = kHashFieldOffset + kPointerSize;
   5437 
   5438   // Maximum number of characters to consider when trying to convert a string
   5439   // value into an array index.
   5440   static const int kMaxArrayIndexSize = 10;
   5441 
   5442   // Max ascii char code.
   5443   static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
   5444   static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
   5445   static const int kMaxUC16CharCode = 0xffff;
   5446 
   5447   // Minimum length for a cons string.
   5448   static const int kMinNonFlatLength = 13;
   5449 
   5450   // Mask constant for checking if a string has a computed hash code
   5451   // and if it is an array index.  The least significant bit indicates
   5452   // whether a hash code has been computed.  If the hash code has been
   5453   // computed the 2nd bit tells whether the string can be used as an
   5454   // array index.
   5455   static const int kHashNotComputedMask = 1;
   5456   static const int kIsNotArrayIndexMask = 1 << 1;
   5457   static const int kNofHashBitFields = 2;
   5458 
   5459   // Shift constant retrieving hash code from hash field.
   5460   static const int kHashShift = kNofHashBitFields;
   5461 
   5462   // Array index strings this short can keep their index in the hash
   5463   // field.
   5464   static const int kMaxCachedArrayIndexLength = 7;
   5465 
   5466   // For strings which are array indexes the hash value has the string length
   5467   // mixed into the hash, mainly to avoid a hash value of zero which would be
   5468   // the case for the string '0'. 24 bits are used for the array index value.
   5469   static const int kArrayIndexValueBits = 24;
   5470   static const int kArrayIndexLengthBits =
   5471       kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
   5472 
   5473   STATIC_CHECK((kArrayIndexLengthBits > 0));
   5474   STATIC_CHECK(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
   5475 
   5476   static const int kArrayIndexHashLengthShift =
   5477       kArrayIndexValueBits + kNofHashBitFields;
   5478 
   5479   static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
   5480 
   5481   static const int kArrayIndexValueMask =
   5482       ((1 << kArrayIndexValueBits) - 1) << kHashShift;
   5483 
   5484   // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
   5485   // could use a mask to test if the length of string is less than or equal to
   5486   // kMaxCachedArrayIndexLength.
   5487   STATIC_CHECK(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
   5488 
   5489   static const int kContainsCachedArrayIndexMask =
   5490       (~kMaxCachedArrayIndexLength << kArrayIndexHashLengthShift) |
   5491       kIsNotArrayIndexMask;
   5492 
   5493   // Value of empty hash field indicating that the hash is not computed.
   5494   static const int kEmptyHashField =
   5495       kIsNotArrayIndexMask | kHashNotComputedMask;
   5496 
   5497   // Value of hash field containing computed hash equal to zero.
   5498   static const int kZeroHash = kIsNotArrayIndexMask;
   5499 
   5500   // Maximal string length.
   5501   static const int kMaxLength = (1 << (32 - 2)) - 1;
   5502 
   5503   // Max length for computing hash. For strings longer than this limit the
   5504   // string length is used as the hash value.
   5505   static const int kMaxHashCalcLength = 16383;
   5506 
   5507   // Limit for truncation in short printing.
   5508   static const int kMaxShortPrintLength = 1024;
   5509 
   5510   // Support for regular expressions.
   5511   const uc16* GetTwoByteData();
   5512   const uc16* GetTwoByteData(unsigned start);
   5513 
   5514   // Support for StringInputBuffer
   5515   static const unibrow::byte* ReadBlock(String* input,
   5516                                         unibrow::byte* util_buffer,
   5517                                         unsigned capacity,
   5518                                         unsigned* remaining,
   5519                                         unsigned* offset);
   5520   static const unibrow::byte* ReadBlock(String** input,
   5521                                         unibrow::byte* util_buffer,
   5522                                         unsigned capacity,
   5523                                         unsigned* remaining,
   5524                                         unsigned* offset);
   5525 
   5526   // Helper function for flattening strings.
