1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2006-2009 the V8 project authors. All rights reserved. 34 35 #include "v8.h" 36 37 #include "arguments.h" 38 #include "deoptimizer.h" 39 #include "execution.h" 40 #include "ic-inl.h" 41 #include "factory.h" 42 #include "runtime.h" 43 #include "runtime-profiler.h" 44 #include "serialize.h" 45 #include "stub-cache.h" 46 #include "regexp-stack.h" 47 #include "ast.h" 48 #include "regexp-macro-assembler.h" 49 #include "platform.h" 50 // Include native regexp-macro-assembler. 51 #ifndef V8_INTERPRETED_REGEXP 52 #if V8_TARGET_ARCH_IA32 53 #include "ia32/regexp-macro-assembler-ia32.h" 54 #elif V8_TARGET_ARCH_X64 55 #include "x64/regexp-macro-assembler-x64.h" 56 #elif V8_TARGET_ARCH_ARM 57 #include "arm/regexp-macro-assembler-arm.h" 58 #elif V8_TARGET_ARCH_MIPS 59 #include "mips/regexp-macro-assembler-mips.h" 60 #else // Unknown architecture. 61 #error "Unknown architecture." 62 #endif // Target architecture. 63 #endif // V8_INTERPRETED_REGEXP 64 65 namespace v8 { 66 namespace internal { 67 68 69 const double DoubleConstant::min_int = kMinInt; 70 const double DoubleConstant::one_half = 0.5; 71 const double DoubleConstant::minus_zero = -0.0; 72 const double DoubleConstant::nan = OS::nan_value(); 73 const double DoubleConstant::negative_infinity = -V8_INFINITY; 74 const char* RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING"; 75 76 // ----------------------------------------------------------------------------- 77 // Implementation of AssemblerBase 78 79 AssemblerBase::AssemblerBase(Isolate* isolate) 80 : isolate_(isolate), 81 jit_cookie_(0) { 82 if (FLAG_mask_constants_with_cookie && isolate != NULL) { 83 jit_cookie_ = V8::RandomPrivate(isolate); 84 } 85 } 86 87 88 // ----------------------------------------------------------------------------- 89 // Implementation of Label 90 91 int Label::pos() const { 92 if (pos_ < 0) return -pos_ - 1; 93 if (pos_ > 0) return pos_ - 1; 94 UNREACHABLE(); 95 return 0; 96 } 97 98 99 // ----------------------------------------------------------------------------- 100 // Implementation of RelocInfoWriter and RelocIterator 101 // 102 // Encoding 103 // 104 // The most common modes are given single-byte encodings. Also, it is 105 // easy to identify the type of reloc info and skip unwanted modes in 106 // an iteration. 107 // 108 // The encoding relies on the fact that there are less than 14 109 // different relocation modes. 110 // 111 // embedded_object: [6 bits pc delta] 00 112 // 113 // code_taget: [6 bits pc delta] 01 114 // 115 // position: [6 bits pc delta] 10, 116 // [7 bits signed data delta] 0 117 // 118 // statement_position: [6 bits pc delta] 10, 119 // [7 bits signed data delta] 1 120 // 121 // any nondata mode: 00 [4 bits rmode] 11, // rmode: 0..13 only 122 // 00 [6 bits pc delta] 123 // 124 // pc-jump: 00 1111 11, 125 // 00 [6 bits pc delta] 126 // 127 // pc-jump: 01 1111 11, 128 // (variable length) 7 - 26 bit pc delta, written in chunks of 7 129 // bits, the lowest 7 bits written first. 130 // 131 // data-jump + pos: 00 1110 11, 132 // signed intptr_t, lowest byte written first 133 // 134 // data-jump + st.pos: 01 1110 11, 135 // signed intptr_t, lowest byte written first 136 // 137 // data-jump + comm.: 10 1110 11, 138 // signed intptr_t, lowest byte written first 139 // 140 const int kMaxRelocModes = 14; 141 142 const int kTagBits = 2; 143 const int kTagMask = (1 << kTagBits) - 1; 144 const int kExtraTagBits = 4; 145 const int kPositionTypeTagBits = 1; 146 const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits; 147 148 const int kEmbeddedObjectTag = 0; 149 const int kCodeTargetTag = 1; 150 const int kPositionTag = 2; 151 const int kDefaultTag = 3; 152 153 const int kPCJumpTag = (1 << kExtraTagBits) - 1; 154 155 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits; 156 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1; 157 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask; 158 159 const int