Home | History | Annotate | Download | only in CodeGen
      1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "TargetInfo.h"
     16 #include "ABIInfo.h"
     17 #include "CodeGenFunction.h"
     18 #include "clang/AST/RecordLayout.h"
     19 #include "clang/Frontend/CodeGenOptions.h"
     20 #include "llvm/Type.h"
     21 #include "llvm/Target/TargetData.h"
     22 #include "llvm/ADT/Triple.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 using namespace clang;
     25 using namespace CodeGen;
     26 
     27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
     28                                llvm::Value *Array,
     29                                llvm::Value *Value,
     30                                unsigned FirstIndex,
     31                                unsigned LastIndex) {
     32   // Alternatively, we could emit this as a loop in the source.
     33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
     34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
     35     Builder.CreateStore(Value, Cell);
     36   }
     37 }
     38 
     39 static bool isAggregateTypeForABI(QualType T) {
     40   return CodeGenFunction::hasAggregateLLVMType(T) ||
     41          T->isMemberFunctionPointerType();
     42 }
     43 
     44 ABIInfo::~ABIInfo() {}
     45 
     46 ASTContext &ABIInfo::getContext() const {
     47   return CGT.getContext();
     48 }
     49 
     50 llvm::LLVMContext &ABIInfo::getVMContext() const {
     51   return CGT.getLLVMContext();
     52 }
     53 
     54 const llvm::TargetData &ABIInfo::getTargetData() const {
     55   return CGT.getTargetData();
     56 }
     57 
     58 
     59 void ABIArgInfo::dump() const {
     60   llvm::raw_ostream &OS = llvm::errs();
     61   OS << "(ABIArgInfo Kind=";
     62   switch (TheKind) {
     63   case Direct:
     64     OS << "Direct Type=";
     65     if (llvm::Type *Ty = getCoerceToType())
     66       Ty->print(OS);
     67     else
     68       OS << "null";
     69     break;
     70   case Extend:
     71     OS << "Extend";
     72     break;
     73   case Ignore:
     74     OS << "Ignore";
     75     break;
     76   case Indirect:
     77     OS << "Indirect Align=" << getIndirectAlign()
     78        << " ByVal=" << getIndirectByVal()
     79        << " Realign=" << getIndirectRealign();
     80     break;
     81   case Expand:
     82     OS << "Expand";
     83     break;
     84   }
     85   OS << ")\n";
     86 }
     87 
     88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
     89 
     90 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
     91 
     92 /// isEmptyField - Return true iff a the field is "empty", that is it
     93 /// is an unnamed bit-field or an (array of) empty record(s).
     94 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
     95                          bool AllowArrays) {
     96   if (FD->isUnnamedBitfield())
     97     return true;
     98 
     99   QualType FT = FD->getType();
    100 
    101     // Constant arrays of empty records count as empty, strip them off.
    102   if (AllowArrays)
    103     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
    104       FT = AT->getElementType();
    105 
    106   const RecordType *RT = FT->getAs<RecordType>();
    107   if (!RT)
    108     return false;
    109 
    110   // C++ record fields are never empty, at least in the Itanium ABI.
    111   //
    112   // FIXME: We should use a predicate for whether this behavior is true in the
    113   // current ABI.
    114   if (isa<CXXRecordDecl>(RT->getDecl()))
    115     return false;
    116 
    117   return isEmptyRecord(Context, FT, AllowArrays);
    118 }
    119 
    120 /// isEmptyRecord - Return true iff a structure contains only empty
    121 /// fields. Note that a structure with a flexible array member is not
    122 /// considered empty.
    123 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
    124   const RecordType *RT = T->getAs<RecordType>();
    125   if (!RT)
    126     return 0;
    127   const RecordDecl *RD = RT->getDecl();
    128   if (RD->hasFlexibleArrayMember())
    129     return false;
    130 
    131   // If this is a C++ record, check the bases first.
    132   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    133     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
    134            e = CXXRD->bases_end(); i != e; ++i)
    135       if (!isEmptyRecord(Context, i->getType(), true))
    136         return false;
    137 
    138   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    139          i != e; ++i)
    140     if (!isEmptyField(Context, *i, AllowArrays))
    141       return false;
    142   return true;
    143 }
    144 
    145 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
    146 /// a non-trivial destructor or a non-trivial copy constructor.
    147 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
    148   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
    149   if (!RD)
    150     return false;
    151 
    152   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
    153 }
    154 
    155 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
    156 /// a record type with either a non-trivial destructor or a non-trivial copy
    157 /// constructor.
    158 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
    159   const RecordType *RT = T->getAs<RecordType>();
    160   if (!RT)
    161     return false;
    162 
    163   return hasNonTrivialDestructorOrCopyConstructor(RT);
    164 }
    165 
    166 /// isSingleElementStruct - Determine if a structure is a "single
    167 /// element struct", i.e. it has exactly one non-empty field or
    168 /// exactly one field which is itself a single element
    169 /// struct. Structures with flexible array members are never
    170 /// considered single element structs.
    171 ///
    172 /// \return The field declaration for the single non-empty field, if
    173 /// it exists.
    174 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
    175   const RecordType *RT = T->getAsStructureType();
    176   if (!RT)
    177     return 0;
    178 
    179   const RecordDecl *RD = RT->getDecl();
    180   if (RD->hasFlexibleArrayMember())
    181     return 0;
    182 
    183   const Type *Found = 0;
    184 
    185   // If this is a C++ record, check the bases first.
    186   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    187     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
    188            e = CXXRD->bases_end(); i != e; ++i) {
    189       // Ignore empty records.
    190       if (isEmptyRecord(Context, i->getType(), true))
    191         continue;
    192 
    193       // If we already found an element then this isn't a single-element struct.
    194       if (Found)
    195         return 0;
    196 
    197       // If this is non-empty and not a single element struct, the composite
    198       // cannot be a single element struct.
    199       Found = isSingleElementStruct(i->getType(), Context);
    200       if (!Found)
    201         return 0;
    202     }
    203   }
    204 
    205   // Check for single element.
    206   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    207          i != e; ++i) {
    208     const FieldDecl *FD = *i;
    209     QualType FT = FD->getType();
    210 
    211     // Ignore empty fields.
    212     if (isEmptyField(Context, FD, true))
    213       continue;
    214 
    215     // If we already found an element then this isn't a single-element
    216     // struct.
    217     if (Found)
    218       return 0;
    219 
    220     // Treat single element arrays as the element.
    221     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
    222       if (AT->getSize().getZExtValue() != 1)
    223         break;
    224       FT = AT->getElementType();
    225     }
    226 
    227     if (!isAggregateTypeForABI(FT)) {
    228       Found = FT.getTypePtr();
    229     } else {
    230       Found = isSingleElementStruct(FT, Context);
    231       if (!Found)
    232         return 0;
    233     }
    234   }
    235 
    236   return Found;
    237 }
    238 
    239 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
    240   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
    241       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
    242       !Ty->isBlockPointerType())
    243     return false;
    244 
    245   uint64_t Size = Context.getTypeSize(Ty);
    246   return Size == 32 || Size == 64;
    247 }
    248 
    249 /// canExpandIndirectArgument - Test whether an argument type which is to be
    250 /// passed indirectly (on the stack) would have the equivalent layout if it was
    251 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
    252 /// inhibiting optimizations.
