1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a coalescing interval map for small objects. 11 // 12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the 13 // same value are represented in a compressed form. 14 // 15 // Iterators provide ordered access to the compressed intervals rather than the 16 // individual keys, and insert and erase operations use key intervals as well. 17 // 18 // Like SmallVector, IntervalMap will store the first N intervals in the map 19 // object itself without any allocations. When space is exhausted it switches to 20 // a B+-tree representation with very small overhead for small key and value 21 // objects. 22 // 23 // A Traits class specifies how keys are compared. It also allows IntervalMap to 24 // work with both closed and half-open intervals. 25 // 26 // Keys and values are not stored next to each other in a std::pair, so we don't 27 // provide such a value_type. Dereferencing iterators only returns the mapped 28 // value. The interval bounds are accessible through the start() and stop() 29 // iterator methods. 30 // 31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each 32 // is the optimal size. For large objects use std::map instead. 33 // 34 //===----------------------------------------------------------------------===// 35 // 36 // Synopsis: 37 // 38 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 39 // class IntervalMap { 40 // public: 41 // typedef KeyT key_type; 42 // typedef ValT mapped_type; 43 // typedef RecyclingAllocator<...> Allocator; 44 // class iterator; 45 // class const_iterator; 46 // 47 // explicit IntervalMap(Allocator&); 48 // ~IntervalMap(): 49 // 50 // bool empty() const; 51 // KeyT start() const; 52 // KeyT stop() const; 53 // ValT lookup(KeyT x, Value NotFound = Value()) const; 54 // 55 // const_iterator begin() const; 56 // const_iterator end() const; 57 // iterator begin(); 58 // iterator end(); 59 // const_iterator find(KeyT x) const; 60 // iterator find(KeyT x); 61 // 62 // void insert(KeyT a, KeyT b, ValT y); 63 // void clear(); 64 // }; 65 // 66 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 67 // class IntervalMap::const_iterator : 68 // public std::iterator<std::bidirectional_iterator_tag, ValT> { 69 // public: 70 // bool operator==(const const_iterator &) const; 71 // bool operator!=(const const_iterator &) const; 72 // bool valid() const; 73 // 74 // const KeyT &start() const; 75 // const KeyT &stop() const; 76 // const ValT &value() const; 77 // const ValT &operator*() const; 78 // const ValT *operator->() const; 79 // 80 // const_iterator &operator++(); 81 // const_iterator &operator++(int); 82 // const_iterator &operator--(); 83 // const_iterator &operator--(int); 84 // void goToBegin(); 85 // void goToEnd(); 86 // void find(KeyT x); 87 // void advanceTo(KeyT x); 88 // }; 89 // 90 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 91 // class IntervalMap::iterator : public const_iterator { 92 // public: 93 // void insert(KeyT a, KeyT b, Value y); 94 // void erase(); 95 // }; 96 // 97 //===----------------------------------------------------------------------===// 98 99 #ifndef LLVM_ADT_INTERVALMAP_H 100 #define LLVM_ADT_INTERVALMAP_H 101 102 #include "llvm/ADT/SmallVector.h" 103 #include "llvm/ADT/PointerIntPair.h" 104 #include "llvm/Support/Allocator.h" 105 #include "llvm/Support/RecyclingAllocator.h" 106 #include <iterator> 107 108 namespace llvm { 109 110 111 //===----------------------------------------------------------------------===// 112 //--- Key traits ---// 113 //===----------------------------------------------------------------------===// 114 // 115 // The IntervalMap works with closed or half-open intervals. 116 // Adjacent intervals that map to the same value are coalesced. 117 // 118 // The IntervalMapInfo traits class is used to determine if a key is contained 119 // in an interval, and if two intervals are adjacent so they can be coalesced. 120 // The provided implementation works for closed integer intervals, other keys 121 // probably need a specialized version. 122 // 123 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x). 124 // 125 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is 126 // allowed. This is so that stopLess(a, b) can be used to determine if two 127 // intervals overlap. 128 // 129 //===----------------------------------------------------------------------===// 130 131 template <typename T> 132 struct IntervalMapInfo { 133 134 /// startLess - Return true if x is not in [a;b]. 135 /// This is x < a both for closed intervals and for [a;b) half-open intervals. 136 static inline bool startLess(const T &x, const T &a) { 137 return x < a; 138 } 139 140 /// stopLess - Return true if x is not in [a;b]. 141 /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals. 142 static inline bool stopLess(const T &b, const T &x) { 143 return b < x; 144 } 145 146 /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce. 147 /// This is a+1 == b for closed intervals, a == b for half-open intervals. 148 static inline bool adjacent(const T &a, const T &b) { 149 return a+1 == b; 150 } 151 152 }; 153 154 /// IntervalMapImpl - Namespace used for IntervalMap implementation details. 155 /// It should be considered private to the implementation. 156 namespace IntervalMapImpl { 157 158 // Forward declarations. 159 template <typename, typename, unsigned, typename> class LeafNode; 160 template <typename, typename, unsigned, typename> class BranchNode; 161 162 typedef std::pair<unsigned,unsigned> IdxPair; 163 164 165 //===----------------------------------------------------------------------===// 166 //--- IntervalMapImpl::NodeBase ---// 167 //===----------------------------------------------------------------------===// 168 // 169 // Both leaf and branch nodes store vectors of pairs. 170 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT). 171 // 172 // Keys and values are stored in separate arrays to avoid padding caused by 173 // different object alignments. This also helps improve locality of reference 174 // when searching the keys. 175 // 176 // The nodes don't know how many elements they contain - that information is 177 // stored elsewhere. Omitting the size field prevents padding and allows a node 178 // to fill the allocated cache lines completely. 179 // 180 // These are typical key and value sizes, the node branching factor (N), and 181 // wasted space when nodes are sized to fit in three cache lines (192 bytes): 182 // 183 // T1 T2 N Waste Used by 184 // 4 4 24 0 Branch<4> (32-bit pointers) 185 // 8 4 16 0 Leaf<4,4>, Branch<4> 186 // 8 8 12 0 Leaf<4,8>, Branch<8> 187 // 16 4 9 12 Leaf<8,4> 188 // 16 8 8 0 Leaf<8,8> 189 // 190 //===----------------------------------------------------------------------===// 191 192 template <typename T1, typename T2, unsigned N> 193 class NodeBase { 194 public: 195 enum { Capacity = N }; 196 197 T1 first[N]; 198 T2 second[N]; 199 200 /// copy - Copy elements from another node. 201 /// @param Other Node elements are copied from. 202 /// @param i Beginning of the source range in other. 203 /// @param j Beginning of the destination range in this. 204 /// @param Count Number of elements to copy. 205 template <unsigned M> 206 void copy(const NodeBase<T1, T2, M> &Other, unsigned i, 207 unsigned j, unsigned Count) { 208 assert(i + Count <= M && "Invalid source range"); 209 assert(j + Count <= N && "Invalid dest range"); 210 for (unsigned e = i + Count; i != e; ++i, ++j) { 211 first[j] = Other.first[i]; 212 second[j] = Other.second[i]; 213 } 214 } 215 216 /// moveLeft - Move elements to the left. 217 /// @param i Beginning of the source range. 218 /// @param j Beginning of the destination range. 219 /// @param Count Number of elements to copy. 220 void moveLeft(unsigned i, unsigned j, unsigned Count) { 221 assert(j <= i && "Use moveRight shift elements right"); 222 copy(*this, i, j, Count); 223 } 224 225 /// moveRight - Move elements to the right. 226 /// @param i Beginning of the source range. 227 /// @param j Beginning of the destination range. 228 /// @param Count Number of elements to copy. 229 void moveRight(unsigned i, unsigned j, unsigned Count) { 230 assert(i <= j && "Use moveLeft shift elements left"); 231 assert(j + Count <= N && "Invalid range"); 232 while (Count--) { 233 first[j + Count] = first[i + Count]; 234 second[j + Count] = second[i + Count]; 235 } 236 } 237 238 /// erase - Erase elements [i;j). 239 /// @param i Beginning of the range to erase. 240 /// @param j End of the range. (Exclusive). 241 /// @param Size Number of elements in node. 242 void erase(unsigned i, unsigned j, unsigned Size) { 243 moveLeft(j, i, Size - j); 244 } 245 246 /// erase - Erase element at i. 247 /// @param i Index of element to erase. 248 /// @param Size Number of elements in node. 249 void erase(unsigned i, unsigned Size) { 250 erase(i, i+1, Size); 251 } 252 253 /// shift - Shift elements [i;size) 1 position to the right. 254 /// @param i Beginning of the range to move. 255 /// @param Size Number of elements in node. 256 void shift(unsigned i, unsigned Size) { 257 moveRight(i, i + 1, Size - i); 258 } 259 260 /// transferToLeftSib - Transfer elements to a left sibling node. 261 /// @param Size Number of elements in this. 262 /// @param Sib Left sibling node. 263 /// @param SSize Number of elements in sib. 264 /// @param Count Number of elements to transfer. 