kVariableLengthPCJumpTopTag = 1; 160 const int kChunkBits = 7; 161 const int kChunkMask = (1 << kChunkBits) - 1; 162 const int kLastChunkTagBits = 1; 163 const int kLastChunkTagMask = 1; 164 const int kLastChunkTag = 1; 165 166 167 const int kDataJumpTag = kPCJumpTag - 1; 168 169 const int kNonstatementPositionTag = 0; 170 const int kStatementPositionTag = 1; 171 const int kCommentTag = 2; 172 173 174 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) { 175 // Return if the pc_delta can fit in kSmallPCDeltaBits bits. 176 // Otherwise write a variable length PC jump for the bits that do 177 // not fit in the kSmallPCDeltaBits bits. 178 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta; 179 WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag); 180 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits; 181 ASSERT(pc_jump > 0); 182 // Write kChunkBits size chunks of the pc_jump. 183 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) { 184 byte b = pc_jump & kChunkMask; 185 *--pos_ = b << kLastChunkTagBits; 186 } 187 // Tag the last chunk so it can be identified. 188 *pos_ = *pos_ | kLastChunkTag; 189 // Return the remaining kSmallPCDeltaBits of the pc_delta. 190 return pc_delta & kSmallPCDeltaMask; 191 } 192 193 194 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) { 195 // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump. 196 pc_delta = WriteVariableLengthPCJump(pc_delta); 197 *--pos_ = pc_delta << kTagBits | tag; 198 } 199 200 201 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) { 202 *--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag); 203 } 204 205 206 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) { 207 *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) | 208 extra_tag << kTagBits | 209 kDefaultTag); 210 } 211 212 213 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) { 214 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump. 215 pc_delta = WriteVariableLengthPCJump(pc_delta); 216 WriteExtraTag(extra_tag, 0); 217 *--pos_ = pc_delta; 218 } 219 220 221 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) { 222 WriteExtraTag(kDataJumpTag, top_tag); 223 for (int i = 0; i < kIntptrSize; i++) { 224 *--pos_ = static_cast<byte>(data_delta); 225 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 226 data_delta = data_delta >> kBitsPerByte; 227 } 228 } 229 230 231 void RelocInfoWriter::Write(const RelocInfo* rinfo) { 232 #ifdef DEBUG 233 byte* begin_pos = pos_; 234 #endif 235 ASSERT(rinfo->pc() - last_pc_ >= 0); 236 ASSERT(RelocInfo::NUMBER_OF_MODES <= kMaxRelocModes); 237 // Use unsigned delta-encoding for pc. 238 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_); 239 RelocInfo::Mode rmode = rinfo->rmode(); 240 241 // The two most common modes are given small tags, and usually fit in a byte. 242 if (rmode == RelocInfo::EMBEDDED_OBJECT) { 243 WriteTaggedPC(pc_delta, kEmbeddedObjectTag); 244 } else if (rmode == RelocInfo::CODE_TARGET) { 245 WriteTaggedPC(pc_delta, kCodeTargetTag); 246 ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize); 247 } else if (RelocInfo::IsPosition(rmode)) { 248 // Use signed delta-encoding for data. 249 intptr_t data_delta = rinfo->data() - last_data_; 250 int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag 251 : kStatementPositionTag; 252 // Check if data is small enough to fit in a tagged byte. 253 // We cannot use is_intn because data_delta is not an int32_t. 254 if (data_delta >= -(1 << (kSmallDataBits-1)) && 255 data_delta < 1 << (kSmallDataBits-1)) { 256 WriteTaggedPC(pc_delta, kPositionTag); 257 WriteTaggedData(data_delta, pos_type_tag); 258 last_data_ = rinfo->data(); 259 } else { 260 // Otherwise, use costly encoding. 261 WriteExtraTaggedPC(pc_delta, kPCJumpTag); 262 WriteExtraTaggedData(data_delta, pos_type_tag); 263 last_data_ = rinfo->data(); 264 } 265 } else if (RelocInfo::IsComment(rmode)) { 266 // Comments are normally not generated, so we use the costly encoding. 