    253 ///
    254 // FIXME: This predicate is missing many cases, currently it just follows
    255 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
    256 // should probably make this smarter, or better yet make the LLVM backend
    257 // capable of handling it.
    258 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
    259   // We can only expand structure types.
    260   const RecordType *RT = Ty->getAs<RecordType>();
    261   if (!RT)
    262     return false;
    263 
    264   // We can only expand (C) structures.
    265   //
    266   // FIXME: This needs to be generalized to handle classes as well.
    267   const RecordDecl *RD = RT->getDecl();
    268   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
    269     return false;
    270 
    271   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    272          i != e; ++i) {
    273     const FieldDecl *FD = *i;
    274 
    275     if (!is32Or64BitBasicType(FD->getType(), Context))
    276       return false;
    277 
    278     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
    279     // how to expand them yet, and the predicate for telling if a bitfield still
    280     // counts as "basic" is more complicated than what we were doing previously.
    281     if (FD->isBitField())
    282       return false;
    283   }
    284 
    285   return true;
    286 }
    287 
    288 namespace {
    289 /// DefaultABIInfo - The default implementation for ABI specific
    290 /// details. This implementation provides information which results in
    291 /// self-consistent and sensible LLVM IR generation, but does not
    292 /// conform to any particular ABI.
    293 class DefaultABIInfo : public ABIInfo {
    294 public:
    295   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    296 
    297   ABIArgInfo classifyReturnType(QualType RetTy) const;
    298   ABIArgInfo classifyArgumentType(QualType RetTy) const;
    299 
    300   virtual void computeInfo(CGFunctionInfo &FI) const {
    301     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    302     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
    303          it != ie; ++it)
    304       it->info = classifyArgumentType(it->type);
    305   }
    306 
    307   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    308                                  CodeGenFunction &CGF) const;
    309 };
    310 
    311 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
    312 public:
    313   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    314     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
    315 };
    316 
    317 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    318                                        CodeGenFunction &CGF) const {
    319   return 0;
    320 }
    321 
    322 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
    323   if (isAggregateTypeForABI(Ty))
    324     return ABIArgInfo::getIndirect(0);
    325 
    326   // Treat an enum type as its underlying type.
    327   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    328     Ty = EnumTy->getDecl()->getIntegerType();
    329 
    330   return (Ty->isPromotableIntegerType() ?
    331           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    332 }
    333 
    334 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
    335   if (RetTy->isVoidType())
    336     return ABIArgInfo::getIgnore();
    337 
    338   if (isAggregateTypeForABI(RetTy))
    339     return ABIArgInfo::getIndirect(0);
    340 
    341   // Treat an enum type as its underlying type.
    342   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    343     RetTy = EnumTy->getDecl()->getIntegerType();
    344 
    345   return (RetTy->isPromotableIntegerType() ?
    346           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    347 }
    348 
    349 /// UseX86_MMXType - Return true if this is an MMX type that should use the special
    350 /// x86_mmx type.
    351 bool UseX86_MMXType(llvm::Type *IRType) {
    352   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
    353   // special x86_mmx type.
    354   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
    355     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
    356     IRType->getScalarSizeInBits() != 64;
    357 }
    358 
    359 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    360                                           llvm::StringRef Constraint,
    361                                           llvm::Type* Ty) {
    362   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
    363     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
    364   return Ty;
    365 }
    366 
    367 //===----------------------------------------------------------------------===//
    368 // X86-32 ABI Implementation
    369 //===----------------------------------------------------------------------===//
    370 
    371 /// X86_32ABIInfo - The X86-32 ABI information.
    372 class X86_32ABIInfo : public ABIInfo {
    373   static const unsigned MinABIStackAlignInBytes = 4;
    374 
    375   bool IsDarwinVectorABI;
    376   bool IsSmallStructInRegABI;
    377   bool IsMMXDisabled;
    378 
    379   static bool isRegisterSize(unsigned Size) {
    380     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
    381   }
    382 
    383   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
    384 
    385   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
    386   /// such that the argument will be passed in memory.
    387   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
    388 
    389   /// \brief Return the alignment to use for the given type on the stack.
    390   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
    391 
    392 public:
    393 
    394   ABIArgInfo classifyReturnType(QualType RetTy) const;
    395   ABIArgInfo classifyArgumentType(QualType RetTy) const;
    396 
    397   virtual void computeInfo(CGFunctionInfo &FI) const {
    398     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    399     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
    400          it != ie; ++it)
    401       it->info = classifyArgumentType(it->type);
    402   }
    403 
    404   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    405                                  CodeGenFunction &CGF) const;
    406 
    407   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
    408     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
    409       IsMMXDisabled(m) {}
    410 };
    411 
    412 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
    413 public:
    414   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
    415     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {}
    416 
    417   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
    418                            CodeGen::CodeGenModule &CGM) const;
    419 
    420   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
    421     // Darwin uses different dwarf register numbers for EH.
    422     if (CGM.isTargetDarwin()) return 5;
    423 
    424     return 4;
    425   }
    426 
    427   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
    428                                llvm::Value *Address) const;
    429 
    430   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    431                                   llvm::StringRef Constraint,
    432                                   llvm::Type* Ty) const {
    433     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
    434   }
    435 
    436 };
    437 
    438 }
    439 
    440 /// shouldReturnTypeInRegister - Determine if the given type should be
    441 /// passed in a register (for the Darwin ABI).
    442 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
    443                                                ASTContext &Context) {
    444   uint64_t Size = Context.getTypeSize(Ty);
    445 
    446   // Type must be register sized.
    447   if (!isRegisterSize(Size))
    448     return false;
    449 
    450   if (Ty->isVectorType()) {
    451     // 64- and 128- bit vectors inside structures are not returned in
    452     // registers.
    453     if (Size == 64 || Size == 128)
    454       return false;
    455 
    456     return true;
    457   }
    458 
    459   // If this is a builtin, pointer, enum, complex type, member pointer, or
    460   // member function pointer it is ok.
    461   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
    462       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
    463       Ty->isBlockPointerType() || Ty->isMemberPointerType())
    464     return true;
    465 
    466   // Arrays are treated like records.
    467   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
    468     return shouldReturnTypeInRegister(AT->getElementType(), Context);
    469 
    470   // Otherwise, it must be a record type.
    471   const RecordType *RT = Ty->getAs<RecordType>();
    472   if (!RT) return false;
    473 
    474   // FIXME: Traverse bases here too.
    475 
    476   // Structure types are passed in register if all fields would be
    477   // passed in a register.