   5527   template <typename sinkchar>
   5528   static void WriteToFlat(String* source,
   5529                           sinkchar* sink,
   5530                           int from,
   5531                           int to);
   5532 
   5533   static inline bool IsAscii(const char* chars, int length) {
   5534     const char* limit = chars + length;
   5535 #ifdef V8_HOST_CAN_READ_UNALIGNED
   5536     ASSERT(kMaxAsciiCharCode == 0x7F);
   5537     const uintptr_t non_ascii_mask = kUintptrAllBitsSet / 0xFF * 0x80;
   5538     while (chars <= limit - sizeof(uintptr_t)) {
   5539       if (*reinterpret_cast<const uintptr_t*>(chars) & non_ascii_mask) {
   5540         return false;
   5541       }
   5542       chars += sizeof(uintptr_t);
   5543     }
   5544 #endif
   5545     while (chars < limit) {
   5546       if (static_cast<uint8_t>(*chars) > kMaxAsciiCharCodeU) return false;
   5547       ++chars;
   5548     }
   5549     return true;
   5550   }
   5551 
   5552   static inline bool IsAscii(const uc16* chars, int length) {
   5553     const uc16* limit = chars + length;
   5554     while (chars < limit) {
   5555       if (*chars > kMaxAsciiCharCodeU) return false;
   5556       ++chars;
   5557     }
   5558     return true;
   5559   }
   5560 
   5561  protected:
   5562   class ReadBlockBuffer {
   5563    public:
   5564     ReadBlockBuffer(unibrow::byte* util_buffer_,
   5565                     unsigned cursor_,
   5566                     unsigned capacity_,
   5567                     unsigned remaining_) :
   5568       util_buffer(util_buffer_),
   5569       cursor(cursor_),
   5570       capacity(capacity_),
   5571       remaining(remaining_) {
   5572     }
   5573     unibrow::byte* util_buffer;
   5574     unsigned       cursor;
   5575     unsigned       capacity;
   5576     unsigned       remaining;
   5577   };
   5578 
   5579   static inline const unibrow::byte* ReadBlock(String* input,
   5580                                                ReadBlockBuffer* buffer,
   5581                                                unsigned* offset,
   5582                                                unsigned max_chars);
   5583   static void ReadBlockIntoBuffer(String* input,
   5584                                   ReadBlockBuffer* buffer,
   5585                                   unsigned* offset_ptr,
   5586                                   unsigned max_chars);
   5587 
   5588  private:
   5589   // Try to flatten the top level ConsString that is hiding behind this
   5590   // string.  This is a no-op unless the string is a ConsString.  Flatten
   5591   // mutates the ConsString and might return a failure.
   5592   MUST_USE_RESULT MaybeObject* SlowTryFlatten(PretenureFlag pretenure);
   5593 
   5594   static inline bool IsHashFieldComputed(uint32_t field);
   5595 
   5596   // Slow case of String::Equals.  This implementation works on any strings
   5597   // but it is most efficient on strings that are almost flat.
   5598   bool SlowEquals(String* other);
   5599 
   5600   // Slow case of AsArrayIndex.
   5601   bool SlowAsArrayIndex(uint32_t* index);
   5602 
   5603   // Compute and set the hash code.
   5604   uint32_t ComputeAndSetHash();
   5605 
   5606   DISALLOW_IMPLICIT_CONSTRUCTORS(String);
   5607 };
   5608 
   5609 
   5610 // The SeqString abstract class captures sequential string values.
   5611 class SeqString: public String {
   5612  public:
   5613 
   5614   // Casting.
   5615   static inline SeqString* cast(Object* obj);
   5616 
   5617  private:
   5618   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
   5619 };
   5620 
   5621 
   5622 // The AsciiString class captures sequential ascii string objects.
   5623 // Each character in the AsciiString is an ascii character.
   5624 class SeqAsciiString: public SeqString {
   5625  public:
   5626   static const bool kHasAsciiEncoding = true;
   5627 
   5628   // Dispatched behavior.
   5629   inline uint16_t SeqAsciiStringGet(int index);
   5630   inline void SeqAsciiStringSet(int index, uint16_t value);
   5631 
   5632   // Get the address of the characters in this string.
   5633   inline Address GetCharsAddress();
   5634 
   5635   inline char* GetChars();
   5636 
   5637   // Casting
   5638   static inline SeqAsciiString* cast(Object* obj);
   5639 
   5640   // Garbage collection support.  This method is called by the
   5641   // garbage collector to compute the actual size of an AsciiString
   5642   // instance.
   5643   inline int SeqAsciiStringSize(InstanceType instance_type);
   5644 
   5645   // Computes the size for an AsciiString instance of a given length.
   5646   static int SizeFor(int length) {
   5647     return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
   5648   }
   5649 
   5650   // Layout description.
   5651   static const int kHeaderSize = String::kSize;
   5652   static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
   5653 
   5654   // Maximal memory usage for a single sequential ASCII string.
   5655   static const int kMaxSize = 512 * MB;
   5656   // Maximal length of a single sequential ASCII string.
