1 /* libs/pixelflinger/scanline.cpp 2 ** 3 ** Copyright 2006-2011, The Android Open Source Project 4 ** 5 ** Licensed under the Apache License, Version 2.0 (the "License"); 6 ** you may not use this file except in compliance with the License. 7 ** You may obtain a copy of the License at 8 ** 9 ** http://www.apache.org/licenses/LICENSE-2.0 10 ** 11 ** Unless required by applicable law or agreed to in writing, software 12 ** distributed under the License is distributed on an "AS IS" BASIS, 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 ** See the License for the specific language governing permissions and 15 ** limitations under the License. 16 */ 17 18 19 #define LOG_TAG "pixelflinger" 20 21 #include <assert.h> 22 #include <stdlib.h> 23 #include <stdio.h> 24 #include <string.h> 25 26 #include <cutils/memory.h> 27 #include <cutils/log.h> 28 29 #include "buffer.h" 30 #include "scanline.h" 31 32 #include "codeflinger/CodeCache.h" 33 #include "codeflinger/GGLAssembler.h" 34 #include "codeflinger/ARMAssembler.h" 35 //#include "codeflinger/ARMAssemblerOptimizer.h" 36 37 // ---------------------------------------------------------------------------- 38 39 #define ANDROID_CODEGEN_GENERIC 0 // force generic pixel pipeline 40 #define ANDROID_CODEGEN_C 1 // hand-written C, fallback generic 41 #define ANDROID_CODEGEN_ASM 2 // hand-written asm, fallback generic 42 #define ANDROID_CODEGEN_GENERATED 3 // hand-written asm, fallback codegen 43 44 #ifdef NDEBUG 45 # define ANDROID_RELEASE 46 # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED 47 #else 48 # define ANDROID_DEBUG 49 # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED 50 #endif 51 52 #if defined(__arm__) 53 # define ANDROID_ARM_CODEGEN 1 54 #else 55 # define ANDROID_ARM_CODEGEN 0 56 #endif 57 58 #define DEBUG__CODEGEN_ONLY 0 59 60 /* Set to 1 to dump to the log the states that need a new 61 * code-generated scanline callback, i.e. those that don't 62 * have a corresponding shortcut function. 63 */ 64 #define DEBUG_NEEDS 0 65 66 #define ASSEMBLY_SCRATCH_SIZE 2048 67 68 // ---------------------------------------------------------------------------- 69 namespace android { 70 // ---------------------------------------------------------------------------- 71 72 static void init_y(context_t*, int32_t); 73 static void init_y_noop(context_t*, int32_t); 74 static void init_y_packed(context_t*, int32_t); 75 static void init_y_error(context_t*, int32_t); 76 77 static void step_y__generic(context_t* c); 78 static void step_y__nop(context_t*); 79 static void step_y__smooth(context_t* c); 80 static void step_y__tmu(context_t* c); 81 static void step_y__w(context_t* c); 82 83 static void scanline(context_t* c); 84 static void scanline_perspective(context_t* c); 85 static void scanline_perspective_single(context_t* c); 86 static void scanline_t32cb16blend(context_t* c); 87 static void scanline_t32cb16blend_dither(context_t* c); 88 static void scanline_t32cb16blend_srca(context_t* c); 89 static void scanline_t32cb16blend_clamp(context_t* c); 90 static void scanline_t32cb16blend_clamp_dither(context_t* c); 91 static void scanline_t32cb16blend_clamp_mod(context_t* c); 92 static void scanline_x32cb16blend_clamp_mod(context_t* c); 93 static void scanline_t32cb16blend_clamp_mod_dither(context_t* c); 94 static void scanline_x32cb16blend_clamp_mod_dither(context_t* c); 95 static void scanline_t32cb16(context_t* c); 96 static void scanline_t32cb16_dither(context_t* c); 97 static void scanline_t32cb16_clamp(context_t* c); 98 static void scanline_t32cb16_clamp_dither(context_t* c); 99 static void scanline_col32cb16blend(context_t* c); 100 static void scanline_t16cb16_clamp(context_t* c); 101 static void scanline_t16cb16blend_clamp_mod(context_t* c); 102 static void scanline_memcpy(context_t* c); 103 static void scanline_memset8(context_t* c); 104 static void scanline_memset16(context_t* c); 105 static void scanline_memset32(context_t* c); 106 static void scanline_noop(context_t* c); 107 static void scanline_set(context_t* c); 108 static void scanline_clear(context_t* c); 109 110 static void rect_generic(context_t* c, size_t yc); 111 static void rect_memcpy(context_t* c, size_t yc); 112 113 extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t); 114 extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct); 115 extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct); 116 extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct); 117 118 // ---------------------------------------------------------------------------- 119 120 static inline uint16_t convertAbgr8888ToRgb565(uint32_t pix) 121 { 122 return uint16_t( ((pix << 8) & 0xf800) | 123 ((pix >> 5) & 0x07e0) | 124 ((pix >> 19) & 0x001f) ); 125 } 126 127 struct shortcut_t { 128 needs_filter_t filter; 129 const char* desc; 130 void (*scanline)(context_t*); 131 void (*init_y)(context_t*, int32_t); 132 }; 133 134 // Keep in sync with needs 135 136 /* To understand the values here, have a look at: 137 * system/core/include/private/pixelflinger/ggl_context.h 138 * 139 * Especially the lines defining and using GGL_RESERVE_NEEDS 140 * 141 * Quick reminders: 142 * - the last nibble of the first value is the destination buffer format. 143 * - the last nibble of the third value is the source texture format 144 * - formats: 4=rgb565 1=abgr8888 2=xbgr8888 145 * 146 * In the descriptions below: 147 * 148 * SRC means we copy the source pixels to the destination 149 * 150 * SRC_OVER means we blend the source pixels to the destination 151 * with dstFactor = 1-srcA, srcFactor=1 (premultiplied source). 152 * This mode is otherwise called 'blend'. 153 * 154 * SRCA_OVER means we blend the source pixels to the destination 155 * with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source). 156 * This mode is otherwise called 'blend_srca' 157 * 158 * clamp means we fetch source pixels from a texture with u/v clamping 159 * 160 * mod means the source pixels are modulated (multiplied) by the 161 * a/r/g/b of the current context's color. Typically used for 162 * fade-in / fade-out. 163 * 164 * dither means we dither 32 bit values to 16 bits 165 */ 166 static shortcut_t shortcuts[] = { 167 { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } }, 168 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 169 "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop }, 170 { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } }, 171 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 172 "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop }, 173 /* same as first entry, but with dithering */ 174 { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } }, 175 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 176 "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop }, 177 /* same as second entry, but with dithering */ 178 { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } }, 179 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 180 "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop }, 181 /* this is used during the boot animation - CHEAT: ignore dithering */ 182 { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } }, 183 { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } }, 184 "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop }, 185 /* special case for arbitrary texture coordinates (think scaling) */ 186 { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } }, 187 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 188 "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y }, 189 { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } }, 190 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 191 "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y }, 192 /* another case used during emulation */ 193 { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } }, 194 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 195 "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y }, 196 /* and this */ 197 { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } }, 198 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 199 "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y }, 200 { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } }, 201 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 202 "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y }, 203 { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } }, 204 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 205 "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y }, 206 { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } }, 207 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 208 "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y }, 209 { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } }, 210 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 211 "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y }, 212 { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } }, 213 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 214 "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y }, 215 { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } }, 216 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 217 "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y }, 218 { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } }, 219 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 220 "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y }, 221 { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } }, 222 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 223 "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y }, 224 { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } }, 225 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } }, 226 "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed }, 227 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, 228 { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } }, 229 "(nop) alpha test", scanline_noop, init_y_noop }, 230 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, 231 { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } }, 232 "(nop) depth test", scanline_noop, init_y_noop }, 233 { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } }, 234 { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } }, 235 "(nop) logic_op", scanline_noop, init_y_noop }, 236 { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } }, 237 { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } }, 238 "(nop) color mask", scanline_noop, init_y_noop }, 239 { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } }, 240 { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, 241 "(set) logic_op", scanline_set, init_y_noop }, 242 { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } }, 243 { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, 244 "(clear) logic_op", scanline_clear, init_y_noop }, 245 { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } }, 246 { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } }, 247 "(clear) blending 0/0", scanline_clear, init_y_noop }, 248 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, 249 { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } }, 250 "(error) invalid color-buffer format", scanline_noop, init_y_error }, 251 }; 252 static const needs_filter_t noblend1to1 = { 253 // (disregard dithering, see below) 254 { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } }, 255 { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } } 256 }; 257 static const needs_filter_t fill16noblend = { 258 { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } }, 259 { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } } 260 }; 261 262 // ---------------------------------------------------------------------------- 263 264 #if ANDROID_ARM_CODEGEN 265 static CodeCache gCodeCache(12 * 1024); 266 267 class ScanlineAssembly : public Assembly { 268 AssemblyKey<needs_t> mKey; 269 public: 270 ScanlineAssembly(needs_t needs, size_t size) 271 : Assembly(size), mKey(needs) { } 272 const AssemblyKey<needs_t>& key() const { return mKey; } 273 }; 274 #endif 275 276 // ---------------------------------------------------------------------------- 277 278 void ggl_init_scanline(context_t* c) 279 { 280 c->init_y = init_y; 281 c->step_y = step_y__generic; 282 c->scanline = scanline; 283 } 284 285 void ggl_uninit_scanline(context_t* c) 286 { 287 if (c->state.buffers.coverage) 288 free(c->state.buffers.coverage); 289 #if ANDROID_ARM_CODEGEN 290 if (c->scanline_as) 291 c->scanline_as->decStrong(c); 292 #endif 293 } 294 295 // ---------------------------------------------------------------------------- 296 297 static void pick_scanline(context_t* c) 298 { 299 #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0)) 300 301 #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC 302 c->init_y = init_y; 303 c->step_y = step_y__generic; 304 c->scanline = scanline; 305 return; 306 #endif 307 308 //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n", 309 // c->state.needs.n, c->state.needs.p, 310 // c->state.needs.t[0], c->state.needs.t[1]); 311 312 // first handle the special case that we cannot test with a filter 313 const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n); 314 if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) { 315 if (c->state.needs.match(noblend1to1)) { 316 // this will match regardless of dithering state, since both 317 // src and dest have the same format anyway, there is no dithering 318 // to be done. 319 const GGLFormat* f = 320 &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]); 321 if ((f->components == GGL_RGB) || 322 (f->components == GGL_RGBA) || 323 (f->components == GGL_LUMINANCE) || 324 (f->components == GGL_LUMINANCE_ALPHA)) 325 { 326 // format must have all of RGB components 327 // (so the current color doesn't show through) 328 c->scanline = scanline_memcpy; 329 c->init_y = init_y_noop; 330 return; 331 } 332 } 333 } 334 335 if (c->state.needs.match(fill16noblend)) { 336 c->init_y = init_y_packed; 337 switch (c->formats[cb_format].size) { 338 case 1: c->scanline = scanline_memset8; return; 339 case 2: c->scanline = scanline_memset16; return; 340 case 4: c->scanline = scanline_memset32; return; 341 } 342 } 343 344 const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t); 345 for (int i=0 ; i<numFilters ; i++) { 346 if (c->state.needs.match(shortcuts[i].filter)) { 347 c->scanline = shortcuts[i].scanline; 348 c->init_y = shortcuts[i].init_y; 349 return; 350 } 351 } 352 353 #if DEBUG_NEEDS 354 LOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x", 355 c->state.needs.n, c->state.needs.p, 356 c->state.needs.t[0], c->state.needs.t[1]); 357 #endif 358 359 #endif // DEBUG__CODEGEN_ONLY 360 361 c->init_y = init_y; 362 c->step_y = step_y__generic; 363 364 #if ANDROID_ARM_CODEGEN 365 // we're going to have to generate some code... 366 // here, generate code for our pixel pipeline 367 const AssemblyKey<needs_t> key(c->state.needs); 368 sp<Assembly> assembly = gCodeCache.lookup(key); 369 if (assembly == 0) { 370 // create a new assembly region 371 sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs, 372 ASSEMBLY_SCRATCH_SIZE); 373 // initialize our assembler 374 GGLAssembler assembler( new ARMAssembler(a) ); 375 //GGLAssembler assembler( 376 // new ARMAssemblerOptimizer(new ARMAssembler(a)) ); 377 // generate the scanline code for the given needs 378 int err = assembler.scanline(c->state.needs, c); 379 if (ggl_likely(!err)) { 380 // finally, cache this assembly 381 err = gCodeCache.cache(a->key(), a); 382 } 383 if (ggl_unlikely(err)) { 384 LOGE("error generating or caching assembly. Reverting to NOP."); 385 c->scanline = scanline_noop; 386 c->init_y = init_y_noop; 387 c->step_y = step_y__nop; 388 return; 389 } 390 assembly = a; 391 } 392 393 // release the previous assembly 394 if (c->scanline_as) { 395 c->scanline_as->decStrong(c); 396 } 397 398 //LOGI("using generated pixel-pipeline"); 399 c->scanline_as = assembly.get(); 400 c->scanline_as->incStrong(c); // hold on to assembly 401 c->scanline = (void(*)(context_t* c))assembly->base(); 402 #else 403 // LOGW("using generic (slow) pixel-pipeline"); 404 c->scanline = scanline; 405 #endif 406 } 407 408 void ggl_pick_scanline(context_t* c) 409 { 410 pick_scanline(c); 411 if ((c->state.enables & GGL_ENABLE_W) && 412 (c->state.enables & GGL_ENABLE_TMUS)) 413 { 414 c->span = c->scanline; 415 c->scanline = scanline_perspective; 416 if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) { 417 // only one TMU enabled 418 c->scanline = scanline_perspective_single; 419 } 420 } 421 } 422 423 // ---------------------------------------------------------------------------- 424 425 static void blending(context_t* c, pixel_t* fragment, pixel_t* fb); 426 static void blend_factor(context_t* c, pixel_t* r, uint32_t factor, 427 const pixel_t* src, const pixel_t* dst); 428 static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv); 429 430 #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) 431 432 // no need to compile the generic-pipeline, it can't be reached 433 void scanline(context_t*) 434 { 435 } 436 437 #else 438 439 void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv) 440 { 441 if (su && sv) { 442 if (su > sv) { 443 v = ggl_expand(v, sv, su); 444 sv = su; 445 } else if (su < sv) { 446 u = ggl_expand(u, su, sv); 447 su = sv; 448 } 449 } 450 } 451 452 void blending(context_t* c, pixel_t* fragment, pixel_t* fb) 453 { 454 rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]); 455 rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]); 456 rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]); 457 rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]); 458 459 pixel_t sf, df; 460 