265 void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, 266 unsigned Count) { 267 Sib.copy(*this, 0, SSize, Count); 268 erase(0, Count, Size); 269 } 270 271 /// transferToRightSib - Transfer elements to a right sibling node. 272 /// @param Size Number of elements in this. 273 /// @param Sib Right sibling node. 274 /// @param SSize Number of elements in sib. 275 /// @param Count Number of elements to transfer. 276 void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize, 277 unsigned Count) { 278 Sib.moveRight(0, Count, SSize); 279 Sib.copy(*this, Size-Count, 0, Count); 280 } 281 282 /// adjustFromLeftSib - Adjust the number if elements in this node by moving 283 /// elements to or from a left sibling node. 284 /// @param Size Number of elements in this. 285 /// @param Sib Right sibling node. 286 /// @param SSize Number of elements in sib. 287 /// @param Add The number of elements to add to this node, possibly < 0. 288 /// @return Number of elements added to this node, possibly negative. 289 int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) { 290 if (Add > 0) { 291 // We want to grow, copy from sib. 292 unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size); 293 Sib.transferToRightSib(SSize, *this, Size, Count); 294 return Count; 295 } else { 296 // We want to shrink, copy to sib. 297 unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize); 298 transferToLeftSib(Size, Sib, SSize, Count); 299 return -Count; 300 } 301 } 302 }; 303 304 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes. 305 /// @param Node Array of pointers to sibling nodes. 306 /// @param Nodes Number of nodes. 307 /// @param CurSize Array of current node sizes, will be overwritten. 308 /// @param NewSize Array of desired node sizes. 309 template <typename NodeT> 310 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes, 311 unsigned CurSize[], const unsigned NewSize[]) { 312 // Move elements right. 313 for (int n = Nodes - 1; n; --n) { 314 if (CurSize[n] == NewSize[n]) 315 continue; 316 for (int m = n - 1; m != -1; --m) { 317 int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m], 318 NewSize[n] - CurSize[n]); 319 CurSize[m] -= d; 320 CurSize[n] += d; 321 // Keep going if the current node was exhausted. 322 if (CurSize[n] >= NewSize[n]) 323 break; 324 } 325 } 326 327 if (Nodes == 0) 328 return; 329 330 // Move elements left. 331 for (unsigned n = 0; n != Nodes - 1; ++n) { 332 if (CurSize[n] == NewSize[n]) 333 continue; 334 for (unsigned m = n + 1; m != Nodes; ++m) { 335 int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n], 336 CurSize[n] - NewSize[n]); 337 CurSize[m] += d; 338 CurSize[n] -= d; 339 // Keep going if the current node was exhausted. 340 if (CurSize[n] >= NewSize[n]) 341 break; 342 } 343 } 344 345 #ifndef NDEBUG 346 for (unsigned n = 0; n != Nodes; n++) 347 assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle"); 348 #endif 349 } 350 351 /// IntervalMapImpl::distribute - Compute a new distribution of node elements 352 /// after an overflow or underflow. Reserve space for a new element at Position, 353 /// and compute the node that will hold Position after redistributing node 354 /// elements. 355 /// 356 /// It is required that 357 /// 358 /// Elements == sum(CurSize), and 359 /// Elements + Grow <= Nodes * Capacity. 360 /// 361 /// NewSize[] will be filled in such that: 362 /// 363 /// sum(NewSize) == Elements, and 364 /// NewSize[i] <= Capacity. 365 /// 366 /// The returned index is the node where Position will go, so: 367 /// 368 /// sum(NewSize[0..idx-1]) <= Position 369 /// sum(NewSize[0..idx]) >= Position 370 /// 371 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when 372 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node 373 /// before the one holding the Position'th element where there is room for an 374 /// insertion. 375 /// 376 /// @param Nodes The number of nodes. 377 /// @param Elements Total elements in all nodes. 378 /// @param Capacity The capacity of each node. 379 /// @param CurSize Array[Nodes] of current node sizes, or NULL. 380 /// @param NewSize Array[Nodes] to receive the new node sizes. 381 /// @param Position Insert position. 382 /// @param Grow Reserve space for a new element at Position. 383 /// @return (node, offset) for Position. 384 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity, 385 const unsigned *CurSize, unsigned NewSize[], 386 unsigned Position, bool Grow); 387 388 389 //===----------------------------------------------------------------------===// 390 //--- IntervalMapImpl::NodeSizer ---// 391 //===----------------------------------------------------------------------===// 392 // 393 // Compute node sizes from key and value types. 394 // 395 // The branching factors are chosen to make nodes fit in three cache lines. 396 // This may not be possible if keys or values are very large. Such large objects 397 // are handled correctly, but a std::map would probably give better performance. 398 // 399 //===----------------------------------------------------------------------===// 400 401 enum { 402 // Cache line size. Most architectures have 32 or 64 byte cache lines. 403 // We use 64 bytes here because it provides good branching factors. 404 Log2CacheLine = 6, 405 CacheLineBytes = 1 << Log2CacheLine, 406 DesiredNodeBytes = 3 * CacheLineBytes 407 }; 408 409 template <typename KeyT, typename ValT> 410 struct NodeSizer { 411 enum { 412 // Compute the leaf node branching factor that makes a node fit in three 413 // cache lines. The branching factor must be at least 3, or some B+-tree 414 // balancing algorithms won't work. 415 // LeafSize can't be larger than CacheLineBytes. This is required by the 416 // PointerIntPair used by NodeRef. 417 DesiredLeafSize = DesiredNodeBytes / 418 static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)), 419 MinLeafSize = 3, 420 LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize 421 }; 422 423 typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase; 424 425 enum { 426 // Now that we have the leaf branching factor, compute the actual allocation 427 // unit size by rounding up to a whole number of cache lines. 428 AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1), 429 430 // Determine the branching factor for branch nodes. 431 BranchSize = AllocBytes / 432 static_cast<unsigned>(sizeof(KeyT) + sizeof(void*)) 433 }; 434 435 /// Allocator - The recycling allocator used for both branch and leaf nodes. 436 /// This typedef is very likely to be identical for all IntervalMaps with 437 /// reasonably sized entries, so the same allocator can be shared among 438 /// different kinds of maps. 439 typedef RecyclingAllocator<BumpPtrAllocator, char, 440 AllocBytes, CacheLineBytes> Allocator; 441 442 }; 443 444 445 //===----------------------------------------------------------------------===// 446 //--- IntervalMapImpl::NodeRef ---// 447 //===----------------------------------------------------------------------===// 448 // 449 // B+-tree nodes can be leaves or branches, so we need a polymorphic node 450 // pointer that can point to both kinds. 451 // 452 // All nodes are cache line aligned and the low 6 bits of a node pointer are 453 // always 0. These bits are used to store the number of elements in the 454 // referenced node. Besides saving space, placing node sizes in the parents 455 // allow tree balancing algorithms to run without faulting cache lines for nodes 456 // that may not need to be modified. 457 // 458 // A NodeRef doesn't know whether it references a leaf node or a branch node. 459 // It is the responsibility of the caller to use the correct types. 460 // 461 // Nodes are never supposed to be empty, and it is invalid to store a node size 462 // of 0 in a NodeRef. The valid range of sizes is 1-64. 463 // 464 //===----------------------------------------------------------------------===// 465 466 class NodeRef { 467 struct CacheAlignedPointerTraits { 468 static inline void *getAsVoidPointer(void *P) { return P; } 469 static inline void *getFromVoidPointer(void *P) { return P; } 470 enum { NumLowBitsAvailable = Log2CacheLine }; 471 }; 472 PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip; 473 474 public: 475 /// NodeRef - Create a null ref. 476 NodeRef() {} 477 478 /// operator bool - Detect a null ref. 479 operator bool() const { return pip.getOpaqueValue(); } 480 481 /// NodeRef - Create a reference to the node p with n elements. 482 template <typename NodeT> 483 NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) { 484 assert(n <= NodeT::Capacity && "Size too big for node"); 485 } 486 487 /// size - Return the number of elements in the referenced node. 488 unsigned size() const { return pip.getInt() + 1; } 489 490 /// setSize - Update the node size. 491 void setSize(unsigned n) { pip.setInt(n - 1); } 492 493 /// subtree - Access the i'th subtree reference in a branch node. 494 /// This depends on branch nodes storing the NodeRef array as their first 495 /// member. 496 NodeRef &subtree(unsigned i) const { 497 return reinterpret_cast<NodeRef*>(pip.getPointer())[i]; 498 } 499 500 /// get - Dereference as a NodeT reference. 501 template <typename NodeT> 502 NodeT &get() const { 503 return *reinterpret_cast<NodeT*>(pip.getPointer()); 504 } 505 506 bool operator==(const NodeRef &RHS) const { 507 if (pip == RHS.pip) 508 return true; 509 assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs"); 510 return false; 511 } 512 513 bool operator!