1 /* 2 * Copyright (C) 2009 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 /* this implements a sensors hardware library for the Android emulator. 18 * the following code should be built as a shared library that will be 19 * placed into /system/lib/hw/sensors.goldfish.so 20 * 21 * it will be loaded by the code in hardware/libhardware/hardware.c 22 * which is itself called from com_android_server_SensorService.cpp 23 */ 24 25 26 /* we connect with the emulator through the "sensors" qemud service 27 */ 28 #define SENSORS_SERVICE_NAME "sensors" 29 30 #define LOG_TAG "QemuSensors" 31 32 #include <unistd.h> 33 #include <fcntl.h> 34 #include <errno.h> 35 #include <string.h> 36 #include <cutils/log.h> 37 #include <cutils/native_handle.h> 38 #include <cutils/sockets.h> 39 #include <hardware/sensors.h> 40 41 #if 0 42 #define D(...) LOGD(__VA_ARGS__) 43 #else 44 #define D(...) ((void)0) 45 #endif 46 47 #define E(...) LOGE(__VA_ARGS__) 48 49 #include <hardware/qemud.h> 50 51 /** SENSOR IDS AND NAMES 52 **/ 53 54 #define MAX_NUM_SENSORS 5 55 56 #define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1) 57 58 #define ID_BASE SENSORS_HANDLE_BASE 59 #define ID_ACCELERATION (ID_BASE+0) 60 #define ID_MAGNETIC_FIELD (ID_BASE+1) 61 #define ID_ORIENTATION (ID_BASE+2) 62 #define ID_TEMPERATURE (ID_BASE+3) 63 #define ID_PROXIMITY (ID_BASE+4) 64 65 #define SENSORS_ACCELERATION (1 << ID_ACCELERATION) 66 #define SENSORS_MAGNETIC_FIELD (1 << ID_MAGNETIC_FIELD) 67 #define SENSORS_ORIENTATION (1 << ID_ORIENTATION) 68 #define SENSORS_TEMPERATURE (1 << ID_TEMPERATURE) 69 #define SENSORS_PROXIMITY (1 << ID_PROXIMITY) 70 71 #define ID_CHECK(x) ((unsigned)((x)-ID_BASE) < MAX_NUM_SENSORS) 72 73 #define SENSORS_LIST \ 74 SENSOR_(ACCELERATION,"acceleration") \ 75 SENSOR_(MAGNETIC_FIELD,"magnetic-field") \ 76 SENSOR_(ORIENTATION,"orientation") \ 77 SENSOR_(TEMPERATURE,"temperature") \ 78 SENSOR_(PROXIMITY,"proximity") \ 79 80 static const struct { 81 const char* name; 82 int id; } _sensorIds[MAX_NUM_SENSORS] = 83 { 84 #define SENSOR_(x,y) { y, ID_##x }, 85 SENSORS_LIST 86 #undef SENSOR_ 87 }; 88 89 static const char* 90 _sensorIdToName( int id ) 91 { 92 int nn; 93 for (nn = 0; nn < MAX_NUM_SENSORS; nn++) 94 if (id == _sensorIds[nn].id) 95 return _sensorIds[nn].name; 96 return "<UNKNOWN>"; 97 } 98 99 static int 100 _sensorIdFromName( const char* name ) 101 { 102 int nn; 103 104 if (name == NULL) 105 return -1; 106 107 for (nn = 0; nn < MAX_NUM_SENSORS; nn++) 108 if (!strcmp(name, _sensorIds[nn].name)) 109 return _sensorIds[nn].id; 110 111 return -1; 112 } 113 114 /** SENSORS POLL DEVICE 115 ** 116 ** This one is used to read sensor data from the hardware. 117 ** We implement this by simply reading the data from the 118 ** emulator through the QEMUD channel. 119 **/ 120 121 typedef struct SensorPoll { 122 struct sensors_poll_device_t device; 123 sensors_event_t sensors[MAX_NUM_SENSORS]; 124 int events_fd; 125 uint32_t pendingSensors; 126 int64_t timeStart; 127 int64_t timeOffset; 128 int fd; 129 uint32_t active_sensors; 130 } SensorPoll; 131 132 /* this must return a file descriptor that will be used to read 133 * the sensors data (it is passed to data__data_open() below 134 */ 135 static native_handle_t* 136 control__open_data_source(struct sensors_poll_device_t *dev) 137 { 138 SensorPoll* ctl = (void*)dev; 139 native_handle_t* handle; 