blend_factor(c, &sf, c->state.blend.src, fragment, fb); 461 blend_factor(c, &df, c->state.blend.dst, fragment, fb); 462 463 fragment->c[1] = 464 gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1])); 465 fragment->c[2] = 466 gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2])); 467 fragment->c[3] = 468 gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3])); 469 470 if (c->state.blend.alpha_separate) { 471 blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb); 472 blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb); 473 } 474 475 fragment->c[0] = 476 gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0])); 477 478 // clamp to 1.0 479 if (fragment->c[0] >= (1LU<<fragment->s[0])) 480 fragment->c[0] = (1<<fragment->s[0])-1; 481 if (fragment->c[1] >= (1LU<<fragment->s[1])) 482 fragment->c[1] = (1<<fragment->s[1])-1; 483 if (fragment->c[2] >= (1LU<<fragment->s[2])) 484 fragment->c[2] = (1<<fragment->s[2])-1; 485 if (fragment->c[3] >= (1LU<<fragment->s[3])) 486 fragment->c[3] = (1<<fragment->s[3])-1; 487 } 488 489 static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0) 490 { 491 if (!size) 492 return def; 493 494 // scale to 16 bits 495 if (size > 16) { 496 x >>= (size - 16); 497 } else if (size < 16) { 498 x = ggl_expand(x, size, 16); 499 } 500 x += x >> 15; 501 return x; 502 } 503 504 void blend_factor(context_t* c, pixel_t* r, 505 uint32_t factor, const pixel_t* src, const pixel_t* dst) 506 { 507 switch (factor) { 508 case GGL_ZERO: 509 r->c[1] = 510 r->c[2] = 511 r->c[3] = 512 r->c[0] = 0; 513 break; 514 case GGL_ONE: 515 r->c[1] = 516 r->c[2] = 517 r->c[3] = 518 r->c[0] = FIXED_ONE; 519 break; 520 case GGL_DST_COLOR: 521 r->c[1] = blendfactor(dst->c[1], dst->s[1]); 522 r->c[2] = blendfactor(dst->c[2], dst->s[2]); 523 r->c[3] = blendfactor(dst->c[3], dst->s[3]); 524 r->c[0] = blendfactor(dst->c[0], dst->s[0]); 525 break; 526 case GGL_SRC_COLOR: 527 r->c[1] = blendfactor(src->c[1], src->s[1]); 528 r->c[2] = blendfactor(src->c[2], src->s[2]); 529 r->c[3] = blendfactor(src->c[3], src->s[3]); 530 r->c[0] = blendfactor(src->c[0], src->s[0]); 531 break; 532 case GGL_ONE_MINUS_DST_COLOR: 533 r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]); 534 r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]); 535 r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]); 536 r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]); 537 break; 538 case GGL_ONE_MINUS_SRC_COLOR: 539 r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]); 540 r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]); 541 r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]); 542 r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]); 543 break; 544 case GGL_SRC_ALPHA: 545 r->c[1] = 546 r->c[2] = 547 r->c[3] = 548 r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE); 549 break; 550 case GGL_ONE_MINUS_SRC_ALPHA: 551 r->c[1] = 552 r->c[2] = 553 r->c[3] = 554 r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE); 555 break; 556 case GGL_DST_ALPHA: 557 r->c[1] = 558 r->c[2] = 559 r->c[3] = 560 r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE); 561 break; 562 case GGL_ONE_MINUS_DST_ALPHA: 563 r->c[1] = 564 r->c[2] = 565 r->c[3] = 566 r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE); 567 break; 568 case GGL_SRC_ALPHA_SATURATE: 569 // XXX: GGL_SRC_ALPHA_SATURATE 570 break; 571 } 572 } 573 574 static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap) 575 { 576 GGLfixed d; 577 if (tx_wrap == GGL_REPEAT) { 578 d = (uint32_t(coord)>>16) * size; 579 } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics 580 const GGLfixed clamp_min = FIXED_HALF; 581 const GGLfixed clamp_max = (size << 16) - FIXED_HALF; 582 if (coord < clamp_min) coord = clamp_min; 583 if (coord > clamp_max) coord = clamp_max; 584 d = coord; 585 } else { // 1:1 586 const GGLfixed clamp_min = 0; 587 const GGLfixed clamp_max = (size << 16); 588 if (coord < clamp_min) coord = clamp_min; 589 if (coord > clamp_max) coord = clamp_max; 590 d = coord; 591 } 592 return d; 593 } 594 595 static inline 596 GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len) 597 { 598 const int32_t end = dvdx * (len-1) + v; 599 if (end < 0) 600 v -= end; 601 v &= ~(v>>31); 602 return v; 603 } 604 605 void scanline(context_t* c) 606 { 607 const uint32_t enables = c->state.enables; 608 const int xs = c->iterators.xl; 609 const int x1 = c->iterators.xr; 610 int xc = x1 - xs; 611 const int16_t* covPtr = c->state.buffers.coverage + xs; 612 613 // All iterated values are sampled at the pixel center 614 615 // reset iterators for that scanline... 616 GGLcolor r, g, b, a; 617 iterators_t& ci = c->iterators; 618 if (enables & GGL_ENABLE_SMOOTH) { 619 r = (xs * c->shade.drdx) + ci.ydrdy; 620 g = (xs * c->shade.dgdx) + ci.ydgdy; 621 b = (xs * c->shade.dbdx) + ci.ydbdy; 622 a = (xs * c->shade.dadx) + ci.ydady; 623 r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc); 624 g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc); 625 b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc); 626 a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc); 627 } else { 628 r = ci.ydrdy; 629 g = ci.ydgdy; 630 b = ci.ydbdy; 631 a = ci.ydady; 632 } 633 634 // z iterators are 1.31 635 GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy; 636 GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy; 637 638 struct { 639 GGLfixed s, t; 640 } tc[GGL_TEXTURE_UNIT_COUNT]; 641 if (enables & GGL_ENABLE_TMUS) { 642 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 643 if (c->state.texture[i].enable) { 644 texture_iterators_t& ti = c->state.texture[i].iterators; 645 if (enables & GGL_ENABLE_W) { 646 tc[i].s = ti.ydsdy; 647 tc[i].t = ti.ydtdy; 648 } else { 649 tc[i].s = (xs * ti.dsdx) + ti.ydsdy; 650 tc[i].t = (xs * ti.dtdx) + ti.ydtdy; 651 } 652 } 653 } 654 } 655 656 pixel_t fragment; 657 pixel_t texel; 658 pixel_t fb; 659 660 uint32_t x = xs; 661 uint32_t y = c->iterators.y; 662 663 while (xc--) { 664 665 { // just a scope 666 667 // read color (convert to 8 bits by keeping only the integer part) 668 fragment.s[1] = fragment.s[2] = 669 fragment.s[3] = fragment.s[0] = 8; 670 fragment.c[1] = r >> (GGL_COLOR_BITS-8); 671 fragment.c[2] = g >> (GGL_COLOR_BITS-8); 672 fragment.c[3] = b >> (GGL_COLOR_BITS-8); 673 fragment.c[0] = a >> (GGL_COLOR_BITS-8); 674 675 // texturing 676 if (enables & GGL_ENABLE_TMUS) { 677 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 678 texture_t& tx = c->state.texture[i]; 679 if (!tx.enable) 680 continue; 681 texture_iterators_t& ti = tx.iterators; 682 int32_t u, v; 683 684 // s-coordinate 685 if (tx.s_coord != GGL_ONE_TO_ONE) { 686 const int w = tx.surface.width; 687 u = wrapping(tc[i].s, w, tx.s_wrap); 688 tc[i].s += ti.dsdx; 689 } else { 690 u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF; 691 } 692 693 // t-coordinate 694 if (tx.t_coord != GGL_ONE_TO_ONE) { 695 const int h = tx.surface.height; 696 v = wrapping(tc[i].t, h, tx.t_wrap); 697 tc[i].t += ti.dtdx; 698 } else { 699 v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF; 700 } 701 702 // read texture 703 if (tx.mag_filter == GGL_NEAREST && 704 tx.min_filter == GGL_NEAREST) 705 { 706 u >>= 16; 707 v >>= 16; 708 tx.surface.read(&tx.surface, c, u, v, &texel); 709 } else { 710 const int w = tx.surface.width; 711 const int h = tx.surface.height; 712 u -= FIXED_HALF; 713 v -= FIXED_HALF; 714 int u0 = u >> 16; 715 int v0 = v >> 16; 716 int u1 = u0 + 1; 717 int v1 = v0 + 1; 718 if (tx.s_wrap == GGL_REPEAT) { 719 if (u0<0) u0 += w; 720 if (u1<0) u1 += w; 721 if (u0>=w) u0 -= w; 722 if (u1>=w) u1 -= w; 723 } else { 724 if (u0<0) u0 = 0; 725 if (u1<0) u1 = 0; 726 if (u0>=w) u0 = w-1; 727 if (u1>=w) u1 = w-1; 728 } 729 if (tx.t_wrap == GGL_REPEAT) { 730 if (v0<0) v0 += h; 731 if (v1<0) v1 += h; 732 if (v0>=h) v0 -= h; 733 if (v1>=h) v1 -= h; 734 } else { 735 if (v0<0) v0 = 0; 736 if (v1<0) v1 = 0; 737 if (v0>=h) v0 = h-1; 738 if (v1>=h) v1 = h-1; 739 } 740 pixel_t texels[4]; 741 uint32_t mm[4]; 742 tx.surface.read(&tx.surface, c, u0, v0, &texels[0]); 743 tx.surface.read(&tx.surface, c, u0, v1, &texels[1]); 744 tx.surface.read(&tx.surface, c, u1, v0, &texels[2]); 745 tx.surface.read(&tx.surface, c, u1, v1, &texels[3]); 746 u = (u >> 12) & 0xF; 747 v = (v >> 12) & 0xF; 748 u += u>>3; 749 v += v>>3; 750 mm[0] = (0x10 - u) * (0x10 - v); 751 mm[1] = (0x10 - u) * v; 752 mm[2] = u * (0x10 - v); 753 mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]); 754 for (int j=0 ; j<4 ; j++) { 755 texel.s[j] = texels[0].s[j]; 756 if (!texel.s[j]) continue; 757 texel.s[j] += 8; 758 texel.c[j] = texels[0].c[j]*mm[0] + 759 texels[1].c[j]*mm[1] + 760 texels[2].c[j]*mm[2] + 761 texels[3].c[j]*mm[3] ; 762 } 763 } 764 765 // Texture environnement... 