=(const NodeRef &RHS) const { 514 return !operator==(RHS); 515 } 516 }; 517 518 //===----------------------------------------------------------------------===// 519 //--- IntervalMapImpl::LeafNode ---// 520 //===----------------------------------------------------------------------===// 521 // 522 // Leaf nodes store up to N disjoint intervals with corresponding values. 523 // 524 // The intervals are kept sorted and fully coalesced so there are no adjacent 525 // intervals mapping to the same value. 526 // 527 // These constraints are always satisfied: 528 // 529 // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals. 530 // 531 // - Traits::stopLess(stop(i), start(i + 1) - Sorted. 532 // 533 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1)) 534 // - Fully coalesced. 535 // 536 //===----------------------------------------------------------------------===// 537 538 template <typename KeyT, typename ValT, unsigned N, typename Traits> 539 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> { 540 public: 541 const KeyT &start(unsigned i) const { return this->first[i].first; } 542 const KeyT &stop(unsigned i) const { return this->first[i].second; } 543 const ValT &value(unsigned i) const { return this->second[i]; } 544 545 KeyT &start(unsigned i) { return this->first[i].first; } 546 KeyT &stop(unsigned i) { return this->first[i].second; } 547 ValT &value(unsigned i) { return this->second[i]; } 548 549 /// findFrom - Find the first interval after i that may contain x. 550 /// @param i Starting index for the search. 551 /// @param Size Number of elements in node. 552 /// @param x Key to search for. 553 /// @return First index with !stopLess(key[i].stop, x), or size. 554 /// This is the first interval that can possibly contain x. 555 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { 556 assert(i <= Size && Size <= N && "Bad indices"); 557 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 558 "Index is past the needed point"); 559 while (i != Size && Traits::stopLess(stop(i), x)) ++i; 560 return i; 561 } 562 563 /// safeFind - Find an interval that is known to exist. This is the same as 564 /// findFrom except is it assumed that x is at least within range of the last 565 /// interval. 566 /// @param i Starting index for the search. 567 /// @param x Key to search for. 568 /// @return First index with !stopLess(key[i].stop, x), never size. 569 /// This is the first interval that can possibly contain x. 570 unsigned safeFind(unsigned i, KeyT x) const { 571 assert(i < N && "Bad index"); 572 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 573 "Index is past the needed point"); 574 while (Traits::stopLess(stop(i), x)) ++i; 575 assert(i < N && "Unsafe intervals"); 576 return i; 577 } 578 579 /// safeLookup - Lookup mapped value for a safe key. 580 /// It is assumed that x is within range of the last entry. 581 /// @param x Key to search for. 582 /// @param NotFound Value to return if x is not in any interval. 583 /// @return The mapped value at x or NotFound. 584 ValT safeLookup(KeyT x, ValT NotFound) const { 585 unsigned i = safeFind(0, x); 586 return Traits::startLess(x, start(i)) ? NotFound : value(i); 587 } 588 589 unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y); 590 }; 591 592 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as 593 /// possible. This may cause the node to grow by 1, or it may cause the node 594 /// to shrink because of coalescing. 595 /// @param i Starting index = insertFrom(0, size, a) 596 /// @param Size Number of elements in node. 597 /// @param a Interval start. 598 /// @param b Interval stop. 599 /// @param y Value be mapped. 600 /// @return (insert position, new size), or (i, Capacity+1) on overflow. 601 template <typename KeyT, typename ValT, unsigned N, typename Traits> 602 unsigned LeafNode<KeyT, ValT, N, Traits>:: 603 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) { 604 unsigned i = Pos; 605 assert(i <= Size && Size <= N && "Invalid index"); 606 assert(!Traits::stopLess(b, a) && "Invalid interval"); 607 608 // Verify the findFrom invariant. 609 assert((i == 0 || Traits::stopLess(stop(i - 1), a))); 610 assert((i == Size || !Traits::stopLess(stop(i), a))); 611 assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert"); 612 613 // Coalesce with previous interval. 614 if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) { 615 Pos = i - 1; 616 // Also coalesce with next interval? 617 if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) { 618 stop(i - 1) = stop(i); 619 this->erase(i, Size); 620 return Size - 1; 621 } 622 stop(i - 1) = b; 623 return Size; 624 } 625 626 // Detect overflow. 627 if (i == N) 628 return N + 1; 629 630 // Add new interval at end. 631 if (i == Size) { 632 start(i) = a; 633 stop(i) = b; 634 value(i) = y; 635 return Size + 1; 636 } 637 638 // Try to coalesce with following interval. 639 if (value(i) == y && Traits::adjacent(b, start(i))) { 640 start(i) = a; 641 return Size; 642 } 643 644 // We must insert before i. Detect overflow. 645 if (Size == N) 646 return N + 1; 647 648 // Insert before i. 649 this->shift(i, Size); 650 start(i) = a; 651 stop(i) = b; 652 value(i) = y; 653 return Size + 1; 654 } 655 656 657 //===----------------------------------------------------------------------===// 658 //--- IntervalMapImpl::BranchNode ---// 659 //===----------------------------------------------------------------------===// 660 // 661 // A branch node stores references to 1--N subtrees all of the same height. 662 // 663 // The key array in a branch node holds the rightmost stop key of each subtree. 664 // It is redundant to store the last stop key since it can be found in the 665 // parent node, but doing so makes tree balancing a lot simpler. 666 // 667 // It is unusual for a branch node to only have one subtree, but it can happen 668 // in the root node if it is smaller than the normal nodes. 669 // 670 // When all of the leaf nodes from all the subtrees are concatenated, they must 671 // satisfy the same constraints as a single leaf node. They must be sorted, 672 // sane, and fully coalesced. 673 // 674 //===----------------------------------------------------------------------===// 675 676 template <typename KeyT, typename ValT, unsigned N, typename Traits> 677 class BranchNode : public NodeBase<NodeRef, KeyT, N> { 678 public: 679 const KeyT &stop(unsigned i) const { return this->second[i]; } 680 const NodeRef &subtree(unsigned i) const { return this->first[i]; } 681 682 KeyT &stop(unsigned i) { return this->second[i]; } 683 NodeRef &subtree(unsigned i) { return this->first[i]; } 684 685 /// findFrom - Find the first subtree after i that may contain x. 686 /// @param i Starting index for the search. 687 /// @param Size Number of elements in node. 688 /// @param x Key to search for. 689 /// @return First index with !stopLess(key[i], x), or size. 690 /// This is the first subtree that can possibly contain x. 691 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { 692 assert(i <= Size && Size <= N && "Bad indices"); 693 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 694 "Index to findFrom is past the needed point"); 695 while (i != Size && Traits::stopLess(stop(i), x)) ++i; 696 return i; 697 } 698 699 /// safeFind - Find a subtree that is known to exist. This is the same as 700 /// findFrom except is it assumed that x is in range. 701 /// @param i Starting index for the search. 702 /// @param x Key to search for. 703 /// @return First index with !stopLess(key[i], x), never size. 704 /// This is the first subtree that can possibly contain x. 705 unsigned safeFind(unsigned i, KeyT x) const { 706 assert(i < N && "Bad index"); 707 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 708 "Index is past the needed point"); 709 while (Traits::stopLess(stop(i), x)) ++i; 710 assert(i < N && "Unsafe intervals"); 711 return i; 712 } 713 714 /// safeLookup - Get the subtree containing x, Assuming that x is in range. 715 /// @param x Key to search for. 716 /// @return Subtree containing x 717 NodeRef safeLookup(KeyT x) const { 718 return subtree(safeFind(0, x)); 719 } 720 721 /// insert - Insert a new (subtree, stop) pair. 722 /// @param i Insert position, following entries will be shifted. 723 /// @param Size Number of elements in node. 724 /// @param Node Subtree to insert. 725 /// @param Stop Last key in subtree. 726 void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) { 727 assert(Size < N && "branch node overflow"); 728 assert(i <= Size && "Bad insert position"); 729 this->shift(i, Size); 730 subtree(i) = Node; 731 stop(i) = Stop; 732 } 733 }; 734 735 //===----------------------------------------------------------------------===// 736 //--- IntervalMapImpl::Path ---// 737 //===----------------------------------------------------------------------===// 738 // 739 // A Path is used by iterators to represent a position in a B+-tree, and the 740 // path to get there from the root. 741 // 742 // The Path class also constains the tree navigation code that doesn't have to 743 // be templatized. 