1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.animation; 18 19 import android.os.Handler; 20 import android.os.Looper; 21 import android.os.Message; 22 import android.util.AndroidRuntimeException; 23 import android.view.animation.AccelerateDecelerateInterpolator; 24 import android.view.animation.AnimationUtils; 25 import android.view.animation.LinearInterpolator; 26 27 import java.util.ArrayList; 28 import java.util.HashMap; 29 30 /** 31 * This class provides a simple timing engine for running animations 32 * which calculate animated values and set them on target objects. 33 * 34 * <p>There is a single timing pulse that all animations use. It runs in a 35 * custom handler to ensure that property changes happen on the UI thread.</p> 36 * 37 * <p>By default, ValueAnimator uses non-linear time interpolation, via the 38 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates 39 * out of an animation. This behavior can be changed by calling 40 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p> 41 */ 42 public class ValueAnimator extends Animator { 43 44 /** 45 * Internal constants 46 */ 47 48 /* 49 * The default amount of time in ms between animation frames 50 */ 51 private static final long DEFAULT_FRAME_DELAY = 10; 52 53 /** 54 * Messages sent to timing handler: START is sent when an animation first begins, FRAME is sent 55 * by the handler to itself to process the next animation frame 56 */ 57 static final int ANIMATION_START = 0; 58 static final int ANIMATION_FRAME = 1; 59 60 /** 61 * Values used with internal variable mPlayingState to indicate the current state of an 62 * animation. 63 */ 64 static final int STOPPED = 0; // Not yet playing 65 static final int RUNNING = 1; // Playing normally 66 static final int SEEKED = 2; // Seeked to some time value 67 68 /** 69 * Internal variables 70 * NOTE: This object implements the clone() method, making a deep copy of any referenced 71 * objects. As other non-trivial fields are added to this class, make sure to add logic 72 * to clone() to make deep copies of them. 73 */ 74 75 // The first time that the animation's animateFrame() method is called. This time is used to 76 // determine elapsed time (and therefore the elapsed fraction) in subsequent calls 77 // to animateFrame() 78 long mStartTime; 79 80 /** 81 * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked 82 * to a value. 83 */ 84 long mSeekTime = -1; 85 86 // TODO: We access the following ThreadLocal variables often, some of them on every update. 87 // If ThreadLocal access is significantly expensive, we may want to put all of these 88 // fields into a structure sot hat we just access ThreadLocal once to get the reference 89 // to that structure, then access the structure directly for each field. 90 91 // The static sAnimationHandler processes the internal timing loop on which all animations 92 // are based 93 private static ThreadLocal<AnimationHandler> sAnimationHandler = 94 new ThreadLocal<AnimationHandler>(); 95 96 // The per-thread list of all active animations 97 private static final ThreadLocal<ArrayList<ValueAnimator>> sAnimations = 98 new ThreadLocal<ArrayList<ValueAnimator>>() { 99 @Override 100 protected ArrayList<ValueAnimator> initialValue() { 101 return new ArrayList<ValueAnimator>(); 102 } 103 }; 104 105 // The per-thread set of animations to be started on the next animation frame 106 private static final ThreadLocal<ArrayList<ValueAnimator>> sPendingAnimations = 107 new ThreadLocal<ArrayList<ValueAnimator>>() { 108 @Override 109 protected ArrayList<ValueAnimator> initialValue() { 110 return new ArrayList<ValueAnimator>(); 111 } 112 }; 113 114 /** 115 * Internal per-thread collections used to avoid set collisions as animations start and end 116 * while being processed. 117 */ 118 private static final ThreadLocal<ArrayList<ValueAnimator>> sDelayedAnims = 119 new ThreadLocal<ArrayList<ValueAnimator>>() { 120 @Override 121 protected ArrayList<ValueAnimator> initialValue() { 122 return new ArrayList<ValueAnimator>(); 123 } 124 }; 125 126 private static final ThreadLocal<ArrayList<ValueAnimator>> sEndingAnims = 127 new ThreadLocal<ArrayList<ValueAnimator>>() { 128 @Override 129 protected ArrayList<ValueAnimator> initialValue() { 130 return new ArrayList<ValueAnimator>(); 131 } 132 }; 133 134 private static final ThreadLocal<ArrayList<ValueAnimator>> sReadyAnims = 135 new ThreadLocal<ArrayList<ValueAnimator>>() { 136 @Override 137 protected ArrayList<ValueAnimator> initialValue() { 138 return new ArrayList<ValueAnimator>(); 139 } 140 }; 141 142 // The time interpolator to be used if none is set on the animation 143 private static final TimeInterpolator sDefaultInterpolator = 144 new AccelerateDecelerateInterpolator(); 145 146 // type evaluators for the primitive types handled by this implementation 147 private static final TypeEvaluator sIntEvaluator = new IntEvaluator(); 148 private static final TypeEvaluator sFloatEvaluator = new FloatEvaluator(); 149 150 /** 151 * Used to indicate whether the animation is currently playing in reverse. This causes the 152 * elapsed fraction to be inverted to calculate the appropriate values. 153 */ 154 private boolean mPlayingBackwards = false; 155 156 /** 157 * This variable tracks the current iteration that is playing. When mCurrentIteration exceeds the 158 * repeatCount (if repeatCount!=INFINITE), the animation ends 159 */ 160 private int mCurrentIteration = 0; 161 162 /** 163 * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction(). 164 */ 165 private float mCurrentFraction = 0f; 166 167 /** 168 * Tracks whether a startDelay'd animation has begun playing through the startDelay. 169 */ 170 private boolean mStartedDelay = false; 171 172 /** 173 * Tracks the time at which the animation began playing through its startDelay. This is 174 * different from the mStartTime variable, which is used to track when the animation became 175 * active (which is when the startDelay expired and the animation was added to the active 176 * animations list). 