267 WriteExtraTaggedPC(pc_delta, kPCJumpTag); 268 WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag); 269 last_data_ = rinfo->data(); 270 ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize); 271 } else { 272 // For all other modes we simply use the mode as the extra tag. 273 // None of these modes need a data component. 274 ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag); 275 WriteExtraTaggedPC(pc_delta, rmode); 276 } 277 last_pc_ = rinfo->pc(); 278 #ifdef DEBUG 279 ASSERT(begin_pos - pos_ <= kMaxSize); 280 #endif 281 } 282 283 284 inline int RelocIterator::AdvanceGetTag() { 285 return *--pos_ & kTagMask; 286 } 287 288 289 inline int RelocIterator::GetExtraTag() { 290 return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1); 291 } 292 293 294 inline int RelocIterator::GetTopTag() { 295 return *pos_ >> (kTagBits + kExtraTagBits); 296 } 297 298 299 inline void RelocIterator::ReadTaggedPC() { 300 rinfo_.pc_ += *pos_ >> kTagBits; 301 } 302 303 304 inline void RelocIterator::AdvanceReadPC() { 305 rinfo_.pc_ += *--pos_; 306 } 307 308 309 void RelocIterator::AdvanceReadData() { 310 intptr_t x = 0; 311 for (int i = 0; i < kIntptrSize; i++) { 312 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte; 313 } 314 rinfo_.data_ += x; 315 } 316 317 318 void RelocIterator::AdvanceReadVariableLengthPCJump() { 319 // Read the 32-kSmallPCDeltaBits most significant bits of the 320 // pc jump in kChunkBits bit chunks and shift them into place. 321 // Stop when the last chunk is encountered. 322 uint32_t pc_jump = 0; 323 for (int i = 0; i < kIntSize; i++) { 324 byte pc_jump_part = *--pos_; 325 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits; 326 if ((pc_jump_part & kLastChunkTagMask) == 1) break; 327 } 328 // The least significant kSmallPCDeltaBits bits will be added 329 // later. 330 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits; 331 } 332 333 334 inline int RelocIterator::GetPositionTypeTag() { 335 return *pos_ & ((1 << kPositionTypeTagBits) - 1); 336 } 337 338 339 inline void RelocIterator::ReadTaggedData() { 340 int8_t signed_b = *pos_; 341 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 342 rinfo_.data_ += signed_b >> kPositionTypeTagBits; 343 } 344 345 346 inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) { 347 if (tag == kStatementPositionTag) { 348 return RelocInfo::STATEMENT_POSITION; 349 } else if (tag == kNonstatementPositionTag) { 350 return RelocInfo::POSITION; 351 } else { 352 ASSERT(tag == kCommentTag); 353 return RelocInfo::COMMENT; 354 } 355 } 356 357 358 void RelocIterator::next() { 359 ASSERT(!done()); 360 // Basically, do the opposite of RelocInfoWriter::Write. 361 // Reading of data is as far as possible avoided for unwanted modes, 362 // but we must always update the pc. 363 // 364 // We exit this loop by returning when we find a mode we want. 365 while (pos_ > end_) { 366 int tag = AdvanceGetTag(); 367 if (tag == kEmbeddedObjectTag) { 368 ReadTaggedPC(); 369 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return; 370 } else if (tag == kCodeTargetTag) { 371 ReadTaggedPC(); 372 if (SetMode(RelocInfo::CODE_TARGET)) return; 373 } else if (tag == kPositionTag) { 374 ReadTaggedPC(); 375 Advance(); 376 // Check if we want source positions. 377 if (mode_mask_ & RelocInfo::kPositionMask) { 378 ReadTaggedData(); 379 if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) return; 380 } 381 } else { 382 ASSERT(tag == kDefaultTag); 383 int extra_tag = GetExtraTag(); 384 if (extra_tag == kPCJumpTag) { 385 int top_tag = GetTopTag(); 386 if (top_tag == kVariableLengthPCJumpTopTag) { 387 AdvanceReadVariableLengthPCJump(); 388 } else { 389 AdvanceReadPC(); 390 } 391 } else if (extra_tag == kDataJumpTag) { 392 // Check if we want debug modes (the only ones with data). 