140 141 if (ctl->fd < 0) { 142 ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME); 143 } 144 D("%s: fd=%d", __FUNCTION__, ctl->fd); 145 handle = native_handle_create(1, 0); 146 handle->data[0] = dup(ctl->fd); 147 return handle; 148 } 149 150 static int 151 control__activate(struct sensors_poll_device_t *dev, 152 int handle, 153 int enabled) 154 { 155 SensorPoll* ctl = (void*)dev; 156 uint32_t mask, sensors, active, new_sensors, changed; 157 char command[128]; 158 int ret; 159 160 D("%s: handle=%s (%d) fd=%d enabled=%d", __FUNCTION__, 161 _sensorIdToName(handle), handle, ctl->fd, enabled); 162 163 if (!ID_CHECK(handle)) { 164 E("%s: bad handle ID", __FUNCTION__); 165 return -1; 166 } 167 168 mask = (1<<handle); 169 sensors = enabled ? mask : 0; 170 171 active = ctl->active_sensors; 172 new_sensors = (active & ~mask) | (sensors & mask); 173 changed = active ^ new_sensors; 174 175 if (!changed) 176 return 0; 177 178 snprintf(command, sizeof command, "set:%s:%d", 179 _sensorIdToName(handle), enabled != 0); 180 181 if (ctl->fd < 0) { 182 ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME); 183 } 184 185 ret = qemud_channel_send(ctl->fd, command, -1); 186 if (ret < 0) { 187 E("%s: when sending command errno=%d: %s", __FUNCTION__, errno, strerror(errno)); 188 return -1; 189 } 190 ctl->active_sensors = new_sensors; 191 192 return 0; 193 } 194 195 static int 196 control__set_delay(struct sensors_poll_device_t *dev, int32_t ms) 197 { 198 SensorPoll* ctl = (void*)dev; 199 char command[128]; 200 201 D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms); 202 203 snprintf(command, sizeof command, "set-delay:%d", ms); 204 205 return qemud_channel_send(ctl->fd, command, -1); 206 } 207 208 static int 209 control__close(struct hw_device_t *dev) 210 { 211 SensorPoll* ctl = (void*)dev; 212 close(ctl->fd); 213 free(ctl); 214 return 0; 215 } 216 217 /* return the current time in nanoseconds */ 218 static int64_t 219 data__now_ns(void) 220 { 221 struct timespec ts; 222 223 clock_gettime(CLOCK_MONOTONIC, &ts); 224 225 return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec; 226 } 227 228 static int 229 data__data_open(struct sensors_poll_device_t *dev, native_handle_t* handle) 230 { 231 SensorPoll* data = (void*)dev; 232 int i; 233 D("%s: dev=%p fd=%d", __FUNCTION__, dev, handle->data[0]); 234 memset(&data->sensors, 0, sizeof(data->sensors)); 235 236 for (i=0 ; i<MAX_NUM_SENSORS ; i++) { 237 data->sensors[i].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH; 238 } 239 data->pendingSensors = 0; 240 data->timeStart = 0; 241 data->timeOffset = 0; 242 243 data->events_fd = dup(handle->data[0]); 244 D("%s: dev=%p fd=%d (was %d)", __FUNCTION__, dev, data->events_fd, handle->data[0]); 245 native_handle_close(handle); 246 native_handle_delete(handle); 247 return 0; 248 } 249 250 static int 251 data__data_close(struct sensors_poll_device_t *dev) 252 { 253 SensorPoll* data = (void*)dev; 254 D("%s: dev=%p", __FUNCTION__, dev); 255 if (data->events_fd >= 0) { 256 close(data->events_fd); 257 data->events_fd = -1; 258 } 259 return 0; 260 } 261 262 static int 263 pick_sensor(SensorPoll* data, 264 sensors_event_t* values) 265 { 266 uint32_t mask = SUPPORTED_SENSORS; 267 while (mask) { 268 uint32_t i = 31 - __builtin_clz(mask); 269 mask &= ~(1<<i); 270 if (data->pendingSensors & (1<<i)) { 271 data->pendingSensors &= ~(1<<i); 272 *values = data->sensors[i]; 273 values->sensor = i; 274 values->version = sizeof(*values); 275 276 D("%s: %d [%f, %f, %f]", __FUNCTION__, 277 i, 278 values->data[0], 279 values->data[1], 280 values->data[2]); 281 return i; 282 } 283 } 284 LOGE("No sensor to return!!! pendingSensors=%08x", data->pendingSensors); 285 // we may end-up in a busy loop, slow things down, just in case. 286 usleep(100000); 287 return -EINVAL; 288 } 289 290 static int 291 data__poll(struct sensors_poll_device_t *dev, sensors_event_t* values) 292 { 293 SensorPoll* data = (void*)dev; 294 int fd = data->events_fd; 295 296 D("%s: data=%p", __FUNCTION__, dev); 297 298 // there are pending sensors, returns them now... 299 if (data->pendingSensors) { 300 return pick_sensor(data, values); 301 } 302 303 // wait until we get a complete event for an enabled sensor 304 uint32_t new_sensors = 0; 305 306 while (1) { 307 /* read the next event */ 308 char buff[256]; 309 int len = qemud_channel_recv(data->events_fd, buff, sizeof buff-1); 310 float params[3]; 311 int64_t event_time; 312 313 if (len < 0) { 314 E("%s: len=%d, errno=%d: %s", __FUNCTION__, len, errno, strerror(errno)); 315 return -errno; 316 } 317 318 buff[len] = 0; 319 320 /* "wake" is sent from the emulator to exit this loop. */ 321 if (!strcmp((const char*)data, "wake")) { 322 return 0x7FFFFFFF; 323 } 324 325 /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */ 326 if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2) == 3) { 327 new_sensors |= SENSORS_ACCELERATION; 328 data->sensors[ID_ACCELERATION].acceleration.x = params[0]; 329 data->sensors[ID_ACCELERATION].acceleration.y = params[1]; 330 data->sensors[ID_ACCELERATION].acceleration.z = params[2]; 331 continue; 332 } 333 334 /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation changes */ 335 if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2) == 3) { 336 new_sensors |= SENSORS_ORIENTATION; 337 data->sensors[ID_ORIENTATION].orientation.azimuth = params[0]; 338 data->sensors[ID_ORIENTATION].orientation.pitch = params[1]; 339 data->sensors[ID_ORIENTATION].orientation.roll = params[2]; 340 continue; 341 } 342 343 /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic field */ 344 if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2) == 3) { 345 new_sensors |= SENSORS_MAGNETIC_FIELD; 346 data->sensors[ID_MAGNETIC_FIELD].magnetic.x = params[0]; 347 data->sensors[ID_MAGNETIC_FIELD].magnetic.y = params[1]; 348 data->sensors[ID_MAGNETIC_FIELD].magnetic.z = params[2]; 349 continue; 350 } 351 352 /* "temperature:<celsius>" */ 353 if (sscanf(buff, "temperature:%g", params+0) == 2) { 354 new_sensors |= SENSORS_TEMPERATURE; 355 data->sensors[ID_TEMPERATURE].temperature = params[0]; 356 continue; 357 } 358 359 /* "proximity:<value>" */ 360 if (sscanf(buff, "proximity:%g", params+0) == 1) { 361 new_sensors |= SENSORS_PROXIMITY; 362 data->sensors[ID_PROXIMITY].distance = params[0]; 363 continue; 364 } 365 366 /* "sync:<time>" is sent after a series of sensor events. 367 * where 'time' is expressed in micro-seconds and corresponds 368 * to the VM time when the real poll occured. 