Home | History | Annotate | Download | only in i18n
      1 /*
      2 *******************************************************************************
      3 * Copyright (C) 1997-2010, International Business Machines Corporation and    *
      4 * others. All Rights Reserved.                                                *
      5 *******************************************************************************
      6 *
      7 * File DECIMFMT.CPP
      8 *
      9 * Modification History:
     10 *
     11 *   Date        Name        Description
     12 *   02/19/97    aliu        Converted from java.
     13 *   03/20/97    clhuang     Implemented with new APIs.
     14 *   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
     15 *   04/3/97     aliu        Rewrote parsing and formatting completely, and
     16 *                           cleaned up and debugged.  Actually works now.
     17 *                           Implemented NAN and INF handling, for both parsing
     18 *                           and formatting.  Extensive testing & debugging.
     19 *   04/10/97    aliu        Modified to compile on AIX.
     20 *   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
     21 *                           Changed DigitCount to int per code review.
     22 *   07/09/97    helena      Made ParsePosition into a class.
     23 *   08/26/97    aliu        Extensive changes to applyPattern; completely
     24 *                           rewritten from the Java.
     25 *   09/09/97    aliu        Ported over support for exponential formats.
     26 *   07/20/98    stephen     JDK 1.2 sync up.
     27 *                             Various instances of '0' replaced with 'NULL'
     28 *                             Check for grouping size in subFormat()
     29 *                             Brought subParse() in line with Java 1.2
     30 *                             Added method appendAffix()
     31 *   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
     32 *   02/22/99    stephen     Removed character literals for EBCDIC safety
     33 *   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
     34 *   06/28/99    stephen     Fixed bugs in toPattern().
     35 *   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
     36 *                             fPadPosition
     37 ********************************************************************************
     38 */
     39 
     40 #include "unicode/utypes.h"
     41 
     42 #if !UCONFIG_NO_FORMATTING
     43 
     44 #include "fphdlimp.h"
     45 #include "unicode/decimfmt.h"
     46 #include "unicode/choicfmt.h"
     47 #include "unicode/ucurr.h"
     48 #include "unicode/ustring.h"
     49 #include "unicode/dcfmtsym.h"
     50 #include "unicode/ures.h"
     51 #include "unicode/uchar.h"
     52 #include "unicode/curramt.h"
     53 #include "unicode/currpinf.h"
     54 #include "unicode/plurrule.h"
     55 #include "ucurrimp.h"
     56 #include "charstr.h"
     57 #include "cmemory.h"
     58 #include "util.h"
     59 #include "digitlst.h"
     60 #include "cstring.h"
     61 #include "umutex.h"
     62 #include "uassert.h"
     63 #include "putilimp.h"
     64 #include <math.h>
     65 #include "hash.h"
     66 
     67 
     68 U_NAMESPACE_BEGIN
     69 
     70 /* For currency parsing purose,
     71  * Need to remember all prefix patterns and suffix patterns of
     72  * every currency format pattern,
     73  * including the pattern of default currecny style
     74  * and plural currency style. And the patterns are set through applyPattern.
     75  */
     76 struct AffixPatternsForCurrency : public UMemory {
     77 	// negative prefix pattern
     78 	UnicodeString negPrefixPatternForCurrency;
     79 	// negative suffix pattern
     80 	UnicodeString negSuffixPatternForCurrency;
     81 	// positive prefix pattern
     82 	UnicodeString posPrefixPatternForCurrency;
     83 	// positive suffix pattern
     84 	UnicodeString posSuffixPatternForCurrency;
     85 	int8_t patternType;
     86 
     87 	AffixPatternsForCurrency(const UnicodeString& negPrefix,
     88 							 const UnicodeString& negSuffix,
     89 							 const UnicodeString& posPrefix,
     90 							 const UnicodeString& posSuffix,
     91 							 int8_t type) {
     92 		negPrefixPatternForCurrency = negPrefix;
     93 		negSuffixPatternForCurrency = negSuffix;
     94 		posPrefixPatternForCurrency = posPrefix;
     95 		posSuffixPatternForCurrency = posSuffix;
     96 		patternType = type;
     97 	}
     98 };
     99 
    100 /* affix for currency formatting when the currency sign in the pattern
    101  * equals to 3, such as the pattern contains 3 currency sign or
    102  * the formatter style is currency plural format style.
    103  */
    104 struct AffixesForCurrency : public UMemory {
    105 	// negative prefix
    106 	UnicodeString negPrefixForCurrency;
    107 	// negative suffix
    108 	UnicodeString negSuffixForCurrency;
    109 	// positive prefix
    110 	UnicodeString posPrefixForCurrency;
    111 	// positive suffix
    112 	UnicodeString posSuffixForCurrency;
    113 
    114 	int32_t formatWidth;
    115 
    116 	AffixesForCurrency(const UnicodeString& negPrefix,
    117 					   const UnicodeString& negSuffix,
    118 					   const UnicodeString& posPrefix,
    119 					   const UnicodeString& posSuffix) {
    120 		negPrefixForCurrency = negPrefix;
    121 		negSuffixForCurrency = negSuffix;
    122 		posPrefixForCurrency = posPrefix;
    123 		posSuffixForCurrency = posSuffix;
    124 	}
    125 };
    126 
    127 U_CDECL_BEGIN
    128 
    129 /**
    130  * @internal ICU 4.2
    131  */
    132 static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
    133 
    134 /**
    135  * @internal ICU 4.2
    136  */
    137 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
    138 
    139 
    140 static UBool
    141 U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
    142     const AffixesForCurrency* affix_1 =
    143         (AffixesForCurrency*)val1.pointer;
    144     const AffixesForCurrency* affix_2 =
    145         (AffixesForCurrency*)val2.pointer;
    146     return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
    147            affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
    148            affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
    149            affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
    150 }
    151 
    152 
    153 static UBool
    154 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
    155     const AffixPatternsForCurrency* affix_1 =
    156         (AffixPatternsForCurrency*)val1.pointer;
    157     const AffixPatternsForCurrency* affix_2 =
    158         (AffixPatternsForCurrency*)val2.pointer;
    159     return affix_1->negPrefixPatternForCurrency ==
    160            affix_2->negPrefixPatternForCurrency &&
    161            affix_1->negSuffixPatternForCurrency ==
    162            affix_2->negSuffixPatternForCurrency &&
    163            affix_1->posPrefixPatternForCurrency ==
    164            affix_2->posPrefixPatternForCurrency &&
    165            affix_1->posSuffixPatternForCurrency ==
    166            affix_2->posSuffixPatternForCurrency &&
    167            affix_1->patternType == affix_2->patternType;
    168 }
    169 
    170 U_CDECL_END
    171 
    172 
    173 //#define FMT_DEBUG
    174 
    175 #ifdef FMT_DEBUG
    176 #include <stdio.h>
    177 static void debugout(UnicodeString s) {
    178     char buf[2000];
    179     s.extract((int32_t) 0, s.length(), buf);
    180     printf("%s\n", buf);
    181 }
    182 #define debug(x) printf("%s\n", x);
    183 #else
    184 #define debugout(x)
    185 #define debug(x)
    186 #endif
    187 
    188 
    189 
    190 // *****************************************************************************
    191 // class DecimalFormat
    192 // *****************************************************************************
    193 
    194 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
    195 
    196 // Constants for characters used in programmatic (unlocalized) patterns.
    197 #define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
    198 #define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
    199 #define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
    200 #define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
    201 #define kPatternPerMill              ((UChar)0x2030)
    202 #define kPatternPercent              ((UChar)0x0025) /*'%'*/
    203 #define kPatternDigit                ((UChar)0x0023) /*'#'*/
    204 #define kPatternSeparator            ((UChar)0x003B) /*';'*/
    205 #define kPatternExponent             ((UChar)0x0045) /*'E'*/
    206 #define kPatternPlus                 ((UChar)0x002B) /*'+'*/
    207 #define kPatternMinus                ((UChar)0x002D) /*'-'*/
    208 #define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
    209 #define kQuote                       ((UChar)0x0027) /*'\''*/
    210 /**
    211  * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
    212  * is used in patterns and substitued with either the currency symbol,
    213  * or if it is doubled, with the international currency symbol.  If the
    214  * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
    215  * replaced with the monetary decimal separator.
    216  */
    217 #define kCurrencySign                ((UChar)0x00A4)
    218 #define kDefaultPad                  ((UChar)0x0020) /* */
    219 
    220 const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
    221 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
    222 
    223 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
    224 
    225 /**
    226  * These are the tags we expect to see in normal resource bundle files associated
    227  * with a locale.
    228  */
    229 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
    230 static const char fgNumberElements[]="NumberElements";
    231 static const char fgLatn[]="latn";
    232 static const char fgPatterns[]="patterns";
    233 static const char fgDecimalFormat[]="decimalFormat";
    234 static const char fgCurrencyFormat[]="currencyFormat";
    235 static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
    236 
    237 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
    238 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
    239 
    240 //------------------------------------------------------------------------------
    241 // Constructs a DecimalFormat instance in the default locale.
    242 
    243 DecimalFormat::DecimalFormat(UErrorCode& status) {
    244     init();
    245     UParseError parseError;
    246     construct(status, parseError);
    247 }
    248 
    249 //------------------------------------------------------------------------------
    250 // Constructs a DecimalFormat instance with the specified number format
    251 // pattern in the default locale.
    252 
    253 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    254                              UErrorCode& status) {
    255     init();
    256     UParseError parseError;
    257     construct(status, parseError, &pattern);
    258 }
    259 
    260 //------------------------------------------------------------------------------
    261 // Constructs a DecimalFormat instance with the specified number format
    262 // pattern and the number format symbols in the default locale.  The
    263 // created instance owns the symbols.
    264 
    265 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    266                              DecimalFormatSymbols* symbolsToAdopt,
    267                              UErrorCode& status) {
    268     init();
    269     UParseError parseError;
    270     if (symbolsToAdopt == NULL)
    271         status = U_ILLEGAL_ARGUMENT_ERROR;
    272     construct(status, parseError, &pattern, symbolsToAdopt);
    273 }
    274 
    275 DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
    276                     DecimalFormatSymbols* symbolsToAdopt,
    277                     UParseError& parseErr,
    278                     UErrorCode& status) {
    279     init();
    280     if (symbolsToAdopt == NULL)
    281         status = U_ILLEGAL_ARGUMENT_ERROR;
    282     construct(status,parseErr, &pattern, symbolsToAdopt);
    283 }
    284 
    285 //------------------------------------------------------------------------------
    286 // Constructs a DecimalFormat instance with the specified number format
    287 // pattern and the number format symbols in the default locale.  The
    288 // created instance owns the clone of the symbols.
    289 
    290 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    291                              const DecimalFormatSymbols& symbols,
    292                              UErrorCode& status) {
    293     init();
    294     UParseError parseError;
    295     construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
    296 }
    297 
    298 //------------------------------------------------------------------------------
    299 // Constructs a DecimalFormat instance with the specified number format
    300 // pattern, the number format symbols, and the number format style.
    301 // The created instance owns the clone of the symbols.
    302 
    303 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    304                              DecimalFormatSymbols* symbolsToAdopt,
    305                              NumberFormat::EStyles style,
    306                              UErrorCode& status) {
    307     init();
    308     fStyle = style;
    309     UParseError parseError;
    310     construct(status, parseError, &pattern, symbolsToAdopt);
    311 }
    312 
    313 //-----------------------------------------------------------------------------
    314 // Common DecimalFormat initialization.
    315 //    Put all fields of an uninitialized object into a known state.
    316 //    Common code, shared by all constructors.
    317 void
    318 DecimalFormat::init() {
    319     fPosPrefixPattern = 0;
    320     fPosSuffixPattern = 0;
    321     fNegPrefixPattern = 0;
    322     fNegSuffixPattern = 0;
    323     fCurrencyChoice = 0;
    324     fMultiplier = NULL;
    325     fGroupingSize = 0;
    326     fGroupingSize2 = 0;
    327     fDecimalSeparatorAlwaysShown = FALSE;
    328     fSymbols = NULL;
    329     fUseSignificantDigits = FALSE;
    330     fMinSignificantDigits = 1;
    331     fMaxSignificantDigits = 6;
    332     fUseExponentialNotation = FALSE;
    333     fMinExponentDigits = 0;
    334     fExponentSignAlwaysShown = FALSE;
    335     fRoundingIncrement = 0;
    336     fRoundingMode = kRoundHalfEven;
    337     fPad = 0;
    338     fFormatWidth = 0;
    339     fPadPosition = kPadBeforePrefix;
    340     fStyle = NumberFormat::kNumberStyle;
    341     fCurrencySignCount = 0;
    342     fAffixPatternsForCurrency = NULL;
    343     fAffixesForCurrency = NULL;
    344     fPluralAffixesForCurrency = NULL;
    345     fCurrencyPluralInfo = NULL;
    346 }
    347 
    348 //------------------------------------------------------------------------------
    349 // Constructs a DecimalFormat instance with the specified number format
    350 // pattern and the number format symbols in the desired locale.  The
    351 // created instance owns the symbols.
    352 
    353 void
    354 DecimalFormat::construct(UErrorCode&             status,
    355                          UParseError&           parseErr,
    356                          const UnicodeString*   pattern,
    357                          DecimalFormatSymbols*  symbolsToAdopt)
    358 {
    359     fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
    360     fRoundingIncrement = NULL;
    361     fRoundingMode = kRoundHalfEven;
    362     fPad = kPatternPadEscape;
    363     fPadPosition = kPadBeforePrefix;
    364     if (U_FAILURE(status))
    365         return;
    366 
    367     fPosPrefixPattern = fPosSuffixPattern = NULL;
    368     fNegPrefixPattern = fNegSuffixPattern = NULL;
    369     setMultiplier(1);
    370     fGroupingSize = 3;
    371     fGroupingSize2 = 0;
    372     fDecimalSeparatorAlwaysShown = FALSE;
    373     fUseExponentialNotation = FALSE;
    374     fMinExponentDigits = 0;
    375 
    376     if (fSymbols == NULL)
    377     {
    378         fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
    379         /* test for NULL */
    380         if (fSymbols == 0) {
    381             status = U_MEMORY_ALLOCATION_ERROR;
    382             return;
    383         }
    384     }
    385 
    386     UnicodeString str;
    387     // Uses the default locale's number format pattern if there isn't
    388     // one specified.
    389     if (pattern == NULL)
    390     {
    391         int32_t len = 0;
    392         UResourceBundle *resource = ures_open(NULL, Locale::getDefault().getName(), &status);
    393 
    394         resource = ures_getByKey(resource, fgNumberElements, resource, &status);
    395         // TODO : Get the pattern based on the active numbering system for the locale. Right now assumes "latn".
    396         resource = ures_getByKey(resource, fgLatn, resource, &status);
    397         resource = ures_getByKey(resource, fgPatterns, resource, &status);
    398         const UChar *resStr = ures_getStringByKey(resource, fgDecimalFormat, &len, &status);
    399         str.setTo(TRUE, resStr, len);
    400         pattern = &str;
    401         ures_close(resource);
    402     }
    403 
    404     if (U_FAILURE(status))
    405     {
    406         return;
    407     }
    408 
    409     if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
    410         // If it looks like we are going to use a currency pattern
    411         // then do the time consuming lookup.
    412         setCurrencyForSymbols();
    413     } else {
    414         setCurrencyInternally(NULL, status);
    415     }
    416 
    417     const UnicodeString* patternUsed;
    418     UnicodeString currencyPluralPatternForOther;
    419     // apply pattern
    420     if (fStyle == NumberFormat::kPluralCurrencyStyle) {
    421         fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
    422         if (U_FAILURE(status)) {
    423             return;
    424         }
    425 
    426         // the pattern used in format is not fixed until formatting,
    427         // in which, the number is known and
    428         // will be used to pick the right pattern based on plural count.
    429         // Here, set the pattern as the pattern of plural count == "other".
    430         // For most locale, the patterns are probably the same for all
    431         // plural count. If not, the right pattern need to be re-applied
    432         // during format.
    433         fCurrencyPluralInfo->getCurrencyPluralPattern("other", currencyPluralPatternForOther);
    434         patternUsed = &currencyPluralPatternForOther;
    435         // TODO: not needed?
    436         setCurrencyForSymbols();
    437 
    438     } else {
    439         patternUsed = pattern;
    440     }
    441 
    442     if (patternUsed->indexOf(kCurrencySign) != -1) {
    443         // initialize for currency, not only for plural format,
    444         // but also for mix parsing
    445         if (fCurrencyPluralInfo == NULL) {
    446            fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
    447            if (U_FAILURE(status)) {
    448                return;
    449            }
    450         }
    451         // need it for mix parsing
    452         setupCurrencyAffixPatterns(status);
    453         // expanded affixes for plural names
    454         if (patternUsed->indexOf(fgTripleCurrencySign) != -1) {
    455             setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
    456         }
    457     }
    458 
    459     applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
    460 
    461     // expand affixes
    462     if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
    463         expandAffixAdjustWidth(NULL);
    464     }
    465 
    466     // If it was a currency format, apply the appropriate rounding by
    467     // resetting the currency. NOTE: this copies fCurrency on top of itself.
    468     if (fCurrencySignCount > fgCurrencySignCountZero) {
    469         setCurrencyInternally(getCurrency(), status);
    470     }
    471 }
    472 
    473 
    474 void
    475 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
    476     if (U_FAILURE(status)) {
    477         return;
    478     }
    479     UParseError parseErr;
    480     fAffixPatternsForCurrency = initHashForAffixPattern(status);
    481     if (U_FAILURE(status)) {
    482         return;
    483     }
    484 
    485     // Save the default currency patterns of this locale.
    486     // Here, chose onlyApplyPatternWithoutExpandAffix without
    487     // expanding the affix patterns into affixes.
    488     UnicodeString currencyPattern;
    489     UErrorCode error = U_ZERO_ERROR;
    490 
    491     UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
    492     resource = ures_getByKey(resource, fgNumberElements, resource, &error);
    493     // TODO : Get the pattern based on the active numbering system for the locale. Right now assumes "latn".
    494     resource = ures_getByKey(resource, fgLatn, resource, &error);
    495     resource = ures_getByKey(resource, fgPatterns, resource, &error);
    496     int32_t patLen = 0;
    497     const UChar *patResStr = ures_getStringByKey(resource, fgCurrencyFormat,  &patLen, &error);
    498     ures_close(resource);
    499 
    500     if (U_SUCCESS(error)) {
    501         applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
    502                                        parseErr, status);
    503         AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    504                                                     *fNegPrefixPattern,
    505                                                     *fNegSuffixPattern,
    506                                                     *fPosPrefixPattern,
    507                                                     *fPosSuffixPattern,
    508                                                     UCURR_SYMBOL_NAME);
    509         fAffixPatternsForCurrency->put("default", affixPtn, status);
    510     }
    511 
    512     // save the unique currency plural patterns of this locale.