   5657   // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
   5658   static const int kMaxLength = (kMaxSize - kHeaderSize);
   5659 
   5660   // Support for StringInputBuffer.
   5661   inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
   5662                                                 unsigned* offset,
   5663                                                 unsigned chars);
   5664   inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
   5665                                                       unsigned* offset,
   5666                                                       unsigned chars);
   5667 
   5668  private:
   5669   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
   5670 };
   5671 
   5672 
   5673 // The TwoByteString class captures sequential unicode string objects.
   5674 // Each character in the TwoByteString is a two-byte uint16_t.
   5675 class SeqTwoByteString: public SeqString {
   5676  public:
   5677   static const bool kHasAsciiEncoding = false;
   5678 
   5679   // Dispatched behavior.
   5680   inline uint16_t SeqTwoByteStringGet(int index);
   5681   inline void SeqTwoByteStringSet(int index, uint16_t value);
   5682 
   5683   // Get the address of the characters in this string.
   5684   inline Address GetCharsAddress();
   5685 
   5686   inline uc16* GetChars();
   5687 
   5688   // For regexp code.
   5689   const uint16_t* SeqTwoByteStringGetData(unsigned start);
   5690 
   5691   // Casting
   5692   static inline SeqTwoByteString* cast(Object* obj);
   5693 
   5694   // Garbage collection support.  This method is called by the
   5695   // garbage collector to compute the actual size of a TwoByteString
   5696   // instance.
   5697   inline int SeqTwoByteStringSize(InstanceType instance_type);
   5698 
   5699   // Computes the size for a TwoByteString instance of a given length.
   5700   static int SizeFor(int length) {
   5701     return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
   5702   }
   5703 
   5704   // Layout description.
   5705   static const int kHeaderSize = String::kSize;
   5706   static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
   5707 
   5708   // Maximal memory usage for a single sequential two-byte string.
   5709   static const int kMaxSize = 512 * MB;
   5710   // Maximal length of a single sequential two-byte string.
   5711   // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
   5712   static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
   5713 
   5714   // Support for StringInputBuffer.
   5715   inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
   5716                                                   unsigned* offset_ptr,
   5717                                                   unsigned chars);
   5718 
   5719  private:
   5720   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
   5721 };
   5722 
   5723 
   5724 // The ConsString class describes string values built by using the
   5725 // addition operator on strings.  A ConsString is a pair where the
   5726 // first and second components are pointers to other string values.
   5727 // One or both components of a ConsString can be pointers to other
   5728 // ConsStrings, creating a binary tree of ConsStrings where the leaves
   5729 // are non-ConsString string values.  The string value represented by
   5730 // a ConsString can be obtained by concatenating the leaf string
   5731 // values in a left-to-right depth-first traversal of the tree.
   5732 class ConsString: public String {
   5733  public:
   5734   // First string of the cons cell.
   5735   inline String* first();
   5736   // Doesn't check that the result is a string, even in debug mode.  This is
   5737   // useful during GC where the mark bits confuse the checks.
   5738   inline Object* unchecked_first();
   5739   inline void set_first(String* first,
   5740                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
   5741 
   5742   // Second string of the cons cell.
   5743   inline String* second();
   5744   // Doesn't check that the result is a string, even in debug mode.  This is
   5745   // useful during GC where the mark bits confuse the checks.
   5746   inline Object* unchecked_second();
   5747   inline void set_second(String* second,
   5748                          WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
   5749 
   5750   // Dispatched behavior.
   5751   uint16_t ConsStringGet(int index);
   5752 
   5753   // Casting.
   5754   static inline ConsString* cast(Object* obj);
   5755 
   5756   // Layout description.
   5757   static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
   5758   static const int kSecondOffset = kFirstOffset + kPointerSize;
   5759   static const int kSize = kSecondOffset + kPointerSize;
   5760 
   5761   // Support for StringInputBuffer.
   5762   inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
   5763                                                   unsigned* offset_ptr,
   5764                                                   unsigned chars);
   5765   inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
   5766                                             unsigned* offset_ptr,
   5767                                             unsigned chars);
   5768 
   5769   // Minimum length for a cons string.
   5770   static const int kMinLength = 13;
   5771 
   5772   typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
   5773           BodyDescriptor;
   5774 
   5775  private:
   5776   DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
   5777 };
   5778 
   5779 
   5780 // The ExternalString class describes string values that are backed by
   5781 // a string resource that lies outside the V8 heap.  ExternalStrings
   5782 // consist of the length field common to all strings, a pointer to the
   5783 // external resource.  It is important to ensure (externally) that the
   5784 // resource is not deallocated while the ExternalString is live in the
   5785 // V8 heap.