    478   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
    479          e = RT->getDecl()->field_end(); i != e; ++i) {
    480     const FieldDecl *FD = *i;
    481 
    482     // Empty fields are ignored.
    483     if (isEmptyField(Context, FD, true))
    484       continue;
    485 
    486     // Check fields recursively.
    487     if (!shouldReturnTypeInRegister(FD->getType(), Context))
    488       return false;
    489   }
    490 
    491   return true;
    492 }
    493 
    494 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
    495   if (RetTy->isVoidType())
    496     return ABIArgInfo::getIgnore();
    497 
    498   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
    499     // On Darwin, some vectors are returned in registers.
    500     if (IsDarwinVectorABI) {
    501       uint64_t Size = getContext().getTypeSize(RetTy);
    502 
    503       // 128-bit vectors are a special case; they are returned in
    504       // registers and we need to make sure to pick a type the LLVM
    505       // backend will like.
    506       if (Size == 128)
    507         return ABIArgInfo::getDirect(llvm::VectorType::get(
    508                   llvm::Type::getInt64Ty(getVMContext()), 2));
    509 
    510       // Always return in register if it fits in a general purpose
    511       // register, or if it is 64 bits and has a single element.
    512       if ((Size == 8 || Size == 16 || Size == 32) ||
    513           (Size == 64 && VT->getNumElements() == 1))
    514         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
    515                                                             Size));
    516 
    517       return ABIArgInfo::getIndirect(0);
    518     }
    519 
    520     return ABIArgInfo::getDirect();
    521   }
    522 
    523   if (isAggregateTypeForABI(RetTy)) {
    524     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
    525       // Structures with either a non-trivial destructor or a non-trivial
    526       // copy constructor are always indirect.
    527       if (hasNonTrivialDestructorOrCopyConstructor(RT))
    528         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
    529 
    530       // Structures with flexible arrays are always indirect.
    531       if (RT->getDecl()->hasFlexibleArrayMember())
    532         return ABIArgInfo::getIndirect(0);
    533     }
    534 
    535     // If specified, structs and unions are always indirect.
    536     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
    537       return ABIArgInfo::getIndirect(0);
    538 
    539     // Classify "single element" structs as their element type.
    540     if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
    541       if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
    542         if (BT->isIntegerType()) {
    543           // We need to use the size of the structure, padding
    544           // bit-fields can adjust that to be larger than the single
    545           // element type.
    546           uint64_t Size = getContext().getTypeSize(RetTy);
    547           return ABIArgInfo::getDirect(
    548             llvm::IntegerType::get(getVMContext(), (unsigned)Size));
    549         }
    550 
    551         if (BT->getKind() == BuiltinType::Float) {
    552           assert(getContext().getTypeSize(RetTy) ==
    553                  getContext().getTypeSize(SeltTy) &&
    554                  "Unexpect single element structure size!");
    555           return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
    556         }
    557 
    558         if (BT->getKind() == BuiltinType::Double) {
    559           assert(getContext().getTypeSize(RetTy) ==
    560                  getContext().getTypeSize(SeltTy) &&
    561                  "Unexpect single element structure size!");
    562           return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
    563         }
    564       } else if (SeltTy->isPointerType()) {
    565         // FIXME: It would be really nice if this could come out as the proper
    566         // pointer type.
    567         llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
    568         return ABIArgInfo::getDirect(PtrTy);
    569       } else if (SeltTy->isVectorType()) {
    570         // 64- and 128-bit vectors are never returned in a
    571         // register when inside a structure.
    572         uint64_t Size = getContext().getTypeSize(RetTy);
    573         if (Size == 64 || Size == 128)
    574           return ABIArgInfo::getIndirect(0);
    575 
    576         return classifyReturnType(QualType(SeltTy, 0));
    577       }
    578     }
    579 
    580     // Small structures which are register sized are generally returned
    581     // in a register.
    582     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
    583       uint64_t Size = getContext().getTypeSize(RetTy);
    584       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
    585     }
    586 
    587     return ABIArgInfo::getIndirect(0);
    588   }
    589 
    590   // Treat an enum type as its underlying type.
    591   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    592     RetTy = EnumTy->getDecl()->getIntegerType();
    593 
    594   return (RetTy->isPromotableIntegerType() ?
    595           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    596 }
    597 
    598 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
    599   const RecordType *RT = Ty->getAs<RecordType>();
    600   if (!RT)
    601     return 0;
    602   const RecordDecl *RD = RT->getDecl();
    603 
    604   // If this is a C++ record, check the bases first.
    605   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    606     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
    607            e = CXXRD->bases_end(); i != e; ++i)
    608       if (!isRecordWithSSEVectorType(Context, i->getType()))
    609         return false;
    610 
    611   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    612        i != e; ++i) {
    613     QualType FT = i->getType();
    614 
    615     if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
    616       return true;
    617 
    618     if (isRecordWithSSEVectorType(Context, FT))
    619       return true;
    620   }
    621 
    622   return false;
    623 }
    624 
    625 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
    626                                                  unsigned Align) const {
    627   // Otherwise, if the alignment is less than or equal to the minimum ABI
    628   // alignment, just use the default; the backend will handle this.
    629   if (Align <= MinABIStackAlignInBytes)
    630     return 0; // Use default alignment.
    631 
    632   // On non-Darwin, the stack type alignment is always 4.
    633   if (!IsDarwinVectorABI) {
    634     // Set explicit alignment, since we may need to realign the top.
    635     return MinABIStackAlignInBytes;
    636   }
    637 
    638   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
    639   if (isRecordWithSSEVectorType(getContext(), Ty))
    640     return 16;
    641 
    642   return MinABIStackAlignInBytes;
    643 }
    644 
    645 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
    646   if (!ByVal)
    647     return ABIArgInfo::getIndirect(0, false);
    648 
    649   // Compute the byval alignment.
    650   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
    651   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
    652   if (StackAlign == 0)
    653     return ABIArgInfo::getIndirect(4);
    654 
    655   // If the stack alignment is less than the type alignment, realign the
    656   // argument.
    657   if (StackAlign < TypeAlign)
    658     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
    659                                    /*Realign=*/true);
    660 
    661   return ABIArgInfo::getIndirect(StackAlign);
    662 }
    663 
    664 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
    665   // FIXME: Set alignment on indirect arguments.
    666   if (isAggregateTypeForABI(Ty)) {
    667     // Structures with flexible arrays are always indirect.
    668     if (const RecordType *RT = Ty->getAs<RecordType>()) {
    669       // Structures with either a non-trivial destructor or a non-trivial
    670       // copy constructor are always indirect.
    671       if (hasNonTrivialDestructorOrCopyConstructor(RT))
    672         return getIndirectResult(Ty, /*ByVal=*/false);
    673 
    674       if (RT->getDecl()->hasFlexibleArrayMember())
    675         return getIndirectResult(Ty);
    676     }
    677 
    678     // Ignore empty structs.