369 */ 370 if (sscanf(buff, "sync:%lld", &event_time) == 1) { 371 if (new_sensors) { 372 data->pendingSensors = new_sensors; 373 int64_t t = event_time * 1000LL; /* convert to nano-seconds */ 374 375 /* use the time at the first sync: as the base for later 376 * time values */ 377 if (data->timeStart == 0) { 378 data->timeStart = data__now_ns(); 379 data->timeOffset = data->timeStart - t; 380 } 381 t += data->timeOffset; 382 383 while (new_sensors) { 384 uint32_t i = 31 - __builtin_clz(new_sensors); 385 new_sensors &= ~(1<<i); 386 data->sensors[i].timestamp = t; 387 } 388 return pick_sensor(data, values); 389 } else { 390 D("huh ? sync without any sensor data ?"); 391 } 392 continue; 393 } 394 D("huh ? unsupported command"); 395 } 396 return -1; 397 } 398 399 static int 400 data__close(struct hw_device_t *dev) 401 { 402 SensorPoll* data = (SensorPoll*)dev; 403 if (data) { 404 if (data->events_fd >= 0) { 405 //LOGD("(device close) about to close fd=%d", data->events_fd); 406 close(data->events_fd); 407 } 408 free(data); 409 } 410 return 0; 411 } 412 413 /** SENSORS POLL DEVICE FUNCTIONS **/ 414 415 static int poll__close(struct hw_device_t* dev) 416 { 417 SensorPoll* ctl = (void*)dev; 418 close(ctl->fd); 419 if (ctl->fd >= 0) { 420 close(ctl->fd); 421 } 422 if (ctl->events_fd >= 0) { 423 close(ctl->events_fd); 424 } 425 free(ctl); 426 return 0; 427 } 428 429 static int poll__poll(struct sensors_poll_device_t *dev, 430 sensors_event_t* data, int count) 431 { 432 SensorPoll* datadev = (void*)dev; 433 int ret; 434 int i; 435 D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count); 436 437 for (i = 0; i < count; i++) { 438 ret = data__poll(dev, data); 439 data++; 440 if (ret > MAX_NUM_SENSORS || ret < 0) { 441 return i; 442 } 443 if (!datadev->pendingSensors) { 444 return i + 1; 445 } 446 } 447 return count; 448 } 449 450 static int poll__activate(struct sensors_poll_device_t *dev, 451 int handle, int enabled) 452 { 453 int ret; 454 native_handle_t* hdl; 455 SensorPoll* ctl = (void*)dev; 456 D("%s: dev=%p handle=%x enable=%d ", __FUNCTION__, dev, handle, enabled); 457 if (ctl->fd < 0) { 458 D("%s: OPEN CTRL and DATA ", __FUNCTION__); 459 hdl = control__open_data_source(dev); 460 ret = data__data_open(dev,hdl); 461 } 462 ret = control__activate(dev, handle, enabled); 463 return ret; 464 } 465 466 static int poll__setDelay(struct sensors_poll_device_t *dev, 467 int handle, int64_t ns) 468 { 469 // TODO 470 return 0; 471 } 472 473 /** MODULE REGISTRATION SUPPORT 474 ** 475 ** This is required so that hardware/libhardware/hardware.c 476 ** will dlopen() this library appropriately. 477 **/ 478 479 /* 480 * the following is the list of all supported sensors. 481 * this table is used to build sSensorList declared below 482 * according to which hardware sensors are reported as 483 * available from the emulator (see get_sensors_list below) 484 * 485 * note: numerical values for maxRange/resolution/power were 486 * taken from the reference AK8976A implementation 487 */ 488 static const struct sensor_t sSensorListInit[] = { 489 { .name = "Goldfish 3-axis Accelerometer", 490 .vendor = "The Android Open Source Project", 491 .version = 1, 492 .handle = ID_ACCELERATION, 493 .type = SENSOR_TYPE_ACCELEROMETER, 494 .maxRange = 2.8f, 495 .resolution = 1.0f/4032.0f, 496 .power = 3.0f, 497 .reserved = {} 498 }, 499 500 { .name = "Goldfish 3-axis Magnetic field sensor", 501 .vendor = "The Android Open Source Project", 502 .version = 1, 503 .handle = ID_MAGNETIC_FIELD, 504 .type = SENSOR_TYPE_MAGNETIC_FIELD, 505 .maxRange = 2000.0f, 