    513     Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
    514     const UHashElement* element = NULL;
    515     int32_t pos = -1;
    516     Hashtable pluralPatternSet;
    517     while ((element = pluralPtn->nextElement(pos)) != NULL) {
    518         const UHashTok valueTok = element->value;
    519         const UnicodeString* value = (UnicodeString*)valueTok.pointer;
    520         const UHashTok keyTok = element->key;
    521         const UnicodeString* key = (UnicodeString*)keyTok.pointer;
    522         if (pluralPatternSet.geti(*value) != 1) {
    523             pluralPatternSet.puti(*value, 1, status);
    524             applyPatternWithoutExpandAffix(*value, false, parseErr, status);
    525             AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    526                                                     *fNegPrefixPattern,
    527                                                     *fNegSuffixPattern,
    528                                                     *fPosPrefixPattern,
    529                                                     *fPosSuffixPattern,
    530                                                     UCURR_LONG_NAME);
    531             fAffixPatternsForCurrency->put(*key, affixPtn, status);
    532         }
    533     }
    534 }
    535 
    536 
    537 void
    538 DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
    539                                     UBool setupForCurrentPattern,
    540                                     UBool setupForPluralPattern,
    541                                     UErrorCode& status) {
    542     if (U_FAILURE(status)) {
    543         return;
    544     }
    545     UParseError parseErr;
    546     if (setupForCurrentPattern) {
    547         if (fAffixesForCurrency) {
    548             deleteHashForAffix(fAffixesForCurrency);
    549         }
    550         fAffixesForCurrency = initHashForAffix(status);
    551         if (U_SUCCESS(status)) {
    552             applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
    553             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
    554             StringEnumeration* keywords = pluralRules->getKeywords(status);
    555             if (U_SUCCESS(status)) {
    556                 const char* pluralCountCh;
    557                 while ((pluralCountCh = keywords->next(NULL, status)) != NULL) {
    558                     if ( U_SUCCESS(status) ) {
    559                         UnicodeString pluralCount = UnicodeString(pluralCountCh);
    560                         expandAffixAdjustWidth(&pluralCount);
    561                         AffixesForCurrency* affix = new AffixesForCurrency(
    562                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
    563                         fAffixesForCurrency->put(pluralCount, affix, status);
    564                     }
    565                 }
    566             }
    567             delete keywords;
    568         }
    569     }
    570 
    571     if (U_FAILURE(status)) {
    572         return;
    573     }
    574 
    575     if (setupForPluralPattern) {
    576         if (fPluralAffixesForCurrency) {
    577             deleteHashForAffix(fPluralAffixesForCurrency);
    578         }
    579         fPluralAffixesForCurrency = initHashForAffix(status);
    580         if (U_SUCCESS(status)) {
    581             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
    582             StringEnumeration* keywords = pluralRules->getKeywords(status);
    583             if (U_SUCCESS(status)) {
    584                 const char* pluralCountCh;
    585                 while ((pluralCountCh = keywords->next(NULL, status)) != NULL) {
    586                     if ( U_SUCCESS(status) ) {
    587                         UnicodeString pluralCount = UnicodeString(pluralCountCh);
    588                         UnicodeString ptn;
    589                         fCurrencyPluralInfo->getCurrencyPluralPattern(pluralCount, ptn);
    590                         applyPatternInternally(pluralCount, ptn, false, parseErr, status);
    591                         AffixesForCurrency* affix = new AffixesForCurrency(
    592                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
    593                         fPluralAffixesForCurrency->put(pluralCount, affix, status);
    594                     }
    595                 }
    596             }
    597             delete keywords;
    598         }
    599     }
    600 }
    601 
    602 
    603 //------------------------------------------------------------------------------
    604 
    605 DecimalFormat::~DecimalFormat()
    606 {
    607     delete fPosPrefixPattern;
    608     delete fPosSuffixPattern;
    609     delete fNegPrefixPattern;
    610     delete fNegSuffixPattern;
    611     delete fCurrencyChoice;
    612     delete fMultiplier;
    613     delete fSymbols;
    614     delete fRoundingIncrement;
    615     deleteHashForAffixPattern();
    616     deleteHashForAffix(fAffixesForCurrency);
    617     deleteHashForAffix(fPluralAffixesForCurrency);
    618     delete fCurrencyPluralInfo;
    619 }
    620 
    621 //------------------------------------------------------------------------------
    622 // copy constructor
    623 
    624 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
    625     NumberFormat(source) {
    626     init();
    627     *this = source;
    628 }
    629 
    630 //------------------------------------------------------------------------------
    631 // assignment operator
    632 
    633 static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) {
    634     if (source == NULL) {
    635         delete *pdest;
    636         *pdest = NULL;
    637     } else if (*pdest == NULL) {
    638         *pdest = new UnicodeString(*source);
    639     } else {
    640         **pdest  = *source;
    641     }
    642 }
    643 
    644 DecimalFormat&
    645 DecimalFormat::operator=(const DecimalFormat& rhs)
    646 {
    647     if(this != &rhs) {
    648         NumberFormat::operator=(rhs);
    649         fPositivePrefix = rhs.fPositivePrefix;
    650         fPositiveSuffix = rhs.fPositiveSuffix;
    651         fNegativePrefix = rhs.fNegativePrefix;
    652         fNegativeSuffix = rhs.fNegativeSuffix;
    653         _copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
    654         _copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
    655         _copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
    656         _copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
    657         if (rhs.fCurrencyChoice == 0) {
    658             delete fCurrencyChoice;
    659             fCurrencyChoice = 0;
    660         } else {
    661             fCurrencyChoice = (ChoiceFormat*) rhs.fCurrencyChoice->clone();
    662         }
    663         setRoundingIncrement(rhs.getRoundingIncrement());
    664         fRoundingMode = rhs.fRoundingMode;
    665         setMultiplier(rhs.getMultiplier());
    666         fGroupingSize = rhs.fGroupingSize;
    667         fGroupingSize2 = rhs.fGroupingSize2;
    668         fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
    669         if(fSymbols == NULL) {
    670             fSymbols = new DecimalFormatSymbols(*rhs.fSymbols);
    671         } else {
    672             *fSymbols = *rhs.fSymbols;
    673         }
    674         fUseExponentialNotation = rhs.fUseExponentialNotation;
    675         fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
    676         /*Bertrand A. D. Update 98.03.17*/
    677         fCurrencySignCount = rhs.fCurrencySignCount;
    678         /*end of Update*/
    679         fMinExponentDigits = rhs.fMinExponentDigits;
    680 
    681         /* sfb 990629 */
    682         fFormatWidth = rhs.fFormatWidth;
    683         fPad = rhs.fPad;
    684         fPadPosition = rhs.fPadPosition;
    685         /* end sfb */
    686         fMinSignificantDigits = rhs.fMinSignificantDigits;
    687         fMaxSignificantDigits = rhs.fMaxSignificantDigits;
    688         fUseSignificantDigits = rhs.fUseSignificantDigits;
    689         fFormatPattern = rhs.fFormatPattern;
    690         fStyle = rhs.fStyle;
    691         fCurrencySignCount = rhs.fCurrencySignCount;
    692         if (rhs.fCurrencyPluralInfo) {
    693             delete fCurrencyPluralInfo;
    694             fCurrencyPluralInfo = rhs.fCurrencyPluralInfo->clone();
    695         }
    696         if (rhs.fAffixPatternsForCurrency) {
    697             UErrorCode status = U_ZERO_ERROR;
    698             deleteHashForAffixPattern();
    699             fAffixPatternsForCurrency = initHashForAffixPattern(status);
    700             copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
    701                                     fAffixPatternsForCurrency, status);
    702         }
    703         if (rhs.fAffixesForCurrency) {
    704             UErrorCode status = U_ZERO_ERROR;
    705             deleteHashForAffix(fAffixesForCurrency);
    706             fAffixesForCurrency = initHashForAffixPattern(status);
    707             copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
    708         }
    709         if (rhs.fPluralAffixesForCurrency) {
    710             UErrorCode status = U_ZERO_ERROR;
    711             deleteHashForAffix(fPluralAffixesForCurrency);
    712             fPluralAffixesForCurrency = initHashForAffixPattern(status);
    713             copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
    714         }
    715     }
    716     return *this;
    717 }
    718 
    719 //------------------------------------------------------------------------------
    720 
    721 UBool
    722 DecimalFormat::operator==(const Format& that) const
    723 {
    724     if (this == &that)
    725         return TRUE;
    726 
    727     // NumberFormat::operator== guarantees this cast is safe
    728     const DecimalFormat* other = (DecimalFormat*)&that;
    729 
    730 #ifdef FMT_DEBUG
    731     // This code makes it easy to determine why two format objects that should
    732     // be equal aren't.
    733     UBool first = TRUE;
    734     if (!NumberFormat::operator==(that)) {
    735         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    736         debug("NumberFormat::!=");
    737     } else {
    738     if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
    739               fPositivePrefix == other->fPositivePrefix)
    740            || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
    741                *fPosPrefixPattern  == *other->fPosPrefixPattern))) {
    742         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    743         debug("Pos Prefix !=");
    744     }
    745     if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
    746            fPositiveSuffix == other->fPositiveSuffix)
    747           || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
    748               *fPosSuffixPattern  == *other->fPosSuffixPattern))) {
    749         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    750         debug("Pos Suffix !=");
    751     }
    752     if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
    753            fNegativePrefix == other->fNegativePrefix)
    754           || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
    755               *fNegPrefixPattern  == *other->fNegPrefixPattern))) {
    756         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    757         debug("Neg Prefix ");
    758         if (fNegPrefixPattern == NULL) {
    759             debug("NULL(");
    760             debugout(fNegativePrefix);
    761             debug(")");
    762         } else {
    763             debugout(*fNegPrefixPattern);
    764         }
    765         debug(" != ");
    766         if (other->fNegPrefixPattern == NULL) {
    767             debug("NULL(");
    768             debugout(other->fNegativePrefix);
    769             debug(")");
    770         } else {
    771             debugout(*other->fNegPrefixPattern);
    772         }
    773     }
    774     if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
    775            fNegativeSuffix == other->fNegativeSuffix)
    776           || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
    777               *fNegSuffixPattern  == *other->fNegSuffixPattern))) {
    778         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    779         debug("Neg Suffix ");
    780         if (fNegSuffixPattern == NULL) {
    781             debug("NULL(");
    782             debugout(fNegativeSuffix);
    783             debug(")");
    784         } else {
    785             debugout(*fNegSuffixPattern);
    786         }
    787         debug(" != ");
    788         if (other->fNegSuffixPattern == NULL) {
    789             debug("NULL(");
    790             debugout(other->fNegativeSuffix);
    791             debug(")");
    792         } else {
    793             debugout(*other->fNegSuffixPattern);
    794         }
    795     }
    796     if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
    797           || (fRoundingIncrement != NULL &&
    798               other->fRoundingIncrement != NULL &&
    799               *fRoundingIncrement == *other->fRoundingIncrement))) {
    800         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    801         debug("Rounding Increment !=");
    802               }
    803     if (getMultiplier() != other->getMultiplier()) {
    804         if (first) { printf("[ "); first = FALSE; }
    805         printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
    806     }
    807     if (fGroupingSize != other->fGroupingSize) {
    808         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    809         printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
    810     }
    811     if (fGroupingSize2 != other->fGroupingSize2) {
    812         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    813         printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
    814     }
    815     if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
    816         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    817         printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
    818     }
    819     if (fUseExponentialNotation != other->fUseExponentialNotation) {
    820         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    821         debug("Use Exp !=");
    822     }
    823     if (!(!fUseExponentialNotation ||
    824           fMinExponentDigits != other->fMinExponentDigits)) {
    825         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    826         debug("Exp Digits !=");
    827     }
    828     if (*fSymbols != *(other->fSymbols)) {
    829         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    830         debug("Symbols !=");
    831     }
    832     // TODO Add debug stuff for significant digits here
    833     if (fUseSignificantDigits != other->fUseSignificantDigits) {
    834         debug("fUseSignificantDigits !=");
    835     }
    836     if (fUseSignificantDigits &&
    837         fMinSignificantDigits != other->fMinSignificantDigits) {
    838         debug("fMinSignificantDigits !=");
    839     }
    840     if (fUseSignificantDigits &&
    841         fMaxSignificantDigits != other->fMaxSignificantDigits) {
    842         debug("fMaxSignificantDigits !=");
    843     }
    844 
    845     if (!first) { printf(" ]"); }
    846     if (fCurrencySignCount != other->fCurrencySignCount) {
    847         debug("fCurrencySignCount !=");
    848     }
    849     if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
    850         debug("fCurrencyPluralInfo == ");
    851         if (fCurrencyPluralInfo == NULL) {
    852             debug("fCurrencyPluralInfo == NULL");
    853         }
    854     }
    855     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
    856          *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
    857         debug("fCurrencyPluralInfo !=");
    858     }
    859     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
    860         fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
    861         debug("fCurrencyPluralInfo one NULL, the other not");
    862     }
    863     if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
    864         debug("fCurrencyPluralInfo == ");
    865     }
    866     }
    867 #endif
    868 
    869     return (NumberFormat::operator==(that) &&
    870             ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
    871             (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
    872             (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
    873               fPositivePrefix == other->fPositivePrefix)
    874              || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
    875                  *fPosPrefixPattern  == *other->fPosPrefixPattern)) &&
    876             ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
    877               fPositiveSuffix == other->fPositiveSuffix)
    878              || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
    879                  *fPosSuffixPattern  == *other->fPosSuffixPattern)) &&
    880             ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
    881               fNegativePrefix == other->fNegativePrefix)
    882              || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
    883                  *fNegPrefixPattern  == *other->fNegPrefixPattern)) &&
    884             ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
    885               fNegativeSuffix == other->fNegativeSuffix)
    886              || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
    887                  *fNegSuffixPattern  == *other->fNegSuffixPattern)))) &&
    888             ((fRoundingIncrement == other->fRoundingIncrement) // both null
    889              || (fRoundingIncrement != NULL &&
    890                  other->fRoundingIncrement != NULL &&
    891                  *fRoundingIncrement == *other->fRoundingIncrement)) &&
    892         getMultiplier() == other->getMultiplier() &&
    893         fGroupingSize == other->fGroupingSize &&
    894         fGroupingSize2 == other->fGroupingSize2 &&
    895         fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
    896         fUseExponentialNotation == other->fUseExponentialNotation &&
    897         (!fUseExponentialNotation ||
    898          fMinExponentDigits == other->fMinExponentDigits) &&
    899         *fSymbols == *(other->fSymbols) &&
    900         fUseSignificantDigits == other->fUseSignificantDigits &&
    901         (!fUseSignificantDigits ||
    902          (fMinSignificantDigits == other->fMinSignificantDigits &&
    903           fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
    904         fCurrencySignCount == other->fCurrencySignCount &&
    905         ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
    906           fCurrencyPluralInfo == NULL) ||
    907          (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
    908          *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
    909 }
    910 
    911 //------------------------------------------------------------------------------
    912 
    913 Format*
    914 DecimalFormat::clone() const
    915 {
    916     return new DecimalFormat(*this);
    917 }
    918 
    919 //------------------------------------------------------------------------------
    920 
    921 UnicodeString&
    922 DecimalFormat::format(int32_t number,
    923                       UnicodeString& appendTo,
    924                       FieldPosition& fieldPosition) const
    925 {
    926     return format((int64_t)number, appendTo, fieldPosition);
    927 }
    928 
    929 UnicodeString&
    930 DecimalFormat::format(int32_t number,
    931                       UnicodeString& appendTo,
    932                       FieldPositionIterator* posIter,
    933                       UErrorCode& status) const
    934 {
    935     return format((int64_t)number, appendTo, posIter, status);
    936 }
    937 
    938 //------------------------------------------------------------------------------
    939 
    940 UnicodeString&
    941 DecimalFormat::format(int64_t number,
    942                       UnicodeString& appendTo,
    943                       FieldPosition& fieldPosition) const
    944 {
    945     FieldPositionOnlyHandler handler(fieldPosition);
    946     return _format(number, appendTo, handler);
    947 }
    948 
    949 UnicodeString&
    950 DecimalFormat::format(int64_t number,
    951                       UnicodeString& appendTo,
    952                       FieldPositionIterator* posIter,
    953                       UErrorCode& status) const
    954 {
    955     FieldPositionIteratorHandler handler(posIter, status);
    956     return _format(number, appendTo, handler);
    957 }
    958 
    959 UnicodeString&
    960 DecimalFormat::_format(int64_t number,
    961                        UnicodeString& appendTo,
    962                        FieldPositionHandler& handler) const
    963 {
    964     UErrorCode status = U_ZERO_ERROR;
    965     DigitList digits;
    966     digits.set(number);
    967     return _format(digits, appendTo, handler, status);
    968 }
    969 
    970 //------------------------------------------------------------------------------
    971 
    972 UnicodeString&
    973 DecimalFormat::format(  double number,
    974                         UnicodeString& appendTo,
    975                         FieldPosition& fieldPosition) const
    976 {
    977     FieldPositionOnlyHandler handler(fieldPosition);
    978     return _format(number, appendTo, handler);
    979 }
    980 
    981 UnicodeString&
    982 DecimalFormat::format(  double number,
    983                         UnicodeString& appendTo,
    984                         FieldPositionIterator* posIter,
    985                         UErrorCode& status) const
    986 {
    987   FieldPositionIteratorHandler handler(posIter, status);
    988   return _format(number, appendTo, handler);
    989 }
    990 
    991 UnicodeString&
    992 DecimalFormat::_format( double number,
    993                         UnicodeString& appendTo,
    994                         FieldPositionHandler& handler) const
    995 {
    996     // Special case for NaN, sets the begin and end index to be the
    997     // the string length of localized name of NaN.
    998     // TODO:  let NaNs go through DigitList.
    999     if (uprv_isNaN(number))
   1000     {
   1001         int begin = appendTo.length();
   1002         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   1003 
   1004         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1005 
   1006         addPadding(appendTo, handler, 0, 0);
   1007         return appendTo;
   1008     }
   1009 
   1010     UErrorCode status = U_ZERO_ERROR;
   1011     DigitList digits;
   1012     digits.set(number);
   1013     _format(digits, appendTo, handler, status);
   1014     // No way to return status from here.
   1015     return appendTo;
   1016 }
   1017 
   1018 //------------------------------------------------------------------------------
   1019 
   1020 
   1021 UnicodeString&
   1022 DecimalFormat::format(const StringPiece &number,
   1023                       UnicodeString &toAppendTo,
   1024                       FieldPositionIterator *posIter,
   1025                       UErrorCode &status) const
   1026 {
   1027     DigitList   dnum;
   1028     dnum.set(number, status);
   1029     if (U_FAILURE(status)) {
   1030         return toAppendTo;
   1031     }
   1032     FieldPositionIteratorHandler handler(posIter, status);
   1033     _format(dnum, toAppendTo, handler, status);
   1034     return toAppendTo;
   1035 }
   1036 
   1037 
   1038 UnicodeString&
   1039 DecimalFormat::format(const DigitList &number,
   1040                       UnicodeString &appendTo,
   1041                       FieldPositionIterator *posIter,
   1042                       UErrorCode &status) const {
   1043     FieldPositionIteratorHandler handler(posIter, status);
   1044     _format(number, appendTo, handler, status);
   1045     return appendTo;
   1046 }
   1047 
   1048 
   1049 
   1050 UnicodeString&
   1051 DecimalFormat::format(const DigitList &number,
   1052                      UnicodeString& appendTo,
   1053                      FieldPosition& pos,
   1054                      UErrorCode &status) const {
   1055     FieldPositionOnlyHandler handler(pos);
   1056     _format(number, appendTo, handler, status);
   1057     return appendTo;
   1058 }
   1059 
   1060 
   1061 
   1062 UnicodeString&
   1063 DecimalFormat::_format(const DigitList &number,
   1064                         UnicodeString& appendTo,
   1065                         FieldPositionHandler& handler,
   1066                         UErrorCode &status) const
   1067 {
   1068     // Special case for NaN, sets the begin and end index to be the
   1069     // the string length of localized name of NaN.
   1070     if (number.isNaN())
   1071     {
   1072         int begin = appendTo.length();
   1073         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   1074 
   1075         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1076 
   1077         addPadding(appendTo, handler, 0, 0);
   1078         return appendTo;
   1079     }
   1080 
   1081     // Do this BEFORE checking to see if value is infinite or negative! Sets the
   1082     // begin and end index to be length of the string composed of
   1083     // localized name of Infinite and the positive/negative localized
   1084     // signs.
   1085 
   1086     DigitList adjustedNum(number);  // Copy, so we do not alter the original.
   1087     adjustedNum.setRoundingMode(fRoundingMode);
   1088     if (fMultiplier != NULL) {
   1089         adjustedNum.mult(*fMultiplier, status);
   1090     }
   1091 
   1092     /*
   1093      * Note: sign is important for zero as well as non-zero numbers.
   1094      * Proper detection of -0.0 is needed to deal with the
   1095      * issues raised by bugs 4106658, 4106667, and 4147706.  Liu 7/6/98.
   1096      */
   1097     UBool isNegative = !adjustedNum.isPositive();
   1098 
   1099     // Apply rounding after multiplier
   1100     if (fRoundingIncrement != NULL) {
   1101         adjustedNum.div(*fRoundingIncrement, status);
   1102         adjustedNum.toIntegralValue();
   1103         adjustedNum.mult(*fRoundingIncrement, status);
   1104         adjustedNum.trim();
   1105     }
   1106 
   1107     // Special case for INFINITE,
   1108     if (adjustedNum.isInfinite()) {
   1109         int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
   1110 
   1111         int begin = appendTo.length();
   1112         appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
   1113 
   1114         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1115 
   1116         int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
   1117 
   1118         addPadding(appendTo, handler, prefixLen, suffixLen);
   1119         return appendTo;
   1120     }
   1121 
   1122     if (fUseExponentialNotation || areSignificantDigitsUsed()) {
   1123         int32_t sigDigits = precision();
   1124         if (sigDigits > 0) {
   1125             adjustedNum.round(sigDigits);
   1126         }
   1127     } else {
   1128         // Fixed point format.  Round to a set number of fraction digits.
   1129         int32_t numFractionDigits = precision();
   1130         adjustedNum.roundFixedPoint(numFractionDigits);
   1131     }
   1132 
   1133     return subformat(appendTo, handler, adjustedNum, FALSE);
   1134 }
   1135 
   1136 
   1137 UnicodeString&
   1138 DecimalFormat::format(  const Formattable& obj,
   1139                         UnicodeString& appendTo,
   1140                         FieldPosition& fieldPosition,
   1141                         UErrorCode& status) const
   1142 {
   1143     return NumberFormat::format(obj, appendTo, fieldPosition, status);
   1144 }
   1145 
   1146 /**
   1147  * Return true if a grouping separator belongs at the given
   1148  * position, based on whether grouping is in use and the values of
   1149  * the primary and secondary grouping interval.
   1150  * @param pos the number of integer digits to the right of
   1151  * the current position.  Zero indicates the position after the
   1152  * rightmost integer digit.
   1153  * @return true if a grouping character belongs at the current
   1154  * position.
   1155  */
   1156 UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
   1157     UBool result = FALSE;
   1158     if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
   1159         if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
   1160             result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
   1161         } else {
   1162             result = pos % fGroupingSize == 0;
   1163         }
   1164     }
   1165     return result;
   1166 }
   1167 
   1168 //------------------------------------------------------------------------------
   1169 
   1170 /**
   1171  * Complete the formatting of a finite number.  On entry, the DigitList must
   1172  * be filled in with the correct digits.