744 // 745 //===----------------------------------------------------------------------===// 746 747 class Path { 748 /// Entry - Each step in the path is a node pointer and an offset into that 749 /// node. 750 struct Entry { 751 void *node; 752 unsigned size; 753 unsigned offset; 754 755 Entry(void *Node, unsigned Size, unsigned Offset) 756 : node(Node), size(Size), offset(Offset) {} 757 758 Entry(NodeRef Node, unsigned Offset) 759 : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {} 760 761 NodeRef &subtree(unsigned i) const { 762 return reinterpret_cast<NodeRef*>(node)[i]; 763 } 764 }; 765 766 /// path - The path entries, path[0] is the root node, path.back() is a leaf. 767 SmallVector<Entry, 4> path; 768 769 public: 770 // Node accessors. 771 template <typename NodeT> NodeT &node(unsigned Level) const { 772 return *reinterpret_cast<NodeT*>(path[Level].node); 773 } 774 unsigned size(unsigned Level) const { return path[Level].size; } 775 unsigned offset(unsigned Level) const { return path[Level].offset; } 776 unsigned &offset(unsigned Level) { return path[Level].offset; } 777 778 // Leaf accessors. 779 template <typename NodeT> NodeT &leaf() const { 780 return *reinterpret_cast<NodeT*>(path.back().node); 781 } 782 unsigned leafSize() const { return path.back().size; } 783 unsigned leafOffset() const { return path.back().offset; } 784 unsigned &leafOffset() { return path.back().offset; } 785 786 /// valid - Return true if path is at a valid node, not at end(). 787 bool valid() const { 788 return !path.empty() && path.front().offset < path.front().size; 789 } 790 791 /// height - Return the height of the tree corresponding to this path. 792 /// This matches map->height in a full path. 793 unsigned height() const { return path.size() - 1; } 794 795 /// subtree - Get the subtree referenced from Level. When the path is 796 /// consistent, node(Level + 1) == subtree(Level). 797 /// @param Level 0..height-1. The leaves have no subtrees. 798 NodeRef &subtree(unsigned Level) const { 799 return path[Level].subtree(path[Level].offset); 800 } 801 802 /// reset - Reset cached information about node(Level) from subtree(Level -1). 803 /// @param Level 1..height. THe node to update after parent node changed. 804 void reset(unsigned Level) { 805 path[Level] = Entry(subtree(Level - 1), offset(Level)); 806 } 807 808 /// push - Add entry to path. 809 /// @param Node Node to add, should be subtree(path.size()-1). 810 /// @param Offset Offset into Node. 811 void push(NodeRef Node, unsigned Offset) { 812 path.push_back(Entry(Node, Offset)); 813 } 814 815 /// pop - Remove the last path entry. 816 void pop() { 817 path.pop_back(); 818 } 819 820 /// setSize - Set the size of a node both in the path and in the tree. 821 /// @param Level 0..height. Note that setting the root size won't change 822 /// map->rootSize. 823 /// @param Size New node size. 824 void setSize(unsigned Level, unsigned Size) { 825 path[Level].size = Size; 826 if (Level) 827 subtree(Level - 1).setSize(Size); 828 } 829 830 /// setRoot - Clear the path and set a new root node. 831 /// @param Node New root node. 832 /// @param Size New root size. 833 /// @param Offset Offset into root node. 834 void setRoot(void *Node, unsigned Size, unsigned Offset) { 835 path.clear(); 836 path.push_back(Entry(Node, Size, Offset)); 837 } 838 839 /// replaceRoot - Replace the current root node with two new entries after the 840 /// tree height has increased. 841 /// @param Root The new root node. 842 /// @param Size Number of entries in the new root. 843 /// @param Offsets Offsets into the root and first branch nodes. 844 void replaceRoot(void *Root, unsigned Size, IdxPair Offsets); 845 846 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef. 847 /// @param Level Get the sibling to node(Level). 848 /// @return Left sibling, or NodeRef(). 849 NodeRef getLeftSibling(unsigned Level) const; 850 851 /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level 852 /// unaltered. 853 /// @param Level Move node(Level). 854 void moveLeft(unsigned Level); 855 856 /// fillLeft - Grow path to Height by taking leftmost branches. 857 /// @param Height The target height. 858 void fillLeft(unsigned Height) { 859 while (height() < Height) 860 push(subtree(height()), 0); 861 } 862 863 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef. 864 /// @param Level Get the sinbling to node(Level). 865 /// @return Left sibling, or NodeRef(). 866 NodeRef getRightSibling(unsigned Level) const; 867 868 /// moveRight - Move path to the left sibling at Level. Leave nodes below 869 /// Level unaltered. 870 /// @param Level Move node(Level). 871 void moveRight(unsigned Level); 872 873 /// atBegin - Return true if path is at begin(). 874 bool atBegin() const { 875 for (unsigned i = 0, e = path.size(); i != e; ++i) 876 if (path[i].offset != 0) 877 return false; 878 return true; 879 } 880 881 /// atLastEntry - Return true if the path is at the last entry of the node at 882 /// Level. 883 /// @param Level Node to examine. 884 bool atLastEntry(unsigned Level) const { 885 return path[Level].offset == path[Level].size - 1; 886 } 887 888 /// legalizeForInsert - Prepare the path for an insertion at Level. When the 889 /// path is at end(), node(Level) may not be a legal node. legalizeForInsert 890 /// ensures that node(Level) is real by moving back to the last node at Level, 891 /// and setting offset(Level) to size(Level) if required. 892 /// @param Level The level where an insertion is about to take place. 893 void legalizeForInsert(unsigned Level) { 894 if (valid()) 895 return; 896 moveLeft(Level); 897 ++path[Level].offset; 898 } 899 }; 900 901 } // namespace IntervalMapImpl 902 903 904 //===----------------------------------------------------------------------===// 905 //--- IntervalMap ----// 906 //===----------------------------------------------------------------------===// 907 908 template <typename KeyT, typename ValT, 909 unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize, 910 typename Traits = IntervalMapInfo<KeyT> > 911 class IntervalMap { 912 typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer; 913 typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf; 914 typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits> 915 Branch; 916 typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf; 917 typedef IntervalMapImpl::IdxPair IdxPair; 918 919 // The RootLeaf capacity is given as a template parameter. We must compute the 920 // corresponding RootBranch capacity. 921 enum { 922 DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) / 923 (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)), 924 RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1 925 }; 926 927 typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits> 928 RootBranch; 929 930 // When branched, we store a global start key as well as the branch node. 931 struct RootBranchData { 932 KeyT start; 933 RootBranch node; 934 }; 935 936 enum { 937 RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ? 938 sizeof(RootBranchData) : sizeof(RootLeaf) 939 }; 940 941 public: 942 typedef typename Sizer::Allocator Allocator; 943 typedef KeyT KeyType; 944 typedef ValT ValueType; 945 typedef Traits KeyTraits; 946 947 private: 948 // The root data is either a RootLeaf or a RootBranchData instance. 949 // We can't put them in a union since C++03 doesn't allow non-trivial 950 // constructors in unions. 951 // Instead, we use a char array with pointer alignment. The alignment is 952 // ensured by the allocator member in the class, but still verified in the 953 // constructor. We don't support keys or values that are more aligned than a 954 // pointer. 955 char data[RootDataSize]; 956 957 // Tree height. 958 // 0: Leaves in root. 959 // 1: Root points to leaf. 960 // 2: root->branch->leaf ... 961 unsigned height; 962 963 // Number of entries in the root node. 964 unsigned rootSize; 965 966 // Allocator used for creating external nodes. 967 Allocator &allocator; 968 969 /// dataAs - Represent data as a node type without breaking aliasing rules. 970 template <typename T> 971 T &dataAs() const { 972 union { 973 const char *d; 974 T *t; 975 } u; 976 u.d = data; 977 return *u.t; 978 } 979 980 const RootLeaf &rootLeaf() const { 981 assert(!branched() && "Cannot acces leaf data in branched root"); 982 return dataAs<RootLeaf>(); 983 } 984 RootLeaf &rootLeaf() { 985 assert(!branched() && "Cannot acces leaf data in branched root"); 986 return dataAs<RootLeaf>(); 987 } 988 RootBranchData &rootBranchData() const { 989 assert(branched() && "Cannot access branch data in non-branched root"); 990 return dataAs<RootBranchData>(); 991 } 992 RootBranchData &rootBranchData() { 993 assert(branched() && "Cannot access branch data in non-branched root"); 994 return dataAs<RootBranchData>(); 995 } 996 const RootBranch &rootBranch() const { return rootBranchData().node; } 997 RootBranch &rootBranch() { return rootBranchData().node; } 998 KeyT rootBranchStart() const { return rootBranchData().start; } 999 KeyT &rootBranchStart() { return rootBranchData().start; } 1000 1001 template <typename NodeT> NodeT *newNode() { 1002 return new(allocator.template Allocate<NodeT>()) NodeT(); 1003 } 1004 1005 template <typename NodeT> void deleteNode(NodeT *P) { 1006 P->~NodeT(); 1007 allocator.Deallocate(P); 1008 } 1009 1010 IdxPair branchRoot(unsigned Position); 1011 IdxPair splitRoot(unsigned Position); 1012 1013 void switchRootToBranch() { 1014 rootLeaf().~RootLeaf(); 1015 height = 1; 1016 new (&rootBranchData()) RootBranchData(); 1017 } 1018 1019 void switchRootToLeaf() { 1020 rootBranchData().