766 for (int j=0 ; j<4 ; j++) { 767 uint32_t& Cf = fragment.c[j]; 768 uint32_t& Ct = texel.c[j]; 769 uint8_t& sf = fragment.s[j]; 770 uint8_t& st = texel.s[j]; 771 uint32_t At = texel.c[0]; 772 uint8_t sat = texel.s[0]; 773 switch (tx.env) { 774 case GGL_REPLACE: 775 if (st) { 776 Cf = Ct; 777 sf = st; 778 } 779 break; 780 case GGL_MODULATE: 781 if (st) { 782 uint32_t factor = Ct + (Ct>>(st-1)); 783 Cf = (Cf * factor) >> st; 784 } 785 break; 786 case GGL_DECAL: 787 if (sat) { 788 rescale(Cf, sf, Ct, st); 789 Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat; 790 } 791 break; 792 case GGL_BLEND: 793 if (st) { 794 uint32_t Cc = tx.env_color[i]; 795 if (sf>8) Cc = (Cc * ((1<<sf)-1))>>8; 796 else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf); 797 uint32_t factor = Ct + (Ct>>(st-1)); 798 Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st; 799 } 800 break; 801 case GGL_ADD: 802 if (st) { 803 rescale(Cf, sf, Ct, st); 804 Cf += Ct; 805 } 806 break; 807 } 808 } 809 } 810 } 811 812 // coverage application 813 if (enables & GGL_ENABLE_AA) { 814 int16_t cf = *covPtr++; 815 fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15; 816 } 817 818 // alpha-test 819 if (enables & GGL_ENABLE_ALPHA_TEST) { 820 GGLcolor ref = c->state.alpha_test.ref; 821 GGLcolor alpha = (uint64_t(fragment.c[0]) * 822 ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1); 823 switch (c->state.alpha_test.func) { 824 case GGL_NEVER: goto discard; 825 case GGL_LESS: if (alpha<ref) break; goto discard; 826 case GGL_EQUAL: if (alpha==ref) break; goto discard; 827 case GGL_LEQUAL: if (alpha<=ref) break; goto discard; 828 case GGL_GREATER: if (alpha>ref) break; goto discard; 829 case GGL_NOTEQUAL: if (alpha!=ref) break; goto discard; 830 case GGL_GEQUAL: if (alpha>=ref) break; goto discard; 831 } 832 } 833 834 // depth test 835 if (c->state.buffers.depth.format) { 836 if (enables & GGL_ENABLE_DEPTH_TEST) { 837 surface_t* cb = &(c->state.buffers.depth); 838 uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y)); 839 uint16_t zz = uint32_t(z)>>(16); 840 uint16_t depth = *p; 841 switch (c->state.depth_test.func) { 842 case GGL_NEVER: goto discard; 843 case GGL_LESS: if (zz<depth) break; goto discard; 844 case GGL_EQUAL: if (zz==depth) break; goto discard; 845 case GGL_LEQUAL: if (zz<=depth) break; goto discard; 846 case GGL_GREATER: if (zz>depth) break; goto discard; 847 case GGL_NOTEQUAL: if (zz!=depth) break; goto discard; 848 case GGL_GEQUAL: if (zz>=depth) break; goto discard; 849 } 850 // depth buffer is not enabled, if depth-test is not enabled 851 /* 852 fragment.s[1] = fragment.s[2] = 853 fragment.s[3] = fragment.s[0] = 8; 854 fragment.c[1] = 855 fragment.c[2] = 856 fragment.c[3] = 857 fragment.c[0] = 255 - (zz>>8); 858 */ 859 if (c->state.mask.depth) { 860 *p = zz; 861 } 862 } 863 } 864 865 // fog 866 if (enables & GGL_ENABLE_FOG) { 867 for (int i=1 ; i<=3 ; i++) { 868 GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF; 869 uint32_t& c = fragment.c[i]; 870 uint8_t& s = fragment.s[i]; 871 c = (c * 0x10000) / ((1<<s)-1); 872 c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f)); 873 s = 16; 874 } 875 } 876 877 // blending 878 if (enables & GGL_ENABLE_BLENDING) { 879 fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind 880 fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0; 881 c->state.buffers.color.read( 882 &(c->state.buffers.color), c, x, y, &fb); 883 blending( c, &fragment, &fb ); 884 } 885 886 // write 887 c->state.buffers.color.write( 888 &(c->state.buffers.color), c, x, y, &fragment); 889 } 890 891 discard: 892 // iterate... 893 x += 1; 894 if (enables & GGL_ENABLE_SMOOTH) { 895 r += c->shade.drdx; 896 g += c->shade.dgdx; 897 b += c->shade.dbdx; 898 a += c->shade.dadx; 899 } 900 z += c->shade.dzdx; 901 f += c->shade.dfdx; 902 } 903 } 904 905 #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) 906 907 // ---------------------------------------------------------------------------- 908 #if 0 909 #pragma mark - 910 #pragma mark Scanline 911 #endif 912 913 /* Used to parse a 32-bit source texture linearly. Usage is: 914 * 915 * horz_iterator32 hi(context); 916 * while (...) { 917 * uint32_t src_pixel = hi.get_pixel32(); 918 * ... 919 * } 920 * 921 * Use only for one-to-one texture mapping. 922 */ 923 struct horz_iterator32 { 924 horz_iterator32(context_t* c) { 925 const int x = c->iterators.xl; 926 const int y = c->iterators.y; 927 texture_t& tx = c->state.texture[0]; 928 const int32_t u = (tx.shade.is0>>16) + x; 929 const int32_t v = (tx.shade.it0>>16) + y; 930 m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v)); 931 } 932 uint32_t get_pixel32() { 933 return *m_src++; 934 } 935 protected: 936 uint32_t* m_src; 937 }; 938 939 /* A variant for 16-bit source textures. */ 940 struct horz_iterator16 { 941 horz_iterator16(context_t* c) { 942 const int x = c->iterators.xl; 943 const int y = c->iterators.y; 944 texture_t& tx = c->state.texture[0]; 945 const int32_t u = (tx.shade.is0>>16) + x; 946 const int32_t v = (tx.shade.it0>>16) + y; 947 m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v)); 948 } 949 uint16_t get_pixel16() { 950 return *m_src++; 951 } 952 protected: 953 uint16_t* m_src; 954 }; 955 956 /* A clamp iterator is used to iterate inside a texture with GGL_CLAMP. 957 * After initialization, call get_src16() or get_src32() to get the current 958 * texture pixel value. 959 */ 960 struct clamp_iterator { 961 clamp_iterator(context_t* c) { 962 const int xs = c->iterators.xl; 963 texture_t& tx = c->state.texture[0]; 964 texture_iterators_t& ti = tx.iterators; 965 m_s = (xs * ti.dsdx) + ti.ydsdy; 966 m_t = (xs * ti.dtdx) + ti.ydtdy; 967 m_ds = ti.dsdx; 968 m_dt = ti.dtdx; 969 m_width_m1 = tx.surface.width - 1; 970 m_height_m1 = tx.surface.height - 1; 971 m_data = tx.surface.data; 972 m_stride = tx.surface.stride; 973 } 974 uint16_t get_pixel16() { 975 int u, v; 976 get_uv(u, v); 977 uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v)); 978 return src[0]; 979 } 980 uint32_t get_pixel32() { 981 int u, v; 982 get_uv(u, v); 983 uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v)); 984 return src[0]; 985 } 986 private: 987 void get_uv(int& u, int& v) { 988 int uu = m_s >> 16; 989 int vv = m_t >> 16; 990 if (uu < 0) 991 uu = 0; 992 if (uu > m_width_m1) 993 uu = m_width_m1; 994 if (vv < 0) 995 vv = 0; 996 if (vv > m_height_m1) 997 vv = m_height_m1; 998 u = uu; 999 v = vv; 1000 m_s += m_ds; 1001 m_t += m_dt; 1002 } 1003 1004 GGLfixed m_s, m_t; 1005 GGLfixed m_ds, m_dt; 1006 int m_width_m1, m_height_m1; 1007 uint8_t* m_data; 1008 int m_stride; 1009 }; 1010 1011 /* 1012 * The 'horizontal clamp iterator' variant corresponds to the case where 1013 * the 'v' coordinate doesn't change. This is useful to avoid one mult and 1014 * extra adds / checks per pixels, if the blending/processing operation after 1015 * this is very fast. 1016 */ 1017 static int is_context_horizontal(const context_t* c) { 1018 return (c->state.texture[0].iterators.dtdx == 0); 1019 } 1020 1021 struct horz_clamp_iterator { 1022 uint16_t get_pixel16() { 1023 int u = m_s >> 16; 1024 m_s += m_ds; 1025 if (u < 0) 1026 u = 0; 1027 if (u > m_width_m1) 1028 u = m_width_m1; 1029 const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data); 1030 return src[u]; 1031 } 1032 uint32_t get_pixel32() { 1033 int u = m_s >> 16; 1034 m_s += m_ds; 1035 if (u < 0) 1036 u = 0; 1037 if (u > m_width_m1) 1038 u = m_width_m1; 1039 const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data); 1040 return src[u]; 1041 } 1042 protected: 1043 void init(const context_t* c, int shift); 1044 GGLfixed m_s; 1045 GGLfixed m_ds; 1046 int m_width_m1; 1047 const uint8_t* m_data; 1048 }; 1049 1050 void horz_clamp_iterator::init(const context_t* c, int shift) 1051 { 1052 const int xs = c->iterators.xl; 1053 const texture_t& tx = c->state.texture[0]; 1054 const texture_iterators_t& ti = tx.iterators; 1055 m_s = (xs * ti.dsdx) + ti.ydsdy; 1056 m_ds = ti.dsdx; 1057 m_width_m1 = tx.surface.width-1; 1058 m_data = tx.surface.data; 1059 1060 GGLfixed t = (xs * ti.dtdx) + ti.ydtdy; 1061 int v = t >> 16; 1062 if (v < 0) 1063 v = 0; 1064 else if (v >= (int)tx.surface.height) 1065 v = (int)tx.surface.height-1; 1066 1067 m_data += (tx.surface.stride*v) << shift; 1068 } 1069 1070 struct horz_clamp_iterator16 : horz_clamp_iterator { 1071 horz_clamp_iterator16(const context_t* c) { 1072 init(c,1); 1073 }; 1074 }; 1075 1076 struct horz_clamp_iterator32 : horz_clamp_iterator { 1077 horz_clamp_iterator32(context_t* c) { 1078 init(c,2); 1079 }; 1080 }; 1081 1082 /* This is used to perform dithering operations. 