177 */ 178 private long mDelayStartTime; 179 180 /** 181 * Flag that represents the current state of the animation. Used to figure out when to start 182 * an animation (if state == STOPPED). Also used to end an animation that 183 * has been cancel()'d or end()'d since the last animation frame. Possible values are 184 * STOPPED, RUNNING, SEEKED. 185 */ 186 int mPlayingState = STOPPED; 187 188 /** 189 * Additional playing state to indicate whether an animator has been start()'d. There is 190 * some lag between a call to start() and the first animation frame. We should still note 191 * that the animation has been started, even if it's first animation frame has not yet 192 * happened, and reflect that state in isRunning(). 193 * Note that delayed animations are different: they are not started until their first 194 * animation frame, which occurs after their delay elapses. 195 */ 196 private boolean mRunning = false; 197 198 /** 199 * Additional playing state to indicate whether an animator has been start()'d, whether or 200 * not there is a nonzero startDelay. 201 */ 202 private boolean mStarted = false; 203 204 /** 205 * Flag that denotes whether the animation is set up and ready to go. Used to 206 * set up animation that has not yet been started. 207 */ 208 boolean mInitialized = false; 209 210 // 211 // Backing variables 212 // 213 214 // How long the animation should last in ms 215 private long mDuration = 300; 216 217 // The amount of time in ms to delay starting the animation after start() is called 218 private long mStartDelay = 0; 219 220 // The number of milliseconds between animation frames 221 private static long sFrameDelay = DEFAULT_FRAME_DELAY; 222 223 // The number of times the animation will repeat. The default is 0, which means the animation 224 // will play only once 225 private int mRepeatCount = 0; 226 227 /** 228 * The type of repetition that will occur when repeatMode is nonzero. RESTART means the 229 * animation will start from the beginning on every new cycle. REVERSE means the animation 230 * will reverse directions on each iteration. 231 */ 232 private int mRepeatMode = RESTART; 233 234 /** 235 * The time interpolator to be used. The elapsed fraction of the animation will be passed 236 * through this interpolator to calculate the interpolated fraction, which is then used to 237 * calculate the animated values. 238 */ 239 private TimeInterpolator mInterpolator = sDefaultInterpolator; 240 241 /** 242 * The set of listeners to be sent events through the life of an animation. 243 */ 244 private ArrayList<AnimatorUpdateListener> mUpdateListeners = null; 245 246 /** 247 * The property/value sets being animated. 248 */ 249 PropertyValuesHolder[] mValues; 250 251 /** 252 * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values 253 * by property name during calls to getAnimatedValue(String). 254 */ 255 HashMap<String, PropertyValuesHolder> mValuesMap; 256 257 /** 258 * Public constants 259 */ 260 261 /** 262 * When the animation reaches the end and <code>repeatCount</code> is INFINITE 263 * or a positive value, the animation restarts from the beginning. 264 */ 265 public static final int RESTART = 1; 266 /** 267 * When the animation reaches the end and <code>repeatCount</code> is INFINITE 268 * or a positive value, the animation reverses direction on every iteration. 269 */ 270 public static final int REVERSE = 2; 271 /** 272 * This value used used with the {@link #setRepeatCount(int)} property to repeat 273 * the animation indefinitely. 274 */ 275 public static final int INFINITE = -1; 276 277 /** 278 * Creates a new ValueAnimator object. This default constructor is primarily for 279 * use internally; the factory methods which take parameters are more generally 280 * useful. 281 */ 282 public ValueAnimator() { 283 } 284 285 /** 286 * Constructs and returns a ValueAnimator that animates between int values. A single 287 * value implies that that value is the one being animated to. However, this is not typically 288 * useful in a ValueAnimator object because there is no way for the object to determine the 289 * starting value for the animation (unlike ObjectAnimator, which can derive that value 290 * from the target object and property being animated). Therefore, there should typically 291 * be two or more values. 292 * 293 * @param values A set of values that the animation will animate between over time. 294 * @return A ValueAnimator object that is set up to animate between the given values. 295 */ 296 public static ValueAnimator ofInt(int... values) { 297 ValueAnimator anim = new ValueAnimator(); 298 anim.setIntValues(values); 299 return anim; 300 } 301 302 /** 303 * Constructs and returns a ValueAnimator that animates between float values. A single 304 * value implies that that value is the one being animated to. However, this is not typically 305 * useful in a ValueAnimator object because there is no way for the object to determine the 306 * starting value for the animation (unlike ObjectAnimator, which can derive that value 307 * from the target object and property being animated). Therefore, there should typically 308 * be two or more values. 309 * 310 * @param values A set of values that the animation will animate between over time. 311 * @return A ValueAnimator object that is set up to animate between the given values. 312 */ 313 public static ValueAnimator ofFloat(float... values) { 314 ValueAnimator anim = new ValueAnimator(); 315 anim.setFloatValues(values); 316 return anim; 317 } 318 319 /** 320 * Constructs and returns a ValueAnimator that animates between the values 321 * specified in the PropertyValuesHolder objects. 322 * 323 * @param values A set of PropertyValuesHolder objects whose values will be animated 324 * between over time. 325 * @return A ValueAnimator object that is set up to animate between the given values. 