~RootBranchData(); 1021 height = 0; 1022 new(&rootLeaf()) RootLeaf(); 1023 } 1024 1025 bool branched() const { return height > 0; } 1026 1027 ValT treeSafeLookup(KeyT x, ValT NotFound) const; 1028 void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, 1029 unsigned Level)); 1030 void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level); 1031 1032 public: 1033 explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) { 1034 assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 && 1035 "Insufficient alignment"); 1036 new(&rootLeaf()) RootLeaf(); 1037 } 1038 1039 ~IntervalMap() { 1040 clear(); 1041 rootLeaf().~RootLeaf(); 1042 } 1043 1044 /// empty - Return true when no intervals are mapped. 1045 bool empty() const { 1046 return rootSize == 0; 1047 } 1048 1049 /// start - Return the smallest mapped key in a non-empty map. 1050 KeyT start() const { 1051 assert(!empty() && "Empty IntervalMap has no start"); 1052 return !branched() ? rootLeaf().start(0) : rootBranchStart(); 1053 } 1054 1055 /// stop - Return the largest mapped key in a non-empty map. 1056 KeyT stop() const { 1057 assert(!empty() && "Empty IntervalMap has no stop"); 1058 return !branched() ? rootLeaf().stop(rootSize - 1) : 1059 rootBranch().stop(rootSize - 1); 1060 } 1061 1062 /// lookup - Return the mapped value at x or NotFound. 1063 ValT lookup(KeyT x, ValT NotFound = ValT()) const { 1064 if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x)) 1065 return NotFound; 1066 return branched() ? treeSafeLookup(x, NotFound) : 1067 rootLeaf().safeLookup(x, NotFound); 1068 } 1069 1070 /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals. 1071 /// It is assumed that no key in the interval is mapped to another value, but 1072 /// overlapping intervals already mapped to y will be coalesced. 1073 void insert(KeyT a, KeyT b, ValT y) { 1074 if (branched() || rootSize == RootLeaf::Capacity) 1075 return find(a).insert(a, b, y); 1076 1077 // Easy insert into root leaf. 1078 unsigned p = rootLeaf().findFrom(0, rootSize, a); 1079 rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y); 1080 } 1081 1082 /// clear - Remove all entries. 1083 void clear(); 1084 1085 class const_iterator; 1086 class iterator; 1087 friend class const_iterator; 1088 friend class iterator; 1089 1090 const_iterator begin() const { 1091 const_iterator I(*this); 1092 I.goToBegin(); 1093 return I; 1094 } 1095 1096 iterator begin() { 1097 iterator I(*this); 1098 I.goToBegin(); 1099 return I; 1100 } 1101 1102 const_iterator end() const { 1103 const_iterator I(*this); 1104 I.goToEnd(); 1105 return I; 1106 } 1107 1108 iterator end() { 1109 iterator I(*this); 1110 I.goToEnd(); 1111 return I; 1112 } 1113 1114 /// find - Return an iterator pointing to the first interval ending at or 1115 /// after x, or end(). 1116 const_iterator find(KeyT x) const { 1117 const_iterator I(*this); 1118 I.find(x); 1119 return I; 1120 } 1121 1122 iterator find(KeyT x) { 1123 iterator I(*this); 1124 I.find(x); 1125 return I; 1126 } 1127 }; 1128 1129 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a 1130 /// branched root. 1131 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1132 ValT IntervalMap<KeyT, ValT, N, Traits>:: 1133 treeSafeLookup(KeyT x, ValT NotFound) const { 1134 assert(branched() && "treeLookup assumes a branched root"); 1135 1136 IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x); 1137 for (unsigned h = height-1; h; --h) 1138 NR = NR.get<Branch>().safeLookup(x); 1139 return NR.get<Leaf>().safeLookup(x, NotFound); 1140 } 1141 1142 1143 // branchRoot - Switch from a leaf root to a branched root. 1144 // Return the new (root offset, node offset) corresponding to Position. 1145 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1146 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>:: 1147 branchRoot(unsigned Position) { 1148 using namespace IntervalMapImpl; 1149 // How many external leaf nodes to hold RootLeaf+1? 1150 const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1; 1151 1152 // Compute element distribution among new nodes. 1153 unsigned size[Nodes]; 1154 IdxPair NewOffset(0, Position); 1155 1156 // Is is very common for the root node to be smaller than external nodes. 1157 if (Nodes == 1) 1158 size[0] = rootSize; 1159 else 1160 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size, 1161 Position, true); 1162 1163 // Allocate new nodes. 1164 unsigned pos = 0; 1165 NodeRef node[Nodes]; 1166 for (unsigned n = 0; n != Nodes; ++n) { 1167 Leaf *L = newNode<Leaf>(); 1168 L->copy(rootLeaf(), pos, 0, size[n]); 1169 node[n] = NodeRef(L, size[n]); 1170 pos += size[n]; 1171 } 1172 1173 // Destroy the old leaf node, construct branch node instead. 1174 switchRootToBranch(); 1175 for (unsigned n = 0; n != Nodes; ++n) { 1176 rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1); 1177 rootBranch().subtree(n) = node[n]; 1178 } 1179 rootBranchStart() = node[0].template get<Leaf>().start(0); 1180 rootSize = Nodes; 1181 return NewOffset; 1182 } 1183 1184 // splitRoot - Split the current BranchRoot into multiple Branch nodes. 1185 // Return the new (root offset, node offset) corresponding to Position. 1186 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1187 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>:: 1188 splitRoot(unsigned Position) { 1189 using namespace IntervalMapImpl; 1190 // How many external leaf nodes to hold RootBranch+1? 1191 const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1; 1192 1193 // Compute element distribution among new nodes. 1194 unsigned Size[Nodes]; 1195 IdxPair NewOffset(0, Position); 1196 1197 // Is is very common for the root node to be smaller than external nodes. 1198 if (Nodes == 1) 1199 Size[0] = rootSize; 1200 else 1201 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size, 1202 Position, true); 1203 1204 // Allocate new nodes. 1205 unsigned Pos = 0; 1206 NodeRef Node[Nodes]; 1207 for (unsigned n = 0; n != Nodes; ++n) { 1208 Branch *B = newNode<Branch>(); 1209 B->copy(rootBranch(), Pos, 0, Size[n]); 1210 Node[n] = NodeRef(B, Size[n]); 1211 Pos += Size[n]; 1212 } 1213 1214 for (unsigned n = 0; n != Nodes; ++n) { 1215 rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1); 1216 rootBranch().subtree(n) = Node[n]; 1217 } 1218 rootSize = Nodes; 1219 ++height; 1220 return NewOffset; 1221 } 1222 1223 /// visitNodes - Visit each external node. 1224 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1225 void IntervalMap<KeyT, ValT, N, Traits>:: 1226 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) { 1227 if (!branched()) 1228 return; 1229 SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs; 1230 1231 // Collect level 0 nodes from the root. 1232 for (unsigned i = 0; i != rootSize; ++i) 1233 Refs.push_back(rootBranch().subtree(i)); 1234 1235 // Visit all branch nodes. 1236 for (unsigned h = height - 1; h; --h) { 1237 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 1238 for (unsigned j = 0, s = Refs[i].size(); j != s; ++j) 1239 NextRefs.push_back(Refs[i].subtree(j)); 1240 (this->*f)(Refs[i], h); 1241 } 1242 Refs.clear(); 1243 Refs.swap(NextRefs); 1244 } 1245 1246 // Visit all leaf nodes. 1247 for (unsigned i = 0, e = Refs.size(); i != e; ++i) 1248 (this->*f)(Refs[i], 0); 1249 } 1250 1251 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1252 void IntervalMap<KeyT, ValT, N, Traits>:: 1253 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) { 1254 if (Level) 1255 deleteNode(&Node.get<Branch>()); 1256 else 1257 deleteNode(&Node.get<Leaf>()); 1258 } 1259 1260 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1261 void IntervalMap<KeyT, ValT, N, Traits>:: 1262 clear() { 1263 if (branched()) { 1264 visitNodes(&IntervalMap::deleteNode); 1265 switchRootToLeaf(); 1266 } 1267 rootSize = 0; 1268 } 1269 1270 //===----------------------------------------------------------------------===// 1271 //--- IntervalMap::const_iterator ----// 1272 //===----------------------------------------------------------------------===// 1273 1274 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1275 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator : 1276 public std::iterator<std::bidirectional_iterator_tag, ValT> { 1277 protected: 1278 friend class IntervalMap; 1279 1280 // The map referred to. 1281 IntervalMap *map; 1282 1283 // We store a full path from the root to the current position. 1284 // The path may be partially filled, but never between iterator calls. 1285 IntervalMapImpl::Path path; 1286 1287 explicit const_iterator(const IntervalMap &map) : 1288 map(const_cast<IntervalMap*>(&map)) {} 1289 1290 bool branched() const { 1291 assert(map && "Invalid iterator"); 1292 return map->branched(); 1293 } 1294 1295 void setRoot(unsigned Offset) { 1296 if (branched()) 1297 path.setRoot(&map->rootBranch(), map->rootSize, Offset); 1298 else 1299 path.setRoot(&map->rootLeaf(), map->rootSize, Offset); 1300 } 1301 1302 void pathFillFind(KeyT x); 1303 void treeFind(KeyT x); 1304 void treeAdvanceTo(KeyT x); 1305 1306 /// unsafeStart - Writable access to start() for iterator. 1307 KeyT &unsafeStart() const { 1308 assert(valid() && "Cannot access invalid iterator"); 1309 return branched() ? path.leaf<Leaf>().start(path.leafOffset()) : 1310 path.leaf<RootLeaf>().start(path.leafOffset()); 1311 } 1312 1313 /// unsafeStop - Writable access to stop() for iterator. 1314 KeyT &unsafeStop() const { 1315 assert(valid() && "Cannot access invalid iterator"); 1316 return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) : 1317 path.leaf<RootLeaf>().stop(path.leafOffset()); 1318 } 1319 1320 /// unsafeValue - Writable access to value() for iterator. 