   5786 //
   5787 // The API expects that all ExternalStrings are created through the
   5788 // API.  Therefore, ExternalStrings should not be used internally.
   5789 class ExternalString: public String {
   5790  public:
   5791   // Casting
   5792   static inline ExternalString* cast(Object* obj);
   5793 
   5794   // Layout description.
   5795   static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
   5796   static const int kSize = kResourceOffset + kPointerSize;
   5797 
   5798   STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
   5799 
   5800  private:
   5801   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
   5802 };
   5803 
   5804 
   5805 // The ExternalAsciiString class is an external string backed by an
   5806 // ASCII string.
   5807 class ExternalAsciiString: public ExternalString {
   5808  public:
   5809   static const bool kHasAsciiEncoding = true;
   5810 
   5811   typedef v8::String::ExternalAsciiStringResource Resource;
   5812 
   5813   // The underlying resource.
   5814   inline Resource* resource();
   5815   inline void set_resource(Resource* buffer);
   5816 
   5817   // Dispatched behavior.
   5818   uint16_t ExternalAsciiStringGet(int index);
   5819 
   5820   // Casting.
   5821   static inline ExternalAsciiString* cast(Object* obj);
   5822 
   5823   // Garbage collection support.
   5824   inline void ExternalAsciiStringIterateBody(ObjectVisitor* v);
   5825 
   5826   template<typename StaticVisitor>
   5827   inline void ExternalAsciiStringIterateBody();
   5828 
   5829   // Support for StringInputBuffer.
   5830   const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
   5831                                                     unsigned* offset,
   5832                                                     unsigned chars);
   5833   inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
   5834                                                      unsigned* offset,
   5835                                                      unsigned chars);
   5836 
   5837  private:
   5838   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
   5839 };
   5840 
   5841 
   5842 // The ExternalTwoByteString class is an external string backed by a UTF-16
   5843 // encoded string.
   5844 class ExternalTwoByteString: public ExternalString {
   5845  public:
   5846   static const bool kHasAsciiEncoding = false;
   5847 
   5848   typedef v8::String::ExternalStringResource Resource;
   5849 
   5850   // The underlying string resource.
   5851   inline Resource* resource();
   5852   inline void set_resource(Resource* buffer);
   5853 
   5854   // Dispatched behavior.
   5855   uint16_t ExternalTwoByteStringGet(int index);
   5856 
   5857   // For regexp code.
   5858   const uint16_t* ExternalTwoByteStringGetData(unsigned start);
   5859 
   5860   // Casting.
   5861   static inline ExternalTwoByteString* cast(Object* obj);
   5862 
   5863   // Garbage collection support.
   5864   inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
   5865 
   5866   template<typename StaticVisitor>
   5867   inline void ExternalTwoByteStringIterateBody();
   5868 
   5869 
   5870   // Support for StringInputBuffer.
   5871   void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
   5872                                                 unsigned* offset_ptr,
   5873                                                 unsigned chars);
   5874 
   5875  private:
   5876   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
   5877 };
   5878 
   5879 
   5880 // Utility superclass for stack-allocated objects that must be updated
   5881 // on gc.  It provides two ways for the gc to update instances, either
   5882 // iterating or updating after gc.
   5883 class Relocatable BASE_EMBEDDED {
   5884  public:
   5885   explicit inline Relocatable(Isolate* isolate);
   5886   inline virtual ~Relocatable();
   5887   virtual void IterateInstance(ObjectVisitor* v) { }
   5888   virtual void PostGarbageCollection() { }
   5889 
   5890   static void PostGarbageCollectionProcessing();
   5891   static int ArchiveSpacePerThread();
   5892   static char* ArchiveState(char* to);
   5893   static char* RestoreState(char* from);
   5894   static void Iterate(ObjectVisitor* v);
   5895   static void Iterate(ObjectVisitor* v, Relocatable* top);
   5896   static char* Iterate(ObjectVisitor* v, char* t);
   5897  private:
   5898   Isolate* isolate_;
   5899   Relocatable* prev_;
   5900 };
   5901 
   5902 
   5903 // A flat string reader provides random access to the contents of a
   5904 // string independent of the character width of the string.  The handle
   5905 // must be valid as long as the reader is being used.