393 if (mode_mask_ & RelocInfo::kDebugMask) { 394 int top_tag = GetTopTag(); 395 AdvanceReadData(); 396 if (SetMode(DebugInfoModeFromTag(top_tag))) return; 397 } else { 398 // Otherwise, just skip over the data. 399 Advance(kIntptrSize); 400 } 401 } else { 402 AdvanceReadPC(); 403 if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return; 404 } 405 } 406 } 407 done_ = true; 408 } 409 410 411 RelocIterator::RelocIterator(Code* code, int mode_mask) { 412 rinfo_.pc_ = code->instruction_start(); 413 rinfo_.data_ = 0; 414 // Relocation info is read backwards. 415 pos_ = code->relocation_start() + code->relocation_size(); 416 end_ = code->relocation_start(); 417 done_ = false; 418 mode_mask_ = mode_mask; 419 if (mode_mask_ == 0) pos_ = end_; 420 next(); 421 } 422 423 424 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) { 425 rinfo_.pc_ = desc.buffer; 426 rinfo_.data_ = 0; 427 // Relocation info is read backwards. 428 pos_ = desc.buffer + desc.buffer_size; 429 end_ = pos_ - desc.reloc_size; 430 done_ = false; 431 mode_mask_ = mode_mask; 432 if (mode_mask_ == 0) pos_ = end_; 433 next(); 434 } 435 436 437 // ----------------------------------------------------------------------------- 438 // Implementation of RelocInfo 439 440 441 #ifdef ENABLE_DISASSEMBLER 442 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) { 443 switch (rmode) { 444 case RelocInfo::NONE: 445 return "no reloc"; 446 case RelocInfo::EMBEDDED_OBJECT: 447 return "embedded object"; 448 case RelocInfo::CONSTRUCT_CALL: 449 return "code target (js construct call)"; 450 case RelocInfo::CODE_TARGET_CONTEXT: 451 return "code target (context)"; 452 case RelocInfo::DEBUG_BREAK: 453 #ifndef ENABLE_DEBUGGER_SUPPORT 454 UNREACHABLE(); 455 #endif 456 return "debug break"; 457 case RelocInfo::CODE_TARGET: 458 return "code target"; 459 case RelocInfo::GLOBAL_PROPERTY_CELL: 460 return "global property cell"; 461 case RelocInfo::RUNTIME_ENTRY: 462 return "runtime entry"; 463 case RelocInfo::JS_RETURN: 464 return "js return"; 465 case RelocInfo::COMMENT: 466 return "comment"; 467 case RelocInfo::POSITION: 468 return "position"; 469 case RelocInfo::STATEMENT_POSITION: 470 return "statement position"; 471 case RelocInfo::EXTERNAL_REFERENCE: 472 return "external reference"; 473 case RelocInfo::INTERNAL_REFERENCE: 474 return "internal reference"; 475 case RelocInfo::DEBUG_BREAK_SLOT: 476 #ifndef ENABLE_DEBUGGER_SUPPORT 477 UNREACHABLE(); 478 #endif 479 return "debug break slot"; 480 case RelocInfo::NUMBER_OF_MODES: 481 UNREACHABLE(); 482 return "number_of_modes"; 483 } 484 return "unknown relocation type"; 485 } 486 487 488 void RelocInfo::Print(FILE* out) { 489 PrintF(out, "%p %s", pc_, RelocModeName(rmode_)); 490 if (IsComment(rmode_)) { 491 PrintF(out, " (%s)", reinterpret_cast<char*>(data_)); 492 } else if (rmode_ == EMBEDDED_OBJECT) { 493 PrintF(out, " ("); 494 target_object()->ShortPrint(out); 495 PrintF(out, ")"); 496 } else if (rmode_ == EXTERNAL_REFERENCE) { 497 ExternalReferenceEncoder ref_encoder; 498 PrintF(out, " (%s) (%p)", 499 ref_encoder.NameOfAddress(*target_reference_address()), 500 *target_reference_address()); 501 } else if (IsCodeTarget(rmode_)) { 502 Code* code = Code::GetCodeFromTargetAddress(target_address()); 503 PrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()), 504 target_address()); 505 } else if (IsPosition(rmode_)) { 506 PrintF(out, " (%" V8_PTR_PREFIX "d)", data()); 507 } else if (rmode_ == RelocInfo::RUNTIME_ENTRY && 508 Isolate::Current()->deoptimizer_data() != NULL) { 509 // Depotimization bailouts are stored as runtime entries. 510 int id = Deoptimizer::GetDeoptimizationId( 511 target_address(), Deoptimizer::EAGER); 512 if (id != Deoptimizer::kNotDeoptimizationEntry) { 513 PrintF(out, " (deoptimization bailout %d)", id); 514 } 515 } 516 517 PrintF(out, "\n"); 518 } 519 #endif // ENABLE_DISASSEMBLER 520 521 522 #ifdef DEBUG 523 void RelocInfo::Verify() { 524 switch (rmode_) { 525 case EMBEDDED_OBJECT: 526 Object::VerifyPointer(target_object()); 527 break; 528 case GLOBAL_PROPERTY_CELL: 529 Object::VerifyPointer(target_cell()); 530 break; 531 case DEBUG_BREAK: 532 #ifndef ENABLE_DEBUGGER_SUPPORT 533 UNREACHABLE(); 534 break; 535 #endif 536 case CONSTRUCT_CALL: 537 case CODE_TARGET_CONTEXT: 538 case CODE_TARGET: { 539 // convert inline target address to code object 540 Address addr = target_address(); 541 ASSERT(addr != NULL); 542 // Check that we can find the right code object. 