   1173  */
   1174 UnicodeString&
   1175 DecimalFormat::subformat(UnicodeString& appendTo,
   1176                          FieldPositionHandler& handler,
   1177                          DigitList&     digits,
   1178                          UBool          isInteger) const
   1179 {
   1180     // char zero = '0';
   1181     // DigitList returns digits as '0' thru '9', so we will need to
   1182     // always need to subtract the character 0 to get the numeric value to use for indexing.
   1183 
   1184     UChar32 localizedDigits[10];
   1185     localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   1186     localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
   1187     localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
   1188     localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
   1189     localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
   1190     localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
   1191     localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
   1192     localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
   1193     localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
   1194     localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
   1195 
   1196     const UnicodeString *grouping ;
   1197     if(fCurrencySignCount > fgCurrencySignCountZero) {
   1198         grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
   1199     }else{
   1200         grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
   1201     }
   1202     const UnicodeString *decimal;
   1203     if(fCurrencySignCount > fgCurrencySignCountZero) {
   1204         decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
   1205     } else {
   1206         decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   1207     }
   1208     UBool useSigDig = areSignificantDigitsUsed();
   1209     int32_t maxIntDig = getMaximumIntegerDigits();
   1210     int32_t minIntDig = getMinimumIntegerDigits();
   1211 
   1212     // Appends the prefix.
   1213     double doubleValue = digits.getDouble();
   1214     int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
   1215 
   1216     if (fUseExponentialNotation)
   1217     {
   1218         int currentLength = appendTo.length();
   1219         int intBegin = currentLength;
   1220         int intEnd = -1;
   1221         int fracBegin = -1;
   1222 
   1223         int32_t minFracDig = 0;
   1224         if (useSigDig) {
   1225             maxIntDig = minIntDig = 1;
   1226             minFracDig = getMinimumSignificantDigits() - 1;
   1227         } else {
   1228             minFracDig = getMinimumFractionDigits();
   1229             if (maxIntDig > kMaxScientificIntegerDigits) {
   1230                 maxIntDig = 1;
   1231                 if (maxIntDig < minIntDig) {
   1232                     maxIntDig = minIntDig;
   1233                 }
   1234             }
   1235             if (maxIntDig > minIntDig) {
   1236                 minIntDig = 1;
   1237             }
   1238         }
   1239 
   1240         // Minimum integer digits are handled in exponential format by
   1241         // adjusting the exponent.  For example, 0.01234 with 3 minimum
   1242         // integer digits is "123.4E-4".
   1243 
   1244         // Maximum integer digits are interpreted as indicating the
   1245         // repeating range.  This is useful for engineering notation, in
   1246         // which the exponent is restricted to a multiple of 3.  For
   1247         // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
   1248         // If maximum integer digits are defined and are larger than
   1249         // minimum integer digits, then minimum integer digits are
   1250         // ignored.
   1251         digits.reduce();   // Removes trailing zero digits.
   1252         int32_t exponent = digits.getDecimalAt();
   1253         if (maxIntDig > 1 && maxIntDig != minIntDig) {
   1254             // A exponent increment is defined; adjust to it.
   1255             exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
   1256                                       : (exponent / maxIntDig) - 1;
   1257             exponent *= maxIntDig;
   1258         } else {
   1259             // No exponent increment is defined; use minimum integer digits.
   1260             // If none is specified, as in "#E0", generate 1 integer digit.
   1261             exponent -= (minIntDig > 0 || minFracDig > 0)
   1262                         ? minIntDig : 1;
   1263         }
   1264 
   1265         // We now output a minimum number of digits, and more if there
   1266         // are more digits, up to the maximum number of digits.  We
   1267         // place the decimal point after the "integer" digits, which
   1268         // are the first (decimalAt - exponent) digits.
   1269         int32_t minimumDigits =  minIntDig + minFracDig;
   1270         // The number of integer digits is handled specially if the number
   1271         // is zero, since then there may be no digits.
   1272         int32_t integerDigits = digits.isZero() ? minIntDig :
   1273             digits.getDecimalAt() - exponent;
   1274         int32_t totalDigits = digits.getCount();
   1275         if (minimumDigits > totalDigits)
   1276             totalDigits = minimumDigits;
   1277         if (integerDigits > totalDigits)
   1278             totalDigits = integerDigits;
   1279 
   1280         // totalDigits records total number of digits needs to be processed
   1281         int32_t i;
   1282         for (i=0; i<totalDigits; ++i)
   1283         {
   1284             if (i == integerDigits)
   1285             {
   1286                 intEnd = appendTo.length();
   1287                 handler.addAttribute(kIntegerField, intBegin, intEnd);
   1288 
   1289                 appendTo += *decimal;
   1290 
   1291                 fracBegin = appendTo.length();
   1292                 handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
   1293             }
   1294             // Restores the digit character or pads the buffer with zeros.
   1295             UChar32 c = (UChar32)((i < digits.getCount()) ?
   1296                           localizedDigits[digits.getDigitValue(i)] :
   1297                           localizedDigits[0]);
   1298             appendTo += c;
   1299         }
   1300 
   1301         currentLength = appendTo.length();
   1302 
   1303         if (intEnd < 0) {
   1304             handler.addAttribute(kIntegerField, intBegin, currentLength);
   1305         }
   1306         if (fracBegin > 0) {
   1307             handler.addAttribute(kFractionField, fracBegin, currentLength);
   1308         }
   1309 
   1310         // The exponent is output using the pattern-specified minimum
   1311         // exponent digits.  There is no maximum limit to the exponent
   1312         // digits, since truncating the exponent would appendTo in an
   1313         // unacceptable inaccuracy.
   1314         appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   1315 
   1316         handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
   1317         currentLength = appendTo.length();
   1318 
   1319         // For zero values, we force the exponent to zero.  We
   1320         // must do this here, and not earlier, because the value
   1321         // is used to determine integer digit count above.
   1322         if (digits.isZero())
   1323             exponent = 0;
   1324 
   1325         if (exponent < 0) {
   1326             appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   1327             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
   1328         } else if (fExponentSignAlwaysShown) {
   1329             appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   1330             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
   1331         }
   1332 
   1333         currentLength = appendTo.length();
   1334 
   1335         DigitList expDigits;
   1336         expDigits.set(exponent);
   1337         {
   1338             int expDig = fMinExponentDigits;
   1339             if (fUseExponentialNotation && expDig < 1) {
   1340                 expDig = 1;
   1341             }
   1342             for (i=expDigits.getDecimalAt(); i<expDig; ++i)
   1343                 appendTo += (localizedDigits[0]);
   1344         }
   1345         for (i=0; i<expDigits.getDecimalAt(); ++i)
   1346         {
   1347             UChar32 c = (UChar32)((i < expDigits.getCount()) ?
   1348                           localizedDigits[expDigits.getDigitValue(i)] :
   1349                           localizedDigits[0]);
   1350             appendTo += c;
   1351         }
   1352 
   1353         handler.addAttribute(kExponentField, currentLength, appendTo.length());
   1354     }
   1355     else  // Not using exponential notation
   1356     {
   1357         int currentLength = appendTo.length();
   1358         int intBegin = currentLength;
   1359 
   1360         int32_t sigCount = 0;
   1361         int32_t minSigDig = getMinimumSignificantDigits();
   1362         int32_t maxSigDig = getMaximumSignificantDigits();
   1363         if (!useSigDig) {
   1364             minSigDig = 0;
   1365             maxSigDig = INT32_MAX;
   1366         }
   1367 
   1368         // Output the integer portion.  Here 'count' is the total
   1369         // number of integer digits we will display, including both
   1370         // leading zeros required to satisfy getMinimumIntegerDigits,
   1371         // and actual digits present in the number.
   1372         int32_t count = useSigDig ?
   1373             _max(1, digits.getDecimalAt()) : minIntDig;
   1374         if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
   1375             count = digits.getDecimalAt();
   1376         }
   1377 
   1378         // Handle the case where getMaximumIntegerDigits() is smaller
   1379         // than the real number of integer digits.  If this is so, we
   1380         // output the least significant max integer digits.  For example,
   1381         // the value 1997 printed with 2 max integer digits is just "97".
   1382 
   1383         int32_t digitIndex = 0; // Index into digitList.fDigits[]
   1384         if (count > maxIntDig && maxIntDig >= 0) {
   1385             count = maxIntDig;
   1386             digitIndex = digits.getDecimalAt() - count;
   1387         }
   1388 
   1389         int32_t sizeBeforeIntegerPart = appendTo.length();
   1390 
   1391         int32_t i;
   1392         for (i=count-1; i>=0; --i)
   1393         {
   1394             if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
   1395                 sigCount < maxSigDig) {
   1396                 // Output a real digit
   1397                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
   1398                 ++sigCount;
   1399             }
   1400             else
   1401             {
   1402                 // Output a zero (leading or trailing)
   1403                 appendTo += localizedDigits[0];
   1404                 if (sigCount > 0) {
   1405                     ++sigCount;
   1406                 }
   1407             }
   1408 
   1409             // Output grouping separator if necessary.
   1410             if (isGroupingPosition(i)) {
   1411                 currentLength = appendTo.length();
   1412                 appendTo.append(*grouping);
   1413                 handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
   1414             }
   1415         }
   1416 
   1417         // TODO(dlf): this looks like it was a bug, we marked the int field as ending
   1418         // before the zero was generated.
   1419         // Record field information for caller.
   1420         // if (fieldPosition.getField() == NumberFormat::kIntegerField)
   1421         //     fieldPosition.setEndIndex(appendTo.length());
   1422 
   1423         // Determine whether or not there are any printable fractional
   1424         // digits.  If we've used up the digits we know there aren't.
   1425         UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
   1426             (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
   1427 
   1428         // If there is no fraction present, and we haven't printed any
   1429         // integer digits, then print a zero.  Otherwise we won't print
   1430         // _any_ digits, and we won't be able to parse this string.
   1431         if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
   1432             appendTo += localizedDigits[0];
   1433 
   1434         currentLength = appendTo.length();
   1435         handler.addAttribute(kIntegerField, intBegin, currentLength);
   1436 
   1437         // Output the decimal separator if we always do so.
   1438         if (fDecimalSeparatorAlwaysShown || fractionPresent) {
   1439             appendTo += *decimal;
   1440             handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
   1441             currentLength = appendTo.length();
   1442         }
   1443 
   1444         int fracBegin = currentLength;
   1445 
   1446         count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
   1447         if (useSigDig && (sigCount == maxSigDig ||
   1448                           (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
   1449             count = 0;
   1450         }
   1451 
   1452         for (i=0; i < count; ++i) {
   1453             // Here is where we escape from the loop.  We escape
   1454             // if we've output the maximum fraction digits
   1455             // (specified in the for expression above).  We also
   1456             // stop when we've output the minimum digits and
   1457             // either: we have an integer, so there is no
   1458             // fractional stuff to display, or we're out of
   1459             // significant digits.
   1460             if (!useSigDig && i >= getMinimumFractionDigits() &&
   1461                 (isInteger || digitIndex >= digits.getCount())) {
   1462                 break;
   1463             }
   1464 
   1465             // Output leading fractional zeros.  These are zeros
   1466             // that come after the decimal but before any
   1467             // significant digits.  These are only output if
   1468             // abs(number being formatted) < 1.0.
   1469             if (-1-i > (digits.getDecimalAt()-1)) {
   1470                 appendTo += localizedDigits[0];
   1471                 continue;
   1472             }
   1473 
   1474             // Output a digit, if we have any precision left, or a
   1475             // zero if we don't.  We don't want to output noise digits.
   1476             if (!isInteger && digitIndex < digits.getCount()) {
   1477                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
   1478             } else {
   1479                 appendTo += localizedDigits[0];
   1480             }
   1481 
   1482             // If we reach the maximum number of significant
   1483             // digits, or if we output all the real digits and
   1484             // reach the minimum, then we are done.
   1485             ++sigCount;
   1486             if (useSigDig &&
   1487                 (sigCount == maxSigDig ||
   1488                  (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
   1489                 break;
   1490             }
   1491         }
   1492 
   1493         handler.addAttribute(kFractionField, fracBegin, appendTo.length());
   1494     }
   1495 
   1496     int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
   1497 
   1498     addPadding(appendTo, handler, prefixLen, suffixLen);
   1499     return appendTo;
   1500 }
   1501 
   1502 /**
   1503  * Inserts the character fPad as needed to expand result to fFormatWidth.
   1504  * @param result the string to be padded
   1505  */
   1506 void DecimalFormat::addPadding(UnicodeString& appendTo,
   1507                                FieldPositionHandler& handler,
   1508                                int32_t prefixLen,
   1509                                int32_t suffixLen) const
   1510 {
   1511     if (fFormatWidth > 0) {
   1512         int32_t len = fFormatWidth - appendTo.length();
   1513         if (len > 0) {
   1514             UnicodeString padding;
   1515             for (int32_t i=0; i<len; ++i) {
   1516                 padding += fPad;
   1517             }
   1518             switch (fPadPosition) {
   1519             case kPadAfterPrefix:
   1520                 appendTo.insert(prefixLen, padding);
   1521                 break;
   1522             case kPadBeforePrefix:
   1523                 appendTo.insert(0, padding);
   1524                 break;
   1525             case kPadBeforeSuffix:
   1526                 appendTo.insert(appendTo.length() - suffixLen, padding);
   1527                 break;
   1528             case kPadAfterSuffix:
   1529                 appendTo += padding;
   1530                 break;
   1531             }
   1532             if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
   1533                 handler.shiftLast(len);
   1534             }
   1535         }
   1536     }
   1537 }
   1538 
   1539 //------------------------------------------------------------------------------
   1540 
   1541 void
   1542 DecimalFormat::parse(const UnicodeString& text,
   1543                      Formattable& result,
   1544                      UErrorCode& status) const
   1545 {
   1546     NumberFormat::parse(text, result, status);
   1547 }
   1548 
   1549 void
   1550 DecimalFormat::parse(const UnicodeString& text,
   1551                      Formattable& result,
   1552                      ParsePosition& parsePosition) const {
   1553     parse(text, result, parsePosition, FALSE);
   1554 }
   1555 
   1556 Formattable& DecimalFormat::parseCurrency(const UnicodeString& text,
   1557                                           Formattable& result,
   1558                                           ParsePosition& pos) const {
   1559     parse(text, result, pos, TRUE);
   1560     return result;
   1561 }
   1562 
   1563 /**
   1564  * Parses the given text as either a number or a currency amount.
   1565  * @param text the string to parse
   1566  * @param result output parameter for the result
   1567  * @param parsePosition input-output position; on input, the
   1568  * position within text to match; must have 0 <= pos.getIndex() <
   1569  * text.length(); on output, the position after the last matched
   1570  * character. If the parse fails, the position in unchanged upon
   1571  * output.
   1572  * @param parseCurrency if true, a currency amount is parsed;
   1573  * otherwise a Number is parsed
   1574  */
   1575 void DecimalFormat::parse(const UnicodeString& text,
   1576                           Formattable& result,
   1577                           ParsePosition& parsePosition,
   1578                           UBool parseCurrency) const {
   1579     int32_t backup;
   1580     int32_t i = backup = parsePosition.getIndex();
   1581 
   1582     // clear any old contents in the result.  In particular, clears any DigitList
   1583     //   that it may be holding.
   1584     result.setLong(0);
   1585 
   1586     // Handle NaN as a special case:
   1587 
   1588     // Skip padding characters, if around prefix
   1589     if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
   1590                              fPadPosition == kPadAfterPrefix)) {
   1591         i = skipPadding(text, i);
   1592     }
   1593     // If the text is composed of the representation of NaN, returns NaN.length
   1594     const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   1595     int32_t nanLen = (text.compare(i, nan->length(), *nan)
   1596                       ? 0 : nan->length());
   1597     if (nanLen) {
   1598         i += nanLen;
   1599         if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
   1600                                  fPadPosition == kPadAfterSuffix)) {
   1601             i = skipPadding(text, i);
   1602         }
   1603         parsePosition.setIndex(i);
   1604         result.setDouble(uprv_getNaN());
   1605         return;
   1606     }
   1607 
   1608     // NaN parse failed; start over
   1609     i = backup;
   1610 
   1611     // status is used to record whether a number is infinite.
   1612     UBool status[fgStatusLength];
   1613     UChar curbuf[4];
   1614     UChar* currency = parseCurrency ? curbuf : NULL;
   1615     DigitList *digits = new DigitList;
   1616     if (digits == NULL) {
   1617         return;    // no way to report error from here.
   1618     }
   1619 
   1620     if (fCurrencySignCount > fgCurrencySignCountZero) {
   1621         if (!parseForCurrency(text, parsePosition, *digits,
   1622                               status, currency)) {
   1623             delete digits;
   1624             return;
   1625         }
   1626     } else {
   1627         if (!subparse(text,
   1628                       fNegPrefixPattern, fNegSuffixPattern,
   1629                       fPosPrefixPattern, fPosSuffixPattern,
   1630                       FALSE, UCURR_SYMBOL_NAME,
   1631                       parsePosition, *digits, status, currency)) {
   1632             parsePosition.setIndex(backup);
   1633             delete digits;
   1634             return;
   1635         }
   1636     }
   1637 
   1638     // Handle infinity
   1639     if (status[fgStatusInfinite]) {
   1640         double inf = uprv_getInfinity();
   1641         result.setDouble(digits->isPositive() ? inf : -inf);
   1642         delete digits;    // TODO:  set the dl to infinity, and let it fall into the code below.
   1643     }
   1644 
   1645     else {
   1646 
   1647         if (fMultiplier != NULL) {
   1648             UErrorCode ec = U_ZERO_ERROR;
   1649             digits->div(*fMultiplier, ec);
   1650         }
   1651 
   1652         // Negative zero special case:
   1653         //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
   1654         //    if not parsing integerOnly, leave as -0, which a double can represent.
   1655         if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
   1656             digits->setPositive(TRUE);
   1657         }
   1658         result.adoptDigitList(digits);
   1659     }
   1660 
   1661     if (parseCurrency) {
   1662         UErrorCode ec = U_ZERO_ERROR;
   1663         Formattable n(result);
   1664         result.adoptObject(new CurrencyAmount(n, curbuf, ec));
   1665         U_ASSERT(U_SUCCESS(ec)); // should always succeed
   1666     }
   1667 }
   1668 
   1669 
   1670 
   1671 UBool
   1672 DecimalFormat::parseForCurrency(const UnicodeString& text,
   1673                                 ParsePosition& parsePosition,
   1674                                 DigitList& digits,
   1675                                 UBool* status,
   1676                                 UChar* currency) const {
   1677     int origPos = parsePosition.getIndex();
   1678     int maxPosIndex = origPos;
   1679     int maxErrorPos = -1;
   1680     // First, parse against current pattern.
   1681     // Since current pattern could be set by applyPattern(),
   1682     // it could be an arbitrary pattern, and it may not be the one
   1683     // defined in current locale.
   1684     UBool tmpStatus[fgStatusLength];
   1685     ParsePosition tmpPos(origPos);
   1686     DigitList tmpDigitList;
   1687     UBool found;
   1688     if (fStyle == NumberFormat::kPluralCurrencyStyle) {
   1689         found = subparse(text,
   1690                          fNegPrefixPattern, fNegSuffixPattern,
   1691                          fPosPrefixPattern, fPosSuffixPattern,
   1692                          TRUE, UCURR_LONG_NAME,
   1693                          tmpPos, tmpDigitList, tmpStatus, currency);
   1694     } else {
   1695         found = subparse(text,
   1696                          fNegPrefixPattern, fNegSuffixPattern,
   1697                          fPosPrefixPattern, fPosSuffixPattern,
   1698                          TRUE, UCURR_SYMBOL_NAME,
   1699                          tmpPos, tmpDigitList, tmpStatus, currency);
   1700     }
   1701     if (found) {
   1702         if (tmpPos.getIndex() > maxPosIndex) {
   1703             maxPosIndex = tmpPos.getIndex();
   1704             for (int32_t i = 0; i < fgStatusLength; ++i) {
   1705                 status[i] = tmpStatus[i];
   1706             }
   1707             digits = tmpDigitList;
   1708         }
   1709     } else {
   1710         maxErrorPos = tmpPos.getErrorIndex();
   1711     }
   1712     // Then, parse against affix patterns.
   1713     // Those are currency patterns and currency plural patterns.
   1714     int32_t pos = -1;
   1715     const UHashElement* element = NULL;
   1716     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   1717         const UHashTok keyTok = element->key;
   1718         const UHashTok valueTok = element->value;
   1719         const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
   1720         UBool tmpStatus[fgStatusLength];
   1721         ParsePosition tmpPos(origPos);
   1722         DigitList tmpDigitList;
   1723         UBool result = subparse(text,
   1724                                 &affixPtn->negPrefixPatternForCurrency,
   1725                                 &affixPtn->negSuffixPatternForCurrency,
   1726                                 &affixPtn->posPrefixPatternForCurrency,
   1727                                 &affixPtn->posSuffixPatternForCurrency,
   1728                                 TRUE, affixPtn->patternType,
   1729                                 tmpPos, tmpDigitList, tmpStatus, currency);
   1730         if (result) {
   1731             found = true;
   1732             if (tmpPos.getIndex() > maxPosIndex) {
   1733                 maxPosIndex = tmpPos.getIndex();
   1734                 for (int32_t i = 0; i < fgStatusLength; ++i) {
   1735                     status[i] = tmpStatus[i];
   1736                 }
   1737                 digits = tmpDigitList;
   1738             }
   1739         } else {
   1740             maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
   1741                           tmpPos.getErrorIndex() : maxErrorPos;
   1742         }
   1743     }
   1744     // Finally, parse against simple affix to find the match.