   5906 class FlatStringReader : public Relocatable {
   5907  public:
   5908   FlatStringReader(Isolate* isolate, Handle<String> str);
   5909   FlatStringReader(Isolate* isolate, Vector<const char> input);
   5910   void PostGarbageCollection();
   5911   inline uc32 Get(int index);
   5912   int length() { return length_; }
   5913  private:
   5914   String** str_;
   5915   bool is_ascii_;
   5916   int length_;
   5917   const void* start_;
   5918 };
   5919 
   5920 
   5921 // Note that StringInputBuffers are not valid across a GC!  To fix this
   5922 // it would have to store a String Handle instead of a String* and
   5923 // AsciiStringReadBlock would have to be modified to use memcpy.
   5924 //
   5925 // StringInputBuffer is able to traverse any string regardless of how
   5926 // deeply nested a sequence of ConsStrings it is made of.  However,
   5927 // performance will be better if deep strings are flattened before they
   5928 // are traversed.  Since flattening requires memory allocation this is
   5929 // not always desirable, however (esp. in debugging situations).
   5930 class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
   5931  public:
   5932   virtual void Seek(unsigned pos);
   5933   inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
   5934   explicit inline StringInputBuffer(String* backing):
   5935       unibrow::InputBuffer<String, String*, 1024>(backing) {}
   5936 };
   5937 
   5938 
   5939 class SafeStringInputBuffer
   5940   : public unibrow::InputBuffer<String, String**, 256> {
   5941  public:
   5942   virtual void Seek(unsigned pos);
   5943   inline SafeStringInputBuffer()
   5944       : unibrow::InputBuffer<String, String**, 256>() {}
   5945   explicit inline SafeStringInputBuffer(String** backing)
   5946       : unibrow::InputBuffer<String, String**, 256>(backing) {}
   5947 };
   5948 
   5949 
   5950 template <typename T>
   5951 class VectorIterator {
   5952  public:
   5953   VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
   5954   explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
   5955   T GetNext() { return data_[index_++]; }
   5956   bool has_more() { return index_ < data_.length(); }
   5957  private:
   5958   Vector<const T> data_;
   5959   int index_;
   5960 };
   5961 
   5962 
   5963 // The Oddball describes objects null, undefined, true, and false.
   5964 class Oddball: public HeapObject {
   5965  public:
   5966   // [to_string]: Cached to_string computed at startup.
   5967   DECL_ACCESSORS(to_string, String)
   5968 
   5969   // [to_number]: Cached to_number computed at startup.
   5970   DECL_ACCESSORS(to_number, Object)
   5971 
   5972   inline byte kind();
   5973   inline void set_kind(byte kind);
   5974 
   5975   // Casting.
   5976   static inline Oddball* cast(Object* obj);
   5977 
   5978   // Dispatched behavior.
   5979 #ifdef DEBUG
   5980   void OddballVerify();
   5981 #endif
   5982 
   5983   // Initialize the fields.
   5984   MUST_USE_RESULT MaybeObject* Initialize(const char* to_string,
   5985                                           Object* to_number,
   5986                                           byte kind);
   5987 
   5988   // Layout description.
   5989   static const int kToStringOffset = HeapObject::kHeaderSize;
   5990   static const int kToNumberOffset = kToStringOffset + kPointerSize;
   5991   static const int kKindOffset = kToNumberOffset + kPointerSize;
   5992   static const int kSize = kKindOffset + kPointerSize;
   5993 
   5994   static const byte kFalse = 0;
   5995   static const byte kTrue = 1;
   5996   static const byte kNotBooleanMask = ~1;
   5997   static const byte kTheHole = 2;
   5998   static const byte kNull = 3;
   5999   static const byte kArgumentMarker = 4;
   6000   static const byte kUndefined = 5;
   6001   static const byte kOther = 6;
   6002 
   6003   typedef FixedBodyDescriptor<kToStringOffset,
   6004                               kToNumberOffset + kPointerSize,
   6005                               kSize> BodyDescriptor;
   6006 
   6007  private:
   6008   DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
   6009 };
   6010 
   6011 
   6012 class JSGlobalPropertyCell: public HeapObject {
   6013  public:
   6014   // [value]: value of the global property.
   6015   DECL_ACCESSORS(value, Object)
   6016 
   6017   // Casting.