326 */ 327 public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) { 328 ValueAnimator anim = new ValueAnimator(); 329 anim.setValues(values); 330 return anim; 331 } 332 /** 333 * Constructs and returns a ValueAnimator that animates between Object values. A single 334 * value implies that that value is the one being animated to. However, this is not typically 335 * useful in a ValueAnimator object because there is no way for the object to determine the 336 * starting value for the animation (unlike ObjectAnimator, which can derive that value 337 * from the target object and property being animated). Therefore, there should typically 338 * be two or more values. 339 * 340 * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this 341 * factory method also takes a TypeEvaluator object that the ValueAnimator will use 342 * to perform that interpolation. 343 * 344 * @param evaluator A TypeEvaluator that will be called on each animation frame to 345 * provide the ncessry interpolation between the Object values to derive the animated 346 * value. 347 * @param values A set of values that the animation will animate between over time. 348 * @return A ValueAnimator object that is set up to animate between the given values. 349 */ 350 public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) { 351 ValueAnimator anim = new ValueAnimator(); 352 anim.setObjectValues(values); 353 anim.setEvaluator(evaluator); 354 return anim; 355 } 356 357 /** 358 * Sets int values that will be animated between. A single 359 * value implies that that value is the one being animated to. However, this is not typically 360 * useful in a ValueAnimator object because there is no way for the object to determine the 361 * starting value for the animation (unlike ObjectAnimator, which can derive that value 362 * from the target object and property being animated). Therefore, there should typically 363 * be two or more values. 364 * 365 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 366 * than one PropertyValuesHolder object, this method will set the values for the first 367 * of those objects.</p> 368 * 369 * @param values A set of values that the animation will animate between over time. 370 */ 371 public void setIntValues(int... values) { 372 if (values == null || values.length == 0) { 373 return; 374 } 375 if (mValues == null || mValues.length == 0) { 376 setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofInt("", values)}); 377 } else { 378 PropertyValuesHolder valuesHolder = mValues[0]; 379 valuesHolder.setIntValues(values); 380 } 381 // New property/values/target should cause re-initialization prior to starting 382 mInitialized = false; 383 } 384 385 /** 386 * Sets float values that will be animated between. A single 387 * value implies that that value is the one being animated to. However, this is not typically 388 * useful in a ValueAnimator object because there is no way for the object to determine the 389 * starting value for the animation (unlike ObjectAnimator, which can derive that value 390 * from the target object and property being animated). Therefore, there should typically 391 * be two or more values. 392 * 393 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 394 * than one PropertyValuesHolder object, this method will set the values for the first 395 * of those objects.</p> 396 * 397 * @param values A set of values that the animation will animate between over time. 398 */ 399 public void setFloatValues(float... values) { 400 if (values == null || values.length == 0) { 401 return; 402 } 403 if (mValues == null || mValues.length == 0) { 404 setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofFloat("", values)}); 405 } else { 406 PropertyValuesHolder valuesHolder = mValues[0]; 407 valuesHolder.setFloatValues(values); 408 } 409 // New property/values/target should cause re-initialization prior to starting 410 mInitialized = false; 411 } 412 413 /** 414 * Sets the values to animate between for this animation. A single 415 * value implies that that value is the one being animated to. However, this is not typically 416 * useful in a ValueAnimator object because there is no way for the object to determine the 417 * starting value for the animation (unlike ObjectAnimator, which can derive that value 418 * from the target object and property being animated). Therefore, there should typically 419 * be two or more values. 420 * 421 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 422 * than one PropertyValuesHolder object, this method will set the values for the first 423 * of those objects.</p> 424 * 425 * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate 426 * between these value objects. ValueAnimator only knows how to interpolate between the 427 * primitive types specified in the other setValues() methods.</p> 428 * 429 * @param values The set of values to animate between. 430 */ 431 public void setObjectValues(Object... values) { 432 if (values == null || values.length == 0) { 433 return; 434 } 435 if (mValues == null || mValues.length == 0) { 436 setValues(new PropertyValuesHolder[]{PropertyValuesHolder.ofObject("", 437 (TypeEvaluator)null, values)}); 438 } else { 439 PropertyValuesHolder valuesHolder = mValues[0]; 440 valuesHolder.setObjectValues(values); 441 } 442 // New property/values/target should cause re-initialization prior to starting 443 mInitialized = false; 444 } 445 446 /** 447 * Sets the values, per property, being animated between. This function is called internally 448 * by the constructors of ValueAnimator that take a list of values. But an ValueAnimator can 449 * be constructed without values and this method can be called to set the values manually 450 * instead. 451 * 452 * @param values The set of values, per property, being animated between. 