   1745     // For example, in TestMonster suite,
   1746     // if the to-be-parsed text is "-\u00A40,00".
   1747     // complexAffixCompare will not find match,
   1748     // since there is no ISO code matches "\u00A4",
   1749     // and the parse stops at "\u00A4".
   1750     // We will just use simple affix comparison (look for exact match)
   1751     // to pass it.
   1752     UBool tmpStatus_2[fgStatusLength];
   1753     ParsePosition tmpPos_2(origPos);
   1754     DigitList tmpDigitList_2;
   1755     // set currencySignCount to 0 so that compareAffix function will
   1756     // fall to compareSimpleAffix path, not compareComplexAffix path.
   1757     // ?? TODO: is it right? need "false"?
   1758     UBool result = subparse(text,
   1759                             &fNegativePrefix, &fNegativeSuffix,
   1760                             &fPositivePrefix, &fPositiveSuffix,
   1761                             FALSE, UCURR_SYMBOL_NAME,
   1762                             tmpPos_2, tmpDigitList_2, tmpStatus_2,
   1763                             currency);
   1764     if (result) {
   1765         if (tmpPos_2.getIndex() > maxPosIndex) {
   1766             maxPosIndex = tmpPos_2.getIndex();
   1767             for (int32_t i = 0; i < fgStatusLength; ++i) {
   1768                 status[i] = tmpStatus_2[i];
   1769             }
   1770             digits = tmpDigitList_2;
   1771         }
   1772         found = true;
   1773     } else {
   1774             maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
   1775                           tmpPos_2.getErrorIndex() : maxErrorPos;
   1776     }
   1777 
   1778     if (!found) {
   1779         //parsePosition.setIndex(origPos);
   1780         parsePosition.setErrorIndex(maxErrorPos);
   1781     } else {
   1782         parsePosition.setIndex(maxPosIndex);
   1783         parsePosition.setErrorIndex(-1);
   1784     }
   1785     return found;
   1786 }
   1787 
   1788 
   1789 /**
   1790  * Parse the given text into a number.  The text is parsed beginning at
   1791  * parsePosition, until an unparseable character is seen.
   1792  * @param text the string to parse.
   1793  * @param negPrefix negative prefix.
   1794  * @param negSuffix negative suffix.
   1795  * @param posPrefix positive prefix.
   1796  * @param posSuffix positive suffix.
   1797  * @param currencyParsing whether it is currency parsing or not.
   1798  * @param type the currency type to parse against, LONG_NAME only or not.
   1799  * @param parsePosition The position at which to being parsing.  Upon
   1800  * return, the first unparsed character.
   1801  * @param digits the DigitList to set to the parsed value.
   1802  * @param status output param containing boolean status flags indicating
   1803  * whether the value was infinite and whether it was positive.
   1804  * @param currency return value for parsed currency, for generic
   1805  * currency parsing mode, or NULL for normal parsing. In generic
   1806  * currency parsing mode, any currency is parsed, not just the
   1807  * currency that this formatter is set to.
   1808  */
   1809 UBool DecimalFormat::subparse(const UnicodeString& text,
   1810                               const UnicodeString* negPrefix,
   1811                               const UnicodeString* negSuffix,
   1812                               const UnicodeString* posPrefix,
   1813                               const UnicodeString* posSuffix,
   1814                               UBool currencyParsing,
   1815                               int8_t type,
   1816                               ParsePosition& parsePosition,
   1817                               DigitList& digits, UBool* status,
   1818                               UChar* currency) const
   1819 {
   1820     //  The parsing process builds up the number as char string, in the neutral format that
   1821     //  will be acceptable to the decNumber library, then at the end passes that string
   1822     //  off for conversion to a decNumber.
   1823     UErrorCode err = U_ZERO_ERROR;
   1824     CharString parsedNum;
   1825     digits.setToZero();
   1826 
   1827     int32_t position = parsePosition.getIndex();
   1828     int32_t oldStart = position;
   1829 
   1830     // Match padding before prefix
   1831     if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
   1832         position = skipPadding(text, position);
   1833     }
   1834 
   1835     // Match positive and negative prefixes; prefer longest match.
   1836     int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, currencyParsing, type, currency);
   1837     int32_t negMatch = compareAffix(text, position, TRUE, TRUE, negPrefix,currencyParsing,  type, currency);
   1838     if (posMatch >= 0 && negMatch >= 0) {
   1839         if (posMatch > negMatch) {
   1840             negMatch = -1;
   1841         } else if (negMatch > posMatch) {
   1842             posMatch = -1;
   1843         }
   1844     }
   1845     if (posMatch >= 0) {
   1846         position += posMatch;
   1847         parsedNum.append('+', err);
   1848     } else if (negMatch >= 0) {
   1849         position += negMatch;
   1850         parsedNum.append('-', err);
   1851     } else {
   1852         parsePosition.setErrorIndex(position);
   1853         return FALSE;
   1854     }
   1855 
   1856     // Match padding before prefix
   1857     if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
   1858         position = skipPadding(text, position);
   1859     }
   1860 
   1861     // process digits or Inf, find decimal position
   1862     const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
   1863     int32_t infLen = (text.compare(position, inf->length(), *inf)
   1864         ? 0 : inf->length());
   1865     position += infLen; // infLen is non-zero when it does equal to infinity
   1866     status[fgStatusInfinite] = (UBool)infLen;
   1867     if (infLen) {
   1868         parsedNum.append("Infinity", err);
   1869     } else {
   1870         // We now have a string of digits, possibly with grouping symbols,
   1871         // and decimal points.  We want to process these into a DigitList.
   1872         // We don't want to put a bunch of leading zeros into the DigitList
   1873         // though, so we keep track of the location of the decimal point,
   1874         // put only significant digits into the DigitList, and adjust the
   1875         // exponent as needed.
   1876 
   1877         UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   1878 
   1879         const UnicodeString *decimal;
   1880         if(fCurrencySignCount > fgCurrencySignCountZero) {
   1881             decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
   1882         } else {
   1883             decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   1884         }
   1885         const UnicodeString *grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
   1886         UBool sawDecimal = FALSE;
   1887         UBool sawDigit = FALSE;
   1888         int32_t backup = -1;
   1889         int32_t digit;
   1890         int32_t textLength = text.length(); // One less pointer to follow
   1891         int32_t groupingLen = grouping->length();
   1892         int32_t decimalLen = decimal->length();
   1893 
   1894         // We have to track digitCount ourselves, because digits.fCount will
   1895         // pin when the maximum allowable digits is reached.
   1896         int32_t digitCount = 0;
   1897 
   1898         for (; position < textLength; )
   1899         {
   1900             UChar32 ch = text.char32At(position);
   1901 
   1902             /* We recognize all digit ranges, not only the Latin digit range
   1903              * '0'..'9'.  We do so by using the Character.digit() method,
   1904              * which converts a valid Unicode digit to the range 0..9.
   1905              *
   1906              * The character 'ch' may be a digit.  If so, place its value
   1907              * from 0 to 9 in 'digit'.  First try using the locale digit,
   1908              * which may or MAY NOT be a standard Unicode digit range.  If
   1909              * this fails, try using the standard Unicode digit ranges by
   1910              * calling Character.digit().  If this also fails, digit will
   1911              * have a value outside the range 0..9.
   1912              */
   1913             digit = ch - zero;
   1914             if (digit < 0 || digit > 9)
   1915             {
   1916                 digit = u_charDigitValue(ch);
   1917             }
   1918 
   1919             // As a last resort, look through the localized digits if the zero digit
   1920             // is not a "standard" Unicode digit.
   1921             if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
   1922                 digit = 0;
   1923                 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
   1924                     break;
   1925                 }
   1926                 for (digit = 1 ; digit < 10 ; digit++ ) {
   1927                     if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
   1928                         break;
   1929                     }
   1930                 }
   1931             }
   1932 
   1933             if (digit >= 0 && digit <= 9)
   1934             {
   1935                 // Cancel out backup setting (see grouping handler below)
   1936                 backup = -1;
   1937 
   1938                 sawDigit = TRUE;
   1939                 // output a regular non-zero digit.
   1940                 ++digitCount;
   1941                 parsedNum.append((char)(digit + '0'), err);
   1942                 position += U16_LENGTH(ch);
   1943             }
   1944             else if (groupingLen > 0 && !text.compare(position, groupingLen, *grouping) && isGroupingUsed())
   1945             {
   1946                 // Ignore grouping characters, if we are using them, but require
   1947                 // that they be followed by a digit.  Otherwise we backup and
   1948                 // reprocess them.
   1949                 backup = position;
   1950                 position += groupingLen;
   1951             }
   1952             else if (!text.compare(position, decimalLen, *decimal) && !isParseIntegerOnly() && !sawDecimal)
   1953             {
   1954                 // If we're only parsing integers, or if we ALREADY saw the
   1955                 // decimal, then don't parse this one.
   1956 
   1957                 parsedNum.append('.', err);
   1958                 sawDecimal = TRUE;
   1959                 position += decimalLen;
   1960             }
   1961             else {
   1962                 const UnicodeString *tmp;
   1963                 tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   1964                 if (!text.compare(position, tmp->length(), *tmp))    // error code is set below if !sawDigit
   1965                 {
   1966                     // Parse sign, if present
   1967                     int32_t pos = position + tmp->length();
   1968                     char exponentSign = '+';
   1969 
   1970                     if (pos < textLength)
   1971                     {
   1972                         tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   1973                         if (!text.compare(pos, tmp->length(), *tmp))
   1974                         {
   1975                             pos += tmp->length();
   1976                         }
   1977                         else {
   1978                             tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   1979                             if (!text.compare(pos, tmp->length(), *tmp))
   1980                             {
   1981                                 exponentSign = '-';
   1982                                 pos += tmp->length();
   1983                             }
   1984                         }
   1985                     }
   1986 
   1987                     UBool sawExponentDigit = FALSE;
   1988                     while (pos < textLength) {
   1989                         ch = text[(int32_t)pos];
   1990                         digit = ch - zero;
   1991 
   1992                         if (digit < 0 || digit > 9) {
   1993                             digit = u_charDigitValue(ch);
   1994                         }
   1995                         if (0 <= digit && digit <= 9) {
   1996                             if (!sawExponentDigit) {
   1997                                 parsedNum.append('E', err);
   1998                                 parsedNum.append(exponentSign, err);
   1999                                 sawExponentDigit = TRUE;
   2000                             }
   2001                             ++pos;
   2002                             parsedNum.append((char)(digit + '0'), err);
   2003                         } else {
   2004                             break;
   2005                         }
   2006                     }
   2007 
   2008                     if (sawExponentDigit) {
   2009                         position = pos; // Advance past the exponent
   2010                     }
   2011 
   2012                     break; // Whether we fail or succeed, we exit this loop
   2013                 }
   2014                 else {
   2015                     break;
   2016                 }
   2017             }
   2018         }
   2019 
   2020         if (backup != -1)
   2021         {
   2022             position = backup;
   2023         }
   2024 
   2025         // If there was no decimal point we have an integer
   2026 
   2027         // If none of the text string was recognized.  For example, parse
   2028         // "x" with pattern "#0.00" (return index and error index both 0)
   2029         // parse "$" with pattern "$#0.00". (return index 0 and error index
   2030         // 1).
   2031         if (!sawDigit && digitCount == 0) {
   2032             parsePosition.setIndex(oldStart);
   2033             parsePosition.setErrorIndex(oldStart);
   2034             return FALSE;
   2035         }
   2036     }
   2037 
   2038     // Match padding before suffix
   2039     if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
   2040         position = skipPadding(text, position);
   2041     }
   2042 
   2043     // Match positive and negative suffixes; prefer longest match.
   2044     if (posMatch >= 0) {
   2045         posMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, currencyParsing, type, currency);
   2046     }
   2047     if (negMatch >= 0) {
   2048         negMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, currencyParsing, type, currency);
   2049     }
   2050     if (posMatch >= 0 && negMatch >= 0) {
   2051         if (posMatch > negMatch) {
   2052             negMatch = -1;
   2053         } else if (negMatch > posMatch) {
   2054             posMatch = -1;
   2055         }
   2056     }
   2057 
   2058     // Fail if neither or both
   2059     if ((posMatch >= 0) == (negMatch >= 0)) {
   2060         parsePosition.setErrorIndex(position);
   2061         return FALSE;
   2062     }
   2063 
   2064     position += (posMatch>=0 ? posMatch : negMatch);
   2065 
   2066     // Match padding before suffix
   2067     if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
   2068         position = skipPadding(text, position);
   2069     }
   2070 
   2071     parsePosition.setIndex(position);
   2072 
   2073     parsedNum.data()[0] = (posMatch >= 0) ? '+' : '-';
   2074 
   2075     if(parsePosition.getIndex() == oldStart)
   2076     {
   2077         parsePosition.setErrorIndex(position);
   2078         return FALSE;
   2079     }
   2080     digits.set(parsedNum.toStringPiece(), err);
   2081 
   2082     if (U_FAILURE(err)) {
   2083         parsePosition.setErrorIndex(position);
   2084         return FALSE;
   2085     }
   2086     return TRUE;
   2087 }
   2088 
   2089 /**
   2090  * Starting at position, advance past a run of pad characters, if any.
   2091  * Return the index of the first character after position that is not a pad
   2092  * character.  Result is >= position.
   2093  */
   2094 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
   2095     int32_t padLen = U16_LENGTH(fPad);
   2096     while (position < text.length() &&
   2097            text.char32At(position) == fPad) {
   2098         position += padLen;
   2099     }
   2100     return position;
   2101 }
   2102 
   2103 /**
   2104  * Return the length matched by the given affix, or -1 if none.
   2105  * Runs of white space in the affix, match runs of white space in
   2106  * the input.  Pattern white space and input white space are
   2107  * determined differently; see code.
   2108  * @param text input text
   2109  * @param pos offset into input at which to begin matching
   2110  * @param isNegative
   2111  * @param isPrefix
   2112  * @param affixPat affix pattern used for currency affix comparison.
   2113  * @param currencyParsing whether it is currency parsing or not
   2114  * @param type the currency type to parse against, LONG_NAME only or not.
   2115  * @param currency return value for parsed currency, for generic
   2116  * currency parsing mode, or null for normal parsing. In generic
   2117  * currency parsing mode, any currency is parsed, not just the
   2118  * currency that this formatter is set to.
   2119  * @return length of input that matches, or -1 if match failure
   2120  */
   2121 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
   2122                                     int32_t pos,
   2123                                     UBool isNegative,
   2124                                     UBool isPrefix,
   2125                                     const UnicodeString* affixPat,
   2126                                     UBool currencyParsing,
   2127                                     int8_t type,
   2128                                     UChar* currency) const
   2129 {
   2130     const UnicodeString *patternToCompare;
   2131     if (fCurrencyChoice != NULL || currency != NULL ||
   2132         (fCurrencySignCount > fgCurrencySignCountZero && currencyParsing)) {
   2133 
   2134         if (affixPat != NULL) {
   2135             return compareComplexAffix(*affixPat, text, pos, type, currency);
   2136         }
   2137     }
   2138 
   2139     if (isNegative) {
   2140         if (isPrefix) {
   2141             patternToCompare = &fNegativePrefix;
   2142         }
   2143         else {
   2144             patternToCompare = &fNegativeSuffix;
   2145         }
   2146     }
   2147     else {
   2148         if (isPrefix) {
   2149             patternToCompare = &fPositivePrefix;
   2150         }
   2151         else {
   2152             patternToCompare = &fPositiveSuffix;
   2153         }
   2154     }
   2155     return compareSimpleAffix(*patternToCompare, text, pos);
   2156 }
   2157 
   2158 /**
   2159  * Return the length matched by the given affix, or -1 if none.
   2160  * Runs of white space in the affix, match runs of white space in
   2161  * the input.  Pattern white space and input white space are
   2162  * determined differently; see code.
   2163  * @param affix pattern string, taken as a literal
   2164  * @param input input text
   2165  * @param pos offset into input at which to begin matching
   2166  * @return length of input that matches, or -1 if match failure
   2167  */
   2168 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
   2169                                           const UnicodeString& input,
   2170                                           int32_t pos) {
   2171     int32_t start = pos;
   2172     for (int32_t i=0; i<affix.length(); ) {
   2173         UChar32 c = affix.char32At(i);
   2174         int32_t len = U16_LENGTH(c);
   2175         if (uprv_isRuleWhiteSpace(c)) {
   2176             // We may have a pattern like: \u200F \u0020
   2177             //        and input text like: \u200F \u0020
   2178             // Note that U+200F and U+0020 are RuleWhiteSpace but only
   2179             // U+0020 is UWhiteSpace.  So we have to first do a direct
   2180             // match of the run of RULE whitespace in the pattern,
   2181             // then match any extra characters.
   2182             UBool literalMatch = FALSE;
   2183             while (pos < input.length() &&
   2184                    input.char32At(pos) == c) {
   2185                 literalMatch = TRUE;
   2186                 i += len;
   2187                 pos += len;
   2188                 if (i == affix.length()) {
   2189                     break;
   2190                 }
   2191                 c = affix.char32At(i);
   2192                 len = U16_LENGTH(c);
   2193                 if (!uprv_isRuleWhiteSpace(c)) {
   2194                     break;
   2195                 }
   2196             }
   2197 
   2198             // Advance over run in pattern
   2199             i = skipRuleWhiteSpace(affix, i);
   2200 
   2201             // Advance over run in input text
   2202             // Must see at least one white space char in input,
   2203             // unless we've already matched some characters literally.
   2204             int32_t s = pos;
   2205             pos = skipUWhiteSpace(input, pos);
   2206             if (pos == s && !literalMatch) {
   2207                 return -1;
   2208             }
   2209 
   2210             // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
   2211             // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
   2212             // is also in the affix.
   2213             i = skipUWhiteSpace(affix, i);
   2214         } else {
   2215             if (pos < input.length() &&
   2216                 input.char32At(pos) == c) {
   2217                 i += len;
   2218                 pos += len;
   2219             } else {
   2220                 return -1;
   2221             }
   2222         }
   2223     }
   2224     return pos - start;
   2225 }
   2226 
   2227 /**
   2228  * Skip over a run of zero or more isRuleWhiteSpace() characters at
   2229  * pos in text.
   2230  */
   2231 int32_t DecimalFormat::skipRuleWhiteSpace(const UnicodeString& text, int32_t pos) {
   2232     while (pos < text.length()) {
   2233         UChar32 c = text.char32At(pos);
   2234         if (!uprv_isRuleWhiteSpace(c)) {
   2235             break;
   2236         }
   2237         pos += U16_LENGTH(c);
   2238     }
   2239     return pos;
   2240 }
   2241 
   2242 /**
   2243  * Skip over a run of zero or more isUWhiteSpace() characters at pos
   2244  * in text.
   2245  */
   2246 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
   2247     while (pos < text.length()) {
   2248         UChar32 c = text.char32At(pos);
   2249         if (!u_isUWhiteSpace(c)) {
   2250             break;
   2251         }
   2252         pos += U16_LENGTH(c);
   2253     }
   2254     return pos;
   2255 }
   2256 
   2257 /**
   2258  * Return the length matched by the given affix, or -1 if none.
   2259  * @param affixPat pattern string
   2260  * @param input input text
   2261  * @param pos offset into input at which to begin matching
   2262  * @param type the currency type to parse against, LONG_NAME only or not.
   2263  * @param currency return value for parsed currency, for generic
   2264  * currency parsing mode, or null for normal parsing. In generic
   2265  * currency parsing mode, any currency is parsed, not just the
   2266  * currency that this formatter is set to.
   2267  * @return length of input that matches, or -1 if match failure
   2268  */
   2269 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
   2270                                            const UnicodeString& text,
   2271                                            int32_t pos,
   2272                                            int8_t type,
   2273                                            UChar* currency) const
   2274 {
   2275     int32_t start = pos;
   2276     U_ASSERT(currency != NULL ||
   2277              (fCurrencyChoice != NULL && *getCurrency() != 0) ||
   2278              fCurrencySignCount > fgCurrencySignCountZero);
   2279 
   2280     for (int32_t i=0;
   2281          i<affixPat.length() && pos >= 0; ) {
   2282         UChar32 c = affixPat.char32At(i);
   2283         i += U16_LENGTH(c);
   2284 
   2285         if (c == kQuote) {
   2286             U_ASSERT(i <= affixPat.length());
   2287             c = affixPat.char32At(i);
   2288             i += U16_LENGTH(c);
   2289 
   2290             const UnicodeString* affix = NULL;
   2291 
   2292             switch (c) {
   2293             case kCurrencySign: {
   2294                 // since the currency names in choice format is saved
   2295                 // the same way as other currency names,
   2296                 // do not need to do currency choice parsing here.
   2297                 // the general currency parsing parse against all names,
   2298                 // including names in choice format.