543 Code* code = Code::GetCodeFromTargetAddress(addr); 544 Object* found = HEAP->FindCodeObject(addr); 545 ASSERT(found->IsCode()); 546 ASSERT(code->address() == HeapObject::cast(found)->address()); 547 break; 548 } 549 case RUNTIME_ENTRY: 550 case JS_RETURN: 551 case COMMENT: 552 case POSITION: 553 case STATEMENT_POSITION: 554 case EXTERNAL_REFERENCE: 555 case INTERNAL_REFERENCE: 556 case DEBUG_BREAK_SLOT: 557 case NONE: 558 break; 559 case NUMBER_OF_MODES: 560 UNREACHABLE(); 561 break; 562 } 563 } 564 #endif // DEBUG 565 566 567 // ----------------------------------------------------------------------------- 568 // Implementation of ExternalReference 569 570 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate) 571 : address_(Redirect(isolate, Builtins::c_function_address(id))) {} 572 573 574 ExternalReference::ExternalReference( 575 ApiFunction* fun, 576 Type type = ExternalReference::BUILTIN_CALL, 577 Isolate* isolate = NULL) 578 : address_(Redirect(isolate, fun->address(), type)) {} 579 580 581 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate) 582 : address_(isolate->builtins()->builtin_address(name)) {} 583 584 585 ExternalReference::ExternalReference(Runtime::FunctionId id, 586 Isolate* isolate) 587 : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {} 588 589 590 ExternalReference::ExternalReference(const Runtime::Function* f, 591 Isolate* isolate) 592 : address_(Redirect(isolate, f->entry)) {} 593 594 595 ExternalReference ExternalReference::isolate_address() { 596 return ExternalReference(Isolate::Current()); 597 } 598 599 600 ExternalReference::ExternalReference(const IC_Utility& ic_utility, 601 Isolate* isolate) 602 : address_(Redirect(isolate, ic_utility.address())) {} 603 604 #ifdef ENABLE_DEBUGGER_SUPPORT 605 ExternalReference::ExternalReference(const Debug_Address& debug_address, 606 Isolate* isolate) 607 : address_(debug_address.address(isolate)) {} 608 #endif 609 610 ExternalReference::ExternalReference(StatsCounter* counter) 611 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {} 612 613 614 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate) 615 : address_(isolate->get_address_from_id(id)) {} 616 617 618 ExternalReference::ExternalReference(const SCTableReference& table_ref) 619 : address_(table_ref.address()) {} 620 621 622 ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) { 623 return ExternalReference(Redirect(isolate, 624 FUNCTION_ADDR(Runtime::PerformGC))); 625 } 626 627 628 ExternalReference ExternalReference::fill_heap_number_with_random_function( 629 Isolate* isolate) { 630 return ExternalReference(Redirect( 631 isolate, 632 FUNCTION_ADDR(V8::FillHeapNumberWithRandom))); 633 } 634 635 636 ExternalReference ExternalReference::delete_handle_scope_extensions( 637 Isolate* isolate) { 638 return ExternalReference(Redirect( 639 isolate, 640 FUNCTION_ADDR(HandleScope::DeleteExtensions))); 641 } 642 643 644 ExternalReference ExternalReference::random_uint32_function( 645 Isolate* isolate) { 646 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(V8::Random))); 647 } 648 649 650 ExternalReference ExternalReference::transcendental_cache_array_address( 651 Isolate* isolate) { 652 return ExternalReference( 653 isolate->transcendental_cache()->cache_array_address()); 654 } 655 656 657 ExternalReference ExternalReference::new_deoptimizer_function( 658 Isolate* isolate) { 659 return ExternalReference( 660 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New))); 661 } 662 663 664 ExternalReference ExternalReference::compute_output_frames_function( 665 Isolate* isolate) { 666 return ExternalReference( 667 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames))); 668 } 669 670 671 ExternalReference