1083 */ 1084 struct ditherer { 1085 ditherer(const context_t* c) { 1086 const int x = c->iterators.xl; 1087 const int y = c->iterators.y; 1088 m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ]; 1089 m_index = x & GGL_DITHER_MASK; 1090 } 1091 void step(void) { 1092 m_index++; 1093 } 1094 int get_value(void) { 1095 int ret = m_line[m_index & GGL_DITHER_MASK]; 1096 m_index++; 1097 return ret; 1098 } 1099 uint16_t abgr8888ToRgb565(uint32_t s) { 1100 uint32_t r = s & 0xff; 1101 uint32_t g = (s >> 8) & 0xff; 1102 uint32_t b = (s >> 16) & 0xff; 1103 return rgb888ToRgb565(r,g,b); 1104 } 1105 /* The following assumes that r/g/b are in the 0..255 range each */ 1106 uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) { 1107 int threshold = get_value(); 1108 /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */ 1109 r += (threshold >> (GGL_DITHER_BITS-8 +5)); 1110 g += (threshold >> (GGL_DITHER_BITS-8 +6)); 1111 b += (threshold >> (GGL_DITHER_BITS-8 +5)); 1112 if (r > 0xff) 1113 r = 0xff; 1114 if (g > 0xff) 1115 g = 0xff; 1116 if (b > 0xff) 1117 b = 0xff; 1118 return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3)); 1119 } 1120 protected: 1121 const uint8_t* m_line; 1122 int m_index; 1123 }; 1124 1125 /* This structure is used to blend (SRC_OVER) 32-bit source pixels 1126 * onto 16-bit destination ones. Usage is simply: 1127 * 1128 * blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>) 1129 */ 1130 struct blender_32to16 { 1131 blender_32to16(context_t* c) { } 1132 void write(uint32_t s, uint16_t* dst) { 1133 if (s == 0) 1134 return; 1135 s = GGL_RGBA_TO_HOST(s); 1136 int sA = (s>>24); 1137 if (sA == 0xff) { 1138 *dst = convertAbgr8888ToRgb565(s); 1139 } else { 1140 int f = 0x100 - (sA + (sA>>7)); 1141 int sR = (s >> ( 3))&0x1F; 1142 int sG = (s >> ( 8+2))&0x3F; 1143 int sB = (s >> (16+3))&0x1F; 1144 uint16_t d = *dst; 1145 int dR = (d>>11)&0x1f; 1146 int dG = (d>>5)&0x3f; 1147 int dB = (d)&0x1f; 1148 sR += (f*dR)>>8; 1149 sG += (f*dG)>>8; 1150 sB += (f*dB)>>8; 1151 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1152 } 1153 } 1154 void write(uint32_t s, uint16_t* dst, ditherer& di) { 1155 if (s == 0) { 1156 di.step(); 1157 return; 1158 } 1159 s = GGL_RGBA_TO_HOST(s); 1160 int sA = (s>>24); 1161 if (sA == 0xff) { 1162 *dst = di.abgr8888ToRgb565(s); 1163 } else { 1164 int threshold = di.get_value() << (8 - GGL_DITHER_BITS); 1165 int f = 0x100 - (sA + (sA>>7)); 1166 int sR = (s >> ( 3))&0x1F; 1167 int sG = (s >> ( 8+2))&0x3F; 1168 int sB = (s >> (16+3))&0x1F; 1169 uint16_t d = *dst; 1170 int dR = (d>>11)&0x1f; 1171 int dG = (d>>5)&0x3f; 1172 int dB = (d)&0x1f; 1173 sR = ((sR << 8) + f*dR + threshold)>>8; 1174 sG = ((sG << 8) + f*dG + threshold)>>8; 1175 sB = ((sB << 8) + f*dB + threshold)>>8; 1176 if (sR > 0x1f) sR = 0x1f; 1177 if (sG > 0x3f) sG = 0x3f; 1178 if (sB > 0x1f) sB = 0x1f; 1179 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1180 } 1181 } 1182 }; 1183 1184 /* This blender does the same for the 'blend_srca' operation. 1185 * where dstFactor=srcA*(1-srcA) srcFactor=srcA 1186 */ 1187 struct blender_32to16_srcA { 1188 blender_32to16_srcA(const context_t* c) { } 1189 void write(uint32_t s, uint16_t* dst) { 1190 if (!s) { 1191 return; 1192 } 1193 uint16_t d = *dst; 1194 s = GGL_RGBA_TO_HOST(s); 1195 int sR = (s >> ( 3))&0x1F; 1196 int sG = (s >> ( 8+2))&0x3F; 1197 int sB = (s >> (16+3))&0x1F; 1198 int sA = (s>>24); 1199 int f1 = (sA + (sA>>7)); 1200 int f2 = 0x100-f1; 1201 int dR = (d>>11)&0x1f; 1202 int dG = (d>>5)&0x3f; 1203 int dB = (d)&0x1f; 1204 sR = (f1*sR + f2*dR)>>8; 1205 sG = (f1*sG + f2*dG)>>8; 1206 sB = (f1*sB + f2*dB)>>8; 1207 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1208 } 1209 }; 1210 1211 /* Common init code the modulating blenders */ 1212 struct blender_modulate { 1213 void init(const context_t* c) { 1214 const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8); 1215 const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8); 1216 const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8); 1217 const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8); 1218 m_r = r + (r >> 7); 1219 m_g = g + (g >> 7); 1220 m_b = b + (b >> 7); 1221 m_a = a + (a >> 7); 1222 } 1223 protected: 1224 int m_r, m_g, m_b, m_a; 1225 }; 1226 1227 /* This blender does a normal blend after modulation. 1228 */ 1229 struct blender_32to16_modulate : blender_modulate { 1230 blender_32to16_modulate(const context_t* c) { 1231 init(c); 1232 } 1233 void write(uint32_t s, uint16_t* dst) { 1234 // blend source and destination 1235 if (!s) { 1236 return; 1237 } 1238 s = GGL_RGBA_TO_HOST(s); 1239 1240 /* We need to modulate s */ 1241 uint32_t sA = (s >> 24); 1242 uint32_t sB = (s >> 16) & 0xff; 1243 uint32_t sG = (s >> 8) & 0xff; 1244 uint32_t sR = s & 0xff; 1245 1246 sA = (sA*m_a) >> 8; 1247 /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */ 1248 sR = (sR*m_r) >> (8 - 5); 1249 sG = (sG*m_g) >> (8 - 6); 1250 sB = (sB*m_b) >> (8 - 5); 1251 1252 /* Now do a normal blend */ 1253 int f = 0x100 - (sA + (sA>>7)); 1254 uint16_t d = *dst; 1255 int dR = (d>>11)&0x1f; 1256 int dG = (d>>5)&0x3f; 1257 int dB = (d)&0x1f; 1258 sR = (sR + f*dR)>>8; 1259 sG = (sG + f*dG)>>8; 1260 sB = (sB + f*dB)>>8; 1261 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1262 } 1263 void write(uint32_t s, uint16_t* dst, ditherer& di) { 1264 // blend source and destination 1265 if (!s) { 1266 di.step(); 1267 return; 1268 } 1269 s = GGL_RGBA_TO_HOST(s); 1270 1271 /* We need to modulate s */ 1272 uint32_t sA = (s >> 24); 1273 uint32_t sB = (s >> 16) & 0xff; 1274 uint32_t sG = (s >> 8) & 0xff; 1275 uint32_t sR = s & 0xff; 1276 1277 sA = (sA*m_a) >> 8; 1278 /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */ 1279 sR = (sR*m_r) >> (8 - 5); 1280 sG = (sG*m_g) >> (8 - 6); 1281 sB = (sB*m_b) >> (8 - 5); 1282 1283 /* Scale threshold to 0.8 fixed float format */ 1284 int threshold = di.get_value() << (8 - GGL_DITHER_BITS); 1285 int f = 0x100 - (sA + (sA>>7)); 1286 uint16_t d = *dst; 1287 int dR = (d>>11)&0x1f; 1288 int dG = (d>>5)&0x3f; 1289 int dB = (d)&0x1f; 1290 sR = (sR + f*dR + threshold)>>8; 1291 sG = (sG + f*dG + threshold)>>8; 1292 sB = (sB + f*dB + threshold)>>8; 1293 if (sR > 0x1f) sR = 0x1f; 1294 if (sG > 0x3f) sG = 0x3f; 1295 if (sB > 0x1f) sB = 0x1f; 1296 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1297 } 1298 }; 1299 1300 /* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */ 1301 struct blender_x32to16_modulate : blender_modulate { 1302 blender_x32to16_modulate(const context_t* c) { 1303 init(c); 1304 } 1305 void write(uint32_t s, uint16_t* dst) { 1306 s = GGL_RGBA_TO_HOST(s); 1307 1308 uint32_t sB = (s >> 16) & 0xff; 1309 uint32_t sG = (s >> 8) & 0xff; 1310 uint32_t sR = s & 0xff; 1311 1312 /* Keep R/G/B in 5.8 or 6.8 format */ 1313 sR = (sR*m_r) >> (8 - 5); 1314 sG = (sG*m_g) >> (8 - 6); 1315 sB = (sB*m_b) >> (8 - 5); 1316 1317 int f = 0x100 - m_a; 1318 uint16_t d = *dst; 1319 int dR = (d>>11)&0x1f; 1320 int dG = (d>>5)&0x3f; 1321 int dB = (d)&0x1f; 1322 sR = (sR + f*dR)>>8; 1323 sG = (sG + f*dG)>>8; 1324 sB = (sB + f*dB)>>8; 1325 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1326 } 1327 void write(uint32_t s, uint16_t* dst, ditherer& di) { 1328 s = GGL_RGBA_TO_HOST(s); 1329 1330 uint32_t sB = (s >> 16) & 0xff; 1331 uint32_t sG = (s >> 8) & 0xff; 1332 uint32_t sR = s & 0xff; 1333 1334 sR = (sR*m_r) >> (8 - 5); 1335 sG = (sG*m_g) >> (8 - 6); 1336 sB = (sB*m_b) >> (8 - 5); 1337 1338 /* Now do a normal blend */ 1339 int threshold = di.get_value() << (8 - GGL_DITHER_BITS); 1340 int f = 0x100 - m_a; 1341 uint16_t d = *dst; 1342 int dR = (d>>11)&0x1f; 1343 int dG = (d>>5)&0x3f; 1344 int dB = (d)&0x1f; 1345 sR = (sR + f*dR + threshold)>>8; 1346 sG = (sG + f*dG + threshold)>>8; 1347 sB = (sB + f*dB + threshold)>>8; 1348 if (sR > 0x1f) sR = 0x1f; 1349 if (sG > 0x3f) sG = 0x3f; 1350 if (sB > 0x1f) sB = 0x1f; 1351 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1352 } 1353 }; 1354 1355 /* Same as above, but source is 16bit rgb565 */ 1356 struct blender_16to16_modulate : blender_modulate { 1357 blender_16to16_modulate(const context_t* c) { 1358 init(c); 1359 } 1360 void write(uint16_t s16, uint16_t* dst) { 1361 uint32_t s = s16; 1362 1363 uint32_t sR = s >> 11; 1364 uint32_t sG = (s >> 5) & 0x3f; 1365 uint32_t sB = s & 0x1f; 1366 1367 sR = (sR*m_r); 1368 sG = (sG*m_g); 1369 sB = (sB*m_b); 1370 1371 int f = 0x100 - m_a; 1372 uint16_t d = *dst; 1373 int dR = (d>>11)&0x1f; 1374 int dG = (d>>5)&0x3f; 1375 int dB = (d)&0x1f; 1376 sR = (sR + f*dR)>>8; 1377 sG = (sG + f*dG)>>8; 1378 sB = (sB + f*dB)>>8; 1379 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1380 } 1381 }; 1382 1383 /* This is used to iterate over a 16-bit destination color buffer. 