   2299                 UBool intl = i<affixPat.length() &&
   2300                     affixPat.char32At(i) == kCurrencySign;
   2301                 if (intl) {
   2302                     ++i;
   2303                 }
   2304                 UBool plural = i<affixPat.length() &&
   2305                     affixPat.char32At(i) == kCurrencySign;
   2306                 if (plural) {
   2307                     ++i;
   2308                     intl = FALSE;
   2309                 }
   2310                 // Parse generic currency -- anything for which we
   2311                 // have a display name, or any 3-letter ISO code.
   2312                 // Try to parse display name for our locale; first
   2313                 // determine our locale.
   2314                 const char* loc = fCurrencyPluralInfo->getLocale().getName();
   2315                 ParsePosition ppos(pos);
   2316                 UChar curr[4];
   2317                 UErrorCode ec = U_ZERO_ERROR;
   2318                 // Delegate parse of display name => ISO code to Currency
   2319                 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
   2320 
   2321                 // If parse succeeds, populate currency[0]
   2322                 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
   2323                     if (currency) {
   2324                         u_strcpy(currency, curr);
   2325                     }
   2326                     pos = ppos.getIndex();
   2327                 } else {
   2328                     pos = -1;
   2329                 }
   2330                 continue;
   2331             }
   2332             case kPatternPercent:
   2333                 affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   2334                 break;
   2335             case kPatternPerMill:
   2336                 affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   2337                 break;
   2338             case kPatternPlus:
   2339                 affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   2340                 break;
   2341             case kPatternMinus:
   2342                 affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   2343                 break;
   2344             default:
   2345                 // fall through to affix!=0 test, which will fail
   2346                 break;
   2347             }
   2348 
   2349             if (affix != NULL) {
   2350                 pos = match(text, pos, *affix);
   2351                 continue;
   2352             }
   2353         }
   2354 
   2355         pos = match(text, pos, c);
   2356         if (uprv_isRuleWhiteSpace(c)) {
   2357             i = skipRuleWhiteSpace(affixPat, i);
   2358         }
   2359     }
   2360     return pos - start;
   2361 }
   2362 
   2363 /**
   2364  * Match a single character at text[pos] and return the index of the
   2365  * next character upon success.  Return -1 on failure.  If
   2366  * isRuleWhiteSpace(ch) then match a run of white space in text.
   2367  */
   2368 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
   2369     if (uprv_isRuleWhiteSpace(ch)) {
   2370         // Advance over run of white space in input text
   2371         // Must see at least one white space char in input
   2372         int32_t s = pos;
   2373         pos = skipRuleWhiteSpace(text, pos);
   2374         if (pos == s) {
   2375             return -1;
   2376         }
   2377         return pos;
   2378     }
   2379     return (pos >= 0 && text.char32At(pos) == ch) ?
   2380         (pos + U16_LENGTH(ch)) : -1;
   2381 }
   2382 
   2383 /**
   2384  * Match a string at text[pos] and return the index of the next
   2385  * character upon success.  Return -1 on failure.  Match a run of
   2386  * white space in str with a run of white space in text.
   2387  */
   2388 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
   2389     for (int32_t i=0; i<str.length() && pos >= 0; ) {
   2390         UChar32 ch = str.char32At(i);
   2391         i += U16_LENGTH(ch);
   2392         if (uprv_isRuleWhiteSpace(ch)) {
   2393             i = skipRuleWhiteSpace(str, i);
   2394         }
   2395         pos = match(text, pos, ch);
   2396     }
   2397     return pos;
   2398 }
   2399 
   2400 //------------------------------------------------------------------------------
   2401 // Gets the pointer to the localized decimal format symbols
   2402 
   2403 const DecimalFormatSymbols*
   2404 DecimalFormat::getDecimalFormatSymbols() const
   2405 {
   2406     return fSymbols;
   2407 }
   2408 
   2409 //------------------------------------------------------------------------------
   2410 // De-owning the current localized symbols and adopt the new symbols.
   2411 
   2412 void
   2413 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
   2414 {
   2415     if (symbolsToAdopt == NULL) {
   2416         return; // do not allow caller to set fSymbols to NULL
   2417     }
   2418 
   2419     UBool sameSymbols = FALSE;
   2420     if (fSymbols != NULL) {
   2421         sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
   2422             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
   2423             getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
   2424             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
   2425         delete fSymbols;
   2426     }
   2427 
   2428     fSymbols = symbolsToAdopt;
   2429     if (!sameSymbols) {
   2430         // If the currency symbols are the same, there is no need to recalculate.
   2431         setCurrencyForSymbols();
   2432     }
   2433     expandAffixes(NULL);
   2434 }
   2435 //------------------------------------------------------------------------------
   2436 // Setting the symbols is equlivalent to adopting a newly created localized
   2437 // symbols.
   2438 
   2439 void
   2440 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
   2441 {
   2442     adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
   2443 }
   2444 
   2445 
   2446 const CurrencyPluralInfo*
   2447 DecimalFormat::getCurrencyPluralInfo(void) const
   2448 {
   2449     return fCurrencyPluralInfo;
   2450 }
   2451 
   2452 
   2453 void
   2454 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
   2455 {
   2456     if (toAdopt != NULL) {
   2457         delete fCurrencyPluralInfo;
   2458         fCurrencyPluralInfo = toAdopt;
   2459         // re-set currency affix patterns and currency affixes.
   2460         if (fCurrencySignCount > fgCurrencySignCountZero) {
   2461             UErrorCode status = U_ZERO_ERROR;
   2462             if (fAffixPatternsForCurrency) {
   2463                 deleteHashForAffixPattern();
   2464             }
   2465             setupCurrencyAffixPatterns(status);
   2466             if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
   2467                 // only setup the affixes of the plural pattern.
   2468                 setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
   2469             }
   2470         }
   2471     }
   2472 }
   2473 
   2474 void
   2475 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
   2476 {
   2477     adoptCurrencyPluralInfo(info.clone());
   2478 }
   2479 
   2480 
   2481 /**
   2482  * Update the currency object to match the symbols.  This method
   2483  * is used only when the caller has passed in a symbols object
   2484  * that may not be the default object for its locale.
   2485  */
   2486 void
   2487 DecimalFormat::setCurrencyForSymbols() {
   2488     /*Bug 4212072
   2489       Update the affix strings accroding to symbols in order to keep
   2490       the affix strings up to date.
   2491       [Richard/GCL]
   2492     */
   2493 
   2494     // With the introduction of the Currency object, the currency
   2495     // symbols in the DFS object are ignored.  For backward
   2496     // compatibility, we check any explicitly set DFS object.  If it
   2497     // is a default symbols object for its locale, we change the
   2498     // currency object to one for that locale.  If it is custom,
   2499     // we set the currency to null.
   2500     UErrorCode ec = U_ZERO_ERROR;
   2501     const UChar* c = NULL;
   2502     const char* loc = fSymbols->getLocale().getName();
   2503     UChar intlCurrencySymbol[4];
   2504     ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
   2505     UnicodeString currencySymbol;
   2506 
   2507     uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
   2508     if (U_SUCCESS(ec)
   2509         && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
   2510         && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == intlCurrencySymbol)
   2511     {
   2512         // Trap an error in mapping locale to currency.  If we can't
   2513         // map, then don't fail and set the currency to "".
   2514         c = intlCurrencySymbol;
   2515     }
   2516     ec = U_ZERO_ERROR; // reset local error code!
   2517     setCurrencyInternally(c, ec);
   2518 }
   2519 
   2520 
   2521 //------------------------------------------------------------------------------
   2522 // Gets the positive prefix of the number pattern.
   2523 
   2524 UnicodeString&
   2525 DecimalFormat::getPositivePrefix(UnicodeString& result) const
   2526 {
   2527     result = fPositivePrefix;
   2528     return result;
   2529 }
   2530 
   2531 //------------------------------------------------------------------------------
   2532 // Sets the positive prefix of the number pattern.
   2533 
   2534 void
   2535 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
   2536 {
   2537     fPositivePrefix = newValue;
   2538     delete fPosPrefixPattern;
   2539     fPosPrefixPattern = 0;
   2540 }
   2541 
   2542 //------------------------------------------------------------------------------
   2543 // Gets the negative prefix  of the number pattern.
   2544 
   2545 UnicodeString&
   2546 DecimalFormat::getNegativePrefix(UnicodeString& result) const
   2547 {
   2548     result = fNegativePrefix;
   2549     return result;
   2550 }
   2551 
   2552 //------------------------------------------------------------------------------
   2553 // Gets the negative prefix  of the number pattern.
   2554 
   2555 void
   2556 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
   2557 {
   2558     fNegativePrefix = newValue;
   2559     delete fNegPrefixPattern;
   2560     fNegPrefixPattern = 0;
   2561 }
   2562 
   2563 //------------------------------------------------------------------------------
   2564 // Gets the positive suffix of the number pattern.
   2565 
   2566 UnicodeString&
   2567 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
   2568 {
   2569     result = fPositiveSuffix;
   2570     return result;
   2571 }
   2572 
   2573 //------------------------------------------------------------------------------
   2574 // Sets the positive suffix of the number pattern.
   2575 
   2576 void
   2577 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
   2578 {
   2579     fPositiveSuffix = newValue;
   2580     delete fPosSuffixPattern;
   2581     fPosSuffixPattern = 0;
   2582 }
   2583 
   2584 //------------------------------------------------------------------------------
   2585 // Gets the negative suffix of the number pattern.
   2586 
   2587 UnicodeString&
   2588 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
   2589 {
   2590     result = fNegativeSuffix;
   2591     return result;
   2592 }
   2593 
   2594 //------------------------------------------------------------------------------
   2595 // Sets the negative suffix of the number pattern.
   2596 
   2597 void
   2598 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
   2599 {
   2600     fNegativeSuffix = newValue;
   2601     delete fNegSuffixPattern;
   2602     fNegSuffixPattern = 0;
   2603 }
   2604 
   2605 //------------------------------------------------------------------------------
   2606 // Gets the multiplier of the number pattern.
   2607 //   Multipliers are stored as decimal numbers (DigitLists) because that
   2608 //      is the most convenient for muliplying or dividing the numbers to be formatted.
   2609 //   A NULL multiplier implies one, and the scaling operations are skipped.
   2610 
   2611 int32_t
   2612 DecimalFormat::getMultiplier() const
   2613 {
   2614     if (fMultiplier == NULL) {
   2615         return 1;
   2616     } else {
   2617         return fMultiplier->getLong();
   2618     }
   2619 }
   2620 
   2621 //------------------------------------------------------------------------------
   2622 // Sets the multiplier of the number pattern.
   2623 void
   2624 DecimalFormat::setMultiplier(int32_t newValue)
   2625 {
   2626 //  if (newValue == 0) {
   2627 //      throw new IllegalArgumentException("Bad multiplier: " + newValue);
   2628 //  }
   2629     if (newValue == 0) {
   2630         newValue = 1;     // one being the benign default value for a multiplier.
   2631     }
   2632     if (newValue == 1) {
   2633         delete fMultiplier;
   2634         fMultiplier = NULL;
   2635     } else {
   2636         if (fMultiplier == NULL) {
   2637             fMultiplier = new DigitList;
   2638         }
   2639         if (fMultiplier != NULL) {
   2640             fMultiplier->set(newValue);
   2641         }
   2642     }
   2643 }
   2644 
   2645 /**
   2646  * Get the rounding increment.
   2647  * @return A positive rounding increment, or 0.0 if rounding
   2648  * is not in effect.
   2649  * @see #setRoundingIncrement
   2650  * @see #getRoundingMode
   2651  * @see #setRoundingMode
   2652  */
   2653 double DecimalFormat::getRoundingIncrement() const {
   2654     if (fRoundingIncrement == NULL) {
   2655         return 0.0;
   2656     } else {
   2657         return fRoundingIncrement->getDouble();
   2658     }
   2659 }
   2660 
   2661 /**
   2662  * Set the rounding increment.  This method also controls whether
   2663  * rounding is enabled.
   2664  * @param newValue A positive rounding increment, or 0.0 to disable rounding.
   2665  * Negative increments are equivalent to 0.0.
   2666  * @see #getRoundingIncrement
   2667  * @see #getRoundingMode
   2668  * @see #setRoundingMode
   2669  */
   2670 void DecimalFormat::setRoundingIncrement(double newValue) {
   2671     if (newValue > 0.0) {
   2672         if (fRoundingIncrement == NULL) {
   2673             fRoundingIncrement = new DigitList();
   2674         }
   2675         if (fRoundingIncrement != NULL) {
   2676             fRoundingIncrement->set(newValue);
   2677             return;
   2678         }
   2679     }
   2680     // These statements are executed if newValue is less than 0.0
   2681     // or fRoundingIncrement could not be created.
   2682     delete fRoundingIncrement;
   2683     fRoundingIncrement = NULL;
   2684 }
   2685 
   2686 /**
   2687  * Get the rounding mode.
   2688  * @return A rounding mode
   2689  * @see #setRoundingIncrement
   2690  * @see #getRoundingIncrement
   2691  * @see #setRoundingMode
   2692  */
   2693 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
   2694     return fRoundingMode;
   2695 }
   2696 
   2697 /**
   2698  * Set the rounding mode.  This has no effect unless the rounding
   2699  * increment is greater than zero.
   2700  * @param roundingMode A rounding mode
   2701  * @see #setRoundingIncrement
   2702  * @see #getRoundingIncrement
   2703  * @see #getRoundingMode
   2704  */
   2705 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
   2706     fRoundingMode = roundingMode;
   2707 }
   2708 
   2709 /**
   2710  * Get the width to which the output of <code>format()</code> is padded.
   2711  * @return the format width, or zero if no padding is in effect
   2712  * @see #setFormatWidth
   2713  * @see #getPadCharacter
   2714  * @see #setPadCharacter
   2715  * @see #getPadPosition
   2716  * @see #setPadPosition
   2717  */
   2718 int32_t DecimalFormat::getFormatWidth() const {
   2719     return fFormatWidth;
   2720 }
   2721 
   2722 /**
   2723  * Set the width to which the output of <code>format()</code> is padded.
   2724  * This method also controls whether padding is enabled.
   2725  * @param width the width to which to pad the result of
   2726  * <code>format()</code>, or zero to disable padding.  A negative
   2727  * width is equivalent to 0.
   2728  * @see #getFormatWidth
   2729  * @see #getPadCharacter
   2730  * @see #setPadCharacter
   2731  * @see #getPadPosition
   2732  * @see #setPadPosition
   2733  */
   2734 void DecimalFormat::setFormatWidth(int32_t width) {
   2735     fFormatWidth = (width > 0) ? width : 0;
   2736 }
   2737 
   2738 UnicodeString DecimalFormat::getPadCharacterString() const {
   2739     return fPad;
   2740 }
   2741 
   2742 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
   2743     if (padChar.length() > 0) {
   2744         fPad = padChar.char32At(0);
   2745     }
   2746     else {
   2747         fPad = kDefaultPad;
   2748     }
   2749 }
   2750 
   2751 /**
   2752  * Get the position at which padding will take place.  This is the location
   2753  * at which padding will be inserted if the result of <code>format()</code>
   2754  * is shorter than the format width.
   2755  * @return the pad position, one of <code>kPadBeforePrefix</code>,
   2756  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   2757  * <code>kPadAfterSuffix</code>.
   2758  * @see #setFormatWidth
   2759  * @see #getFormatWidth
   2760  * @see #setPadCharacter
   2761  * @see #getPadCharacter
   2762  * @see #setPadPosition
   2763  * @see #kPadBeforePrefix
   2764  * @see #kPadAfterPrefix
   2765  * @see #kPadBeforeSuffix
   2766  * @see #kPadAfterSuffix
   2767  */
   2768 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
   2769     return fPadPosition;
   2770 }
   2771 
   2772 /**
   2773  * <strong><font face=helvetica color=red>NEW</font></strong>
   2774  * Set the position at which padding will take place.  This is the location
   2775  * at which padding will be inserted if the result of <code>format()</code>
   2776  * is shorter than the format width.  This has no effect unless padding is
   2777  * enabled.
   2778  * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
   2779  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   2780  * <code>kPadAfterSuffix</code>.
   2781  * @see #setFormatWidth
   2782  * @see #getFormatWidth
   2783  * @see #setPadCharacter
   2784  * @see #getPadCharacter
   2785  * @see #getPadPosition
   2786  * @see #kPadBeforePrefix
   2787  * @see #kPadAfterPrefix
   2788  * @see #kPadBeforeSuffix
   2789  * @see #kPadAfterSuffix
   2790  */
   2791 void DecimalFormat::setPadPosition(EPadPosition padPos) {
   2792     fPadPosition = padPos;
   2793 }
   2794 
   2795 /**
   2796  * Return whether or not scientific notation is used.
   2797  * @return TRUE if this object formats and parses scientific notation
   2798  * @see #setScientificNotation
   2799  * @see #getMinimumExponentDigits
   2800  * @see #setMinimumExponentDigits
   2801  * @see #isExponentSignAlwaysShown
   2802  * @see #setExponentSignAlwaysShown
   2803  */
   2804 UBool DecimalFormat::isScientificNotation() {
   2805     return fUseExponentialNotation;
   2806 }
   2807 
   2808 /**
   2809  * Set whether or not scientific notation is used.
   2810  * @param useScientific TRUE if this object formats and parses scientific
   2811  * notation
   2812  * @see #isScientificNotation
   2813  * @see #getMinimumExponentDigits
   2814  * @see #setMinimumExponentDigits
   2815  * @see #isExponentSignAlwaysShown
   2816  * @see #setExponentSignAlwaysShown
   2817  */
   2818 void DecimalFormat::setScientificNotation(UBool useScientific) {
   2819     fUseExponentialNotation = useScientific;
   2820 }
   2821 
   2822 /**
   2823  * Return the minimum exponent digits that will be shown.
   2824  * @return the minimum exponent digits that will be shown
   2825  * @see #setScientificNotation
   2826  * @see #isScientificNotation
   2827  * @see #setMinimumExponentDigits
   2828  * @see #isExponentSignAlwaysShown
   2829  * @see #setExponentSignAlwaysShown
   2830  */
   2831 int8_t DecimalFormat::getMinimumExponentDigits() const {
   2832     return fMinExponentDigits;
   2833 }
   2834 
   2835 /**
   2836  * Set the minimum exponent digits that will be shown.  This has no
   2837  * effect unless scientific notation is in use.
   2838  * @param minExpDig a value >= 1 indicating the fewest exponent digits
   2839  * that will be shown.  Values less than 1 will be treated as 1.
   2840  * @see #setScientificNotation
   2841  * @see #isScientificNotation
   2842  * @see #getMinimumExponentDigits
   2843  * @see #isExponentSignAlwaysShown
   2844  * @see #setExponentSignAlwaysShown
   2845  */
   2846 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
   2847     fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
   2848 }
   2849 
   2850 /**
   2851  * Return whether the exponent sign is always shown.
   2852  * @return TRUE if the exponent is always prefixed with either the
   2853  * localized minus sign or the localized plus sign, false if only negative
   2854  * exponents are prefixed with the localized minus sign.
   2855  * @see #setScientificNotation
   2856  * @see #isScientificNotation
   2857  * @see #setMinimumExponentDigits
   2858  * @see #getMinimumExponentDigits
   2859  * @see #setExponentSignAlwaysShown
   2860  */
   2861 UBool DecimalFormat::isExponentSignAlwaysShown() {
   2862     return fExponentSignAlwaysShown;
   2863 }
   2864 
   2865 /**
   2866  * Set whether the exponent sign is always shown.  This has no effect
   2867  * unless scientific notation is in use.
   2868  * @param expSignAlways TRUE if the exponent is always prefixed with either
   2869  * the localized minus sign or the localized plus sign, false if only
   2870  * negative exponents are prefixed with the localized minus sign.
   2871  * @see #setScientificNotation
   2872  * @see #isScientificNotation
   2873  * @see #setMinimumExponentDigits
   2874  * @see #getMinimumExponentDigits
   2875  * @see #isExponentSignAlwaysShown
   2876  */
   2877 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
   2878     fExponentSignAlwaysShown = expSignAlways;
   2879 }
   2880 
   2881 //------------------------------------------------------------------------------
   2882 // Gets the grouping size of the number pattern.  For example, thousand or 10
   2883 // thousand groupings.
   2884 
   2885 int32_t
   2886 DecimalFormat::getGroupingSize() const
   2887 {
   2888     return fGroupingSize;
   2889 }
   2890 
   2891 //------------------------------------------------------------------------------
   2892 // Gets the grouping size of the number pattern.
   2893 
   2894 void
   2895 DecimalFormat::setGroupingSize(int32_t newValue)
   2896 {
   2897     fGroupingSize = newValue;
   2898 }
   2899 
   2900 //------------------------------------------------------------------------------
   2901 
   2902 int32_t
   2903 DecimalFormat::getSecondaryGroupingSize() const
   2904 {
   2905     return fGroupingSize2;
   2906 }
   2907 
   2908 //------------------------------------------------------------------------------
   2909 
   2910 void
   2911 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
   2912 {
   2913     fGroupingSize2 = newValue;
   2914 }
   2915 
   2916 //------------------------------------------------------------------------------
   2917 // Checks if to show the decimal separator.