    679     if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
    680       return ABIArgInfo::getIgnore();
    681 
    682     // Expand small (<= 128-bit) record types when we know that the stack layout
    683     // of those arguments will match the struct. This is important because the
    684     // LLVM backend isn't smart enough to remove byval, which inhibits many
    685     // optimizations.
    686     if (getContext().getTypeSize(Ty) <= 4*32 &&
    687         canExpandIndirectArgument(Ty, getContext()))
    688       return ABIArgInfo::getExpand();
    689 
    690     return getIndirectResult(Ty);
    691   }
    692 
    693   if (const VectorType *VT = Ty->getAs<VectorType>()) {
    694     // On Darwin, some vectors are passed in memory, we handle this by passing
    695     // it as an i8/i16/i32/i64.
    696     if (IsDarwinVectorABI) {
    697       uint64_t Size = getContext().getTypeSize(Ty);
    698       if ((Size == 8 || Size == 16 || Size == 32) ||
    699           (Size == 64 && VT->getNumElements() == 1))
    700         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
    701                                                             Size));
    702     }
    703 
    704     llvm::Type *IRType = CGT.ConvertType(Ty);
    705     if (UseX86_MMXType(IRType)) {
    706       if (IsMMXDisabled)
    707         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
    708                                                             64));
    709       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
    710       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
    711       return AAI;
    712     }
    713 
    714     return ABIArgInfo::getDirect();
    715   }
    716 
    717 
    718   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    719     Ty = EnumTy->getDecl()->getIntegerType();
    720 
    721   return (Ty->isPromotableIntegerType() ?
    722           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    723 }
    724 
    725 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    726                                       CodeGenFunction &CGF) const {
    727   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
    728   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
    729 
    730   CGBuilderTy &Builder = CGF.Builder;
    731   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
    732                                                        "ap");
    733   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
    734   llvm::Type *PTy =
    735     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
    736   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
    737 
    738   uint64_t Offset =
    739     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
    740   llvm::Value *NextAddr =
    741     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
    742                       "ap.next");
    743   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
    744 
    745   return AddrTyped;
    746 }
    747 
    748 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
    749                                                   llvm::GlobalValue *GV,
    750                                             CodeGen::CodeGenModule &CGM) const {
    751   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    752     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
    753       // Get the LLVM function.
    754       llvm::Function *Fn = cast<llvm::Function>(GV);
    755 
    756       // Now add the 'alignstack' attribute with a value of 16.
    757       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
    758     }
    759   }
    760 }
    761 
    762 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
    763                                                CodeGen::CodeGenFunction &CGF,
    764                                                llvm::Value *Address) const {
    765   CodeGen::CGBuilderTy &Builder = CGF.Builder;
    766   llvm::LLVMContext &Context = CGF.getLLVMContext();
    767 
    768   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
    769   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
    770 
    771   // 0-7 are the eight integer registers;  the order is different
    772   //   on Darwin (for EH), but the range is the same.
    773   // 8 is %eip.
    774   AssignToArrayRange(Builder, Address, Four8, 0, 8);
    775 
    776   if (CGF.CGM.isTargetDarwin()) {
    777     // 12-16 are st(0..4).  Not sure why we stop at 4.
    778     // These have size 16, which is sizeof(long double) on
    779     // platforms with 8-byte alignment for that type.
    780     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
    781     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
    782 
    783   } else {
    784     // 9 is %eflags, which doesn't get a size on Darwin for some
    785     // reason.
    786     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
    787 
    788     // 11-16 are st(0..5).  Not sure why we stop at 5.
    789     // These have size 12, which is sizeof(long double) on
    790     // platforms with 4-byte alignment for that type.
    791     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
    792     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
    793   }
    794 
    795   return false;
    796 }
    797 
    798 //===----------------------------------------------------------------------===//
    799 // X86-64 ABI Implementation
    800 //===----------------------------------------------------------------------===//
    801 
    802 
    803 namespace {
    804 /// X86_64ABIInfo - The X86_64 ABI information.
    805 class X86_64ABIInfo : public ABIInfo {
    806   enum Class {
    807     Integer = 0,
    808     SSE,
    809     SSEUp,
    810     X87,
    811     X87Up,
    812     ComplexX87,
    813     NoClass,
    814     Memory
    815   };
    816 
    817   /// merge - Implement the X86_64 ABI merging algorithm.
    818   ///
    819   /// Merge an accumulating classification \arg Accum with a field
    820   /// classification \arg Field.
    821   ///
    822   /// \param Accum - The accumulating classification. This should
    823   /// always be either NoClass or the result of a previous merge
    824   /// call. In addition, this should never be Memory (the caller
    825   /// should just return Memory for the aggregate).
    826   static Class merge(Class Accum, Class Field);
    827 
    828   /// postMerge - Implement the X86_64 ABI post merging algorithm.
    829   ///
    830   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
    831   /// final MEMORY or SSE classes when necessary.
    832   ///
    833   /// \param AggregateSize - The size of the current aggregate in
    834   /// the classification process.
    835   ///
    836   /// \param Lo - The classification for the parts of the type
    837   /// residing in the low word of the containing object.
    838   ///
    839   /// \param Hi - The classification for the parts of the type
    840   /// residing in the higher words of the containing object.
    841   ///
    842   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
    843 
    844   /// classify - Determine the x86_64 register classes in which the
    845   /// given type T should be passed.
    846   ///
    847   /// \param Lo - The classification for the parts of the type
    848   /// residing in the low word of the containing object.
    849   ///
    850   /// \param Hi - The classification for the parts of the type
    851   /// residing in the high word of the containing object.
    852   ///
    853   /// \param OffsetBase - The bit offset of this type in the
    854   /// containing object.  Some parameters are classified different
    855   /// depending on whether they straddle an eightbyte boundary.
    856   ///
    857   /// If a word is unused its result will be NoClass; if a type should
    858   /// be passed in Memory then at least the classification of \arg Lo
    859   /// will be Memory.
    860   ///
    861   /// The \arg Lo class will be NoClass iff the argument is ignored.
    862   ///
    863   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
    864   /// also be ComplexX87.
    865   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
    866 
    867   llvm::Type *GetByteVectorType(QualType Ty) const;
    868   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
    869                                  unsigned IROffset, QualType SourceTy,
    870                                  unsigned SourceOffset) const;
    871   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
    872                                      unsigned IROffset, QualType SourceTy,
    873                                      unsigned SourceOffset) const;
    874 
    875   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
    876   /// such that the argument will be returned in memory.
    877   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
    878 
    879   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
    880   /// such that the argument will be passed in memory.