   6018   static inline JSGlobalPropertyCell* cast(Object* obj);
   6019 
   6020 #ifdef DEBUG
   6021   void JSGlobalPropertyCellVerify();
   6022 #endif
   6023 #ifdef OBJECT_PRINT
   6024   inline void JSGlobalPropertyCellPrint() {
   6025     JSGlobalPropertyCellPrint(stdout);
   6026   }
   6027   void JSGlobalPropertyCellPrint(FILE* out);
   6028 #endif
   6029 
   6030   // Layout description.
   6031   static const int kValueOffset = HeapObject::kHeaderSize;
   6032   static const int kSize = kValueOffset + kPointerSize;
   6033 
   6034   typedef FixedBodyDescriptor<kValueOffset,
   6035                               kValueOffset + kPointerSize,
   6036                               kSize> BodyDescriptor;
   6037 
   6038   // Returns the isolate/heap this cell object belongs to.
   6039   inline Isolate* isolate();
   6040   inline Heap* heap();
   6041 
   6042  private:
   6043   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
   6044 };
   6045 
   6046 
   6047 
   6048 // Proxy describes objects pointing from JavaScript to C structures.
   6049 // Since they cannot contain references to JS HeapObjects they can be
   6050 // placed in old_data_space.
   6051 class Proxy: public HeapObject {
   6052  public:
   6053   // [proxy]: field containing the address.
   6054   inline Address proxy();
   6055   inline void set_proxy(Address value);
   6056 
   6057   // Casting.
   6058   static inline Proxy* cast(Object* obj);
   6059 
   6060   // Dispatched behavior.
   6061   inline void ProxyIterateBody(ObjectVisitor* v);
   6062 
   6063   template<typename StaticVisitor>
   6064   inline void ProxyIterateBody();
   6065 
   6066 #ifdef OBJECT_PRINT
   6067   inline void ProxyPrint() {
   6068     ProxyPrint(stdout);
   6069   }
   6070   void ProxyPrint(FILE* out);
   6071 #endif
   6072 #ifdef DEBUG
   6073   void ProxyVerify();
   6074 #endif
   6075 
   6076   // Layout description.
   6077 
   6078   static const int kProxyOffset = HeapObject::kHeaderSize;
   6079   static const int kSize = kProxyOffset + kPointerSize;
   6080 
   6081   STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
   6082 
   6083  private:
   6084   DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
   6085 };
   6086 
   6087 
   6088 // The JSArray describes JavaScript Arrays
   6089 //  Such an array can be in one of two modes:
   6090 //    - fast, backing storage is a FixedArray and length <= elements.length();
   6091 //       Please note: push and pop can be used to grow and shrink the array.
   6092 //    - slow, backing storage is a HashTable with numbers as keys.
   6093 class JSArray: public JSObject {
   6094  public:
   6095   // [length]: The length property.
   6096   DECL_ACCESSORS(length, Object)
   6097 
   6098   // Overload the length setter to skip write barrier when the length
   6099   // is set to a smi. This matches the set function on FixedArray.
   6100   inline void set_length(Smi* length);
   6101 
   6102   MUST_USE_RESULT MaybeObject* JSArrayUpdateLengthFromIndex(uint32_t index,
   6103                                                             Object* value);
   6104 
   6105   // Initialize the array with the given capacity. The function may
   6106   // fail due to out-of-memory situations, but only if the requested
   6107   // capacity is non-zero.
   6108   MUST_USE_RESULT MaybeObject* Initialize(int capacity);
   6109 
   6110   // Set the content of the array to the content of storage.
   6111   inline void SetContent(FixedArray* storage);
   6112 
   6113   // Casting.
   6114   static inline JSArray* cast(Object* obj);
   6115 
   6116   // Uses handles.  Ensures that the fixed array backing the JSArray has at
   6117   // least the stated size.
   6118   inline void EnsureSize(int minimum_size_of_backing_fixed_array);
   6119 
   6120   // Dispatched behavior.
   6121 #ifdef OBJECT_PRINT
   6122   inline void JSArrayPrint() {
   6123     JSArrayPrint(stdout);
   6124   }
   6125   void JSArrayPrint(FILE* out);
   6126 #endif
   6127 #ifdef DEBUG
   6128   void JSArrayVerify();
   6129 #endif
   6130 
   6131   // Number of element slots to pre-allocate for an empty array.
   6132   static const int kPreallocatedArrayElements = 4;
   6133 
   6134   // Layout description.
   6135   static const int kLengthOffset = JSObject::kHeaderSize;
   6136   static const int kSize = kLengthOffset + kPointerSize;
   6137 
   6138  private:
   6139   // Expand the fixed array backing of a fast-case JSArray to at least
   6140   // the requested size.