ExternalReference::global_contexts_list(Isolate* isolate) { 672 return ExternalReference(isolate->heap()->global_contexts_list_address()); 673 } 674 675 676 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) { 677 return ExternalReference(isolate->keyed_lookup_cache()->keys_address()); 678 } 679 680 681 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets( 682 Isolate* isolate) { 683 return ExternalReference( 684 isolate->keyed_lookup_cache()->field_offsets_address()); 685 } 686 687 688 ExternalReference ExternalReference::the_hole_value_location(Isolate* isolate) { 689 return ExternalReference(isolate->factory()->the_hole_value().location()); 690 } 691 692 693 ExternalReference ExternalReference::arguments_marker_location( 694 Isolate* isolate) { 695 return ExternalReference(isolate->factory()->arguments_marker().location()); 696 } 697 698 699 ExternalReference ExternalReference::roots_address(Isolate* isolate) { 700 return ExternalReference(isolate->heap()->roots_address()); 701 } 702 703 704 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) { 705 return ExternalReference(isolate->stack_guard()->address_of_jslimit()); 706 } 707 708 709 ExternalReference ExternalReference::address_of_real_stack_limit( 710 Isolate* isolate) { 711 return ExternalReference(isolate->stack_guard()->address_of_real_jslimit()); 712 } 713 714 715 ExternalReference ExternalReference::address_of_regexp_stack_limit( 716 Isolate* isolate) { 717 return ExternalReference(isolate->regexp_stack()->limit_address()); 718 } 719 720 721 ExternalReference ExternalReference::new_space_start(Isolate* isolate) { 722 return ExternalReference(isolate->heap()->NewSpaceStart()); 723 } 724 725 726 ExternalReference ExternalReference::new_space_mask(Isolate* isolate) { 727 Address mask = reinterpret_cast<Address>(isolate->heap()->NewSpaceMask()); 728 return ExternalReference(mask); 729 } 730 731 732 ExternalReference ExternalReference::new_space_allocation_top_address( 733 Isolate* isolate) { 734 return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress()); 735 } 736 737 738 ExternalReference ExternalReference::heap_always_allocate_scope_depth( 739 Isolate* isolate) { 740 Heap* heap = isolate->heap(); 741 return ExternalReference(heap->always_allocate_scope_depth_address()); 742 } 743 744 745 ExternalReference ExternalReference::new_space_allocation_limit_address( 746 Isolate* isolate) { 747 return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress()); 748 } 749 750 751 ExternalReference ExternalReference::handle_scope_level_address() { 752 return ExternalReference(HandleScope::current_level_address()); 753 } 754 755 756 ExternalReference ExternalReference::handle_scope_next_address() { 757 return ExternalReference(HandleScope::current_next_address()); 758 } 759 760 761 ExternalReference ExternalReference::handle_scope_limit_address() { 762 return ExternalReference(HandleScope::current_limit_address()); 763 } 764 765 766 ExternalReference ExternalReference::scheduled_exception_address( 767 Isolate* isolate) { 768 return ExternalReference(isolate->scheduled_exception_address()); 769 } 770 771 772 ExternalReference ExternalReference::address_of_min_int() { 773 return ExternalReference(reinterpret_cast<void*>( 774 const_cast<double*>(&DoubleConstant::min_int))); 775 } 776 777 778 ExternalReference ExternalReference::address_of_one_half() { 779 return ExternalReference(reinterpret_cast<void*>( 780 const_cast<double*>(&DoubleConstant::one_half))); 781 } 782 783 784 ExternalReference ExternalReference::address_of_minus_zero() { 785 return ExternalReference(reinterpret_cast<void*>( 786 const_cast<double*>(&DoubleConstant::minus_zero))); 787 } 788 789 790 ExternalReference ExternalReference::address_of_negative_infinity() { 791 return ExternalReference(reinterpret_cast<void*>( 792 const_cast<double*>(&DoubleConstant::negative_infinity))); 793 } 794 795 796 ExternalReference ExternalReference::address_of_nan() { 797 return ExternalReference(reinterpret_cast<void*>( 