    881   ABIArgInfo getIndirectResult(QualType Ty) const;
    882 
    883   ABIArgInfo classifyReturnType(QualType RetTy) const;
    884 
    885   ABIArgInfo classifyArgumentType(QualType Ty,
    886                                   unsigned &neededInt,
    887                                   unsigned &neededSSE) const;
    888 
    889   /// The 0.98 ABI revision clarified a lot of ambiguities,
    890   /// unfortunately in ways that were not always consistent with
    891   /// certain previous compilers.  In particular, platforms which
    892   /// required strict binary compatibility with older versions of GCC
    893   /// may need to exempt themselves.
    894   bool honorsRevision0_98() const {
    895     return !getContext().Target.getTriple().isOSDarwin();
    896   }
    897 
    898 public:
    899   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    900 
    901   virtual void computeInfo(CGFunctionInfo &FI) const;
    902 
    903   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    904                                  CodeGenFunction &CGF) const;
    905 };
    906 
    907 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
    908 class WinX86_64ABIInfo : public ABIInfo {
    909 
    910   ABIArgInfo classify(QualType Ty) const;
    911 
    912 public:
    913   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    914 
    915   virtual void computeInfo(CGFunctionInfo &FI) const;
    916 
    917   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
    918                                  CodeGenFunction &CGF) const;
    919 };
    920 
    921 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
    922 public:
    923   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    924     : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
    925 
    926   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
    927     return 7;
    928   }
    929 
    930   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
    931                                llvm::Value *Address) const {
    932     CodeGen::CGBuilderTy &Builder = CGF.Builder;
    933     llvm::LLVMContext &Context = CGF.getLLVMContext();
    934 
    935     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
    936     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
    937 
    938     // 0-15 are the 16 integer registers.
    939     // 16 is %rip.
    940     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
    941 
    942     return false;
    943   }
    944 
    945   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    946                                   llvm::StringRef Constraint,
    947                                   llvm::Type* Ty) const {
    948     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
    949   }
    950 
    951 };
    952 
    953 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
    954 public:
    955   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    956     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
    957 
    958   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
    959     return 7;
    960   }
    961 
    962   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
    963                                llvm::Value *Address) const {
    964     CodeGen::CGBuilderTy &Builder = CGF.Builder;
    965     llvm::LLVMContext &Context = CGF.getLLVMContext();
    966 
    967     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
    968     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
    969 
    970     // 0-15 are the 16 integer registers.
    971     // 16 is %rip.
    972     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
    973 
    974     return false;
    975   }
    976 };
    977 
    978 }
    979 
    980 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
    981                               Class &Hi) const {
    982   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
    983   //
    984   // (a) If one of the classes is Memory, the whole argument is passed in
    985   //     memory.
    986   //
    987   // (b) If X87UP is not preceded by X87, the whole argument is passed in
    988   //     memory.
    989   //
    990   // (c) If the size of the aggregate exceeds two eightbytes and the first
    991   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
    992   //     argument is passed in memory. NOTE: This is necessary to keep the
    993   //     ABI working for processors that don't support the __m256 type.
    994   //
    995   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
    996   //
    997   // Some of these are enforced by the merging logic.  Others can arise
    998   // only with unions; for example:
    999   //   union { _Complex double; unsigned; }
   1000   //
   1001   // Note that clauses (b) and (c) were added in 0.98.
   1002   //
   1003   if (Hi == Memory)
   1004     Lo = Memory;
   1005   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
   1006     Lo = Memory;
   1007   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
   1008     Lo = Memory;
   1009   if (Hi == SSEUp && Lo != SSE)
   1010     Hi = SSE;
   1011 }
   1012 
   1013 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
   1014   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
   1015   // classified recursively so that always two fields are
   1016   // considered. The resulting class is calculated according to
   1017   // the classes of the fields in the eightbyte:
   1018   //
   1019   // (a) If both classes are equal, this is the resulting class.
   1020   //
   1021   // (b) If one of the classes is NO_CLASS, the resulting class is
   1022   // the other class.
   1023   //
   1024   // (c) If one of the classes is MEMORY, the result is the MEMORY
   1025   // class.
   1026   //
   1027   // (d) If one of the classes is INTEGER, the result is the
   1028   // INTEGER.
   1029   //
   1030   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
   1031   // MEMORY is used as class.
   1032   //
   1033   // (f) Otherwise class SSE is used.
   1034 
   1035   // Accum should never be memory (we should have returned) or
   1036   // ComplexX87 (because this cannot be passed in a structure).
   1037   assert((Accum != Memory && Accum != ComplexX87) &&
   1038          "Invalid accumulated classification during merge.");
   1039   if (Accum == Field || Field == NoClass)
   1040     return Accum;
   1041   if (Field == Memory)
   1042     return Memory;
   1043   if (Accum == NoClass)
   1044     return Field;
   1045   if (Accum == Integer || Field == Integer)
   1046     return Integer;
   1047   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
   1048       Accum == X87 || Accum == X87Up)
   1049     return Memory;
   1050   return SSE;
   1051 }
   1052 
   1053 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
   1054                              Class &Lo, Class &Hi) const {
   1055   // FIXME: This code can be simplified by introducing a simple value class for
   1056   // Class pairs with appropriate constructor methods for the various
   1057   // situations.
   1058 
   1059   // FIXME: Some of the split computations are wrong; unaligned vectors
   1060   // shouldn't be passed in registers for example, so there is no chance they
   1061   // can straddle an eightbyte. Verify & simplify.
   1062 
   1063   Lo = Hi = NoClass;
   1064 
   1065   Class &Current = OffsetBase < 64 ? Lo : Hi;
   1066   Current = Memory;
   1067 
   1068   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   1069     BuiltinType::Kind k = BT->getKind();
   1070 
   1071     if (k == BuiltinType::Void) {
   1072       Current = NoClass;
   1073     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
   1074       Lo = Integer;
   1075       Hi = Integer;
   1076     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
   1077       Current = Integer;
   1078     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
   1079       Current = SSE;
   1080     } else if (k == BuiltinType::LongDouble) {
   1081       Lo = X87;
   1082       Hi = X87Up;
   1083     }
   1084     // FIXME: _Decimal32 and _Decimal64 are SSE.
   1085     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
   1086     return;
   1087   }
   1088 
   1089   if (const EnumType *ET = Ty->getAs<EnumType>()) {
   1090     // Classify the underlying integer type.
   1091     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
   1092     return;
   1093   }
   1094 
   1095   if (Ty->hasPointerRepresentation()) {
   1096     Current = Integer;
   1097     return;
   1098   }
   1099 
   1100   if (Ty->isMemberPointerType()) {
   1101     if (Ty->isMemberFunctionPointerType())
   1102       Lo = Hi = Integer;
   1103     else
   1104       Current = Integer;
   1105     return;
   1106   }
   1107 
   1108   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   1109     uint64_t Size = getContext().getTypeSize(VT);
   1110     if (Size == 32) {
   1111       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
   1112       // float> as integer.
   1113       Current = Integer;
   1114 
   1115       // If this type crosses an eightbyte boundary, it should be
   1116       // split.