   2918 
   2919 UBool
   2920 DecimalFormat::isDecimalSeparatorAlwaysShown() const
   2921 {
   2922     return fDecimalSeparatorAlwaysShown;
   2923 }
   2924 
   2925 //------------------------------------------------------------------------------
   2926 // Sets to always show the decimal separator.
   2927 
   2928 void
   2929 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
   2930 {
   2931     fDecimalSeparatorAlwaysShown = newValue;
   2932 }
   2933 
   2934 //------------------------------------------------------------------------------
   2935 // Emits the pattern of this DecimalFormat instance.
   2936 
   2937 UnicodeString&
   2938 DecimalFormat::toPattern(UnicodeString& result) const
   2939 {
   2940     return toPattern(result, FALSE);
   2941 }
   2942 
   2943 //------------------------------------------------------------------------------
   2944 // Emits the localized pattern this DecimalFormat instance.
   2945 
   2946 UnicodeString&
   2947 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
   2948 {
   2949     return toPattern(result, TRUE);
   2950 }
   2951 
   2952 //------------------------------------------------------------------------------
   2953 /**
   2954  * Expand the affix pattern strings into the expanded affix strings.  If any
   2955  * affix pattern string is null, do not expand it.  This method should be
   2956  * called any time the symbols or the affix patterns change in order to keep
   2957  * the expanded affix strings up to date.
   2958  * This method also will be called before formatting if format currency
   2959  * plural names, since the plural name is not a static one, it is
   2960  * based on the currency plural count, the affix will be known only
   2961  * after the currency plural count is know.
   2962  * In which case, the parameter
   2963  * 'pluralCount' will be a non-null currency plural count.
   2964  * In all other cases, the 'pluralCount' is null, which means it is not needed.
   2965  */
   2966 void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
   2967     FieldPositionHandler none;
   2968     if (fPosPrefixPattern != 0) {
   2969       expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
   2970     }
   2971     if (fPosSuffixPattern != 0) {
   2972       expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
   2973     }
   2974     if (fNegPrefixPattern != 0) {
   2975       expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
   2976     }
   2977     if (fNegSuffixPattern != 0) {
   2978       expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
   2979     }
   2980 #ifdef FMT_DEBUG
   2981     UnicodeString s;
   2982     s.append("[")
   2983         .append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern)
   2984         .append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern)
   2985         .append("]->[")
   2986         .append(fPositivePrefix).append("|").append(fPositiveSuffix)
   2987         .append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix)
   2988         .append("]\n");
   2989     debugout(s);
   2990 #endif
   2991 }
   2992 
   2993 /**
   2994  * Expand an affix pattern into an affix string.  All characters in the
   2995  * pattern are literal unless prefixed by kQuote.  The following characters
   2996  * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
   2997  * PATTERN_MINUS, and kCurrencySign.  If kCurrencySign is doubled (kQuote +
   2998  * kCurrencySign + kCurrencySign), it is interpreted as an international
   2999  * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
   3000  * currency plural long names, such as "US Dollars".
   3001  * Any other character after a kQuote represents itself.
   3002  * kQuote must be followed by another character; kQuote may not occur by
   3003  * itself at the end of the pattern.
   3004  *
   3005  * This method is used in two distinct ways.  First, it is used to expand
   3006  * the stored affix patterns into actual affixes.  For this usage, doFormat
   3007  * must be false.  Second, it is used to expand the stored affix patterns
   3008  * given a specific number (doFormat == true), for those rare cases in
   3009  * which a currency format references a ChoiceFormat (e.g., en_IN display
   3010  * name for INR).  The number itself is taken from digitList.
   3011  *
   3012  * When used in the first way, this method has a side effect: It sets
   3013  * currencyChoice to a ChoiceFormat object, if the currency's display name
   3014  * in this locale is a ChoiceFormat pattern (very rare).  It only does this
   3015  * if currencyChoice is null to start with.
   3016  *
   3017  * @param pattern the non-null, fPossibly empty pattern
   3018  * @param affix string to receive the expanded equivalent of pattern.
   3019  * Previous contents are deleted.
   3020  * @param doFormat if false, then the pattern will be expanded, and if a
   3021  * currency symbol is encountered that expands to a ChoiceFormat, the
   3022  * currencyChoice member variable will be initialized if it is null.  If
   3023  * doFormat is true, then it is assumed that the currencyChoice has been
   3024  * created, and it will be used to format the value in digitList.
   3025  * @param pluralCount the plural count. It is only used for currency
   3026  *                    plural format. In which case, it is the plural
   3027  *                    count of the currency amount. For example,
   3028  *                    in en_US, it is the singular "one", or the plural
   3029  *                    "other". For all other cases, it is null, and
   3030  *                    is not being used.
   3031  */
   3032 void DecimalFormat::expandAffix(const UnicodeString& pattern,
   3033                                 UnicodeString& affix,
   3034                                 double number,
   3035                                 FieldPositionHandler& handler,
   3036                                 UBool doFormat,
   3037                                 const UnicodeString* pluralCount) const {
   3038     affix.remove();
   3039     for (int i=0; i<pattern.length(); ) {
   3040         UChar32 c = pattern.char32At(i);
   3041         i += U16_LENGTH(c);
   3042         if (c == kQuote) {
   3043             c = pattern.char32At(i);
   3044             i += U16_LENGTH(c);
   3045             int beginIdx = affix.length();
   3046             switch (c) {
   3047             case kCurrencySign: {
   3048                 // As of ICU 2.2 we use the currency object, and
   3049                 // ignore the currency symbols in the DFS, unless
   3050                 // we have a null currency object.  This occurs if
   3051                 // resurrecting a pre-2.2 object or if the user
   3052                 // sets a custom DFS.
   3053                 UBool intl = i<pattern.length() &&
   3054                     pattern.char32At(i) == kCurrencySign;
   3055                 UBool plural = FALSE;
   3056                 if (intl) {
   3057                     ++i;
   3058                     plural = i<pattern.length() &&
   3059                         pattern.char32At(i) == kCurrencySign;
   3060                     if (plural) {
   3061                         intl = FALSE;
   3062                         ++i;
   3063                     }
   3064                 }
   3065                 const UChar* currencyUChars = getCurrency();
   3066                 if (currencyUChars[0] != 0) {
   3067                     UErrorCode ec = U_ZERO_ERROR;
   3068                     if (plural && pluralCount != NULL) {
   3069                         // plural name is only needed when pluralCount != null,
   3070                         // which means when formatting currency plural names.
   3071                         // For other cases, pluralCount == null,
   3072                         // and plural names are not needed.
   3073                         int32_t len;
   3074                         // TODO: num of char in plural count
   3075                         char pluralCountChar[10];
   3076                         if (pluralCount->length() >= 10) {
   3077                             break;
   3078                         }
   3079                         pluralCount->extract(0, pluralCount->length(), pluralCountChar);
   3080                         UBool isChoiceFormat;
   3081                         const UChar* s = ucurr_getPluralName(currencyUChars,
   3082                             fSymbols != NULL ? fSymbols->getLocale().getName() :
   3083                             Locale::getDefault().getName(), &isChoiceFormat,
   3084                             pluralCountChar, &len, &ec);
   3085                         affix += UnicodeString(s, len);
   3086                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   3087                     } else if(intl) {
   3088                         affix += currencyUChars;
   3089                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   3090                     } else {
   3091                         int32_t len;
   3092                         UBool isChoiceFormat;
   3093                         // If fSymbols is NULL, use default locale
   3094                         const UChar* s = ucurr_getName(currencyUChars,
   3095                             fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
   3096                             UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
   3097                         if (isChoiceFormat) {
   3098                             // Two modes here: If doFormat is false, we set up
   3099                             // currencyChoice.  If doFormat is true, we use the
   3100                             // previously created currencyChoice to format the
   3101                             // value in digitList.
   3102                             if (!doFormat) {
   3103                                 // If the currency is handled by a ChoiceFormat,
   3104                                 // then we're not going to use the expanded
   3105                                 // patterns.  Instantiate the ChoiceFormat and
   3106                                 // return.
   3107                                 if (fCurrencyChoice == NULL) {
   3108                                     // TODO Replace double-check with proper thread-safe code
   3109                                     ChoiceFormat* fmt = new ChoiceFormat(s, ec);
   3110                                     if (U_SUCCESS(ec)) {
   3111                                         umtx_lock(NULL);
   3112                                         if (fCurrencyChoice == NULL) {
   3113                                             // Cast away const
   3114                                             ((DecimalFormat*)this)->fCurrencyChoice = fmt;
   3115                                             fmt = NULL;
   3116                                         }
   3117                                         umtx_unlock(NULL);
   3118                                         delete fmt;
   3119                                     }
   3120                                 }
   3121                                 // We could almost return null or "" here, since the
   3122                                 // expanded affixes are almost not used at all
   3123                                 // in this situation.  However, one method --
   3124                                 // toPattern() -- still does use the expanded
   3125                                 // affixes, in order to set up a padding
   3126                                 // pattern.  We use the CURRENCY_SIGN as a
   3127                                 // placeholder.
   3128                                 affix.append(kCurrencySign);
   3129                             } else {
   3130                                 if (fCurrencyChoice != NULL) {
   3131                                     FieldPosition pos(0); // ignored
   3132                                     if (number < 0) {
   3133                                         number = -number;
   3134                                     }
   3135                                     fCurrencyChoice->format(number, affix, pos);
   3136                                 } else {
   3137                                     // We only arrive here if the currency choice
   3138                                     // format in the locale data is INVALID.
   3139                                     affix += currencyUChars;
   3140                                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   3141                                 }
   3142                             }
   3143                             continue;
   3144                         }
   3145                         affix += UnicodeString(s, len);
   3146                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   3147                     }
   3148                 } else {
   3149                     if(intl) {
   3150                         affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   3151                     } else {
   3152                         affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
   3153                     }
   3154                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   3155                 }
   3156                 break;
   3157             }
   3158             case kPatternPercent:
   3159                 affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   3160                 handler.addAttribute(kPercentField, beginIdx, affix.length());
   3161                 break;
   3162             case kPatternPerMill:
   3163                 affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   3164                 handler.addAttribute(kPermillField, beginIdx, affix.length());
   3165                 break;
   3166             case kPatternPlus:
   3167                 affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   3168                 handler.addAttribute(kSignField, beginIdx, affix.length());
   3169                 break;
   3170             case kPatternMinus:
   3171                 affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   3172                 handler.addAttribute(kSignField, beginIdx, affix.length());
   3173                 break;
   3174             default:
   3175                 affix.append(c);
   3176                 break;
   3177             }
   3178         }
   3179         else {
   3180             affix.append(c);
   3181         }
   3182     }
   3183 }
   3184 
   3185 /**
   3186  * Append an affix to the given StringBuffer.
   3187  * @param buf buffer to append to
   3188  * @param isNegative
   3189  * @param isPrefix
   3190  */
   3191 int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
   3192                                    FieldPositionHandler& handler,
   3193                                    UBool isNegative, UBool isPrefix) const {
   3194     // plural format precedes choice format
   3195     if (fCurrencyChoice != 0 &&
   3196         fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
   3197         const UnicodeString* affixPat;
   3198         if (isPrefix) {
   3199             affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
   3200         } else {
   3201             affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
   3202         }
   3203         if (affixPat) {
   3204             UnicodeString affixBuf;
   3205             expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
   3206             buf.append(affixBuf);
   3207             return affixBuf.length();
   3208         }
   3209         // else someone called a function that reset the pattern.
   3210     }
   3211 
   3212     const UnicodeString* affix;
   3213     if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
   3214         UnicodeString pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
   3215         AffixesForCurrency* oneSet;
   3216         if (fStyle == NumberFormat::kPluralCurrencyStyle) {
   3217             oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
   3218         } else {
   3219             oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
   3220         }
   3221         if (isPrefix) {
   3222             affix = isNegative ? &oneSet->negPrefixForCurrency :
   3223                                  &oneSet->posPrefixForCurrency;
   3224         } else {
   3225             affix = isNegative ? &oneSet->negSuffixForCurrency :
   3226                                  &oneSet->posSuffixForCurrency;
   3227         }
   3228     } else {
   3229         if (isPrefix) {
   3230             affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
   3231         } else {
   3232             affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
   3233         }
   3234     }
   3235 
   3236     int32_t begin = (int) buf.length();
   3237 
   3238     buf.append(*affix);
   3239 
   3240     if (handler.isRecording()) {
   3241       int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
   3242       if (offset > -1) {
   3243         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
   3244         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
   3245       }
   3246 
   3247       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
   3248       if (offset > -1) {
   3249         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   3250         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
   3251       }
   3252 
   3253       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
   3254       if (offset > -1) {
   3255         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   3256         handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
   3257       }
   3258 
   3259       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
   3260       if (offset > -1) {
   3261         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   3262         handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
   3263       }
   3264 
   3265       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
   3266       if (offset > -1) {
   3267         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   3268         handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
   3269       }
   3270     }
   3271     return affix->length();
   3272 }
   3273 
   3274 /**
   3275  * Appends an affix pattern to the given StringBuffer, quoting special
   3276  * characters as needed.  Uses the internal affix pattern, if that exists,
   3277  * or the literal affix, if the internal affix pattern is null.  The
   3278  * appended string will generate the same affix pattern (or literal affix)
   3279  * when passed to toPattern().
   3280  *
   3281  * @param appendTo the affix string is appended to this
   3282  * @param affixPattern a pattern such as fPosPrefixPattern; may be null
   3283  * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
   3284  * Ignored unless affixPattern is null.  If affixPattern is null, then
   3285  * expAffix is appended as a literal affix.
   3286  * @param localized true if the appended pattern should contain localized
   3287  * pattern characters; otherwise, non-localized pattern chars are appended
   3288  */
   3289 void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
   3290                                        const UnicodeString* affixPattern,
   3291                                        const UnicodeString& expAffix,
   3292                                        UBool localized) const {
   3293     if (affixPattern == 0) {
   3294         appendAffixPattern(appendTo, expAffix, localized);
   3295     } else {
   3296         int i;
   3297         for (int pos=0; pos<affixPattern->length(); pos=i) {
   3298             i = affixPattern->indexOf(kQuote, pos);
   3299             if (i < 0) {
   3300                 UnicodeString s;
   3301                 affixPattern->extractBetween(pos, affixPattern->length(), s);
   3302                 appendAffixPattern(appendTo, s, localized);
   3303                 break;
   3304             }
   3305             if (i > pos) {
   3306                 UnicodeString s;
   3307                 affixPattern->extractBetween(pos, i, s);
   3308                 appendAffixPattern(appendTo, s, localized);
   3309             }
   3310             UChar32 c = affixPattern->char32At(++i);
   3311             ++i;
   3312             if (c == kQuote) {
   3313                 appendTo.append(c).append(c);
   3314                 // Fall through and append another kQuote below
   3315             } else if (c == kCurrencySign &&
   3316                        i<affixPattern->length() &&
   3317                        affixPattern->char32At(i) == kCurrencySign) {
   3318                 ++i;
   3319                 appendTo.append(c).append(c);
   3320             } else if (localized) {
   3321                 switch (c) {
   3322                 case kPatternPercent:
   3323                     appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   3324                     break;
   3325                 case kPatternPerMill:
   3326                     appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   3327                     break;
   3328                 case kPatternPlus:
   3329                     appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   3330                     break;
   3331                 case kPatternMinus:
   3332                     appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   3333                     break;
   3334                 default:
   3335                     appendTo.append(c);
   3336                 }
   3337             } else {
   3338                 appendTo.append(c);
   3339             }
   3340         }
   3341     }
   3342 }
   3343 
   3344 /**
   3345  * Append an affix to the given StringBuffer, using quotes if
   3346  * there are special characters.  Single quotes themselves must be
   3347  * escaped in either case.
   3348  */
   3349 void
   3350 DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
   3351                                   const UnicodeString& affix,
   3352                                   UBool localized) const {
   3353     UBool needQuote;
   3354     if(localized) {
   3355         needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
   3356             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
   3357             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
   3358             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
   3359             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
   3360             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
   3361             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
   3362             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
   3363             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
   3364             || affix.indexOf(kCurrencySign) >= 0;
   3365     }
   3366     else {
   3367         needQuote = affix.indexOf(kPatternZeroDigit) >= 0
   3368             || affix.indexOf(kPatternGroupingSeparator) >= 0
   3369             || affix.indexOf(kPatternDecimalSeparator) >= 0
   3370             || affix.indexOf(kPatternPercent) >= 0
   3371             || affix.indexOf(kPatternPerMill) >= 0
   3372             || affix.indexOf(kPatternDigit) >= 0
   3373             || affix.indexOf(kPatternSeparator) >= 0
   3374             || affix.indexOf(kPatternExponent) >= 0
   3375             || affix.indexOf(kPatternPlus) >= 0
   3376             || affix.indexOf(kPatternMinus) >= 0
   3377             || affix.indexOf(kCurrencySign) >= 0;
   3378     }
   3379     if (needQuote)
   3380         appendTo += (UChar)0x0027 /*'\''*/;
   3381     if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
   3382         appendTo += affix;
   3383     else {
   3384         for (int32_t j = 0; j < affix.length(); ) {
   3385             UChar32 c = affix.char32At(j);
   3386             j += U16_LENGTH(c);
   3387             appendTo += c;
   3388             if (c == 0x0027 /*'\''*/)
   3389                 appendTo += c;
   3390         }
   3391     }
   3392     if (needQuote)
   3393         appendTo += (UChar)0x0027 /*'\''*/;
   3394 }
   3395 
   3396 //------------------------------------------------------------------------------
   3397 
   3398 UnicodeString&
   3399 DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
   3400 {
   3401     if (fStyle == NumberFormat::kPluralCurrencyStyle) {
   3402         // the prefix or suffix pattern might not be defined yet,
   3403         // so they can not be synthesized,
   3404         // instead, get them directly.
   3405         // but it might not be the actual pattern used in formatting.
   3406         // the actual pattern used in formatting depends on the
   3407         // formatted number's plural count.
   3408         result = fFormatPattern;
   3409         return result;
   3410     }
   3411     result.remove();
   3412     UChar32 zero, sigDigit = kPatternSignificantDigit;
   3413     UnicodeString digit, group;
   3414     int32_t i;
   3415     int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
   3416     UnicodeString roundingDigits;
   3417     int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
   3418     UnicodeString padSpec;
   3419     UBool useSigDig = areSignificantDigitsUsed();
   3420 
   3421     if (localized) {
   3422         digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
   3423         group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
   3424         zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   3425         if (useSigDig) {
   3426             sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
   3427         }
   3428     }
   3429     else {
   3430         digit.append((UChar)kPatternDigit);
   3431         group.append((UChar)kPatternGroupingSeparator);
   3432         zero = (UChar32)kPatternZeroDigit;
   3433     }
   3434     if (fFormatWidth > 0) {
   3435         if (localized) {
   3436             padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
   3437         }
   3438         else {
   3439             padSpec.append((UChar)kPatternPadEscape);
   3440         }
   3441         padSpec.append(fPad);
   3442     }
   3443     if (fRoundingIncrement != NULL) {
   3444         for(i=0; i<fRoundingIncrement->getCount(); ++i) {
   3445           roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
   3446         }
   3447         roundingDecimalPos = fRoundingIncrement->getDecimalAt();
   3448     }
   3449     for (int32_t part=0; part<2; ++part) {
   3450         if (padPos == kPadBeforePrefix) {
   3451             result.append(padSpec);
   3452         }
   3453         appendAffixPattern(result,
   3454                     (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
   3455                     (part==0 ? fPositivePrefix : fNegativePrefix),
   3456                     localized);
   3457         if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
   3458             result.append(padSpec);
   3459         }
   3460         int32_t sub0Start = result.length();
   3461         int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
   3462         if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
   3463             g += fGroupingSize2;
   3464         }
   3465         int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
   3466         if (useSigDig) {
   3467             minDig = getMinimumSignificantDigits();
   3468             maxDig = maxSigDig = getMaximumSignificantDigits();
   3469         } else {
   3470             minDig = getMinimumIntegerDigits();
   3471             maxDig = getMaximumIntegerDigits();
   3472         }
   3473         if (fUseExponentialNotation) {
   3474             if (maxDig > kMaxScientificIntegerDigits) {
   3475                 maxDig = 1;
   3476             }
   3477         } else if (useSigDig) {
   3478             maxDig = _max(maxDig, g+1);
   3479         } else {
   3480             maxDig = _max(_max(g, getMinimumIntegerDigits()),
   3481                           roundingDecimalPos) + 1;
   3482         }
   3483         for (i = maxDig; i > 0; --i) {
   3484             if (!fUseExponentialNotation && i<maxDig &&
   3485                 isGroupingPosition(i)) {
   3486                 result.append(group);
   3487             }
   3488             if (useSigDig) {
   3489                 //  #@,@###   (maxSigDig == 5, minSigDig == 2)
   3490                 //  65 4321   (1-based pos, count from the right)
   3491                 // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
   3492                 // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
   3493                 if (maxSigDig >= i && i > (maxSigDig - minDig)) {
   3494                     result.append(sigDigit);
   3495                 } else {
   3496                     result.append(digit);
   3497                 }
   3498             } else {
   3499                 if (! roundingDigits.isEmpty()) {
   3500                     int32_t pos = roundingDecimalPos - i;
   3501                     if (pos >= 0 && pos < roundingDigits.length()) {
   3502                         result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
   3503                         continue;
   3504                     }
   3505                 }
   3506                 if (i<=minDig) {
   3507                     result.append(zero);
   3508                 } else {
   3509                     result.append(digit);
   3510                 }
   3511             }
   3512         }
   3513         if (!useSigDig) {
   3514             if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
   3515                 if (localized) {
   3516                     result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   3517                 }
   3518                 else {
   3519                     result.append((UChar)kPatternDecimalSeparator);
   3520                 }
   3521             }
   3522             int32_t pos = roundingDecimalPos;
   3523             for (i = 0; i < getMaximumFractionDigits(); ++i) {
   3524                 if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
   3525                     if (pos < 0) {
   3526                         result.append(zero);
   3527                     }
   3528                     else {
   3529                         result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
   3530                     }
   3531                     ++pos;
   3532                     continue;
   3533                 }
   3534                 if (i<getMinimumFractionDigits()) {
   3535                     result.append(zero);
   3536                 }
   3537                 else {
   3538                     result.append(digit);
   3539                 }
   3540             }
   3541         }
   3542         if (fUseExponentialNotation) {
   3543             if (localized) {
   3544                 result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   3545             }
   3546             else {
   3547                 result.append((UChar)kPatternExponent);
   3548             }
   3549             if (fExponentSignAlwaysShown) {
   3550                 if (localized) {
   3551                     result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   3552                 }
   3553                 else {
   3554                     result.append((UChar)kPatternPlus);
   3555                 }
   3556             }
   3557             for (i=0; i<fMinExponentDigits; ++i) {
   3558                 result.append(zero);
   3559             }
   3560         }
   3561         if (! padSpec.isEmpty() && !fUseExponentialNotation) {
   3562             int32_t add = fFormatWidth - result.length() + sub0Start
   3563                 - ((part == 0)
   3564                    ? fPositivePrefix.length() + fPositiveSuffix.length()
   3565                    : fNegativePrefix.length() + fNegativeSuffix.length());
   3566             while (add > 0) {
   3567                 result.insert(sub0Start, digit);
   3568                 ++maxDig;
   3569                 --add;
   3570                 // Only add a grouping separator if we have at least
   3571                 // 2 additional characters to be added, so we don't
   3572                 // end up with ",###".