506 .resolution = 1.0f, 507 .power = 6.7f, 508 .reserved = {} 509 }, 510 511 { .name = "Goldfish Orientation sensor", 512 .vendor = "The Android Open Source Project", 513 .version = 1, 514 .handle = ID_ORIENTATION, 515 .type = SENSOR_TYPE_ORIENTATION, 516 .maxRange = 360.0f, 517 .resolution = 1.0f, 518 .power = 9.7f, 519 .reserved = {} 520 }, 521 522 { .name = "Goldfish Temperature sensor", 523 .vendor = "The Android Open Source Project", 524 .version = 1, 525 .handle = ID_TEMPERATURE, 526 .type = SENSOR_TYPE_TEMPERATURE, 527 .maxRange = 80.0f, 528 .resolution = 1.0f, 529 .power = 0.0f, 530 .reserved = {} 531 }, 532 533 { .name = "Goldfish Proximity sensor", 534 .vendor = "The Android Open Source Project", 535 .version = 1, 536 .handle = ID_PROXIMITY, 537 .type = SENSOR_TYPE_PROXIMITY, 538 .maxRange = 1.0f, 539 .resolution = 1.0f, 540 .power = 20.0f, 541 .reserved = {} 542 }, 543 }; 544 545 static struct sensor_t sSensorList[MAX_NUM_SENSORS]; 546 547 static int sensors__get_sensors_list(struct sensors_module_t* module, 548 struct sensor_t const** list) 549 { 550 int fd = qemud_channel_open(SENSORS_SERVICE_NAME); 551 char buffer[12]; 552 int mask, nn, count; 553 554 int ret; 555 if (fd < 0) { 556 E("%s: no qemud connection", __FUNCTION__); 557 return 0; 558 } 559 ret = qemud_channel_send(fd, "list-sensors", -1); 560 if (ret < 0) { 561 E("%s: could not query sensor list: %s", __FUNCTION__, 562 strerror(errno)); 563 close(fd); 564 return 0; 565 } 566 ret = qemud_channel_recv(fd, buffer, sizeof buffer-1); 567 if (ret < 0) { 568 E("%s: could not receive sensor list: %s", __FUNCTION__, 569 strerror(errno)); 570 close(fd); 571 return 0; 572 } 573 buffer[ret] = 0; 574 close(fd); 575 576 /* the result is a integer used as a mask for available sensors */ 577 mask = atoi(buffer); 578 count = 0; 579 for (nn = 0; nn < MAX_NUM_SENSORS; nn++) { 580 if (((1 << nn) & mask) == 0) 581 continue; 582 583 sSensorList[count++] = sSensorListInit[nn]; 584 } 585 D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask); 586 *list = sSensorList; 587 return count; 588 } 589 590 591 static int 592 open_sensors(const struct hw_module_t* module, 593 const char* name, 594 struct hw_device_t* *device) 595 { 596 int status = -EINVAL; 597 598 D("%s: name=%s", __FUNCTION__, name); 599 600 if (!strcmp(name, SENSORS_HARDWARE_POLL)) { 601 SensorPoll *dev = malloc(sizeof(*dev)); 602 603 memset(dev, 0, sizeof(*dev)); 604 605 dev->device.common.tag = HARDWARE_DEVICE_TAG; 606 dev->device.common.version = 0; 607 dev->device.common.module = (struct hw_module_t*) module; 608 dev->device.common.close = poll__close; 609 dev->device.poll = poll__poll; 610 dev->device.activate = poll__activate; 611 dev->device.setDelay = poll__setDelay; 612 dev->events_fd = -1; 613 dev->fd = -1; 614 615 *device = &dev->device.common; 616 status = 0; 617 } 618 return status; 619 } 620 621 622 static struct hw_module_methods_t sensors_module_methods = { 623 .open = open_sensors 624 }; 625 626 const struct sensors_module_t HAL_MODULE_INFO_SYM = { 627 .common = { 628 .tag = HARDWARE_MODULE_TAG, 629 .version_major = 1, 630 .version_minor = 0, 631 .id = SENSORS_HARDWARE_MODULE_ID, 632 .name = "Goldfish SENSORS Module", 633 .author = "The Android Open Source Project", 634 .methods = &sensors_module_methods, 635 }, 636 .get_sensors_list = sensors__get_sensors_list 637 }; 638