1321 ValT &unsafeValue() const { 1322 assert(valid() && "Cannot access invalid iterator"); 1323 return branched() ? path.leaf<Leaf>().value(path.leafOffset()) : 1324 path.leaf<RootLeaf>().value(path.leafOffset()); 1325 } 1326 1327 public: 1328 /// const_iterator - Create an iterator that isn't pointing anywhere. 1329 const_iterator() : map(0) {} 1330 1331 /// setMap - Change the map iterated over. This call must be followed by a 1332 /// call to goToBegin(), goToEnd(), or find() 1333 void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); } 1334 1335 /// valid - Return true if the current position is valid, false for end(). 1336 bool valid() const { return path.valid(); } 1337 1338 /// start - Return the beginning of the current interval. 1339 const KeyT &start() const { return unsafeStart(); } 1340 1341 /// stop - Return the end of the current interval. 1342 const KeyT &stop() const { return unsafeStop(); } 1343 1344 /// value - Return the mapped value at the current interval. 1345 const ValT &value() const { return unsafeValue(); } 1346 1347 const ValT &operator*() const { return value(); } 1348 1349 bool operator==(const const_iterator &RHS) const { 1350 assert(map == RHS.map && "Cannot compare iterators from different maps"); 1351 if (!valid()) 1352 return !RHS.valid(); 1353 if (path.leafOffset() != RHS.path.leafOffset()) 1354 return false; 1355 return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>(); 1356 } 1357 1358 bool operator!=(const const_iterator &RHS) const { 1359 return !operator==(RHS); 1360 } 1361 1362 /// goToBegin - Move to the first interval in map. 1363 void goToBegin() { 1364 setRoot(0); 1365 if (branched()) 1366 path.fillLeft(map->height); 1367 } 1368 1369 /// goToEnd - Move beyond the last interval in map. 1370 void goToEnd() { 1371 setRoot(map->rootSize); 1372 } 1373 1374 /// preincrement - move to the next interval. 1375 const_iterator &operator++() { 1376 assert(valid() && "Cannot increment end()"); 1377 if (++path.leafOffset() == path.leafSize() && branched()) 1378 path.moveRight(map->height); 1379 return *this; 1380 } 1381 1382 /// postincrement - Dont do that! 1383 const_iterator operator++(int) { 1384 const_iterator tmp = *this; 1385 operator++(); 1386 return tmp; 1387 } 1388 1389 /// predecrement - move to the previous interval. 1390 const_iterator &operator--() { 1391 if (path.leafOffset() && (valid() || !branched())) 1392 --path.leafOffset(); 1393 else 1394 path.moveLeft(map->height); 1395 return *this; 1396 } 1397 1398 /// postdecrement - Dont do that! 1399 const_iterator operator--(int) { 1400 const_iterator tmp = *this; 1401 operator--(); 1402 return tmp; 1403 } 1404 1405 /// find - Move to the first interval with stop >= x, or end(). 1406 /// This is a full search from the root, the current position is ignored. 1407 void find(KeyT x) { 1408 if (branched()) 1409 treeFind(x); 1410 else 1411 setRoot(map->rootLeaf().findFrom(0, map->rootSize, x)); 1412 } 1413 1414 /// advanceTo - Move to the first interval with stop >= x, or end(). 1415 /// The search is started from the current position, and no earlier positions 1416 /// can be found. This is much faster than find() for small moves. 1417 void advanceTo(KeyT x) { 1418 if (!valid()) 1419 return; 1420 if (branched()) 1421 treeAdvanceTo(x); 1422 else 1423 path.leafOffset() = 1424 map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x); 1425 } 1426 1427 }; 1428 1429 /// pathFillFind - Complete path by searching for x. 1430 /// @param x Key to search for. 1431 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1432 void IntervalMap<KeyT, ValT, N, Traits>:: 1433 const_iterator::pathFillFind(KeyT x) { 1434 IntervalMapImpl::NodeRef NR = path.subtree(path.height()); 1435 for (unsigned i = map->height - path.height() - 1; i; --i) { 1436 unsigned p = NR.get<Branch>().safeFind(0, x); 1437 path.push(NR, p); 1438 NR = NR.subtree(p); 1439 } 1440 path.push(NR, NR.get<Leaf>().safeFind(0, x)); 1441 } 1442 1443 /// treeFind - Find in a branched tree. 1444 /// @param x Key to search for. 1445 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1446 void IntervalMap<KeyT, ValT, N, Traits>:: 1447 const_iterator::treeFind(KeyT x) { 1448 setRoot(map->rootBranch().findFrom(0, map->rootSize, x)); 1449 if (valid()) 1450 pathFillFind(x); 1451 } 1452 1453 /// treeAdvanceTo - Find position after the current one. 1454 /// @param x Key to search for. 1455 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1456 void IntervalMap<KeyT, ValT, N, Traits>:: 1457 const_iterator::treeAdvanceTo(KeyT x) { 1458 // Can we stay on the same leaf node? 1459 if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) { 1460 path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x); 1461 return; 1462 } 1463 1464 // Drop the current leaf. 1465 path.pop(); 1466 1467 // Search towards the root for a usable subtree. 1468 if (path.height()) { 1469 for (unsigned l = path.height() - 1; l; --l) { 1470 if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) { 1471 // The branch node at l+1 is usable 1472 path.offset(l + 1) = 1473 path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x); 1474 return pathFillFind(x); 1475 } 1476 path.pop(); 1477 } 1478 // Is the level-1 Branch usable? 1479 if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) { 1480 path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x); 1481 return pathFillFind(x); 1482 } 1483 } 1484 1485 // We reached the root. 1486 setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x)); 1487 if (valid()) 1488 pathFillFind(x); 1489 } 1490 1491 //===----------------------------------------------------------------------===// 1492 //--- IntervalMap::iterator ----// 1493 //===----------------------------------------------------------------------===// 1494 1495 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1496 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator { 1497 friend class IntervalMap; 1498 typedef IntervalMapImpl::IdxPair IdxPair; 1499 1500 explicit iterator(IntervalMap &map) : const_iterator(map) {} 1501 1502 void setNodeStop(unsigned Level, KeyT Stop); 1503 bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop); 1504 template <typename NodeT> bool overflow(unsigned Level); 1505 void treeInsert(KeyT a, KeyT b, ValT y); 1506 void eraseNode(unsigned Level); 1507 void treeErase(bool UpdateRoot = true); 1508 bool canCoalesceLeft(KeyT Start, ValT x); 1509 bool canCoalesceRight(KeyT Stop, ValT x); 1510 1511 public: 1512 /// iterator - Create null iterator. 1513 iterator() {} 1514 1515 /// setStart - Move the start of the current interval. 1516 /// This may cause coalescing with the previous interval. 1517 /// @param a New start key, must not overlap the previous interval. 1518 void setStart(KeyT a); 1519 1520 /// setStop - Move the end of the current interval. 1521 /// This may cause coalescing with the following interval. 1522 /// @param b New stop key, must not overlap the following interval. 1523 void setStop(KeyT b); 1524 1525 /// setValue - Change the mapped value of the current interval. 1526 /// This may cause coalescing with the previous and following intervals. 1527 /// @param x New value. 1528 void setValue(ValT x); 1529 1530 /// setStartUnchecked - Move the start of the current interval without 1531 /// checking for coalescing or overlaps. 1532 /// This should only be used when it is known that coalescing is not required. 1533 /// @param a New start key. 1534 void setStartUnchecked(KeyT a) { this->unsafeStart() = a; } 1535 1536 /// setStopUnchecked - Move the end of the current interval without checking 1537 /// for coalescing or overlaps. 1538 /// This should only be used when it is known that coalescing is not required. 1539 /// @param b New stop key. 1540 void setStopUnchecked(KeyT b) { 1541 this->unsafeStop() = b; 1542 // Update keys in branch nodes as well. 1543 if (this->path.atLastEntry(this->path.height())) 1544 setNodeStop(this->path.height(), b); 1545 } 1546 1547 /// setValueUnchecked - Change the mapped value of the current interval 1548 /// without checking for coalescing. 1549 /// @param x New value. 1550 void setValueUnchecked(ValT x) { this->unsafeValue() = x; } 1551 1552 /// insert - Insert mapping [a;b] -> y before the current position. 1553 void insert(KeyT a, KeyT b, ValT y); 1554 1555 /// erase - Erase the current interval. 1556 void erase(); 1557 1558 iterator &operator++() { 1559 const_iterator::operator++(); 1560 return *this; 1561 } 1562 1563 iterator operator++(int) { 1564 iterator tmp = *this; 1565 operator++(); 1566 return tmp; 1567 } 1568 1569 iterator &operator--() { 1570 const_iterator::operator--(); 1571 return *this; 1572 } 1573 1574 iterator operator--(int) { 1575 iterator tmp = *this; 1576 operator--(); 1577 return tmp; 1578 } 1579 1580 }; 1581 1582 /// canCoalesceLeft - Can the current interval coalesce to the left after 1583 /// changing start or value? 1584 /// @param Start New start of current interval. 1585 /// @param Value New value for current interval. 1586 /// @return True when updating the current interval would enable coalescing. 1587 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1588 bool IntervalMap<KeyT, ValT, N, Traits>:: 1589 iterator::canCoalesceLeft(KeyT Start, ValT Value) { 1590 using namespace IntervalMapImpl; 1591 Path &P = this->path; 1592 if (!this->branched()) { 1593 unsigned i = P.leafOffset(); 1594 RootLeaf &Node = P.leaf<RootLeaf>(); 1595 return i && Node.value(i-1) == Value && 1596 Traits::adjacent(Node.stop(i-1), Start); 1597 } 1598 // Branched. 