   6141   void Expand(int minimum_size_of_backing_fixed_array);
   6142 
   6143   DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
   6144 };
   6145 
   6146 
   6147 // JSRegExpResult is just a JSArray with a specific initial map.
   6148 // This initial map adds in-object properties for "index" and "input"
   6149 // properties, as assigned by RegExp.prototype.exec, which allows
   6150 // faster creation of RegExp exec results.
   6151 // This class just holds constants used when creating the result.
   6152 // After creation the result must be treated as a JSArray in all regards.
   6153 class JSRegExpResult: public JSArray {
   6154  public:
   6155   // Offsets of object fields.
   6156   static const int kIndexOffset = JSArray::kSize;
   6157   static const int kInputOffset = kIndexOffset + kPointerSize;
   6158   static const int kSize = kInputOffset + kPointerSize;
   6159   // Indices of in-object properties.
   6160   static const int kIndexIndex = 0;
   6161   static const int kInputIndex = 1;
   6162  private:
   6163   DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
   6164 };
   6165 
   6166 
   6167 // An accessor must have a getter, but can have no setter.
   6168 //
   6169 // When setting a property, V8 searches accessors in prototypes.
   6170 // If an accessor was found and it does not have a setter,
   6171 // the request is ignored.
   6172 //
   6173 // If the accessor in the prototype has the READ_ONLY property attribute, then
   6174 // a new value is added to the local object when the property is set.
   6175 // This shadows the accessor in the prototype.
   6176 class AccessorInfo: public Struct {
   6177  public:
   6178   DECL_ACCESSORS(getter, Object)
   6179   DECL_ACCESSORS(setter, Object)
   6180   DECL_ACCESSORS(data, Object)
   6181   DECL_ACCESSORS(name, Object)
   6182   DECL_ACCESSORS(flag, Smi)
   6183 
   6184   inline bool all_can_read();
   6185   inline void set_all_can_read(bool value);
   6186 
   6187   inline bool all_can_write();
   6188   inline void set_all_can_write(bool value);
   6189 
   6190   inline bool prohibits_overwriting();
   6191   inline void set_prohibits_overwriting(bool value);
   6192 
   6193   inline PropertyAttributes property_attributes();
   6194   inline void set_property_attributes(PropertyAttributes attributes);
   6195 
   6196   static inline AccessorInfo* cast(Object* obj);
   6197 
   6198 #ifdef OBJECT_PRINT
   6199   inline void AccessorInfoPrint() {
   6200     AccessorInfoPrint(stdout);
   6201   }
   6202   void AccessorInfoPrint(FILE* out);
   6203 #endif
   6204 #ifdef DEBUG
   6205   void AccessorInfoVerify();
   6206 #endif
   6207 
   6208   static const int kGetterOffset = HeapObject::kHeaderSize;
   6209   static const int kSetterOffset = kGetterOffset + kPointerSize;
   6210   static const int kDataOffset = kSetterOffset + kPointerSize;
   6211   static const int kNameOffset = kDataOffset + kPointerSize;
   6212   static const int kFlagOffset = kNameOffset + kPointerSize;
   6213   static const int kSize = kFlagOffset + kPointerSize;
   6214 
   6215  private:
   6216   // Bit positions in flag.