453 */ 454 public void setValues(PropertyValuesHolder... values) { 455 int numValues = values.length; 456 mValues = values; 457 mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues); 458 for (int i = 0; i < numValues; ++i) { 459 PropertyValuesHolder valuesHolder = (PropertyValuesHolder) values[i]; 460 mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder); 461 } 462 // New property/values/target should cause re-initialization prior to starting 463 mInitialized = false; 464 } 465 466 /** 467 * Returns the values that this ValueAnimator animates between. These values are stored in 468 * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list 469 * of value objects instead. 470 * 471 * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the 472 * values, per property, that define the animation. 473 */ 474 public PropertyValuesHolder[] getValues() { 475 return mValues; 476 } 477 478 /** 479 * This function is called immediately before processing the first animation 480 * frame of an animation. If there is a nonzero <code>startDelay</code>, the 481 * function is called after that delay ends. 482 * It takes care of the final initialization steps for the 483 * animation. 484 * 485 * <p>Overrides of this method should call the superclass method to ensure 486 * that internal mechanisms for the animation are set up correctly.</p> 487 */ 488 void initAnimation() { 489 if (!mInitialized) { 490 int numValues = mValues.length; 491 for (int i = 0; i < numValues; ++i) { 492 mValues[i].init(); 493 } 494 mInitialized = true; 495 } 496 } 497 498 499 /** 500 * Sets the length of the animation. The default duration is 300 milliseconds. 501 * 502 * @param duration The length of the animation, in milliseconds. This value cannot 503 * be negative. 504 * @return ValueAnimator The object called with setDuration(). This return 505 * value makes it easier to compose statements together that construct and then set the 506 * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>. 507 */ 508 public ValueAnimator setDuration(long duration) { 509 if (duration < 0) { 510 throw new IllegalArgumentException("Animators cannot have negative duration: " + 511 duration); 512 } 513 mDuration = duration; 514 return this; 515 } 516 517 /** 518 * Gets the length of the animation. The default duration is 300 milliseconds. 519 * 520 * @return The length of the animation, in milliseconds. 521 */ 522 public long getDuration() { 523 return mDuration; 524 } 525 526 /** 527 * Sets the position of the animation to the specified point in time. This time should 528 * be between 0 and the total duration of the animation, including any repetition. If 529 * the animation has not yet been started, then it will not advance forward after it is 530 * set to this time; it will simply set the time to this value and perform any appropriate 531 * actions based on that time. If the animation is already running, then setCurrentPlayTime() 532 * will set the current playing time to this value and continue playing from that point. 533 * 534 * @param playTime The time, in milliseconds, to which the animation is advanced or rewound. 535 */ 536 public void setCurrentPlayTime(long playTime) { 537 initAnimation(); 538 long currentTime = AnimationUtils.currentAnimationTimeMillis(); 539 if (mPlayingState != RUNNING) { 540 mSeekTime = playTime; 541 mPlayingState = SEEKED; 542 } 543 mStartTime = currentTime - playTime; 544 animationFrame(currentTime); 545 } 546 547 /** 548 * Gets the current position of the animation in time, which is equal to the current 549 * time minus the time that the animation started. An animation that is not yet started will 550 * return a value of zero. 551 * 552 * @return The current position in time of the animation. 553 */ 554 public long getCurrentPlayTime() { 555 if (!mInitialized || mPlayingState == STOPPED) { 556 return 0; 557 } 558 return AnimationUtils.currentAnimationTimeMillis() - mStartTime; 559 } 560 561 /** 562 * This custom, static handler handles the timing pulse that is shared by 563 * all active animations. This approach ensures that the setting of animation 564 * values will happen on the UI thread and that all animations will share 565 * the same times for calculating their values, which makes synchronizing 566 * animations possible. 567 * 568 */ 569 private static class AnimationHandler extends Handler { 570 /** 571 * There are only two messages that we care about: ANIMATION_START and 572 * ANIMATION_FRAME. The START message is sent when an animation's start() 573 * method is called. It cannot start synchronously when start() is called 574 * because the call may be on the wrong thread, and it would also not be 575 * synchronized with other animations because it would not start on a common 576 * timing pulse. So each animation sends a START message to the handler, which 577 * causes the handler to place the animation on the active animations queue and 578 * start processing frames for that animation. 579 * The FRAME message is the one that is sent over and over while there are any 580 * active animations to process. 581 */ 582 @Override 583 public void handleMessage(Message msg) { 584 boolean callAgain = true; 585 ArrayList<ValueAnimator> animations = sAnimations.get(); 586 ArrayList<ValueAnimator> delayedAnims = sDelayedAnims.get(); 587 switch (msg.what) { 588 // TODO: should we avoid sending frame message when starting if we 589 // were already running? 590 case ANIMATION_START: 591 ArrayList<ValueAnimator> pendingAnimations = sPendingAnimations.get(); 592 if (animations.size() > 0 || delayedAnims.size() > 0) { 593 callAgain = false; 594 } 595 // pendingAnims holds any animations that have requested to be started 596 // We're going to clear sPendingAnimations, but starting animation may 597 // cause more to be added to the pending list (for example, if one animation 598 // starting triggers another starting). So we loop until sPendingAnimations 599 // is empty. 