1599 if (unsigned i = P.leafOffset()) { 1600 Leaf &Node = P.leaf<Leaf>(); 1601 return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start); 1602 } else if (NodeRef NR = P.getLeftSibling(P.height())) { 1603 unsigned i = NR.size() - 1; 1604 Leaf &Node = NR.get<Leaf>(); 1605 return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start); 1606 } 1607 return false; 1608 } 1609 1610 /// canCoalesceRight - Can the current interval coalesce to the right after 1611 /// changing stop or value? 1612 /// @param Stop New stop of current interval. 1613 /// @param Value New value for current interval. 1614 /// @return True when updating the current interval would enable coalescing. 1615 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1616 bool IntervalMap<KeyT, ValT, N, Traits>:: 1617 iterator::canCoalesceRight(KeyT Stop, ValT Value) { 1618 using namespace IntervalMapImpl; 1619 Path &P = this->path; 1620 unsigned i = P.leafOffset() + 1; 1621 if (!this->branched()) { 1622 if (i >= P.leafSize()) 1623 return false; 1624 RootLeaf &Node = P.leaf<RootLeaf>(); 1625 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i)); 1626 } 1627 // Branched. 1628 if (i < P.leafSize()) { 1629 Leaf &Node = P.leaf<Leaf>(); 1630 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i)); 1631 } else if (NodeRef NR = P.getRightSibling(P.height())) { 1632 Leaf &Node = NR.get<Leaf>(); 1633 return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0)); 1634 } 1635 return false; 1636 } 1637 1638 /// setNodeStop - Update the stop key of the current node at level and above. 1639 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1640 void IntervalMap<KeyT, ValT, N, Traits>:: 1641 iterator::setNodeStop(unsigned Level, KeyT Stop) { 1642 // There are no references to the root node, so nothing to update. 1643 if (!Level) 1644 return; 1645 IntervalMapImpl::Path &P = this->path; 1646 // Update nodes pointing to the current node. 1647 while (--Level) { 1648 P.node<Branch>(Level).stop(P.offset(Level)) = Stop; 1649 if (!P.atLastEntry(Level)) 1650 return; 1651 } 1652 // Update root separately since it has a different layout. 1653 P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop; 1654 } 1655 1656 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1657 void IntervalMap<KeyT, ValT, N, Traits>:: 1658 iterator::setStart(KeyT a) { 1659 assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop"); 1660 KeyT &CurStart = this->unsafeStart(); 1661 if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) { 1662 CurStart = a; 1663 return; 1664 } 1665 // Coalesce with the interval to the left. 1666 --*this; 1667 a = this->start(); 1668 erase(); 1669 setStartUnchecked(a); 1670 } 1671 1672 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1673 void IntervalMap<KeyT, ValT, N, Traits>:: 1674 iterator::setStop(KeyT b) { 1675 assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start"); 1676 if (Traits::startLess(b, this->stop()) || 1677 !canCoalesceRight(b, this->value())) { 1678 setStopUnchecked(b); 1679 return; 1680 } 1681 // Coalesce with interval to the right. 1682 KeyT a = this->start(); 1683 erase(); 1684 setStartUnchecked(a); 1685 } 1686 1687 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1688 void IntervalMap<KeyT, ValT, N, Traits>:: 1689 iterator::setValue(ValT x) { 1690 setValueUnchecked(x); 1691 if (canCoalesceRight(this->stop(), x)) { 1692 KeyT a = this->start(); 1693 erase(); 1694 setStartUnchecked(a); 1695 } 1696 if (canCoalesceLeft(this->start(), x)) { 1697 --*this; 1698 KeyT a = this->start(); 1699 erase(); 1700 setStartUnchecked(a); 1701 } 1702 } 1703 1704 /// insertNode - insert a node before the current path at level. 1705 /// Leave the current path pointing at the new node. 1706 /// @param Level path index of the node to be inserted. 1707 /// @param Node The node to be inserted. 1708 /// @param Stop The last index in the new node. 1709 /// @return True if the tree height was increased. 1710 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1711 bool IntervalMap<KeyT, ValT, N, Traits>:: 1712 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) { 1713 assert(Level && "Cannot insert next to the root"); 1714 bool SplitRoot = false; 1715 IntervalMap &IM = *this->map; 1716 IntervalMapImpl::Path &P = this->path; 1717 1718 if (Level == 1) { 1719 // Insert into the root branch node. 1720 if (IM.rootSize < RootBranch::Capacity) { 1721 IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop); 1722 P.setSize(0, ++IM.rootSize); 1723 P.reset(Level); 1724 return SplitRoot; 1725 } 1726 1727 // We need to split the root while keeping our position. 1728 SplitRoot = true; 1729 IdxPair Offset = IM.splitRoot(P.offset(0)); 1730 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset); 1731 1732 // Fall through to insert at the new higher level. 1733 ++Level; 1734 } 1735 1736 // When inserting before end(), make sure we have a valid path. 1737 P.legalizeForInsert(--Level); 1738 1739 // Insert into the branch node at Level-1. 1740 if (P.size(Level) == Branch::Capacity) { 1741 // Branch node is full, handle handle the overflow. 1742 assert(!SplitRoot && "Cannot overflow after splitting the root"); 1743 SplitRoot = overflow<Branch>(Level); 1744 Level += SplitRoot; 1745 } 1746 P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop); 1747 P.setSize(Level, P.size(Level) + 1); 1748 if (P.atLastEntry(Level)) 1749 setNodeStop(Level, Stop); 1750 P.reset(Level + 1); 1751 return SplitRoot; 1752 } 1753 1754 // insert 1755 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1756 void IntervalMap<KeyT, ValT, N, Traits>:: 1757 iterator::insert(KeyT a, KeyT b, ValT y) { 1758 if (this->branched()) 1759 return treeInsert(a, b, y); 1760 IntervalMap &IM = *this->map; 1761 IntervalMapImpl::Path &P = this->path; 1762 1763 // Try simple root leaf insert. 1764 unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y); 1765 1766 // Was the root node insert successful? 1767 if (Size <= RootLeaf::Capacity) { 1768 P.setSize(0, IM.rootSize = Size); 1769 return; 1770 } 1771 1772 // Root leaf node is full, we must branch. 1773 IdxPair Offset = IM.branchRoot(P.leafOffset()); 1774 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset); 1775 1776 // Now it fits in the new leaf. 1777 treeInsert(a, b, y); 1778 } 1779 1780 1781 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1782 void IntervalMap<KeyT, ValT, N, Traits>:: 1783 iterator::treeInsert(KeyT a, KeyT b, ValT y) { 1784 using namespace IntervalMapImpl; 1785 Path &P = this->path; 1786 1787 if (!P.valid()) 1788 P.legalizeForInsert(this->map->height); 1789 1790 // Check if this insertion will extend the node to the left. 1791 if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) { 1792 // Node is growing to the left, will it affect a left sibling node? 1793 if (NodeRef Sib = P.getLeftSibling(P.height())) { 1794 Leaf &SibLeaf = Sib.get<Leaf>(); 1795 unsigned SibOfs = Sib.size() - 1; 1796 if (SibLeaf.value(SibOfs) == y && 1797 Traits::adjacent(SibLeaf.stop(SibOfs), a)) { 1798 // This insertion will coalesce with the last entry in SibLeaf. We can 1799 // handle it in two ways: 1800 // 1. Extend SibLeaf.stop to b and be done, or 1801 // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue. 1802 // We prefer 1., but need 2 when coalescing to the right as well. 1803 Leaf &CurLeaf = P.leaf<Leaf>(); 1804 P.moveLeft(P.height()); 1805 if (Traits::stopLess(b, CurLeaf.start(0)) && 1806 (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) { 1807 // Easy, just extend SibLeaf and we're done. 1808 setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b); 1809 return; 1810 } else { 1811 // We have both left and right coalescing. Erase the old SibLeaf entry 1812 // and continue inserting the larger interval. 1813 a = SibLeaf.start(SibOfs); 1814 treeErase(/* UpdateRoot= */false); 1815 } 1816 } 1817 } else { 1818 // No left sibling means we are at begin(). Update cached bound. 1819 this->map->rootBranchStart() = a; 1820 } 1821 } 1822 1823 // When we are inserting at the end of a leaf node, we must update stops. 1824 unsigned Size = P.leafSize(); 1825 bool Grow = P.leafOffset() == Size; 1826 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y); 1827 1828 // Leaf insertion unsuccessful? Overflow and try again. 1829 if (Size > Leaf::Capacity) { 1830 overflow<Leaf>(P.height()); 1831 Grow = P.leafOffset() == P.leafSize(); 1832 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y); 1833 assert(Size <= Leaf::Capacity && "overflow() didn't make room"); 1834 } 1835 1836 // Inserted, update offset and leaf size. 1837 P.setSize(P.height(), Size); 1838 1839 // Insert was the last node entry, update stops. 1840 if (Grow) 1841 setNodeStop(P.height(), b); 1842 } 1843 1844 /// erase - erase the current interval and move to the next position. 1845 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1846 void IntervalMap<KeyT, ValT, N, Traits>:: 1847 iterator::erase() { 1848 IntervalMap &IM = *this->map; 1849 IntervalMapImpl::Path &P = this->path; 1850 assert(P.valid() && "Cannot erase end()"); 1851 if (this->branched()) 1852 return treeErase(); 1853 IM.rootLeaf().erase(P.leafOffset(), IM.rootSize); 1854 P.setSize(0, --IM.rootSize); 1855 } 1856 1857 /// treeErase - erase() for a branched tree. 1858 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1859 void IntervalMap<KeyT, ValT, N, Traits>:: 1860 iterator::treeErase(bool UpdateRoot) { 1861 IntervalMap &IM = *this->map; 1862 IntervalMapImpl::Path &P = this->path; 1863 Leaf &Node = P.leaf<Leaf>(); 1864 1865 // Nodes are not allowed to become empty. 