   1117       uint64_t EB_Real = (OffsetBase) / 64;
   1118       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
   1119       if (EB_Real != EB_Imag)
   1120         Hi = Lo;
   1121     } else if (Size == 64) {
   1122       // gcc passes <1 x double> in memory. :(
   1123       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
   1124         return;
   1125 
   1126       // gcc passes <1 x long long> as INTEGER.
   1127       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
   1128           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
   1129           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
   1130           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
   1131         Current = Integer;
   1132       else
   1133         Current = SSE;
   1134 
   1135       // If this type crosses an eightbyte boundary, it should be
   1136       // split.
   1137       if (OffsetBase && OffsetBase != 64)
   1138         Hi = Lo;
   1139     } else if (Size == 128 || Size == 256) {
   1140       // Arguments of 256-bits are split into four eightbyte chunks. The
   1141       // least significant one belongs to class SSE and all the others to class
   1142       // SSEUP. The original Lo and Hi design considers that types can't be
   1143       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
   1144       // This design isn't correct for 256-bits, but since there're no cases
   1145       // where the upper parts would need to be inspected, avoid adding
   1146       // complexity and just consider Hi to match the 64-256 part.
   1147       Lo = SSE;
   1148       Hi = SSEUp;
   1149     }
   1150     return;
   1151   }
   1152 
   1153   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
   1154     QualType ET = getContext().getCanonicalType(CT->getElementType());
   1155 
   1156     uint64_t Size = getContext().getTypeSize(Ty);
   1157     if (ET->isIntegralOrEnumerationType()) {
   1158       if (Size <= 64)
   1159         Current = Integer;
   1160       else if (Size <= 128)
   1161         Lo = Hi = Integer;
   1162     } else if (ET == getContext().FloatTy)
   1163       Current = SSE;
   1164     else if (ET == getContext().DoubleTy)
   1165       Lo = Hi = SSE;
   1166     else if (ET == getContext().LongDoubleTy)
   1167       Current = ComplexX87;
   1168 
   1169     // If this complex type crosses an eightbyte boundary then it
   1170     // should be split.
   1171     uint64_t EB_Real = (OffsetBase) / 64;
   1172     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
   1173     if (Hi == NoClass && EB_Real != EB_Imag)
   1174       Hi = Lo;
   1175 
   1176     return;
   1177   }
   1178 
   1179   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   1180     // Arrays are treated like structures.
   1181 
   1182     uint64_t Size = getContext().getTypeSize(Ty);
   1183 
   1184     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
   1185     // than four eightbytes, ..., it has class MEMORY.
   1186     if (Size > 256)
   1187       return;
   1188 
   1189     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
   1190     // fields, it has class MEMORY.
   1191     //
   1192     // Only need to check alignment of array base.
   1193     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
   1194       return;
   1195 
   1196     // Otherwise implement simplified merge. We could be smarter about
   1197     // this, but it isn't worth it and would be harder to verify.
   1198     Current = NoClass;
   1199     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
   1200     uint64_t ArraySize = AT->getSize().getZExtValue();
   1201 
   1202     // The only case a 256-bit wide vector could be used is when the array
   1203     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
   1204     // to work for sizes wider than 128, early check and fallback to memory.
   1205     if (Size > 128 && EltSize != 256)
   1206       return;
   1207 
   1208     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
   1209       Class FieldLo, FieldHi;
   1210       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
   1211       Lo = merge(Lo, FieldLo);
   1212       Hi = merge(Hi, FieldHi);
   1213       if (Lo == Memory || Hi == Memory)
   1214         break;
   1215     }
   1216 
   1217     postMerge(Size, Lo, Hi);
   1218     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
   1219     return;
   1220   }
   1221 
   1222   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1223     uint64_t Size = getContext().getTypeSize(Ty);
   1224 
   1225     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
   1226     // than four eightbytes, ..., it has class MEMORY.
   1227     if (Size > 256)
   1228       return;
   1229 
   1230     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
   1231     // copy constructor or a non-trivial destructor, it is passed by invisible
   1232     // reference.
   1233     if (hasNonTrivialDestructorOrCopyConstructor(RT))
   1234       return;
   1235 
   1236     const RecordDecl *RD = RT->getDecl();
   1237 
   1238     // Assume variable sized types are passed in memory.
   1239     if (RD->hasFlexibleArrayMember())
   1240       return;
   1241 
   1242     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   1243 
   1244     // Reset Lo class, this will be recomputed.
   1245     Current = NoClass;
   1246 
   1247     // If this is a C++ record, classify the bases first.
   1248     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   1249       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
   1250              e = CXXRD->bases_end(); i != e; ++i) {
   1251         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
   1252                "Unexpected base class!");
   1253         const CXXRecordDecl *Base =
   1254           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
   1255 
   1256         // Classify this field.
   1257         //
   1258         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
   1259         // single eightbyte, each is classified separately. Each eightbyte gets
   1260         // initialized to class NO_CLASS.
   1261         Class FieldLo, FieldHi;
   1262         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
   1263         classify(i->getType(), Offset, FieldLo, FieldHi);
   1264         Lo = merge(Lo, FieldLo);
   1265         Hi = merge(Hi, FieldHi);
   1266         if (Lo == Memory || Hi == Memory)
   1267           break;
   1268       }
   1269     }
   1270 
   1271     // Classify the fields one at a time, merging the results.
   1272     unsigned idx = 0;
   1273     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   1274            i != e; ++i, ++idx) {
   1275       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
   1276       bool BitField = i->isBitField();
   1277 
   1278       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
   1279       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
   1280       //
   1281       // The only case a 256-bit wide vector could be used is when the struct
   1282       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
   1283       // to work for sizes wider than 128, early check and fallback to memory.
   1284       //
   1285       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
   1286         Lo = Memory;
   1287         return;
   1288       }
   1289       // Note, skip this test for bit-fields, see below.
   1290       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
   1291         Lo = Memory;
   1292         return;
   1293       }
   1294 
   1295       // Classify this field.
   1296       //
   1297       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
   1298       // exceeds a single eightbyte, each is classified
   1299       // separately. Each eightbyte gets initialized to class
   1300       // NO_CLASS.
   1301       Class FieldLo, FieldHi;
   1302 
   1303       // Bit-fields require special handling, they do not force the
   1304       // structure to be passed in memory even if unaligned, and
   1305       // therefore they can straddle an eightbyte.
   1306       if (BitField) {
   1307         // Ignore padding bit-fields.