600 while (pendingAnimations.size() > 0) { 601 ArrayList<ValueAnimator> pendingCopy = 602 (ArrayList<ValueAnimator>) pendingAnimations.clone(); 603 pendingAnimations.clear(); 604 int count = pendingCopy.size(); 605 for (int i = 0; i < count; ++i) { 606 ValueAnimator anim = pendingCopy.get(i); 607 // If the animation has a startDelay, place it on the delayed list 608 if (anim.mStartDelay == 0) { 609 anim.startAnimation(); 610 } else { 611 delayedAnims.add(anim); 612 } 613 } 614 } 615 // fall through to process first frame of new animations 616 case ANIMATION_FRAME: 617 // currentTime holds the common time for all animations processed 618 // during this frame 619 long currentTime = AnimationUtils.currentAnimationTimeMillis(); 620 ArrayList<ValueAnimator> readyAnims = sReadyAnims.get(); 621 ArrayList<ValueAnimator> endingAnims = sEndingAnims.get(); 622 623 // First, process animations currently sitting on the delayed queue, adding 624 // them to the active animations if they are ready 625 int numDelayedAnims = delayedAnims.size(); 626 for (int i = 0; i < numDelayedAnims; ++i) { 627 ValueAnimator anim = delayedAnims.get(i); 628 if (anim.delayedAnimationFrame(currentTime)) { 629 readyAnims.add(anim); 630 } 631 } 632 int numReadyAnims = readyAnims.size(); 633 if (numReadyAnims > 0) { 634 for (int i = 0; i < numReadyAnims; ++i) { 635 ValueAnimator anim = readyAnims.get(i); 636 anim.startAnimation(); 637 anim.mRunning = true; 638 delayedAnims.remove(anim); 639 } 640 readyAnims.clear(); 641 } 642 643 // Now process all active animations. The return value from animationFrame() 644 // tells the handler whether it should now be ended 645 int numAnims = animations.size(); 646 int i = 0; 647 while (i < numAnims) { 648 ValueAnimator anim = animations.get(i); 649 if (anim.animationFrame(currentTime)) { 650 endingAnims.add(anim); 651 } 652 if (animations.size() == numAnims) { 653 ++i; 654 } else { 655 // An animation might be canceled or ended by client code 656 // during the animation frame. Check to see if this happened by 657 // seeing whether the current index is the same as it was before 658 // calling animationFrame(). Another approach would be to copy 659 // animations to a temporary list and process that list instead, 660 // but that entails garbage and processing overhead that would 661 // be nice to avoid. 662 --numAnims; 663 endingAnims.remove(anim); 664 } 665 } 666 if (endingAnims.size() > 0) { 667 for (i = 0; i < endingAnims.size(); ++i) { 668 endingAnims.get(i).endAnimation(); 669 } 670 endingAnims.clear(); 671 } 672 673 // If there are still active or delayed animations, call the handler again 674 // after the frameDelay 675 if (callAgain && (!animations.isEmpty() || !delayedAnims.isEmpty())) { 676 sendEmptyMessageDelayed(ANIMATION_FRAME, Math.max(0, sFrameDelay - 677 (AnimationUtils.currentAnimationTimeMillis() - currentTime))); 678 } 679 break; 680 } 681 } 682 } 683 684 /** 685 * The amount of time, in milliseconds, to delay starting the animation after 686 * {@link #start()} is called. 687 * 688 * @return the number of milliseconds to delay running the animation 689 */ 690 public long getStartDelay() { 691 return mStartDelay; 692 } 693 694 /** 695 * The amount of time, in milliseconds, to delay starting the animation after 696 * {@link #start()} is called. 697 698 * @param startDelay The amount of the delay, in milliseconds 699 */ 700 public void setStartDelay(long startDelay) { 701 this.mStartDelay = startDelay; 702 } 703 704 /** 705 * The amount of time, in milliseconds, between each frame of the animation. This is a 706 * requested time that the animation will attempt to honor, but the actual delay between 707 * frames may be different, depending on system load and capabilities. This is a static 708 * function because the same delay will be applied to all animations, since they are all 709 * run off of a single timing loop. 710 * 711 * @return the requested time between frames, in milliseconds 712 */ 713 public static long getFrameDelay() { 714 return sFrameDelay; 715 } 716 717 /** 718 * The amount of time, in milliseconds, between each frame of the animation. This is a 719 * requested time that the animation will attempt to honor, but the actual delay between 720 * frames may be different, depending on system load and capabilities. This is a static 721 * function because the same delay will be applied to all animations, since they are all 722 * run off of a single timing loop. 723 * 724 * @param frameDelay the requested time between frames, in milliseconds 725 */ 726 public static void setFrameDelay(long frameDelay) { 727 sFrameDelay = frameDelay; 728 } 729 730 /** 731 * The most recent value calculated by this <code>ValueAnimator</code> when there is just one 732 * property being animated. This value is only sensible while the animation is running. The main 733 * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code> 734 * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which 735 * is called during each animation frame, immediately after the value is calculated. 736 * 737 * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for 738 * the single property being animated. If there are several properties being animated 739 * (specified by several PropertyValuesHolder objects in the constructor), this function 740 * returns the animated value for the first of those objects. 741 */ 742 public Object getAnimatedValue() { 743 if (mValues != null && mValues.length > 0) { 744 return mValues[0].getAnimatedValue(); 745 } 746 // Shouldn't get here; should always have values unless ValueAnimator was set up wrong 747 return null; 748 } 749 750 /** 751 * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>. 752 * The main purpose for this read-only property is to retrieve the value from the 753 * <code>ValueAnimator</code> during a call to 754 * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which 755 * is called during each animation frame, immediately after the value is calculated. 