798 const_cast<double*>(&DoubleConstant::nan))); 799 } 800 801 802 #ifndef V8_INTERPRETED_REGEXP 803 804 ExternalReference ExternalReference::re_check_stack_guard_state( 805 Isolate* isolate) { 806 Address function; 807 #ifdef V8_TARGET_ARCH_X64 808 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState); 809 #elif V8_TARGET_ARCH_IA32 810 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState); 811 #elif V8_TARGET_ARCH_ARM 812 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState); 813 #elif V8_TARGET_ARCH_MIPS 814 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); 815 #else 816 UNREACHABLE(); 817 #endif 818 return ExternalReference(Redirect(isolate, function)); 819 } 820 821 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) { 822 return ExternalReference( 823 Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack))); 824 } 825 826 ExternalReference ExternalReference::re_case_insensitive_compare_uc16( 827 Isolate* isolate) { 828 return ExternalReference(Redirect( 829 isolate, 830 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16))); 831 } 832 833 ExternalReference ExternalReference::re_word_character_map() { 834 return ExternalReference( 835 NativeRegExpMacroAssembler::word_character_map_address()); 836 } 837 838 ExternalReference ExternalReference::address_of_static_offsets_vector( 839 Isolate* isolate) { 840 return ExternalReference( 841 OffsetsVector::static_offsets_vector_address(isolate)); 842 } 843 844 ExternalReference ExternalReference::address_of_regexp_stack_memory_address( 845 Isolate* isolate) { 846 return ExternalReference( 847 isolate->regexp_stack()->memory_address()); 848 } 849 850 ExternalReference ExternalReference::address_of_regexp_stack_memory_size( 851 Isolate* isolate) { 852 return ExternalReference(isolate->regexp_stack()->memory_size_address()); 853 } 854 855 #endif // V8_INTERPRETED_REGEXP 856 857 858 static double add_two_doubles(double x, double y) { 859 return x + y; 860 } 861 862 863 static double sub_two_doubles(double x, double y) { 864 return x - y; 865 } 866 867 868 static double mul_two_doubles(double x, double y) { 869 return x * y; 870 } 871 872 873 static double div_two_doubles(double x, double y) { 874 return x / y; 875 } 876 877 878 static double mod_two_doubles(double x, double y) { 879 return modulo(x, y); 880 } 881 882 883 static double math_sin_double(double x) { 884 return sin(x); 885 } 886 887 888 static double math_cos_double(double x) { 889 return cos(x); 890 } 891 892 893 static double math_log_double(double x) { 894 return log(x); 895 } 896 897 898 ExternalReference ExternalReference::math_sin_double_function( 899 Isolate* isolate) { 900 return ExternalReference(Redirect(isolate, 901 FUNCTION_ADDR(math_sin_double), 902 FP_RETURN_CALL)); 903 } 904 905 906 ExternalReference ExternalReference::math_cos_double_function( 907 Isolate* isolate) { 908 return ExternalReference(Redirect(isolate, 909 FUNCTION_ADDR(math_cos_double), 910 FP_RETURN_CALL)); 911 } 912 913 914 ExternalReference ExternalReference::math_log_double_function( 915 Isolate* isolate) { 916 return ExternalReference(Redirect(isolate, 917 FUNCTION_ADDR(math_log_double), 918 FP_RETURN_CALL)); 919 } 920 921 922 // Helper function to compute x^y, where y is known to be an 923 // integer. Uses binary decomposition to limit the number of 924 // multiplications; see the discussion in "Hacker's Delight" by Henry 925 // S. Warren, Jr., figure 11-6, page 213. 926 double power_double_int(double x, int y) { 927 double m = (y < 0) ? 1 / x : x; 928 unsigned n = (y < 0) ? -y : y; 929 double p = 1; 930 while (n != 0) { 931 if ((n & 1) != 0) p *= m; 932 m *= m; 933 if ((n & 2) != 0) p *= m; 934 m *= m; 935 n >>= 2; 936 } 937 return p; 938 } 939 940 941 double power_double_double(double x, double y) { 942 int y_int = static_cast<int>(y); 943 if (y == y_int) { 944 return power_double_int(x, y_int); // Returns 1.0 for exponent 0. 945 } 946 if (!isinf(x)) { 947 if (y == 0.5) return sqrt(x + 0.0); // -0 must be converted to +0. 