   6217   static const int kAllCanReadBit = 0;
   6218   static const int kAllCanWriteBit = 1;
   6219   static const int kProhibitsOverwritingBit = 2;
   6220   class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
   6221 
   6222   DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
   6223 };
   6224 
   6225 
   6226 class AccessCheckInfo: public Struct {
   6227  public:
   6228   DECL_ACCESSORS(named_callback, Object)
   6229   DECL_ACCESSORS(indexed_callback, Object)
   6230   DECL_ACCESSORS(data, Object)
   6231 
   6232   static inline AccessCheckInfo* cast(Object* obj);
   6233 
   6234 #ifdef OBJECT_PRINT
   6235   inline void AccessCheckInfoPrint() {
   6236     AccessCheckInfoPrint(stdout);
   6237   }
   6238   void AccessCheckInfoPrint(FILE* out);
   6239 #endif
   6240 #ifdef DEBUG
   6241   void AccessCheckInfoVerify();
   6242 #endif
   6243 
   6244   static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
   6245   static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
   6246   static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
   6247   static const int kSize = kDataOffset + kPointerSize;
   6248 
   6249  private:
   6250   DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
   6251 };
   6252 
   6253 
   6254 class InterceptorInfo: public Struct {
   6255  public:
   6256   DECL_ACCESSORS(getter, Object)
   6257   DECL_ACCESSORS(setter, Object)
   6258   DECL_ACCESSORS(query, Object)
   6259   DECL_ACCESSORS(deleter, Object)
   6260   DECL_ACCESSORS(enumerator, Object)
   6261   DECL_ACCESSORS(data, Object)
   6262 
   6263   static inline InterceptorInfo* cast(Object* obj);
   6264 
   6265 #ifdef OBJECT_PRINT
   6266   inline void InterceptorInfoPrint() {
   6267     InterceptorInfoPrint(stdout);
   6268   }
   6269   void InterceptorInfoPrint(FILE* out);
   6270 #endif
   6271 #ifdef DEBUG
   6272   void InterceptorInfoVerify();
   6273 #endif
   6274 
   6275   static const int kGetterOffset = HeapObject::kHeaderSize;
   6276   static const int kSetterOffset = kGetterOffset + kPointerSize;
   6277   static const int kQueryOffset = kSetterOffset + kPointerSize;
   6278   static const int kDeleterOffset = kQueryOffset + kPointerSize;
   6279   static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
   6280   static const int kDataOffset = kEnumeratorOffset + kPointerSize;
   6281   static const int kSize = kDataOffset + kPointerSize;
   6282 
   6283  private:
   6284   DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
   6285 };
   6286 
   6287 
   6288 class CallHandlerInfo: public Struct {
   6289  public:
   6290   DECL_ACCESSORS(callback, Object)
   6291   DECL_ACCESSORS(data, Object)
   6292 
   6293   static inline CallHandlerInfo* cast(Object* obj);
   6294 
   6295 #ifdef OBJECT_PRINT
   6296   inline void CallHandlerInfoPrint() {
   6297     CallHandlerInfoPrint(stdout);
   6298   }
   6299   void CallHandlerInfoPrint(FILE* out);
   6300 #endif
   6301 #ifdef DEBUG
   6302   void CallHandlerInfoVerify();
   6303 #endif
   6304 
   6305   static const int kCallbackOffset = HeapObject::kHeaderSize;
   6306   static const int kDataOffset = kCallbackOffset + kPointerSize;
   6307   static const int kSize = kDataOffset + kPointerSize;
   6308 
   6309  private:
   6310   DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
   6311 };
   6312 
   6313 
   6314 class TemplateInfo: public Struct {
   6315  public:
   6316   DECL_ACCESSORS(tag, Object)
   6317   DECL_ACCESSORS(property_list, Object)
   6318 
   6319 #ifdef DEBUG
   6320   void TemplateInfoVerify();
   6321 #endif
   6322 
   6323   static const int kTagOffset          = HeapObject::kHeaderSize;
   6324   static const int kPropertyListOffset = kTagOffset + kPointerSize;
   6325   static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
   6326  protected:
   6327   friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
   6328   DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
   6329 };
   6330 
   6331 
   6332 class FunctionTemplateInfo: public TemplateInfo {
   6333  public:
   6334   DECL_ACCESSORS(serial_number, Object)
   6335   DECL_ACCESSORS(call_code, Object)
   6336   DECL_ACCESSORS(property_accessors, Object)
   6337   DECL_ACCESSORS(prototype_template, Object)
   6338   DECL_ACCESSORS(parent_template, Object)
   6339   DECL_ACCESSORS(named_property_handler, Object)
   6340   DECL_ACCESSORS(indexed_property_handler, Object)
   6341   DECL_ACCESSORS(instance_template, Object)
   6342   DECL_ACCESSORS(class_name, Object)
   6343   DECL_ACCESSORS(signature, Object)
   6344   DECL_ACCESSORS(instance_call_handler, Object)
   6345   DECL_ACCESSORS(access_check_info, Object)
   6346   DECL_ACCESSORS(flag, Smi)
   6347 
   6348   // Following properties use flag bits.
   6349   DECL_BOOLEAN_ACCESSORS(hidden_prototype)
   6350   DECL_BOOLEAN_ACCESSORS(undetectable)
   6351   // If the bit is set, object instances created by this function
   6352   // requires access check.
   6353   DECL_BOOLEAN_ACCESSORS(needs_access_check)
   6354 
   6355   static inline FunctionTemplateInfo* cast(Object* obj);
   6356 
   6357 #ifdef OBJECT_PRINT
   6358   inline void FunctionTemplateInfoPrint() {
   6359     <