756 * 757 * @return animatedValue The value most recently calculated for the named property 758 * by this <code>ValueAnimator</code>. 759 */ 760 public Object getAnimatedValue(String propertyName) { 761 PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName); 762 if (valuesHolder != null) { 763 return valuesHolder.getAnimatedValue(); 764 } else { 765 // At least avoid crashing if called with bogus propertyName 766 return null; 767 } 768 } 769 770 /** 771 * Sets how many times the animation should be repeated. If the repeat 772 * count is 0, the animation is never repeated. If the repeat count is 773 * greater than 0 or {@link #INFINITE}, the repeat mode will be taken 774 * into account. The repeat count is 0 by default. 775 * 776 * @param value the number of times the animation should be repeated 777 */ 778 public void setRepeatCount(int value) { 779 mRepeatCount = value; 780 } 781 /** 782 * Defines how many times the animation should repeat. The default value 783 * is 0. 784 * 785 * @return the number of times the animation should repeat, or {@link #INFINITE} 786 */ 787 public int getRepeatCount() { 788 return mRepeatCount; 789 } 790 791 /** 792 * Defines what this animation should do when it reaches the end. This 793 * setting is applied only when the repeat count is either greater than 794 * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}. 795 * 796 * @param value {@link #RESTART} or {@link #REVERSE} 797 */ 798 public void setRepeatMode(int value) { 799 mRepeatMode = value; 800 } 801 802 /** 803 * Defines what this animation should do when it reaches the end. 804 * 805 * @return either one of {@link #REVERSE} or {@link #RESTART} 806 */ 807 public int getRepeatMode() { 808 return mRepeatMode; 809 } 810 811 /** 812 * Adds a listener to the set of listeners that are sent update events through the life of 813 * an animation. This method is called on all listeners for every frame of the animation, 814 * after the values for the animation have been calculated. 815 * 816 * @param listener the listener to be added to the current set of listeners for this animation. 817 */ 818 public void addUpdateListener(AnimatorUpdateListener listener) { 819 if (mUpdateListeners == null) { 820 mUpdateListeners = new ArrayList<AnimatorUpdateListener>(); 821 } 822 mUpdateListeners.add(listener); 823 } 824 825 /** 826 * Removes all listeners from the set listening to frame updates for this animation. 827 */ 828 public void removeAllUpdateListeners() { 829 if (mUpdateListeners == null) { 830 return; 831 } 832 mUpdateListeners.clear(); 833 mUpdateListeners = null; 834 } 835 836 /** 837 * Removes a listener from the set listening to frame updates for this animation. 838 * 839 * @param listener the listener to be removed from the current set of update listeners 840 * for this animation. 841 */ 842 public void removeUpdateListener(AnimatorUpdateListener listener) { 843 if (mUpdateListeners == null) { 844 return; 845 } 846 mUpdateListeners.remove(listener); 847 if (mUpdateListeners.size() == 0) { 848 mUpdateListeners = null; 849 } 850 } 851 852 853 /** 854 * The time interpolator used in calculating the elapsed fraction of this animation. The 855 * interpolator determines whether the animation runs with linear or non-linear motion, 856 * such as acceleration and deceleration. The default value is 857 * {@link android.view.animation.AccelerateDecelerateInterpolator} 858 * 859 * @param value the interpolator to be used by this animation. A value of <code>null</code> 860 * will result in linear interpolation. 861 */ 862 @Override 863 public void setInterpolator(TimeInterpolator value) { 864 if (value != null) { 865 mInterpolator = value; 866 } else { 867 mInterpolator = new LinearInterpolator(); 868 } 869 } 870 871 /** 872 * Returns the timing interpolator that this ValueAnimator uses. 873 * 874 * @return The timing interpolator for this ValueAnimator. 875 */ 876 public TimeInterpolator getInterpolator() { 877 return mInterpolator; 878 } 879 880 /** 881 * The type evaluator to be used when calculating the animated values of this animation. 882 * The system will automatically assign a float or int evaluator based on the type 883 * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values 884 * are not one of these primitive types, or if different evaluation is desired (such as is 885 * necessary with int values that represent colors), a custom evaluator needs to be assigned. 886 * For example, when running an animation on color values, the {@link ArgbEvaluator} 887 * should be used to get correct RGB color interpolation. 888 * 889 * <p>If this ValueAnimator has only one set of values being animated between, this evaluator 890 * will be used for that set. If there are several sets of values being animated, which is 891 * the case if PropertyValuesHOlder objects were set on the ValueAnimator, then the evaluator 892 * is assigned just to the first PropertyValuesHolder object.</p> 893 * 894 * @param value the evaluator to be used this animation 895 */ 896 public void setEvaluator(TypeEvaluator value) { 897 if (value != null && mValues != null && mValues.length > 0) { 898 mValues[0].setEvaluator(value); 899 } 900 } 901 902 /** 903 * Start the animation playing. This version of start() takes a boolean flag that indicates 904 * whether the animation should play in reverse. The flag is usually false, but may be set 905 * to true if called from the reverse() method. 906 * 907 * <p>The animation started by calling this method will be run on the thread that called 908 * this method. This thread should have a Looper on it (a runtime exception will be thrown if 909 * this is not the case). Also, if the animation will animate 910 * properties of objects in the view hierarchy, then the calling thread should be the UI 911 * thread for that view hierarchy.</p> 912 * 913 * @param playBackwards Whether the ValueAnimator should start playing in reverse. 