   1308         if (i->isUnnamedBitfield())
   1309           continue;
   1310 
   1311         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
   1312         uint64_t Size =
   1313           i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
   1314 
   1315         uint64_t EB_Lo = Offset / 64;
   1316         uint64_t EB_Hi = (Offset + Size - 1) / 64;
   1317         FieldLo = FieldHi = NoClass;
   1318         if (EB_Lo) {
   1319           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
   1320           FieldLo = NoClass;
   1321           FieldHi = Integer;
   1322         } else {
   1323           FieldLo = Integer;
   1324           FieldHi = EB_Hi ? Integer : NoClass;
   1325         }
   1326       } else
   1327         classify(i->getType(), Offset, FieldLo, FieldHi);
   1328       Lo = merge(Lo, FieldLo);
   1329       Hi = merge(Hi, FieldHi);
   1330       if (Lo == Memory || Hi == Memory)
   1331         break;
   1332     }
   1333 
   1334     postMerge(Size, Lo, Hi);
   1335   }
   1336 }
   1337 
   1338 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
   1339   // If this is a scalar LLVM value then assume LLVM will pass it in the right
   1340   // place naturally.
   1341   if (!isAggregateTypeForABI(Ty)) {
   1342     // Treat an enum type as its underlying type.
   1343     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   1344       Ty = EnumTy->getDecl()->getIntegerType();
   1345 
   1346     return (Ty->isPromotableIntegerType() ?
   1347             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   1348   }
   1349 
   1350   return ABIArgInfo::getIndirect(0);
   1351 }
   1352 
   1353 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
   1354   // If this is a scalar LLVM value then assume LLVM will pass it in the right
   1355   // place naturally.
   1356   if (!isAggregateTypeForABI(Ty)) {
   1357     // Treat an enum type as its underlying type.
   1358     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   1359       Ty = EnumTy->getDecl()->getIntegerType();
   1360 
   1361     return (Ty->isPromotableIntegerType() ?
   1362             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   1363   }
   1364 
   1365   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
   1366     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   1367 
   1368   // Compute the byval alignment. We specify the alignment of the byval in all
   1369   // cases so that the mid-level optimizer knows the alignment of the byval.
   1370   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
   1371   return ABIArgInfo::getIndirect(Align);
   1372 }
   1373 
   1374 /// GetByteVectorType - The ABI specifies that a value should be passed in an
   1375 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
   1376 /// vector register.
   1377 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
   1378   llvm::Type *IRType = CGT.ConvertType(Ty);
   1379 
   1380   // Wrapper structs that just contain vectors are passed just like vectors,
   1381   // strip them off if present.
   1382   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
   1383   while (STy && STy->getNumElements() == 1) {
   1384     IRType = STy->getElementType(0);
   1385     STy = dyn_cast<llvm::StructType>(IRType);
   1386   }
   1387 
   1388   // If the preferred type is a 16-byte vector, prefer to pass it.
   1389   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
   1390     llvm::Type *EltTy = VT->getElementType();
   1391     unsigned BitWidth = VT->getBitWidth();
   1392     if ((BitWidth == 128 || BitWidth == 256) &&
   1393         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
   1394          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
   1395          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
   1396          EltTy->isIntegerTy(128)))
   1397       return VT;
   1398   }
   1399 
   1400   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
   1401 }
   1402 
   1403 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
   1404 /// is known to either be off the end of the specified type or being in
   1405 /// alignment padding.  The user type specified is known to be at most 128 bits
   1406 /// in size, and have passed through X86_64ABIInfo::classify with a successful
   1407 /// classification that put one of the two halves in the INTEGER class.
   1408 ///
   1409 /// It is conservatively correct to return false.
   1410 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
   1411                                   unsigned EndBit, ASTContext &Context) {
   1412   // If the bytes being queried are off the end of the type, there is no user
   1413   // data hiding here.  This handles analysis of builtins, vectors and other
   1414   // types that don't contain interesting padding.
   1415   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
   1416   if (TySize <= StartBit)
   1417     return true;
   1418 
   1419   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
   1420     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
   1421     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
   1422 
   1423     // Check each element to see if the element overlaps with the queried range.
   1424     for (unsigned i = 0; i != NumElts; ++i) {
   1425       // If the element is after the span we care about, then we're done..
   1426       unsigned EltOffset = i*EltSize;
   1427       if (EltOffset >= EndBit) break;
   1428 
   1429       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
   1430       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
   1431                                  EndBit-EltOffset, Context))
   1432         return false;
   1433     }
   1434     // If it overlaps no elements, then it is safe to process as padding.
   1435     return true;
   1436   }
   1437 
   1438   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1439     const RecordDecl *RD = RT->getDecl();
   1440     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1441 
   1442     // If this is a C++ record, check the bases first.
   1443     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   1444       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
   1445            e = CXXRD->bases_end(); i != e; ++i) {
   1446         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
   1447                "Unexpected base class!");
   1448         const CXXRecordDecl *Base =
   1449           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
   1450 
   1451         // If the base is after the span we care about, ignore it.
   1452         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
   1453         if (BaseOffset >= EndBit) continue;
   1454 
   1455         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
   1456         if (!BitsContainNoUserData(i->getType(), BaseStart,
   1457                                    EndBit-BaseOffset, Context))
   1458           return false;
   1459       }
   1460     }
   1461 
   1462     // Verify that no field has data that overlaps the region of interest.  Yes
   1463     // this could be sped up a lot by being smarter about queried fields,
   1464     // however we're only looking at structs up to 16 bytes, so we don't care
   1465     // much.
   1466     unsigned idx = 0;
   1467     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   1468          i != e; ++i, ++idx) {
   1469       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
   1470 
   1471       // If we found a field after the region we care about, then we're done.
   1472       if (FieldOffset >= EndBit) break;
   1473 
   1474       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
   1475       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
   1476                                  Context))
   1477         return false;
   1478     }
   1479 
   1480     // If nothing in this record overlapped the area of interest, then we're
   1481     // clean.
   1482     return true;
   1483   }
   1484 
   1485   return false;
   1486 }
   1487 
   1488 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
   1489 /// float member at the specified offset.  For example, {int,{float}} has a
   1490 /// float at offset 4.  It is conservatively correct for this routine to return
   1491 /// false.
   1492 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
   1493                                   const llvm::TargetData &TD) {
   1494   // Base case if we find a float.
   1495   if (IROffset == 0 && IRType->isFloatTy())
   1496     return true;
   1497 
   1498   // If this is a struct, recurse into the field at the specified offset.
   1499   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
   1500     const llvm::StructLayout *SL = TD.getStructLayout(STy);
   1501     unsigned Elt = SL->getElementContainingOffset(IROffset);
   1502     IROffset -= SL->getElementOffset(Elt);
   1503     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
   1504   }
   1505 
   1506   // If this is an array, recurse into the field at the specified offset.
   1507   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
   1508     llvm::Type *EltTy = ATy->getElementType();
   1509     unsigned EltSize = TD.getTypeAllocSize(EltTy);
   1510     IROffset -= IROffset/EltSize*EltSize;
   1511     return ContainsFloatAtOffset(EltTy, IROffset, TD);
   1512   }
   1513 
   1514   return false;
   1515 }
   1516 
   1517 
   1518 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
   1519 /// low 8 bytes of an XMM register, corresponding to the SSE class.