   3573                 if (add>1 && isGroupingPosition(maxDig)) {
   3574                     result.insert(sub0Start, group);
   3575                     --add;
   3576                 }
   3577             }
   3578         }
   3579         if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
   3580             result.append(padSpec);
   3581         }
   3582         if (part == 0) {
   3583             appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
   3584             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
   3585                 result.append(padSpec);
   3586             }
   3587             UBool isDefault = FALSE;
   3588             if ((fNegSuffixPattern == fPosSuffixPattern && // both null
   3589                  fNegativeSuffix == fPositiveSuffix)
   3590                 || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
   3591                     *fNegSuffixPattern == *fPosSuffixPattern))
   3592             {
   3593                 if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
   3594                 {
   3595                     int32_t length = fPosPrefixPattern->length();
   3596                     isDefault = fNegPrefixPattern->length() == (length+2) &&
   3597                         (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
   3598                         (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
   3599                         fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
   3600                 }
   3601                 if (!isDefault &&
   3602                     fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
   3603                 {
   3604                     int32_t length = fPositivePrefix.length();
   3605                     isDefault = fNegativePrefix.length() == (length+1) &&
   3606                         fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
   3607                         fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
   3608                 }
   3609             }
   3610             if (isDefault) {
   3611                 break; // Don't output default negative subpattern
   3612             } else {
   3613                 if (localized) {
   3614                     result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
   3615                 }
   3616                 else {
   3617                     result.append((UChar)kPatternSeparator);
   3618                 }
   3619             }
   3620         } else {
   3621             appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
   3622             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
   3623                 result.append(padSpec);
   3624             }
   3625         }
   3626     }
   3627 
   3628     return result;
   3629 }
   3630 
   3631 //------------------------------------------------------------------------------
   3632 
   3633 void
   3634 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
   3635 {
   3636     UParseError parseError;
   3637     applyPattern(pattern, FALSE, parseError, status);
   3638 }
   3639 
   3640 //------------------------------------------------------------------------------
   3641 
   3642 void
   3643 DecimalFormat::applyPattern(const UnicodeString& pattern,
   3644                             UParseError& parseError,
   3645                             UErrorCode& status)
   3646 {
   3647     applyPattern(pattern, FALSE, parseError, status);
   3648 }
   3649 //------------------------------------------------------------------------------
   3650 
   3651 void
   3652 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
   3653 {
   3654     UParseError parseError;
   3655     applyPattern(pattern, TRUE,parseError,status);
   3656 }
   3657 
   3658 //------------------------------------------------------------------------------
   3659 
   3660 void
   3661 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
   3662                                      UParseError& parseError,
   3663                                      UErrorCode& status)
   3664 {
   3665     applyPattern(pattern, TRUE,parseError,status);
   3666 }
   3667 
   3668 //------------------------------------------------------------------------------
   3669 
   3670 void
   3671 DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
   3672                                               UBool localized,
   3673                                               UParseError& parseError,
   3674                                               UErrorCode& status)
   3675 {
   3676     if (U_FAILURE(status))
   3677     {
   3678         return;
   3679     }
   3680     // Clear error struct
   3681     parseError.offset = -1;
   3682     parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
   3683 
   3684     // Set the significant pattern symbols
   3685     UChar32 zeroDigit               = kPatternZeroDigit; // '0'
   3686     UChar32 sigDigit                = kPatternSignificantDigit; // '@'
   3687     UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
   3688     UnicodeString decimalSeparator  ((UChar)kPatternDecimalSeparator);
   3689     UnicodeString percent           ((UChar)kPatternPercent);
   3690     UnicodeString perMill           ((UChar)kPatternPerMill);
   3691     UnicodeString digit             ((UChar)kPatternDigit); // '#'
   3692     UnicodeString separator         ((UChar)kPatternSeparator);
   3693     UnicodeString exponent          ((UChar)kPatternExponent);
   3694     UnicodeString plus              ((UChar)kPatternPlus);
   3695     UnicodeString minus             ((UChar)kPatternMinus);
   3696     UnicodeString padEscape         ((UChar)kPatternPadEscape);
   3697     // Substitute with the localized symbols if necessary
   3698     if (localized) {
   3699         zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   3700         sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
   3701         groupingSeparator.  remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
   3702         decimalSeparator.   remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
   3703         percent.            remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
   3704         perMill.            remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
   3705         digit.              remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
   3706         separator.          remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
   3707         exponent.           remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
   3708         plus.               remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
   3709         minus.              remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
   3710         padEscape.          remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
   3711     }
   3712     UChar nineDigit = (UChar)(zeroDigit + 9);
   3713     int32_t digitLen = digit.length();
   3714     int32_t groupSepLen = groupingSeparator.length();
   3715     int32_t decimalSepLen = decimalSeparator.length();
   3716 
   3717     int32_t pos = 0;
   3718     int32_t patLen = pattern.length();
   3719     // Part 0 is the positive pattern.  Part 1, if present, is the negative
   3720     // pattern.
   3721     for (int32_t part=0; part<2 && pos<patLen; ++part) {
   3722         // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
   3723         // 2=suffix, 3=prefix in quote, 4=suffix in quote.  Subpart 0 is
   3724         // between the prefix and suffix, and consists of pattern
   3725         // characters.  In the prefix and suffix, percent, perMill, and
   3726         // currency symbols are recognized and translated.
   3727         int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
   3728 
   3729         // It's important that we don't change any fields of this object
   3730         // prematurely.  We set the following variables for the multiplier,
   3731         // grouping, etc., and then only change the actual object fields if
   3732         // everything parses correctly.  This also lets us register
   3733         // the data from part 0 and ignore the part 1, except for the
   3734         // prefix and suffix.
   3735         UnicodeString prefix;
   3736         UnicodeString suffix;
   3737         int32_t decimalPos = -1;
   3738         int32_t multiplier = 1;
   3739         int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
   3740         int8_t groupingCount = -1;
   3741         int8_t groupingCount2 = -1;
   3742         int32_t padPos = -1;
   3743         UChar32 padChar = 0;
   3744         int32_t roundingPos = -1;
   3745         DigitList roundingInc;
   3746         int8_t expDigits = -1;
   3747         UBool expSignAlways = FALSE;
   3748 
   3749         // The affix is either the prefix or the suffix.
   3750         UnicodeString* affix = &prefix;
   3751 
   3752         int32_t start = pos;
   3753         UBool isPartDone = FALSE;
   3754         UChar32 ch;
   3755 
   3756         for (; !isPartDone && pos < patLen; ) {
   3757             // Todo: account for surrogate pairs
   3758             ch = pattern.char32At(pos);
   3759             switch (subpart) {
   3760             case 0: // Pattern proper subpart (between prefix & suffix)
   3761                 // Process the digits, decimal, and grouping characters.  We
   3762                 // record five pieces of information.  We expect the digits
   3763                 // to occur in the pattern ####00.00####, and we record the
   3764                 // number of left digits, zero (central) digits, and right
   3765                 // digits.  The position of the last grouping character is
   3766                 // recorded (should be somewhere within the first two blocks
   3767                 // of characters), as is the position of the decimal point,
   3768                 // if any (should be in the zero digits).  If there is no
   3769                 // decimal point, then there should be no right digits.
   3770                 if (pattern.compare(pos, digitLen, digit) == 0) {
   3771                     if (zeroDigitCount > 0 || sigDigitCount > 0) {
   3772                         ++digitRightCount;
   3773                     } else {
   3774                         ++digitLeftCount;
   3775                     }
   3776                     if (groupingCount >= 0 && decimalPos < 0) {
   3777                         ++groupingCount;
   3778                     }
   3779                     pos += digitLen;
   3780                 } else if ((ch >= zeroDigit && ch <= nineDigit) ||
   3781                            ch == sigDigit) {
   3782                     if (digitRightCount > 0) {
   3783                         // Unexpected '0'
   3784                         debug("Unexpected '0'")
   3785                         status = U_UNEXPECTED_TOKEN;
   3786                         syntaxError(pattern,pos,parseError);
   3787                         return;
   3788                     }
   3789                     if (ch == sigDigit) {
   3790                         ++sigDigitCount;
   3791                     } else {
   3792                         ++zeroDigitCount;
   3793                         if (ch != zeroDigit && roundingPos < 0) {
   3794                             roundingPos = digitLeftCount + zeroDigitCount;
   3795                         }
   3796                         if (roundingPos >= 0) {
   3797                             roundingInc.append((char)(ch - zeroDigit + '0'));
   3798                         }
   3799                     }
   3800                     if (groupingCount >= 0 && decimalPos < 0) {
   3801                         ++groupingCount;
   3802                     }
   3803                     pos += U16_LENGTH(ch);
   3804                 } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
   3805                     if (decimalPos >= 0) {
   3806                         // Grouping separator after decimal
   3807                         debug("Grouping separator after decimal")
   3808                         status = U_UNEXPECTED_TOKEN;
   3809                         syntaxError(pattern,pos,parseError);
   3810                         return;
   3811                     }
   3812                     groupingCount2 = groupingCount;
   3813                     groupingCount = 0;
   3814                     pos += groupSepLen;
   3815                 } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
   3816                     if (decimalPos >= 0) {
   3817                         // Multiple decimal separators
   3818                         debug("Multiple decimal separators")
   3819                         status = U_MULTIPLE_DECIMAL_SEPARATORS;
   3820                         syntaxError(pattern,pos,parseError);
   3821                         return;
   3822                     }
   3823                     // Intentionally incorporate the digitRightCount,
   3824                     // even though it is illegal for this to be > 0
   3825                     // at this point.  We check pattern syntax below.
   3826                     decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
   3827                     pos += decimalSepLen;
   3828                 } else {
   3829                     if (pattern.compare(pos, exponent.length(), exponent) == 0) {
   3830                         if (expDigits >= 0) {
   3831                             // Multiple exponential symbols
   3832                             debug("Multiple exponential symbols")
   3833                             status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
   3834                             syntaxError(pattern,pos,parseError);
   3835                             return;
   3836                         }
   3837                         if (groupingCount >= 0) {
   3838                             // Grouping separator in exponential pattern
   3839                             debug("Grouping separator in exponential pattern")
   3840                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
   3841                             syntaxError(pattern,pos,parseError);
   3842                             return;
   3843                         }
   3844                         pos += exponent.length();
   3845                         // Check for positive prefix
   3846                         if (pos < patLen
   3847                             && pattern.compare(pos, plus.length(), plus) == 0) {
   3848                             expSignAlways = TRUE;
   3849                             pos += plus.length();
   3850                         }
   3851                         // Use lookahead to parse out the exponential part of the
   3852                         // pattern, then jump into suffix subpart.
   3853                         expDigits = 0;
   3854                         while (pos < patLen &&
   3855                                pattern.char32At(pos) == zeroDigit) {
   3856                             ++expDigits;
   3857                             pos += U16_LENGTH(zeroDigit);
   3858                         }
   3859 
   3860                         // 1. Require at least one mantissa pattern digit
   3861                         // 2. Disallow "#+ @" in mantissa
   3862                         // 3. Require at least one exponent pattern digit
   3863                         if (((digitLeftCount + zeroDigitCount) < 1 &&
   3864                              (sigDigitCount + digitRightCount) < 1) ||
   3865                             (sigDigitCount > 0 && digitLeftCount > 0) ||
   3866                             expDigits < 1) {
   3867                             // Malformed exponential pattern
   3868                             debug("Malformed exponential pattern")
   3869                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
   3870                             syntaxError(pattern,pos,parseError);
   3871                             return;
   3872                         }
   3873                     }
   3874                     // Transition to suffix subpart
   3875                     subpart = 2; // suffix subpart
   3876                     affix = &suffix;
   3877                     sub0Limit = pos;
   3878                     continue;
   3879                 }
   3880                 break;
   3881             case 1: // Prefix subpart
   3882             case 2: // Suffix subpart
   3883                 // Process the prefix / suffix characters
   3884                 // Process unquoted characters seen in prefix or suffix
   3885                 // subpart.
   3886 
   3887                 // Several syntax characters implicitly begins the
   3888                 // next subpart if we are in the prefix; otherwise
   3889                 // they are illegal if unquoted.
   3890                 if (!pattern.compare(pos, digitLen, digit) ||
   3891                     !pattern.compare(pos, groupSepLen, groupingSeparator) ||
   3892                     !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
   3893                     (ch >= zeroDigit && ch <= nineDigit) ||
   3894                     ch == sigDigit) {
   3895                     if (subpart == 1) { // prefix subpart
   3896                         subpart = 0; // pattern proper subpart
   3897                         sub0Start = pos; // Reprocess this character
   3898                         continue;
   3899                     } else {
   3900                         status = U_UNQUOTED_SPECIAL;
   3901                         syntaxError(pattern,pos,parseError);
   3902                         return;
   3903                     }
   3904                 } else if (ch == kCurrencySign) {
   3905                     affix->append(kQuote); // Encode currency
   3906                     // Use lookahead to determine if the currency sign is
   3907                     // doubled or not.
   3908                     U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
   3909                     if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
   3910                         affix->append(kCurrencySign);
   3911                         ++pos; // Skip over the doubled character
   3912                         if ((pos+1) < pattern.length() &&
   3913                             pattern[pos+1] == kCurrencySign) {
   3914                             affix->append(kCurrencySign);
   3915                             ++pos; // Skip over the doubled character
   3916                             fCurrencySignCount = fgCurrencySignCountInPluralFormat;
   3917                         } else {
   3918                             fCurrencySignCount = fgCurrencySignCountInISOFormat;
   3919                         }
   3920                     } else {
   3921                         fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
   3922                     }
   3923                     // Fall through to append(ch)
   3924                 } else if (ch == kQuote) {
   3925                     // A quote outside quotes indicates either the opening
   3926                     // quote or two quotes, which is a quote literal.  That is,
   3927                     // we have the first quote in 'do' or o''clock.
   3928                     U_ASSERT(U16_LENGTH(kQuote) == 1);
   3929                     ++pos;
   3930                     if (pos < pattern.length() && pattern[pos] == kQuote) {
   3931                         affix->append(kQuote); // Encode quote
   3932                         // Fall through to append(ch)
   3933                     } else {
   3934                         subpart += 2; // open quote
   3935                         continue;
   3936                     }
   3937                 } else if (pattern.compare(pos, separator.length(), separator) == 0) {
   3938                     // Don't allow separators in the prefix, and don't allow
   3939                     // separators in the second pattern (part == 1).
   3940                     if (subpart == 1 || part == 1) {
   3941                         // Unexpected separator
   3942                         debug("Unexpected separator")
   3943                         status = U_UNEXPECTED_TOKEN;
   3944                         syntaxError(pattern,pos,parseError);
   3945                         return;
   3946                     }
   3947                     sub2Limit = pos;
   3948                     isPartDone = TRUE; // Go to next part
   3949                     pos += separator.length();
   3950                     break;
   3951                 } else if (pattern.compare(pos, percent.length(), percent) == 0) {
   3952                     // Next handle characters which are appended directly.
   3953                     if (multiplier != 1) {
   3954                         // Too many percent/perMill characters
   3955                         debug("Too many percent characters")
   3956                         status = U_MULTIPLE_PERCENT_SYMBOLS;
   3957                         syntaxError(pattern,pos,parseError);
   3958                         return;
   3959                     }
   3960                     affix->append(kQuote); // Encode percent/perMill
   3961                     affix->append(kPatternPercent); // Use unlocalized pattern char
   3962                     multiplier = 100;
   3963                     pos += percent.length();
   3964                     break;
   3965                 } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
   3966                     // Next handle characters which are appended directly.
   3967                     if (multiplier != 1) {
   3968                         // Too many percent/perMill characters
   3969                         debug("Too many perMill characters")
   3970                         status = U_MULTIPLE_PERMILL_SYMBOLS;
   3971                         syntaxError(pattern,pos,parseError);
   3972                         return;
   3973                     }
   3974                     affix->append(kQuote); // Encode percent/perMill
   3975                     affix->append(kPatternPerMill); // Use unlocalized pattern char
   3976                     multiplier = 1000;
   3977                     pos += perMill.length();
   3978                     break;
   3979                 } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
   3980                     if (padPos >= 0 ||               // Multiple pad specifiers
   3981                         (pos+1) == pattern.length()) { // Nothing after padEscape
   3982                         debug("Multiple pad specifiers")
   3983                         status = U_MULTIPLE_PAD_SPECIFIERS;
   3984                         syntaxError(pattern,pos,parseError);
   3985                         return;
   3986                     }
   3987                     padPos = pos;
   3988                     pos += padEscape.length();
   3989                     padChar = pattern.char32At(pos);
   3990                     pos += U16_LENGTH(padChar);
   3991                     break;
   3992                 } else if (pattern.compare(pos, minus.length(), minus) == 0) {
   3993                     affix->append(kQuote); // Encode minus
   3994                     affix->append(kPatternMinus);
   3995                     pos += minus.length();
   3996                     break;
   3997                 } else if (pattern.compare(pos, plus.length(), plus) == 0) {
   3998                     affix->append(kQuote); // Encode plus
   3999                     affix->append(kPatternPlus);
   4000                     pos += plus.length();
   4001                     break;
   4002                 }
   4003                 // Unquoted, non-special characters fall through to here, as
   4004                 // well as other code which needs to append something to the
   4005                 // affix.
   4006                 affix->append(ch);
   4007                 pos += U16_LENGTH(ch);
   4008                 break;
   4009             case 3: // Prefix subpart, in quote
   4010             case 4: // Suffix subpart, in quote
   4011                 // A quote within quotes indicates either the closing
   4012                 // quote or two quotes, which is a quote literal.  That is,
   4013                 // we have the second quote in 'do' or 'don''t'.
   4014                 if (ch == kQuote) {
   4015                     ++pos;
   4016                     if (pos < pattern.length() && pattern[pos] == kQuote) {
   4017                         affix->append(kQuote); // Encode quote
   4018                         // Fall through to append(ch)
   4019                     } else {
   4020                         subpart -= 2; // close quote
   4021                         continue;
   4022                     }
   4023                 }
   4024                 affix->append(ch);
   4025                 pos += U16_LENGTH(ch);
   4026                 break;
   4027             }
   4028         }
   4029 
   4030         if (sub0Limit == 0) {
   4031             sub0Limit = pattern.length();
   4032         }
   4033 
   4034         if (sub2Limit == 0) {
   4035             sub2Limit = pattern.length();
   4036         }
   4037 
   4038         /* Handle patterns with no '0' pattern character.  These patterns
   4039          * are legal, but must be recodified to make sense.  "##.###" ->
   4040          * "#0.###".  ".###" -> ".0##".
   4041          *
   4042          * We allow patterns of the form "####" to produce a zeroDigitCount
   4043          * of zero (got that?); although this seems like it might make it
   4044          * possible for format() to produce empty strings, format() checks
   4045          * for this condition and outputs a zero digit in this situation.
   4046          * Having a zeroDigitCount of zero yields a minimum integer digits
   4047          * of zero, which allows proper round-trip patterns.  We don't want
   4048          * "#" to become "#0" when toPattern() is called (even though that's
   4049          * what it really is, semantically).