914 */ 915 private void start(boolean playBackwards) { 916 if (Looper.myLooper() == null) { 917 throw new AndroidRuntimeException("Animators may only be run on Looper threads"); 918 } 919 mPlayingBackwards = playBackwards; 920 mCurrentIteration = 0; 921 mPlayingState = STOPPED; 922 mStarted = true; 923 mStartedDelay = false; 924 sPendingAnimations.get().add(this); 925 if (mStartDelay == 0) { 926 // This sets the initial value of the animation, prior to actually starting it running 927 setCurrentPlayTime(getCurrentPlayTime()); 928 mPlayingState = STOPPED; 929 mRunning = true; 930 931 if (mListeners != null) { 932 ArrayList<AnimatorListener> tmpListeners = 933 (ArrayList<AnimatorListener>) mListeners.clone(); 934 int numListeners = tmpListeners.size(); 935 for (int i = 0; i < numListeners; ++i) { 936 tmpListeners.get(i).onAnimationStart(this); 937 } 938 } 939 } 940 AnimationHandler animationHandler = sAnimationHandler.get(); 941 if (animationHandler == null) { 942 animationHandler = new AnimationHandler(); 943 sAnimationHandler.set(animationHandler); 944 } 945 animationHandler.sendEmptyMessage(ANIMATION_START); 946 } 947 948 @Override 949 public void start() { 950 start(false); 951 } 952 953 @Override 954 public void cancel() { 955 // Only cancel if the animation is actually running or has been started and is about 956 // to run 957 if (mPlayingState != STOPPED || sPendingAnimations.get().contains(this) || 958 sDelayedAnims.get().contains(this)) { 959 // Only notify listeners if the animator has actually started 960 if (mRunning && mListeners != null) { 961 ArrayList<AnimatorListener> tmpListeners = 962 (ArrayList<AnimatorListener>) mListeners.clone(); 963 for (AnimatorListener listener : tmpListeners) { 964 listener.onAnimationCancel(this); 965 } 966 } 967 endAnimation(); 968 } 969 } 970 971 @Override 972 public void end() { 973 if (!sAnimations.get().contains(this) && !sPendingAnimations.get().contains(this)) { 974 // Special case if the animation has not yet started; get it ready for ending 975 mStartedDelay = false; 976 startAnimation(); 977 } else if (!mInitialized) { 978 initAnimation(); 979 } 980 // The final value set on the target varies, depending on whether the animation 981 // was supposed to repeat an odd number of times 982 if (mRepeatCount > 0 && (mRepeatCount & 0x01) == 1) { 983 animateValue(0f); 984 } else { 985 animateValue(1f); 986 } 987 endAnimation(); 988 } 989 990 @Override 991 public boolean isRunning() { 992 return (mPlayingState == RUNNING || mRunning); 993 } 994 995 @Override 996 public boolean isStarted() { 997 return mStarted; 998 } 999 1000 /** 1001 * Plays the ValueAnimator in reverse. If the animation is already running, 1002 * it will stop itself and play backwards from the point reached when reverse was called. 1003 * If the animation is not currently running, then it will start from the end and 1004 * play backwards. This behavior is only set for the current animation; future playing 1005 * of the animation will use the default behavior of playing forward. 1006 */ 1007 public void reverse() { 1008 mPlayingBackwards = !mPlayingBackwards; 1009 if (mPlayingState == RUNNING) { 1010 long currentTime = AnimationUtils.currentAnimationTimeMillis(); 1011 long currentPlayTime = currentTime - mStartTime; 1012 long timeLeft = mDuration - currentPlayTime; 1013 mStartTime = currentTime - timeLeft; 1014 } else { 1015 start(true); 1016 } 1017 } 1018 1019 /** 1020 * Called internally to end an animation by removing it from the animations list. Must be 1021 * called on the UI thread. 1022 */ 1023 private void endAnimation() { 1024 sAnimations.get().remove(this); 1025 sPendingAnimations.get().remove(this); 1026 sDelayedAnims.get().remove(this); 1027 mPlayingState = STOPPED; 1028 if (mRunning && mListeners != null) { 1029 ArrayList<AnimatorListener> tmpListeners = 1030 (ArrayList<AnimatorListener>) mListeners.clone(); 1031 int numListeners = tmpListeners.size(); 1032 for (int i = 0; i < numListeners; ++i) { 1033 tmpListeners.get(i).onAnimationEnd(this); 1034 } 1035 } 1036 mRunning = false; 1037 mStarted = false; 1038 } 1039 1040 /** 1041 * Called internally to start an animation by adding it to the active animations list. Must be 1042 * called on the UI thread. 1043 */ 1044 private void startAnimation() { 1045 initAnimation(); 1046 sAnimations.get().add(this); 1047 if (mStartDelay > 0 && mListeners != null) { 1048 // Listeners were already notified in start() if startDelay is 0; this is 1049 // just for delayed animations 1050 ArrayList<AnimatorListener> tmpListeners = 1051 (ArrayList<AnimatorListener>) mListeners.clone(); 1052 int numListeners = tmpListeners.size(); 1053 for (int i = 0; i < numListeners; ++i) { 1054 tmpListeners.get(i).onAnimationStart(this); 1055 } 1056 } 1057 } 1058 1059 /** 1060 * Internal function called to process an animation frame on an animation that is currently 1061 * sleeping through its <code>startDelay</code> phase. The return value indicates whether it 1062 * should be woken up and put on the active animations queue. 1063 * 1064 * @param currentTime The current animation time, used to calculate whether the animation 1065 * has exceeded its <code>startDelay</code> and should be started. 1066 * @return True if the animation's <code>startDelay</code> has been exceeded and the animation 1067 * should be added to the set of active animations. 1068 */ 1069 private boolean delayedAnimationFrame(long currentTime) { 1070 if (!mStartedDelay) { 1071 mStartedDelay = true; 1072 mDelayStartTime = currentTime; 1073 } else { 1074 long deltaTime = currentTime - mDelayStartTime; 1075 if (deltaTime > mStartDelay) { 1076 // startDelay ended - start the anim and record the 1077 // mStartTime appropriately 1078 mStartTime = currentTime - (deltaTime - mStartDelay); 1079 mPlayingState = RUNNING; 1080 return true; 1081 } 1082 } 1083 return false; 1084 } 1085 1086 /** 1087 * This internal function processes a single animation frame for a given animation. The 1088 * currentTime parameter is the timing pulse sent by the handler, used to calculate the 1089 * elapsed duration, and therefore 1090 * the elapsed fraction, of the animation. The return value indicates whether the animation 1091 * should be ended (which happens when the elapsed time of the animation exceeds the 1092 * animation's duration, including the repeatCount). 