948 if (y == -0.5) return 1.0 / sqrt(x + 0.0); 949 } 950 if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) { 951 return OS::nan_value(); 952 } 953 return pow(x, y); 954 } 955 956 957 ExternalReference ExternalReference::power_double_double_function( 958 Isolate* isolate) { 959 return ExternalReference(Redirect(isolate, 960 FUNCTION_ADDR(power_double_double), 961 FP_RETURN_CALL)); 962 } 963 964 965 ExternalReference ExternalReference::power_double_int_function( 966 Isolate* isolate) { 967 return ExternalReference(Redirect(isolate, 968 FUNCTION_ADDR(power_double_int), 969 FP_RETURN_CALL)); 970 } 971 972 973 static int native_compare_doubles(double y, double x) { 974 if (x == y) return EQUAL; 975 return x < y ? LESS : GREATER; 976 } 977 978 979 ExternalReference ExternalReference::double_fp_operation( 980 Token::Value operation, Isolate* isolate) { 981 typedef double BinaryFPOperation(double x, double y); 982 BinaryFPOperation* function = NULL; 983 switch (operation) { 984 case Token::ADD: 985 function = &add_two_doubles; 986 break; 987 case Token::SUB: 988 function = &sub_two_doubles; 989 break; 990 case Token::MUL: 991 function = &mul_two_doubles; 992 break; 993 case Token::DIV: 994 function = &div_two_doubles; 995 break; 996 case Token::MOD: 997 function = &mod_two_doubles; 998 break; 999 default: 1000 UNREACHABLE(); 1001 } 1002 // Passing true as 2nd parameter indicates that they return an fp value. 1003 return ExternalReference(Redirect(isolate, 1004 FUNCTION_ADDR(function), 1005 FP_RETURN_CALL)); 1006 } 1007 1008 1009 ExternalReference ExternalReference::compare_doubles(Isolate* isolate) { 1010 return ExternalReference(Redirect(isolate, 1011 FUNCTION_ADDR(native_compare_doubles), 1012 BUILTIN_CALL)); 1013 } 1014 1015 1016 #ifdef ENABLE_DEBUGGER_SUPPORT 1017 ExternalReference ExternalReference::debug_break(Isolate* isolate) { 1018 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break))); 1019 } 1020 1021 1022 ExternalReference ExternalReference::debug_step_in_fp_address( 1023 Isolate* isolate) { 1024 return ExternalReference(isolate->debug()->step_in_fp_addr()); 1025 } 1026 #endif 1027 1028 1029 void PositionsRecorder::RecordPosition(int pos) { 1030 ASSERT(pos != RelocInfo::kNoPosition); 1031 ASSERT(pos >= 0); 1032 state_.current_position = pos; 1033 #ifdef ENABLE_GDB_JIT_INTERFACE 1034 if (gdbjit_lineinfo_ != NULL) { 1035 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false); 1036 } 1037 #endif 1038 } 1039 1040 1041 void PositionsRecorder::RecordStatementPosition(int pos) { 1042 ASSERT(pos != RelocInfo::kNoPosition); 1043 ASSERT(pos >= 0); 1044 state_.current_statement_position = pos; 1045 #ifdef ENABLE_GDB_JIT_INTERFACE 1046 if (gdbjit_lineinfo_ != NULL) { 1047 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true); 1048 } 1049 #endif 1050 } 1051 1052 1053 bool PositionsRecorder::WriteRecordedPositions() { 1054 bool written = false; 1055 1056 // Write the statement position if it is different from what was written last 1057 // time. 1058 if (state_.current_statement_position != state_.written_statement_position) { 1059 EnsureSpace ensure_space(assembler_); 1060 assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION, 1061 state_.current_statement_position); 1062 state_.written_statement_position = state_.current_statement_position; 1063 written = true; 1064 } 1065 1066 // Write the position if it is different from what was written last time and 1067 // also different from the written statement position. 1068 if (state_.current_position != state_.written_position && 1069 state_.current_position != state_.written_statement_position) { 1070 EnsureSpace ensure_space(assembler_); 1071 assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position); 1072 state_.written_position = state_.current_position; 1073 written = true; 1074 } 1075 1076 // Return whether something was written. 1077 return written; 1078 } 1079 1080 } } // namespace v8::internal 1081