1866 if (P.leafSize() == 1) { 1867 IM.deleteNode(&Node); 1868 eraseNode(IM.height); 1869 // Update rootBranchStart if we erased begin(). 1870 if (UpdateRoot && IM.branched() && P.valid() && P.atBegin()) 1871 IM.rootBranchStart() = P.leaf<Leaf>().start(0); 1872 return; 1873 } 1874 1875 // Erase current entry. 1876 Node.erase(P.leafOffset(), P.leafSize()); 1877 unsigned NewSize = P.leafSize() - 1; 1878 P.setSize(IM.height, NewSize); 1879 // When we erase the last entry, update stop and move to a legal position. 1880 if (P.leafOffset() == NewSize) { 1881 setNodeStop(IM.height, Node.stop(NewSize - 1)); 1882 P.moveRight(IM.height); 1883 } else if (UpdateRoot && P.atBegin()) 1884 IM.rootBranchStart() = P.leaf<Leaf>().start(0); 1885 } 1886 1887 /// eraseNode - Erase the current node at Level from its parent and move path to 1888 /// the first entry of the next sibling node. 1889 /// The node must be deallocated by the caller. 1890 /// @param Level 1..height, the root node cannot be erased. 1891 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1892 void IntervalMap<KeyT, ValT, N, Traits>:: 1893 iterator::eraseNode(unsigned Level) { 1894 assert(Level && "Cannot erase root node"); 1895 IntervalMap &IM = *this->map; 1896 IntervalMapImpl::Path &P = this->path; 1897 1898 if (--Level == 0) { 1899 IM.rootBranch().erase(P.offset(0), IM.rootSize); 1900 P.setSize(0, --IM.rootSize); 1901 // If this cleared the root, switch to height=0. 1902 if (IM.empty()) { 1903 IM.switchRootToLeaf(); 1904 this->setRoot(0); 1905 return; 1906 } 1907 } else { 1908 // Remove node ref from branch node at Level. 1909 Branch &Parent = P.node<Branch>(Level); 1910 if (P.size(Level) == 1) { 1911 // Branch node became empty, remove it recursively. 1912 IM.deleteNode(&Parent); 1913 eraseNode(Level); 1914 } else { 1915 // Branch node won't become empty. 1916 Parent.erase(P.offset(Level), P.size(Level)); 1917 unsigned NewSize = P.size(Level) - 1; 1918 P.setSize(Level, NewSize); 1919 // If we removed the last branch, update stop and move to a legal pos. 1920 if (P.offset(Level) == NewSize) { 1921 setNodeStop(Level, Parent.stop(NewSize - 1)); 1922 P.moveRight(Level); 1923 } 1924 } 1925 } 1926 // Update path cache for the new right sibling position. 1927 if (P.valid()) { 1928 P.reset(Level + 1); 1929 P.offset(Level + 1) = 0; 1930 } 1931 } 1932 1933 /// overflow - Distribute entries of the current node evenly among 1934 /// its siblings and ensure that the current node is not full. 1935 /// This may require allocating a new node. 1936 /// @param NodeT The type of node at Level (Leaf or Branch). 1937 /// @param Level path index of the overflowing node. 1938 /// @return True when the tree height was changed. 1939 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1940 template <typename NodeT> 1941 bool IntervalMap<KeyT, ValT, N, Traits>:: 1942 iterator::overflow(unsigned Level) { 1943 using namespace IntervalMapImpl; 1944 Path &P = this->path; 1945 unsigned CurSize[4]; 1946 NodeT *Node[4]; 1947 unsigned Nodes = 0; 1948 unsigned Elements = 0; 1949 unsigned Offset = P.offset(Level); 1950 1951 // Do we have a left sibling? 1952 NodeRef LeftSib = P.getLeftSibling(Level); 1953 if (LeftSib) { 1954 Offset += Elements = CurSize[Nodes] = LeftSib.size(); 1955 Node[Nodes++] = &LeftSib.get<NodeT>(); 1956 } 1957 1958 // Current node. 1959 Elements += CurSize[Nodes] = P.size(Level); 1960 Node[Nodes++] = &P.node<NodeT>(Level); 1961 1962 // Do we have a right sibling? 1963 NodeRef RightSib = P.getRightSibling(Level); 1964 if (RightSib) { 1965 Elements += CurSize[Nodes] = RightSib.size(); 1966 Node[Nodes++] = &RightSib.get<NodeT>(); 1967 } 1968 1969 // Do we need to allocate a new node? 1970 unsigned NewNode = 0; 1971 if (Elements + 1 > Nodes * NodeT::Capacity) { 1972 // Insert NewNode at the penultimate position, or after a single node. 1973 NewNode = Nodes == 1 ? 1 : Nodes - 1; 1974 CurSize[Nodes] = CurSize[NewNode]; 1975 Node[Nodes] = Node[NewNode]; 1976 CurSize[NewNode] = 0; 1977 Node[NewNode] = this->map->newNode<NodeT>(); 1978 ++Nodes; 1979 } 1980 1981 // Compute the new element distribution. 1982 unsigned NewSize[4]; 1983 IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity, 1984 CurSize, NewSize, Offset, true); 1985 adjustSiblingSizes(Node, Nodes, CurSize, NewSize); 1986 1987 // Move current location to the leftmost node. 1988 if (LeftSib) 1989 P.moveLeft(Level); 1990 1991 // Elements have been rearranged, now update node sizes and stops. 1992 bool SplitRoot = false; 1993 unsigned Pos = 0; 1994 for (;;) { 1995 KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1); 1996 if (NewNode && Pos == NewNode) { 1997 SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop); 1998 Level += SplitRoot; 1999 } else { 2000 P.setSize(Level, NewSize[Pos]); 2001 setNodeStop(Level, Stop); 2002 } 2003 if (Pos + 1 == Nodes) 2004 break; 2005 P.moveRight(Level); 2006 ++Pos; 2007 } 2008 2009 // Where was I? Find NewOffset. 2010 while(Pos != NewOffset.first) { 2011 P.moveLeft(Level); 2012 --Pos; 2013 } 2014 P.offset(Level) = NewOffset.second; 2015 return SplitRoot; 2016 } 2017 2018 //===----------------------------------------------------------------------===// 2019 //--- IntervalMapOverlaps ----// 2020 //===----------------------------------------------------------------------===// 2021 2022 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two 2023 /// IntervalMaps. The maps may be different, but the KeyT and Traits types 2024 /// should be the same. 2025 /// 2026 /// Typical uses: 2027 /// 2028 /// 1. Test for overlap: 2029 /// bool overlap = IntervalMapOverlaps(a, b).valid(); 2030 /// 2031 /// 2. Enumerate overlaps: 2032 /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... } 2033 /// 2034 template <typename MapA, typename MapB> 2035 class IntervalMapOverlaps { 2036 typedef typename MapA::KeyType KeyType; 2037 typedef typename MapA::KeyTraits Traits; 2038 typename MapA::const_iterator posA; 2039 typename MapB::const_iterator posB; 2040 2041 /// advance - Move posA and posB forward until reaching an overlap, or until 2042 /// either meets end. 2043 /// Don't move the iterators if they are already overlapping. 2044 void advance() { 2045 if (!valid()) 2046 return; 2047 2048 if (Traits::stopLess(posA.stop(), posB.start())) { 2049 // A ends before B begins. Catch up. 2050 posA.advanceTo(posB.start()); 2051 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start())) 2052 return; 2053 } else if (Traits::stopLess(posB.stop(), posA.start())) { 2054 // B ends before A begins. Catch up. 2055 posB.advanceTo(posA.start()); 2056 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start())) 2057 return; 2058 } else 2059 // Already overlapping. 2060 return; 2061 2062 for (;;) { 2063 // Make a.end > b.start. 2064 posA.advanceTo(posB.start()); 2065 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start())) 2066 return; 2067 // Make b.end > a.start. 2068 posB.advanceTo(posA.start()); 2069 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start())) 2070 return; 2071 } 2072 } 2073 2074 public: 2075 /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b. 2076 IntervalMapOverlaps(const MapA &a, const MapB &b) 2077 : posA(b.empty() ? a.end() : a.find(b.start())), 2078 posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); } 2079 2080 /// valid - Return true if iterator is at an overlap. 2081 bool valid() const { 2082 return posA.valid() && posB.valid(); 2083 } 2084 2085 /// a - access the left hand side in the overlap. 2086 const typename MapA::const_iterator &a() const { return posA; } 2087 2088 /// b - access the right hand side in the overlap. 2089 const typename MapB::const_iterator &b() const { return posB; } 2090 2091 /// start - Beginning of the overlapping interval. 2092 KeyType start() const { 2093 KeyType ak = a().start(); 2094 KeyType bk = b().start(); 2095 return Traits::startLess(ak, bk) ? bk : ak; 2096 } 2097 2098 /// stop - End of the overlapping interval. 2099 KeyType stop() const { 2100 KeyType ak = a().stop(); 2101 KeyType bk = b().stop(); 2102 return Traits::startLess(ak, bk) ? ak : bk; 2103 } 2104 2105 /// skipA - Move to the next overlap that doesn't involve a(). 2106 void skipA() { 2107 ++posA; 2108 advance(); 2109 } 2110 2111 /// skipB - Move to the next overlap that doesn't involve b(). 2112 void skipB() { 2113 ++posB; 2114 advance(); 2115 } 2116 2117 /// Preincrement - Move to the next overlap. 2118 IntervalMapOverlaps &operator++() { 2119 // Bump the iterator that ends first. The other one may have more overlaps. 2120 if (Traits::startLess(posB.stop(), posA.stop())) 2121 skipB(); 2122 else 2123 skipA(); 2124 return *this; 2125 } 2126 2127 /// advanceTo - Move to the first overlapping interval with 2128 /// stopLess(x, stop()). 2129 void advanceTo(KeyType x) { 2130 if (!valid()) 2131 return; 2132 // Make sure advanceTo sees monotonic keys. 2133 if (Traits::stopLess(posA.stop(), x)) 2134 posA.advanceTo(x); 2135 if (Traits::stopLess(posB.stop(), x)) 2136 posB.advanceTo(x); 2137 advance(); 2138 } 2139 }; 2140 2141 } // namespace llvm 2142 2143 #endif 2144