1093 * 1094 * @param currentTime The current time, as tracked by the static timing handler 1095 * @return true if the animation's duration, including any repetitions due to 1096 * <code>repeatCount</code> has been exceeded and the animation should be ended. 1097 */ 1098 boolean animationFrame(long currentTime) { 1099 boolean done = false; 1100 1101 if (mPlayingState == STOPPED) { 1102 mPlayingState = RUNNING; 1103 if (mSeekTime < 0) { 1104 mStartTime = currentTime; 1105 } else { 1106 mStartTime = currentTime - mSeekTime; 1107 // Now that we're playing, reset the seek time 1108 mSeekTime = -1; 1109 } 1110 } 1111 switch (mPlayingState) { 1112 case RUNNING: 1113 case SEEKED: 1114 float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f; 1115 if (fraction >= 1f) { 1116 if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) { 1117 // Time to repeat 1118 if (mListeners != null) { 1119 int numListeners = mListeners.size(); 1120 for (int i = 0; i < numListeners; ++i) { 1121 mListeners.get(i).onAnimationRepeat(this); 1122 } 1123 } 1124 if (mRepeatMode == REVERSE) { 1125 mPlayingBackwards = mPlayingBackwards ? false : true; 1126 } 1127 mCurrentIteration += (int)fraction; 1128 fraction = fraction % 1f; 1129 mStartTime += mDuration; 1130 } else { 1131 done = true; 1132 fraction = Math.min(fraction, 1.0f); 1133 } 1134 } 1135 if (mPlayingBackwards) { 1136 fraction = 1f - fraction; 1137 } 1138 animateValue(fraction); 1139 break; 1140 } 1141 1142 return done; 1143 } 1144 1145 /** 1146 * Returns the current animation fraction, which is the elapsed/interpolated fraction used in 1147 * the most recent frame update on the animation. 1148 * 1149 * @return Elapsed/interpolated fraction of the animation. 1150 */ 1151 public float getAnimatedFraction() { 1152 return mCurrentFraction; 1153 } 1154 1155 /** 1156 * This method is called with the elapsed fraction of the animation during every 1157 * animation frame. This function turns the elapsed fraction into an interpolated fraction 1158 * and then into an animated value (from the evaluator. The function is called mostly during 1159 * animation updates, but it is also called when the <code>end()</code> 1160 * function is called, to set the final value on the property. 1161 * 1162 * <p>Overrides of this method must call the superclass to perform the calculation 1163 * of the animated value.</p> 1164 * 1165 * @param fraction The elapsed fraction of the animation. 1166 */ 1167 void animateValue(float fraction) { 1168 fraction = mInterpolator.getInterpolation(fraction); 1169 mCurrentFraction = fraction; 1170 int numValues = mValues.length; 1171 for (int i = 0; i < numValues; ++i) { 1172 mValues[i].calculateValue(fraction); 1173 } 1174 if (mUpdateListeners != null) { 1175 int numListeners = mUpdateListeners.size(); 1176 for (int i = 0; i < numListeners; ++i) { 1177 mUpdateListeners.get(i).onAnimationUpdate(this); 1178 } 1179 } 1180 } 1181 1182 @Override 1183 public ValueAnimator clone() { 1184 final ValueAnimator anim = (ValueAnimator) super.clone(); 1185 if (mUpdateListeners != null) { 1186 ArrayList<AnimatorUpdateListener> oldListeners = mUpdateListeners; 1187 anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(); 1188 int numListeners = oldListeners.size(); 1189 for (int i = 0; i < numListeners; ++i) { 1190 anim.mUpdateListeners.add(oldListeners.get(i)); 1191 } 1192 } 1193 anim.mSeekTime = -1; 1194 anim.mPlayingBackwards = false; 1195 anim.mCurrentIteration = 0; 1196 anim.mInitialized = false; 1197 anim.mPlayingState = STOPPED; 1198 anim.mStartedDelay = false; 1199 PropertyValuesHolder[] oldValues = mValues; 1200 if (oldValues != null) { 1201 int numValues = oldValues.length; 1202 anim.mValues = new PropertyValuesHolder[numValues]; 1203 anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues); 1204 for (int i = 0; i < numValues; ++i) { 1205 PropertyValuesHolder newValuesHolder = oldValues[i].clone(); 1206 anim.mValues[i] = newValuesHolder; 1207 anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder); 1208 } 1209 } 1210 return anim; 1211 } 1212 1213 /** 1214 * Implementors of this interface can add themselves as update listeners 1215 * to an <code>ValueAnimator</code> instance to receive callbacks on every animation 1216 * frame, after the current frame's values have been calculated for that 1217 * <code>ValueAnimator</code>. 1218 */ 1219 public static interface AnimatorUpdateListener { 1220 /** 1221 * <p>Notifies the occurrence of another frame of the animation.</p> 1222 * 1223 * @param animation The animation which was repeated. 1224 */ 1225 void onAnimationUpdate(ValueAnimator animation); 1226 1227 } 1228 1229 /** 1230 * Return the number of animations currently running. 1231 * 1232 * Used by StrictMode internally to annotate violations. Only 1233 * called on the main thread. 1234 * 1235 * @hide 1236 */ 1237 public static int getCurrentAnimationsCount() { 1238 return sAnimations.get().size(); 1239 } 1240 1241 /** 1242 * Clear all animations on this thread, without canceling or ending them. 1243 * This should be used with caution. 1244 * 1245 * @hide 1246 */ 1247 public static void clearAllAnimations() { 1248 sAnimations.get().clear(); 1249 sPendingAnimations.get().clear(); 1250 sDelayedAnims.get().clear(); 1251 } 1252 1253 @Override 1254 public String toString() { 1255 String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode()); 1256 if (mValues != null) { 1257 for (int i = 0; i < mValues.length; ++i) { 1258 returnVal += "\n " + mValues[i].toString(); 1259 } 1260 } 1261 return returnVal; 1262 } 1263 } 1264