1384 * Usage is: 1385 * 1386 * dst_iterator16 di(context); 1387 * while (di.count--) { 1388 * <do stuff with dest pixel at di.dst> 1389 * di.dst++; 1390 * } 1391 */ 1392 struct dst_iterator16 { 1393 dst_iterator16(const context_t* c) { 1394 const int x = c->iterators.xl; 1395 const int width = c->iterators.xr - x; 1396 const int32_t y = c->iterators.y; 1397 const surface_t* cb = &(c->state.buffers.color); 1398 count = width; 1399 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 1400 } 1401 int count; 1402 uint16_t* dst; 1403 }; 1404 1405 1406 static void scanline_t32cb16_clamp(context_t* c) 1407 { 1408 dst_iterator16 di(c); 1409 1410 if (is_context_horizontal(c)) { 1411 /* Special case for simple horizontal scaling */ 1412 horz_clamp_iterator32 ci(c); 1413 while (di.count--) { 1414 uint32_t s = ci.get_pixel32(); 1415 *di.dst++ = convertAbgr8888ToRgb565(s); 1416 } 1417 } else { 1418 /* General case */ 1419 clamp_iterator ci(c); 1420 while (di.count--) { 1421 uint32_t s = ci.get_pixel32(); 1422 *di.dst++ = convertAbgr8888ToRgb565(s); 1423 } 1424 } 1425 } 1426 1427 static void scanline_t32cb16_dither(context_t* c) 1428 { 1429 horz_iterator32 si(c); 1430 dst_iterator16 di(c); 1431 ditherer dither(c); 1432 1433 while (di.count--) { 1434 uint32_t s = si.get_pixel32(); 1435 *di.dst++ = dither.abgr8888ToRgb565(s); 1436 } 1437 } 1438 1439 static void scanline_t32cb16_clamp_dither(context_t* c) 1440 { 1441 dst_iterator16 di(c); 1442 ditherer dither(c); 1443 1444 if (is_context_horizontal(c)) { 1445 /* Special case for simple horizontal scaling */ 1446 horz_clamp_iterator32 ci(c); 1447 while (di.count--) { 1448 uint32_t s = ci.get_pixel32(); 1449 *di.dst++ = dither.abgr8888ToRgb565(s); 1450 } 1451 } else { 1452 /* General case */ 1453 clamp_iterator ci(c); 1454 while (di.count--) { 1455 uint32_t s = ci.get_pixel32(); 1456 *di.dst++ = dither.abgr8888ToRgb565(s); 1457 } 1458 } 1459 } 1460 1461 static void scanline_t32cb16blend_dither(context_t* c) 1462 { 1463 dst_iterator16 di(c); 1464 ditherer dither(c); 1465 blender_32to16 bl(c); 1466 horz_iterator32 hi(c); 1467 while (di.count--) { 1468 uint32_t s = hi.get_pixel32(); 1469 bl.write(s, di.dst, dither); 1470 di.dst++; 1471 } 1472 } 1473 1474 static void scanline_t32cb16blend_clamp(context_t* c) 1475 { 1476 dst_iterator16 di(c); 1477 blender_32to16 bl(c); 1478 1479 if (is_context_horizontal(c)) { 1480 horz_clamp_iterator32 ci(c); 1481 while (di.count--) { 1482 uint32_t s = ci.get_pixel32(); 1483 bl.write(s, di.dst); 1484 di.dst++; 1485 } 1486 } else { 1487 clamp_iterator ci(c); 1488 while (di.count--) { 1489 uint32_t s = ci.get_pixel32(); 1490 bl.write(s, di.dst); 1491 di.dst++; 1492 } 1493 } 1494 } 1495 1496 static void scanline_t32cb16blend_clamp_dither(context_t* c) 1497 { 1498 dst_iterator16 di(c); 1499 ditherer dither(c); 1500 blender_32to16 bl(c); 1501 1502 clamp_iterator ci(c); 1503 while (di.count--) { 1504 uint32_t s = ci.get_pixel32(); 1505 bl.write(s, di.dst, dither); 1506 di.dst++; 1507 } 1508 } 1509 1510 void scanline_t32cb16blend_clamp_mod(context_t* c) 1511 { 1512 dst_iterator16 di(c); 1513 blender_32to16_modulate bl(c); 1514 1515 clamp_iterator ci(c); 1516 while (di.count--) { 1517 uint32_t s = ci.get_pixel32(); 1518 bl.write(s, di.dst); 1519 di.dst++; 1520 } 1521 } 1522 1523 void scanline_t32cb16blend_clamp_mod_dither(context_t* c) 1524 { 1525 dst_iterator16 di(c); 1526 blender_32to16_modulate bl(c); 1527 ditherer dither(c); 1528 1529 clamp_iterator ci(c); 1530 while (di.count--) { 1531 uint32_t s = ci.get_pixel32(); 1532 bl.write(s, di.dst, dither); 1533 di.dst++; 1534 } 1535 } 1536 1537 /* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */ 1538 void scanline_x32cb16blend_clamp_mod(context_t* c) 1539 { 1540 dst_iterator16 di(c); 1541 blender_x32to16_modulate bl(c); 1542 1543 clamp_iterator ci(c); 1544 while (di.count--) { 1545 uint32_t s = ci.get_pixel32(); 1546 bl.write(s, di.dst); 1547 di.dst++; 1548 } 1549 } 1550 1551 void scanline_x32cb16blend_clamp_mod_dither(context_t* c) 1552 { 1553 dst_iterator16 di(c); 1554 blender_x32to16_modulate bl(c); 1555 ditherer dither(c); 1556 1557 clamp_iterator ci(c); 1558 while (di.count--) { 1559 uint32_t s = ci.get_pixel32(); 1560 bl.write(s, di.dst, dither); 1561 di.dst++; 1562 } 1563 } 1564 1565 void scanline_t16cb16_clamp(context_t* c) 1566 { 1567 dst_iterator16 di(c); 1568 1569 /* Special case for simple horizontal scaling */ 1570 if (is_context_horizontal(c)) { 1571 horz_clamp_iterator16 ci(c); 1572 while (di.count--) { 1573 *di.dst++ = ci.get_pixel16(); 1574 } 1575 } else { 1576 clamp_iterator ci(c); 1577 while (di.count--) { 1578 *di.dst++ = ci.get_pixel16(); 1579 } 1580 } 1581 } 1582 1583 1584 1585 template <typename T, typename U> 1586 static inline __attribute__((const)) 1587 T interpolate(int y, T v0, U dvdx, U dvdy) { 1588 // interpolates in pixel's centers 1589 // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx) 1590 return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1)); 1591 } 1592 1593 // ---------------------------------------------------------------------------- 1594 #if 0 1595 #pragma mark - 1596 #endif 1597 1598 void init_y(context_t* c, int32_t ys) 1599 { 1600 const uint32_t enables = c->state.enables; 1601 1602 // compute iterators... 1603 iterators_t& ci = c->iterators; 1604 1605 // sample in the center 1606 ci.y = ys; 1607 1608 if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) { 1609 ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy); 1610 ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy); 1611 ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy); 1612 } 1613 1614 if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) { 1615 ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy); 1616 ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy); 1617 ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy); 1618 ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady); 1619 c->step_y = step_y__smooth; 1620 } else { 1621 ci.ydrdy = c->shade.r0; 1622 ci.ydgdy = c->shade.g0; 1623 ci.ydbdy = c->shade.b0; 1624 ci.ydady = c->shade.a0; 1625 // XXX: do only if needed, or make sure this is fast 1626 c->packed = ggl_pack_color(c, c->state.buffers.color.format, 1627 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); 1628 c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, 1629 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); 1630 } 1631 1632 // initialize the variables we need in the shader 1633 generated_vars_t& gen = c->generated_vars; 1634 gen.argb[GGLFormat::ALPHA].c = ci.ydady; 1635 gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx; 1636 gen.argb[GGLFormat::RED ].c = ci.ydrdy; 1637 gen.argb[GGLFormat::RED ].dx = c->shade.drdx; 1638 gen.argb[GGLFormat::GREEN].c = ci.ydgdy; 1639 gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx; 1640 gen.argb[GGLFormat::BLUE ].c = ci.ydbdy; 1641 gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx; 1642 gen.dzdx = c->shade.dzdx; 1643 gen.f = ci.ydfdy; 1644 gen.dfdx = c->shade.dfdx; 1645 1646 if (enables & GGL_ENABLE_TMUS) { 1647 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1648 texture_t& t = c->state.texture[i]; 1649 if (!t.enable) continue; 1650 1651 texture_iterators_t& ti = t.iterators; 1652 if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) { 1653 // we need to set all of these to 0 because in some cases 1654 // step_y__generic() or step_y__tmu() will be used and 1655 // therefore will update dtdy, however, in 1:1 mode 1656 // this is always done by the scanline rasterizer. 1657 ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0; 1658 ti.ydsdy = t.shade.is0; 1659 ti.ydtdy = t.shade.it0; 1660 } else { 1661 const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16); 1662 const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16); 1663 ti.sscale = t.shade.sscale + adjustSWrap; 1664 ti.tscale = t.shade.tscale + adjustTWrap; 1665 if (!(enables & GGL_ENABLE_W)) { 1666 // S coordinate 1667 const int32_t sscale = ti.sscale; 1668 const int32_t sy = interpolate(ys, 1669 t.shade.is0, t.shade.idsdx, t.shade.idsdy); 1670 if (sscale>=0) { 1671 ti.ydsdy= sy << sscale; 1672 ti.dsdx = t.shade.idsdx << sscale; 1673 ti.dsdy = t.shade.idsdy << sscale; 1674 } else { 1675 ti.ydsdy= sy >> -sscale; 1676 ti.dsdx = t.shade.idsdx >> -sscale; 1677 ti.dsdy = t.shade.idsdy >> -sscale; 1678 } 1679 // T coordinate 1680 const int32_t tscale = ti.tscale; 1681 const int32_t ty = interpolate(ys, 1682 t.shade.it0, t.shade.idtdx, t.shade.idtdy); 1683 if (tscale>=0) { 1684 ti.ydtdy= ty << tscale; 1685 ti.dtdx = t.shade.idtdx << tscale; 1686 ti.dtdy = t.shade.idtdy << tscale; 1687 } else { 1688 ti.ydtdy= ty >> -tscale; 1689 ti.dtdx = t.shade.idtdx >> -tscale; 1690 ti.dtdy = t.shade.idtdy >> -tscale; 1691 } 1692 } 1693 } 1694 // mirror for generated code... 1695 generated_tex_vars_t& gen = c->generated_vars.texture[i]; 1696 gen.width = t.surface.width; 1697 gen.height = t.surface.height; 1698 gen.stride = t.surface.stride; 1699 gen.data = int32_t(t.surface.data); 1700 gen.dsdx = ti.dsdx; 1701 gen.dtdx = ti.dtdx; 1702 } 1703 } 1704 1705 // choose the y-stepper 1706 c->step_y = step_y__nop; 1707 if (enables & GGL_ENABLE_FOG) { 1708 c->step_y = step_y__generic; 1709 } else if (enables & GGL_ENABLE_TMUS) { 1710 if (enables & GGL_ENABLE_SMOOTH) { 1711 c->step_y = step_y__generic; 1712 } else if (enables & GGL_ENABLE_W) { 1713 c->step_y = step_y__w; 1714 } else { 1715 c->step_y = step_y__tmu; 1716 } 1717 } else { 1718 if (enables & GGL_ENABLE_SMOOTH) { 1719 c->step_y = step_y__smooth; 1720 } 1721 } 1722 1723 // choose the rectangle blitter 1724 c->rect = rect_generic; 1725 if ((c->step_y == step_y__nop) && 1726 (c->scanline == scanline_memcpy)) 1727 { 1728 c->rect = rect_memcpy; 1729 } 1730 } 1731 1732 void init_y_packed(context_t* c, int32_t y0) 1733 { 1734 uint8_t f = c->state.buffers.color.format; 1735 c->packed = ggl_pack_color(c, f, 1736 c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); 1737 c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, 1738 c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); 1739 c->iterators.y = y0; 1740 c->step_y = step_y__nop; 1741 // choose the rectangle blitter 1742 c->rect = rect_generic; 1743 if (c->scanline == scanline_memcpy) { 1744 c->rect = rect_memcpy; 1745 } 1746 } 1747 1748 void init_y_noop(context_t* c, int32_t y0) 1749 { 1750 c->iterators.y = y0; 1751 c->step_y = step_y__nop; 1752 // choose the rectangle blitter 1753 c->rect = rect_generic; 1754 if (c->scanline == scanline_memcpy) { 1755 c->rect = rect_memcpy; 1756 } 1757 } 1758 1759 void init_y_error(context_t* c, int32_t y0) 1760 { 1761 // woooops, shoud never happen, 1762 // fail gracefully (don't display anything) 1763 init_y_noop(c, y0); 1764 LOGE("color-buffer has an invalid format!"); 1765 } 1766 1767 // ---------------------------------------------------------------------------- 1768 #if 0 1769 #pragma mark - 1770 #endif 1771 1772 void step_y__generic(context_t* c) 1773 { 1774 const uint32_t enables = c->state.enables; 1775 1776 // iterate... 1777 iterators_t& ci = c->iterators; 1778 ci.y += 1; 1779 1780 if (enables & GGL_ENABLE_SMOOTH) { 1781 ci.ydrdy += c->shade.drdy; 1782 ci.ydgdy += c->shade.dgdy; 1783 ci.ydbdy += c->shade.dbdy; 1784 ci.ydady += c->shade.dady; 1785 } 1786 1787 const uint32_t mask = 1788 GGL_ENABLE_DEPTH_TEST | 1789 GGL_ENABLE_W | 1790 GGL_ENABLE_FOG; 1791 if (enables & mask) { 1792 ci.ydzdy += c->shade.dzdy; 1793 ci.ydwdy += c->shade.dwdy; 1794 ci.ydfdy += c->shade.dfdy; 1795 } 1796 1797 if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) { 1798 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1799 if (c->state.texture[i].enable) { 1800 texture_iterators_t& ti = c->state.texture[i].iterators; 1801 ti.ydsdy += ti.dsdy; 1802 ti.ydtdy += ti.dtdy; 1803 } 1804 } 1805 } 1806 } 1807 1808 void step_y__nop(context_t* c) 1809 { 1810 c->iterators.y += 1; 1811 c->iterators.ydzdy += c->shade.dzdy; 1812 } 1813 1814 void step_y__smooth(context_t* c) 1815 { 1816 iterators_t& ci = c->iterators; 1817 ci.y += 1; 1818 ci.ydrdy += c->shade.drdy; 1819 ci.ydgdy += c->shade.dgdy; 1820 ci.ydbdy += c->shade.dbdy; 1821 ci.ydady += c->shade.dady; 1822 ci.ydzdy += c->shade.dzdy; 1823 } 1824 1825 void step_y__w(context_t* c) 1826 { 1827 iterators_t& ci = c->iterators; 1828 ci.y += 1; 1829 ci.ydzdy += c->shade.dzdy; 1830 ci.ydwdy += c->shade.dwdy; 1831 } 1832 1833 void step_y__tmu(context_t* c) 1834 { 1835 iterators_t& ci = c->iterators; 1836 ci.y += 1; 1837 ci.ydzdy += c->shade.dzdy; 1838 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1839 if (c->state.texture[i].enable) { 1840 texture_iterators_t& ti = c->state.texture[i].iterators; 1841 ti.ydsdy += ti.dsdy; 1842 ti.ydtdy += ti.dtdy; 1843 } 1844 } 1845 } 1846 1847 // ---------------------------------------------------------------------------- 1848 #if 0 1849 #pragma mark - 1850 #endif 1851 1852 void scanline_perspective(context_t* c) 1853 { 1854 struct { 1855 union { 1856 struct { 1857 int32_t s, sq; 1858 int32_t t, tq; 1859 }; 1860 struct { 1861 int32_t v, q; 1862 } st[2]; 1863 }; 1864 } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16))); 1865 1866 // XXX: we should have a special case when dwdx = 0 1867 1868 // 32 pixels spans works okay. 16 is a lot better, 1869 // but hey, it's a software renderer... 1870 const uint32_t SPAN_BITS = 5; 1871 const uint32_t ys = c->iterators.y; 1872 const uint32_t xs = c->iterators.xl; 1873 const uint32_t x1 = c->iterators.xr; 1874 const uint32_t xc = x1 - xs; 1875 uint32_t remainder = xc & ((1<<SPAN_BITS)-1); 1876 uint32_t numSpans = xc >> SPAN_BITS; 1877 1878 const iterators_t& ci = c->iterators; 1879 int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy; 1880 int32_t q0 = gglRecipQ(w0, 30); 1881 const int iwscale = 32 - gglClz(q0); 1882 1883 const int32_t dwdx = c->shade.dwdx << SPAN_BITS; 1884 int32_t xl = c->iterators.xl; 1885 1886 // We process s & t with a loop to reduce the code size 1887 // (and i-cache pressure). 1888 1889 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1890 const texture_t& tmu = c->state.texture[i]; 1891 if (!tmu.enable) continue; 1892 int32_t s = tmu.shade.is0 + 1893 (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + 1894 ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); 1895 int32_t t = tmu.shade.it0 + 1896 (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + 1897 ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); 1898 tc[i].s = s; 1899 tc[i].t = t; 1900 tc[i].sq = gglMulx(s, q0, iwscale); 1901 tc[i].tq = gglMulx(t, q0, iwscale); 1902 } 1903 1904 int32_t span = 0; 1905 do { 1906 int32_t w1; 1907 if (ggl_likely(numSpans)) { 1908 w1 = w0 + dwdx; 1909 } else { 1910 if (remainder) { 1911 // finish off the scanline... 1912 span = remainder; 1913 w1 = (c->shade.dwdx * span) + w0; 1914 } else { 1915 break; 1916 } 1917 } 1918 int32_t q1 = gglRecipQ(w1, 30); 1919 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1920 texture_t& tmu = c->state.texture[i]; 1921 if (!tmu.enable) continue; 1922 texture_iterators_t& ti = tmu.iterators; 1923 1924 for (int j=0 ; j<2 ; j++) { 1925 int32_t v = tc[i].st[j].v; 1926 if (span) v += (tmu.shade.st[j].dx)*span; 1927 else v += (tmu.shade.st[j].dx)<<SPAN_BITS; 1928 const int32_t v0 = tc[i].st[j].q; 1929 const int32_t v1 = gglMulx(v, q1, iwscale); 1930 int32_t dvdx = v1 - v0; 1931 if (span) dvdx /= span; 1932 else dvdx >>= SPAN_BITS; 1933 tc[i].st[j].v = v; 1934 tc[i].st[j].q = v1; 1935 1936 const int scale = ti.st[j].scale + (iwscale - 30); 1937 if (scale >= 0) { 1938 ti.st[j].ydvdy = v0 << scale; 1939 ti.st[j].dvdx = dvdx << scale; 1940 } else { 1941 ti.st[j].ydvdy = v0 >> -scale; 1942 ti.st[j].dvdx = dvdx >> -scale; 1943 } 1944 } 1945 generated_tex_vars_t& gen = c->generated_vars.texture[i]; 1946 gen.dsdx = ti.st[0].dvdx; 1947 gen.dtdx = ti.st[1].dvdx; 1948 } 1949 c->iterators.xl = xl; 1950 c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS)); 1951 w0 = w1; 1952 q0 = q1; 1953 c->span(c); 1954 } while(numSpans--); 1955 } 1956 1957 void scanline_perspective_single(context_t* c) 1958 { 1959 // 32 pixels spans works okay. 16 is a lot better, 1960 // but hey, it's a software renderer... 1961 const uint32_t SPAN_BITS = 5; 1962 const uint32_t ys = c->iterators.y; 1963 const uint32_t xs = c->iterators.xl; 1964 const uint32_t x1 = c->iterators.xr; 1965 const uint32_t xc = x1 - xs; 1966 1967 const iterators_t& ci = c->iterators; 1968 int32_t w = (xs * c->shade.dwdx) + ci.ydwdy; 1969 int32_t iw = gglRecipQ(w, 30); 1970 const int iwscale = 32 - gglClz(iw); 1971 1972 const int i = 31 - gglClz(c->state.enabled_tmu); 1973 generated_tex_vars_t& gen = c->generated_vars.texture[i]; 1974 texture_t& tmu = c->state.texture[i]; 1975 texture_iterators_t& ti = tmu.iterators; 1976 const int sscale = ti.sscale + (iwscale - 30); 1977 const int tscale = ti.tscale + (iwscale - 30); 1978 int32_t s = tmu.shade.is0 + 1979 (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + 1980 ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); 1981 int32_t t = tmu.shade.it0 + 1982 (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + 1983 ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); 1984 int32_t s0 = gglMulx(s, iw, iwscale); 1985 int32_t t0 = gglMulx(t, iw, iwscale); 1986 int32_t xl = c->iterators.xl; 1987 1988 int32_t sq, tq, dsdx, dtdx; 1989 int32_t premainder = xc & ((1<<SPAN_BITS)-1); 1990 uint32_t numSpans = xc >> SPAN_BITS; 1991 if (c->shade.dwdx == 0) { 1992 // XXX: we could choose to do this if the error is small enough 1993 numSpans = 0; 1994 premainder = xc; 1995 goto no_perspective; 1996 } 1997 1998 if (premainder) { 1999 w += c->shade.dwdx * premainder; 2000 iw = gglRecipQ(w, 30); 2001 no_perspective: 2002 s += tmu.shade.idsdx * premainder; 2003 t += tmu.shade.idtdx * premainder; 2004 sq = gglMulx(s, iw, iwscale); 2005 tq = gglMulx(t, iw, iwscale); 2006 dsdx = (sq - s0) / premainder; 2007 dtdx = (tq - t0) / premainder; 2008 c->iterators.xl = xl; 2009 c->iterators.xr = xl = xl + premainder; 2010 goto finish; 2011 } 2012 2013 while (numSpans--) { 2014 w += c->shade.dwdx << SPAN_BITS; 2015 s += tmu.shade.idsdx << SPAN_BITS; 2016 t += tmu.shade.idtdx << SPAN_BITS; 2017 iw = gglRecipQ(w, 30); 2018 sq = gglMulx(s, iw, iwscale); 2019 tq = gglMulx(t, iw, iwscale); 2020 dsdx = (sq - s0) >> SPAN_BITS; 2021 dtdx = (tq - t0) >> SPAN_BITS; 2022 c->iterators.xl = xl; 2023 c->iterators.xr = xl = xl + (1<<SPAN_BITS); 2024 finish: 2025 if (sscale >= 0) { 2026 ti.ydsdy = s0 << sscale; 2027 ti.dsdx = dsdx << sscale; 2028 } else { 2029 ti.ydsdy = s0 >>-sscale; 2030 ti.dsdx = dsdx >>-sscale; 2031 } 2032 if (tscale >= 0) { 2033 ti.ydtdy = t0 << tscale; 2034 ti.dtdx = dtdx << tscale; 2035 } else { 2036 ti.ydtdy = t0 >>-tscale; 2037 ti.dtdx = dtdx >>-tscale; 2038 } 2039 s0 = sq; 2040 t0 = tq; 2041 gen.dsdx = ti.dsdx; 2042 gen.dtdx = ti.dtdx; 2043 c->span(c); 2044 } 2045 } 2046 2047 // ---------------------------------------------------------------------------- 2048 2049 void scanline_col32cb16blend(context_t* c) 2050 { 2051 int32_t x = c->iterators.xl; 2052 size_t ct = c->iterators.xr - x; 2053 int32_t y = c->iterators.y; 2054 surface_t* cb = &(c->state.buffers.color); 2055 union { 2056 uint16_t* dst; 2057 uint32_t* dst32; 2058 }; 2059 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 2060 2061 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__)) 2062 #if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN 2063 scanline_col32cb16blend_neon(dst, &(c->packed8888), ct); 2064 #else // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN 2065 scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct); 2066 #endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN 2067 #else 2068 uint32_t s = GGL_RGBA_TO_HOST(c->packed8888); 2069 int sA = (s>>24); 2070 int f = 0x100 - (sA + (sA>>7)); 2071 while (ct--) { 2072 uint16_t d = *dst; 2073 int dR = (d>>11)&0x1f; 2074 int dG = (d>>5)&0x3f; 2075 int dB = (d)&0x1f; 2076 int sR = (s >> ( 3))&0x1F; 2077 int sG = (s >> ( 8+2))&0x3F; 2078 int sB = (s >> (16+3))&0x1F; 2079 sR += (f*dR)>>8; 2080 sG += (f*dG)>>8; 2081 sB += (f*dB)>>8; 2082 *dst++ = uint16_t((sR<<11)|(sG<<5)|sB); 2083 } 2084 #endif 2085 2086 } 2087 2088 void scanline_t32cb16(context_t* c) 2089 { 2090 int32_t x = c->iterators.xl; 2091 size_t ct = c->iterators.xr - x; 2092 int32_t y = c->iterators.y; 2093 surface_t* cb = &(c->state.buffers.color); 2094 union { 2095 uint16_t* dst; 2096 uint32_t* dst32; 2097 }; 2098 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 2099 2100 surface_t* tex = &(c->state.texture[0].surface); 2101 const int32_t u = (c->state.texture[0].shade.is0>>16) + x; 2102 const int32_t v = (c->state.texture[0].shade.it0>>16) + y; 2103 uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v)); 2104 int sR, sG, sB; 2105 uint32_t s, d; 2106 2107 if (ct==1 || uint32_t(dst)&2) { 2108 last_one: 2109 s = GGL_RGBA_TO_HOST( *src++ ); 2110 *dst++ = convertAbgr8888ToRgb565(s); 2111 ct--; 2112 } 2113 2114 while (ct >= 2) { 2115 #if BYTE_ORDER == BIG_ENDIAN 2116 s = GGL_RGBA_TO_HOST( *src++ ); 2117 d = convertAbgr8888ToRgb565_hi16(s); 2118 2119 s = GGL_RGBA_TO_HOST( *src++ ); 2120 d |= convertAbgr8888ToRgb565(s); 2121 #else 2122 s = GGL_RGBA_TO_HOST( *src++ ); 2123 d = convertAbgr8888ToRgb565(s); 2124 2125 s = GGL_RGBA_TO_HOST( *src++ ); 2126 d |= convertAbgr8888ToRgb565(s) << 16; 2127 #endif 2128 *dst32++ = d; 2129 ct -= 2; 2130 } 2131 2132 if (ct > 0) { 2133 goto last_one; 2134 } 2135 } 2136 2137 void scanline_t32cb16blend(context_t* c) 2138 { 2139 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__)) 2140 int32_t x = c->iterators.xl; 2141 size_t ct = c->iterators.xr - x; 2142 int32_t y = c->iterators.y; 2143 surface_t* cb = &(c->state.buffers.color); 2144 uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 2145 2146 surface_t* tex = &(c->state.texture[0].surface); 2147 const int32_t u = (c->state.texture[0].shade.is0>>16) + x; 2148 const int32_t v = (c->state.texture[0].shade.it0>>16) + y; 2149 uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v)); 2150 2151 scanline_t32cb16blend_arm(dst, src, ct); 2152 #else 2153 dst_iterator16 di(c); 2154 horz_iterator32 hi(c); 2155 blender_32to16 bl(c); 2156 while (di.count--) { 2157 uint32_t s = hi.get_pixel32(); 2158 bl.write(s, di.dst); 2159 di.dst++; 2160 } 2161 #endif 2162 } 2163 2164 void scanline_t32cb16blend_srca(context_t* c) 2165 { 2166 dst_iterator16 di(c); 2167 horz_iterator32 hi(c); 2168 blender_32to16_srcA blender(c); 2169 2170 while (di.count--) { 2171 uint32_t s = hi.get_pixel32(); 2172 blender.write(s,di.dst); 2173 di.dst++; 2174 } 2175 } 2176 2177 void scanline_t16cb16blend_clamp_mod(context_t* c) 2178 { 2179 const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8); 2180 if (a == 0) { 2181 return; 2182 } 2183 2184 if (a == 255) { 2185 scanline_t16cb16_clamp(c); 2186 return; 2187 } 2188 2189 dst_iterator16 di(c); 2190 blender_16to16_modulate blender(c); 2191 clamp_iterator ci(c); 2192 2193 while (di.count--) { 2194 uint16_t s = ci.get_pixel16(); 2195 blender.write(s, di.dst); 2196 di.dst++; 2197 } 2198 } 2199 2200 void scanline_memcpy(context_t* c) 2201 { 2202 int32_t x = c->iterators.xl; 2203 size_t ct = c->iterators.xr - x; 2204 int32_t y = c->iterators.y; 2205 surface_t* cb = &(c->state.buffers.color); 2206 const GGLFormat* fp = &(c->formats[cb->format]); 2207 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + 2208 (x + (cb->stride * y)) * fp->size; 2209 2210 surface_t* tex = &(c->state.texture[0].surface); 2211 const int32_t u = (c->state.texture[0].shade.is0>>16) + x; 2212 const int32_t v = (c->state.texture[0].shade.it0>>16) + y; 2213 uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) + 2214 (u + (tex->stride * v)) * fp->size; 2215 2216 const size_t size = ct * fp->size; 2217 memcpy(dst, src, size); 2218 } 2219 2220 void scanline_memset8(context_t* c) 2221 { 2222 int32_t x = c->iterators.xl; 2223 size_t ct = c->iterators.xr - x; 2224 int32_t y = c->iterators.y; 2225 surface_t* cb = &(c->state.buffers.color); 2226 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y)); 2227 uint32_t packed = c->packed; 2228 memset(dst, packed, ct); 2229 } 2230 2231 void scanline_memset16(context_t* c) 2232 { 2233 int32_t x = c->iterators.xl; 2234 size_t ct = c->iterators.xr - x; 2235 int32_t y = c->iterators.y; 2236 surface_t* cb = &(c->state.buffers.color); 2237 uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 2238 uint32_t packed = c->packed; 2239 android_memset16(dst, packed, ct*2); 2240 } 2241 2242 void scanline_memset32(context_t* c) 2243 { 2244 int32_t x = c->iterators.xl; 2245 size_t ct = c->iterators.xr - x; 2246 int32_t y = c->iterators.y; 2247 surface_t* cb = &(c->state.buffers.color); 2248 uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y)); 2249 uint32_t packed = GGL_HOST_TO_RGBA(c->packed); 2250 android_memset32(dst, packed, ct*4); 2251 } 2252 2253 void scanline_clear(context_t* c) 2254 { 2255 int32_t x = c->iterators.xl; 2256 size_t ct = c->iterators.xr - x; 2257 int32_t y = c->iterators.y; 2258 surface_t* cb = &(c->state.buffers.color); 2259 const GGLFormat* fp = &(c->formats[cb->format]); 2260 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + 2261 (x + (cb->stride * y)) * fp->size; 2262 const size_t size = ct * fp->size; 2263 memset(dst, 0, size); 2264 } 2265 2266 void scanline_set(context_t* c) 2267 { 2268 int32_t x = c->iterators.xl; 2269 size_t ct = c->iterators.xr - x; 2270 int32_t y = c->iterators.y; 2271 surface_t* cb = &(c->state.buffers.color); 2272 const GGLFormat* fp = &(c->formats[cb->format]); 2273 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + 2274 (x + (cb->stride * y)) * fp->size; 2275 const size_t size = ct * fp->size; 2276 memset(dst, 0xFF, size); 2277 } 2278 2279 void scanline_noop(context_t* c) 2280 { 2281 } 2282 2283 void rect_generic(context_t* c, size_t yc) 2284 { 2285 do { 2286 c->scanline(c); 2287 c->step_y(c); 2288 } while (--yc); 2289 } 2290 2291 void rect_memcpy(context_t* c, size_t yc) 2292 { 2293 int32_t x = c->iterators.xl; 2294 size_t ct = c->iterators.xr - x; 2295 int32_t y = c->iterators.y; 2296 surface_t* cb = &(c->state.buffers.color); 2297 const GGLFormat* fp = &(c->formats[cb->format]); 2298 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + 2299 (x + (cb->stride * y)) * fp->size; 2300 2301 surface_t* tex = &(c->state.texture[0].surface); 2302 const int32_t u = (c->state.texture[0].shade.is0>>16) + x; 2303 const int32_t v = (c->state.texture[0].shade.it0>>16) + y; 2304 uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) + 2305 (u + (tex->stride * v)) * fp->size; 2306 2307 if (cb->stride == tex->stride && ct == size_t(cb->stride)) { 2308 memcpy(dst, src, ct * fp->size * yc); 2309 } else { 2310 const size_t size = ct * fp->size; 2311 const size_t dbpr = cb->stride * fp->size; 2312 const size_t sbpr = tex->stride * fp->size; 2313 do { 2314 memcpy(dst, src, size); 2315 dst += dbpr; 2316 src += sbpr; 2317 } while (--yc); 2318 } 2319 } 2320 // ---------------------------------------------------------------------------- 2321 }; // namespace android 2322 2323