   4050          */
   4051         if (zeroDigitCount == 0 && sigDigitCount == 0 &&
   4052             digitLeftCount > 0 && decimalPos >= 0) {
   4053             // Handle "###.###" and "###." and ".###"
   4054             int n = decimalPos;
   4055             if (n == 0)
   4056                 ++n; // Handle ".###"
   4057             digitRightCount = digitLeftCount - n;
   4058             digitLeftCount = n - 1;
   4059             zeroDigitCount = 1;
   4060         }
   4061 
   4062         // Do syntax checking on the digits, decimal points, and quotes.
   4063         if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
   4064             (decimalPos >= 0 &&
   4065              (sigDigitCount > 0 ||
   4066               decimalPos < digitLeftCount ||
   4067               decimalPos > (digitLeftCount + zeroDigitCount))) ||
   4068             groupingCount == 0 || groupingCount2 == 0 ||
   4069             (sigDigitCount > 0 && zeroDigitCount > 0) ||
   4070             subpart > 2)
   4071         { // subpart > 2 == unmatched quote
   4072             debug("Syntax error")
   4073             status = U_PATTERN_SYNTAX_ERROR;
   4074             syntaxError(pattern,pos,parseError);
   4075             return;
   4076         }
   4077 
   4078         // Make sure pad is at legal position before or after affix.
   4079         if (padPos >= 0) {
   4080             if (padPos == start) {
   4081                 padPos = kPadBeforePrefix;
   4082             } else if (padPos+2 == sub0Start) {
   4083                 padPos = kPadAfterPrefix;
   4084             } else if (padPos == sub0Limit) {
   4085                 padPos = kPadBeforeSuffix;
   4086             } else if (padPos+2 == sub2Limit) {
   4087                 padPos = kPadAfterSuffix;
   4088             } else {
   4089                 // Illegal pad position
   4090                 debug("Illegal pad position")
   4091                 status = U_ILLEGAL_PAD_POSITION;
   4092                 syntaxError(pattern,pos,parseError);
   4093                 return;
   4094             }
   4095         }
   4096 
   4097         if (part == 0) {
   4098             delete fPosPrefixPattern;
   4099             delete fPosSuffixPattern;
   4100             delete fNegPrefixPattern;
   4101             delete fNegSuffixPattern;
   4102             fPosPrefixPattern = new UnicodeString(prefix);
   4103             /* test for NULL */
   4104             if (fPosPrefixPattern == 0) {
   4105                 status = U_MEMORY_ALLOCATION_ERROR;
   4106                 return;
   4107             }
   4108             fPosSuffixPattern = new UnicodeString(suffix);
   4109             /* test for NULL */
   4110             if (fPosSuffixPattern == 0) {
   4111                 status = U_MEMORY_ALLOCATION_ERROR;
   4112                 delete fPosPrefixPattern;
   4113                 return;
   4114             }
   4115             fNegPrefixPattern = 0;
   4116             fNegSuffixPattern = 0;
   4117 
   4118             fUseExponentialNotation = (expDigits >= 0);
   4119             if (fUseExponentialNotation) {
   4120                 fMinExponentDigits = expDigits;
   4121             }
   4122             fExponentSignAlwaysShown = expSignAlways;
   4123             int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
   4124             // The effectiveDecimalPos is the position the decimal is at or
   4125             // would be at if there is no decimal.  Note that if
   4126             // decimalPos<0, then digitTotalCount == digitLeftCount +
   4127             // zeroDigitCount.
   4128             int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
   4129             UBool isSigDig = (sigDigitCount > 0);
   4130             setSignificantDigitsUsed(isSigDig);
   4131             if (isSigDig) {
   4132                 setMinimumSignificantDigits(sigDigitCount);
   4133                 setMaximumSignificantDigits(sigDigitCount + digitRightCount);
   4134             } else {
   4135                 int32_t minInt = effectiveDecimalPos - digitLeftCount;
   4136                 setMinimumIntegerDigits(minInt);
   4137                 setMaximumIntegerDigits(fUseExponentialNotation
   4138                     ? digitLeftCount + getMinimumIntegerDigits()
   4139                     : kDoubleIntegerDigits);
   4140                 setMaximumFractionDigits(decimalPos >= 0
   4141                     ? (digitTotalCount - decimalPos) : 0);
   4142                 setMinimumFractionDigits(decimalPos >= 0
   4143                     ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
   4144             }
   4145             setGroupingUsed(groupingCount > 0);
   4146             fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
   4147             fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
   4148                 ? groupingCount2 : 0;
   4149             setMultiplier(multiplier);
   4150             setDecimalSeparatorAlwaysShown(decimalPos == 0
   4151                     || decimalPos == digitTotalCount);
   4152             if (padPos >= 0) {
   4153                 fPadPosition = (EPadPosition) padPos;
   4154                 // To compute the format width, first set up sub0Limit -
   4155                 // sub0Start.  Add in prefix/suffix length later.
   4156 
   4157                 // fFormatWidth = prefix.length() + suffix.length() +
   4158                 //    sub0Limit - sub0Start;
   4159                 fFormatWidth = sub0Limit - sub0Start;
   4160                 fPad = padChar;
   4161             } else {
   4162                 fFormatWidth = 0;
   4163             }
   4164             if (roundingPos >= 0) {
   4165                 roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
   4166                 if (fRoundingIncrement != NULL) {
   4167                     *fRoundingIncrement = roundingInc;
   4168                 } else {
   4169                     fRoundingIncrement = new DigitList(roundingInc);
   4170                     /* test for NULL */
   4171                     if (fRoundingIncrement == NULL) {
   4172                         status = U_MEMORY_ALLOCATION_ERROR;
   4173                         delete fPosPrefixPattern;
   4174                         delete fPosSuffixPattern;
   4175                         return;
   4176                     }
   4177                 }
   4178                 fRoundingIncrement->getDouble();   // forces caching of double in the DigitList,
   4179                                                    //    makes getting it thread safe.
   4180                 fRoundingMode = kRoundHalfEven;
   4181             } else {
   4182                 setRoundingIncrement(0.0);
   4183             }
   4184         } else {
   4185             fNegPrefixPattern = new UnicodeString(prefix);
   4186             /* test for NULL */
   4187             if (fNegPrefixPattern == 0) {
   4188                 status = U_MEMORY_ALLOCATION_ERROR;
   4189                 return;
   4190             }
   4191             fNegSuffixPattern = new UnicodeString(suffix);
   4192             /* test for NULL */
   4193             if (fNegSuffixPattern == 0) {
   4194                 delete fNegPrefixPattern;
   4195                 status = U_MEMORY_ALLOCATION_ERROR;
   4196                 return;
   4197             }
   4198         }
   4199     }
   4200 
   4201     if (pattern.length() == 0) {
   4202         delete fNegPrefixPattern;
   4203         delete fNegSuffixPattern;
   4204         fNegPrefixPattern = NULL;
   4205         fNegSuffixPattern = NULL;
   4206         if (fPosPrefixPattern != NULL) {
   4207             fPosPrefixPattern->remove();
   4208         } else {
   4209             fPosPrefixPattern = new UnicodeString();
   4210             /* test for NULL */
   4211             if (fPosPrefixPattern == 0) {
   4212                 status = U_MEMORY_ALLOCATION_ERROR;
   4213                 return;
   4214             }
   4215         }
   4216         if (fPosSuffixPattern != NULL) {
   4217             fPosSuffixPattern->remove();
   4218         } else {
   4219             fPosSuffixPattern = new UnicodeString();
   4220             /* test for NULL */
   4221             if (fPosSuffixPattern == 0) {
   4222                 delete fPosPrefixPattern;
   4223                 status = U_MEMORY_ALLOCATION_ERROR;
   4224                 return;
   4225             }
   4226         }
   4227 
   4228         setMinimumIntegerDigits(0);
   4229         setMaximumIntegerDigits(kDoubleIntegerDigits);
   4230         setMinimumFractionDigits(0);
   4231         setMaximumFractionDigits(kDoubleFractionDigits);
   4232 
   4233         fUseExponentialNotation = FALSE;
   4234         fCurrencySignCount = 0;
   4235         setGroupingUsed(FALSE);
   4236         fGroupingSize = 0;
   4237         fGroupingSize2 = 0;
   4238         setMultiplier(1);
   4239         setDecimalSeparatorAlwaysShown(FALSE);
   4240         fFormatWidth = 0;
   4241         setRoundingIncrement(0.0);
   4242     }
   4243 
   4244     // If there was no negative pattern, or if the negative pattern is
   4245     // identical to the positive pattern, then prepend the minus sign to the
   4246     // positive pattern to form the negative pattern.
   4247     if (fNegPrefixPattern == NULL ||
   4248         (*fNegPrefixPattern == *fPosPrefixPattern
   4249          && *fNegSuffixPattern == *fPosSuffixPattern)) {
   4250         _copy_us_ptr(&fNegSuffixPattern, fPosSuffixPattern);
   4251         if (fNegPrefixPattern == NULL) {
   4252             fNegPrefixPattern = new UnicodeString();
   4253             /* test for NULL */
   4254             if (fNegPrefixPattern == 0) {
   4255                 status = U_MEMORY_ALLOCATION_ERROR;
   4256                 return;
   4257             }
   4258         } else {
   4259             fNegPrefixPattern->remove();
   4260         }
   4261         fNegPrefixPattern->append(kQuote).append(kPatternMinus)
   4262             .append(*fPosPrefixPattern);
   4263     }
   4264 #ifdef FMT_DEBUG
   4265     UnicodeString s;
   4266     s.append("\"").append(pattern).append("\"->");
   4267     debugout(s);
   4268 #endif
   4269 
   4270     // save the pattern
   4271     fFormatPattern = pattern;
   4272 }
   4273 
   4274 
   4275 void
   4276 DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
   4277     expandAffixes(pluralCount);
   4278     if (fFormatWidth > 0) {
   4279         // Finish computing format width (see above)
   4280             // TODO: how to handle fFormatWidth,
   4281             // need to save in f(Plural)AffixesForCurrecy?
   4282             fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
   4283     }
   4284 }
   4285 
   4286 
   4287 void
   4288 DecimalFormat::applyPattern(const UnicodeString& pattern,
   4289                             UBool localized,
   4290                             UParseError& parseError,
   4291                             UErrorCode& status)
   4292 {
   4293     // do the following re-set first. since they change private data by
   4294     // apply pattern again.
   4295     if (pattern.indexOf(kCurrencySign) != -1) {
   4296         if (fCurrencyPluralInfo == NULL) {
   4297             // initialize currencyPluralInfo if needed
   4298             fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
   4299         }
   4300         if (fAffixPatternsForCurrency == NULL) {
   4301             setupCurrencyAffixPatterns(status);
   4302         }
   4303         if (pattern.indexOf(fgTripleCurrencySign) != -1) {
   4304             // only setup the affixes of the current pattern.
   4305             setupCurrencyAffixes(pattern, TRUE, FALSE, status);
   4306         }
   4307     }
   4308     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
   4309     expandAffixAdjustWidth(NULL);
   4310 }
   4311 
   4312 
   4313 void
   4314 DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
   4315                                       const UnicodeString& pattern,
   4316                                       UBool localized,
   4317                                       UParseError& parseError,
   4318                                       UErrorCode& status) {
   4319     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
   4320     expandAffixAdjustWidth(&pluralCount);
   4321 }
   4322 
   4323 
   4324 /**
   4325  * Sets the maximum number of digits allowed in the integer portion of a
   4326  * number. This override limits the integer digit count to 309.
   4327  * @see NumberFormat#setMaximumIntegerDigits
   4328  */
   4329 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
   4330     NumberFormat::setMaximumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
   4331 }
   4332 
   4333 /**
   4334  * Sets the minimum number of digits allowed in the integer portion of a
   4335  * number. This override limits the integer digit count to 309.
   4336  * @see NumberFormat#setMinimumIntegerDigits
   4337  */
   4338 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
   4339     NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
   4340 }
   4341 
   4342 /**
   4343  * Sets the maximum number of digits allowed in the fraction portion of a
   4344  * number. This override limits the fraction digit count to 340.
   4345  * @see NumberFormat#setMaximumFractionDigits
   4346  */
   4347 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
   4348     NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
   4349 }
   4350 
   4351 /**
   4352  * Sets the minimum number of digits allowed in the fraction portion of a
   4353  * number. This override limits the fraction digit count to 340.
   4354  * @see NumberFormat#setMinimumFractionDigits
   4355  */
   4356 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
   4357     NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
   4358 }
   4359 
   4360 int32_t DecimalFormat::getMinimumSignificantDigits() const {
   4361     return fMinSignificantDigits;
   4362 }
   4363 
   4364 int32_t DecimalFormat::getMaximumSignificantDigits() const {
   4365     return fMaxSignificantDigits;
   4366 }
   4367 
   4368 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
   4369     if (min < 1) {
   4370         min = 1;
   4371     }
   4372     // pin max sig dig to >= min
   4373     int32_t max = _max(fMaxSignificantDigits, min);
   4374     fMinSignificantDigits = min;
   4375     fMaxSignificantDigits = max;
   4376 }
   4377 
   4378 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
   4379     if (max < 1) {
   4380         max = 1;
   4381     }
   4382     // pin min sig dig to 1..max
   4383     U_ASSERT(fMinSignificantDigits >= 1);
   4384     int32_t min = _min(fMinSignificantDigits, max);
   4385     fMinSignificantDigits = min;
   4386     fMaxSignificantDigits = max;
   4387 }
   4388 
   4389 UBool DecimalFormat::areSignificantDigitsUsed() const {
   4390     return fUseSignificantDigits;
   4391 }
   4392 
   4393 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
   4394     fUseSignificantDigits = useSignificantDigits;
   4395 }
   4396 
   4397 void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
   4398                                           UErrorCode& ec) {
   4399     // If we are a currency format, then modify our affixes to
   4400     // encode the currency symbol for the given currency in our
   4401     // locale, and adjust the decimal digits and rounding for the
   4402     // given currency.
   4403 
   4404     // Note: The code is ordered so that this object is *not changed*
   4405     // until we are sure we are going to succeed.
   4406 
   4407     // NULL or empty currency is *legal* and indicates no currency.
   4408     UBool isCurr = (theCurrency && *theCurrency);
   4409 
   4410     double rounding = 0.0;
   4411     int32_t frac = 0;
   4412     if (fCurrencySignCount > fgCurrencySignCountZero && isCurr) {
   4413         rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
   4414         frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
   4415     }
   4416 
   4417     NumberFormat::setCurrency(theCurrency, ec);
   4418     if (U_FAILURE(ec)) return;
   4419 
   4420     if (fCurrencySignCount > fgCurrencySignCountZero) {
   4421         // NULL or empty currency is *legal* and indicates no currency.
   4422         if (isCurr) {
   4423             setRoundingIncrement(rounding);
   4424             setMinimumFractionDigits(frac);
   4425             setMaximumFractionDigits(frac);
   4426         }
   4427         expandAffixes(NULL);
   4428     }
   4429 }
   4430 
   4431 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
   4432     // set the currency before compute affixes to get the right currency names
   4433     NumberFormat::setCurrency(theCurrency, ec);
   4434     if (fFormatPattern.indexOf(fgTripleCurrencySign) != -1) {
   4435         UnicodeString savedPtn = fFormatPattern;
   4436         setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
   4437         UParseError parseErr;
   4438         applyPattern(savedPtn, FALSE, parseErr, ec);
   4439     }
   4440     // set the currency after apply pattern to get the correct rounding/fraction
   4441     setCurrencyInternally(theCurrency, ec);
   4442 }
   4443 
   4444 // Deprecated variant with no UErrorCode parameter
   4445 void DecimalFormat::setCurrency(const UChar* theCurrency) {
   4446     UErrorCode ec = U_ZERO_ERROR;
   4447     setCurrency(theCurrency, ec);
   4448 }
   4449 
   4450 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
   4451     if (fSymbols == NULL) {
   4452         ec = U_MEMORY_ALLOCATION_ERROR;
   4453         return;
   4454     }
   4455     ec = U_ZERO_ERROR;
   4456     const UChar* c = getCurrency();
   4457     if (*c == 0) {
   4458         const UnicodeString &intl =
   4459             fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   4460         c = intl.getBuffer(); // ok for intl to go out of scope
   4461     }
   4462     u_strncpy(result, c, 3);
   4463     result[3] = 0;
   4464 }
   4465 
   4466 /**
   4467  * Return the number of fraction digits to display, or the total
   4468  * number of digits for significant digit formats and exponential
   4469  * formats.
   4470  */
   4471 int32_t
   4472 DecimalFormat::precision() const {
   4473     if (areSignificantDigitsUsed()) {
   4474         return getMaximumSignificantDigits();
   4475     } else if (fUseExponentialNotation) {
   4476         return getMinimumIntegerDigits() + getMaximumFractionDigits();
   4477     } else {
   4478         return getMaximumFractionDigits();
   4479     }
   4480 }
   4481 
   4482 
   4483 // TODO: template algorithm
   4484 Hashtable*
   4485 DecimalFormat::initHashForAffix(UErrorCode& status) {
   4486     if ( U_FAILURE(status) ) {
   4487         return NULL;
   4488     }
   4489     Hashtable* hTable;
   4490     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
   4491         status = U_MEMORY_ALLOCATION_ERROR;
   4492         return NULL;
   4493     }
   4494     hTable->setValueComparator(decimfmtAffixValueComparator);
   4495     return hTable;
   4496 }
   4497 
   4498 Hashtable*
   4499 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
   4500     if ( U_FAILURE(status) ) {
   4501         return NULL;
   4502     }
   4503     Hashtable* hTable;
   4504     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
   4505         status = U_MEMORY_ALLOCATION_ERROR;
   4506         return NULL;
   4507     }
   4508     hTable->setValueComparator(decimfmtAffixPatternValueComparator);
   4509     return hTable;
   4510 }
   4511 
   4512 void
   4513 DecimalFormat::deleteHashForAffix(Hashtable*& table)
   4514 {
   4515     if ( table == NULL ) {
   4516         return;
   4517     }
   4518     int32_t pos = -1;
   4519     const UHashElement* element = NULL;
   4520     while ( (element = table->nextElement(pos)) != NULL ) {
   4521         const UHashTok keyTok = element->key;
   4522         const UHashTok valueTok = element->value;
   4523         const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
   4524         delete value;
   4525     }
   4526     delete table;
   4527     table = NULL;
   4528 }
   4529 
   4530 
   4531 
   4532 void
   4533 DecimalFormat::deleteHashForAffixPattern()
   4534 {
   4535     if ( fAffixPatternsForCurrency == NULL ) {
   4536         return;
   4537     }
   4538     int32_t pos = -1;
   4539     const UHashElement* element = NULL;
   4540     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   4541         const UHashTok keyTok = element->key;
   4542         const UHashTok valueTok = element->value;
   4543         const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   4544         delete value;
   4545     }
   4546     delete fAffixPatternsForCurrency;
   4547     fAffixPatternsForCurrency = NULL;
   4548 }
   4549 
   4550 
   4551 void
   4552 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
   4553                                        Hashtable* target,
   4554                                        UErrorCode& status) {
   4555     if ( U_FAILURE(status) ) {
   4556         return;
   4557     }
   4558     int32_t pos = -1;
   4559     const UHashElement* element = NULL;
   4560     if ( source ) {
   4561         while ( (element = source->nextElement(pos)) != NULL ) {
   4562             const UHashTok keyTok = element->key;
   4563             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   4564             const UHashTok valueTok = element->value;
   4565             const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   4566             AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
   4567                 value->negPrefixPatternForCurrency,
   4568                 value->negSuffixPatternForCurrency,
   4569                 value->posPrefixPatternForCurrency,
   4570                 value->posSuffixPatternForCurrency,
   4571                 value->patternType);
   4572             target->put(UnicodeString(*key), copy, status);
   4573             if ( U_FAILURE(status) ) {
   4574                 return;
   4575             }
   4576         }
   4577     }
   4578 }
   4579 
   4580 
   4581 
   4582 void
   4583 DecimalFormat::copyHashForAffix(const Hashtable* source,
   4584                                 Hashtable* target,
   4585                                 UErrorCode& status) {
   4586     if ( U_FAILURE(status) ) {
   4587         return;
   4588     }
   4589     int32_t pos = -1;
   4590     const UHashElement* element = NULL;
   4591     if ( source ) {
   4592         while ( (element = source->nextElement(pos)) != NULL ) {
   4593             const UHashTok keyTok = element->key;
   4594             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   4595 
   4596             const UHashTok valueTok = element->value;
   4597             const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
   4598             AffixesForCurrency* copy = new AffixesForCurrency(
   4599                 value->negPrefixForCurrency,
   4600                 value->negSuffixForCurrency,
   4601                 value->posPrefixForCurrency,
   4602                 value->posSuffixForCurrency);
   4603             target->put(UnicodeString(*key), copy, status);
   4604             if ( U_FAILURE(status) ) {
   4605                 return;
   4606             }
   4607         }
   4608     }
   4609 }
   4610 
   4611 U_NAMESPACE_END
   4612 
   4613 #endif /* #if !UCONFIG_NO_FORMATTING */
   4614 
   4615 //eof
   4616