   1520 llvm::Type *X86_64ABIInfo::
   1521 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
   1522                    QualType SourceTy, unsigned SourceOffset) const {
   1523   // The only three choices we have are either double, <2 x float>, or float. We
   1524   // pass as float if the last 4 bytes is just padding.  This happens for
   1525   // structs that contain 3 floats.
   1526   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
   1527                             SourceOffset*8+64, getContext()))
   1528     return llvm::Type::getFloatTy(getVMContext());
   1529 
   1530   // We want to pass as <2 x float> if the LLVM IR type contains a float at
   1531   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
   1532   // case.
   1533   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
   1534       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
   1535     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
   1536 
   1537   return llvm::Type::getDoubleTy(getVMContext());
   1538 }
   1539 
   1540 
   1541 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
   1542 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
   1543 /// about the high or low part of an up-to-16-byte struct.  This routine picks
   1544 /// the best LLVM IR type to represent this, which may be i64 or may be anything
   1545 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
   1546 /// etc).
   1547 ///
   1548 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
   1549 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
   1550 /// the 8-byte value references.  PrefType may be null.
   1551 ///
   1552 /// SourceTy is the source level type for the entire argument.  SourceOffset is
   1553 /// an offset into this that we're processing (which is always either 0 or 8).
   1554 ///
   1555 llvm::Type *X86_64ABIInfo::
   1556 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
   1557                        QualType SourceTy, unsigned SourceOffset) const {
   1558   // If we're dealing with an un-offset LLVM IR type, then it means that we're
   1559   // returning an 8-byte unit starting with it.  See if we can safely use it.
   1560   if (IROffset == 0) {
   1561     // Pointers and int64's always fill the 8-byte unit.
   1562     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
   1563       return IRType;
   1564 
   1565     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
   1566     // goodness in the source type is just tail padding.  This is allowed to
   1567     // kick in for struct {double,int} on the int, but not on
   1568     // struct{double,int,int} because we wouldn't return the second int.  We
   1569     // have to do this analysis on the source type because we can't depend on
   1570     // unions being lowered a specific way etc.
   1571     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
   1572         IRType->isIntegerTy(32)) {
   1573       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
   1574 
   1575       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
   1576                                 SourceOffset*8+64, getContext()))
   1577         return IRType;
   1578     }
   1579   }
   1580 
   1581   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
   1582     // If this is a struct, recurse into the field at the specified offset.
   1583     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
   1584     if (IROffset < SL->getSizeInBytes()) {
   1585       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
   1586       IROffset -= SL->getElementOffset(FieldIdx);
   1587 
   1588       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
   1589                                     SourceTy, SourceOffset);
   1590     }
   1591   }
   1592 
   1593   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
   1594     llvm::Type *EltTy = ATy->getElementType();
   1595     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
   1596     unsigned EltOffset = IROffset/EltSize*EltSize;
   1597     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
   1598                                   SourceOffset);
   1599   }
   1600 
   1601   // Okay, we don't have any better idea of what to pass, so we pass this in an
   1602   // integer register that isn't too big to fit the rest of the struct.
   1603   unsigned TySizeInBytes =
   1604     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
   1605 
   1606   assert(TySizeInBytes != SourceOffset && "Empty field?");
   1607 
   1608   // It is always safe to classify this as an integer type up to i64 that
   1609   // isn't larger than the structure.
   1610   return llvm::IntegerType::get(getVMContext(),
   1611                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
   1612 }
   1613 
   1614 
   1615 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
   1616 /// be used as elements of a two register pair to pass or return, return a
   1617 /// first class aggregate to represent them.  For example, if the low part of
   1618 /// a by-value argument should be passed as i32* and the high part as float,
   1619 /// return {i32*, float}.
   1620 static llvm::Type *
   1621 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
   1622                            const llvm::TargetData &TD) {
   1623   // In order to correctly satisfy the ABI, we need to the high part to start
   1624   // at offset 8.  If the high and low parts we inferred are both 4-byte types
   1625   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
   1626   // the second element at offset 8.  Check for this:
   1627   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
   1628   unsigned HiAlign = TD.getABITypeAlignment(Hi);
   1629   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
   1630   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
   1631 
   1632   // To handle this, we have to increase the size of the low part so that the
   1633   // second element will start at an 8 byte offset.  We can't increase the size
   1634   // of the second element because it might make us access off the end of the
   1635   // struct.
   1636   if (HiStart != 8) {
   1637     // There are only two sorts of types the ABI generation code can produce for
   1638     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
   1639     // Promote these to a larger type.
   1640     if (Lo->isFloatTy())
   1641       Lo = llvm::Type::getDoubleTy(Lo->getContext());
   1642     else {
   1643       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
   1644       Lo = llvm::Type::getInt64Ty(Lo->getContext());
   1645     }
   1646   }
   1647 
   1648   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
   1649 
   1650 
   1651   // Verify that the second element is at an 8-byte offset.
   1652   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
   1653          "Invalid x86-64 argument pair!");
   1654   return Result;
   1655 }
   1656 
   1657 ABIArgInfo X86_64ABIInfo::
   1658 classifyReturnType(QualType RetTy) const {
   1659   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
   1660   // classification algorithm.
   1661   X86_64ABIInfo::Class Lo, Hi;
   1662   classify(RetTy, 0, Lo, Hi);
   1663 
   1664   // Check some invariants.
   1665   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
   1666   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
   1667 
   1668   llvm::Type *ResType = 0;
   1669   switch (Lo) {
   1670   case NoClass:
   1671     if (Hi == NoClass)
   1672       return ABIArgInfo::getIgnore();
   1673     // If the low part is just padding, it takes no register, leave ResType
   1674     // null.
   1675     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
   1676            "Unknown missing lo part");
   1677     break;
   1678 
   1679   case SSEUp:
   1680   case X87Up:
   1681     assert(0 && "Invalid classification for lo word.");
   1682 
   1683     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
   1684     // hidden argument.
   1685   case Memory:
   1686     return getIndirectReturnResult(RetTy);
   1687 
   1688     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
   1689     // available register of the sequence %rax, %rdx is used.
   1690   case Integer:
   1691     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
   1692 
   1693     // If we have a sign or zero extended integer, make sure to return Extend
   1694     // so that the parameter gets the right LLVM IR attributes.
   1695     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
   1696       // Treat an enum type as its underlying type.
   1697       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   1698         RetTy = EnumTy->getDecl()->getIntegerType();
   1699 
   1700       if (RetTy->isIntegralOrEnumerationType() &&
   1701           RetTy->isPromotableIntegerType())
   1702         return ABIArgInfo::getExtend();
   1703     }
   1704     break;
   1705 
   1706     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
   1707     // available SSE register of the sequence %xmm0, %xmm1 is used.
   1708   case SSE:
   1709     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
   1710     break;
   1711 
   1712     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
   1713     // returned on the X87 stack in %st0 as 80-bit x87 number.
   1714   case X87:
   1715     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
   1716     break;
   1717 
   1718     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
   1719     // part of the value is returned in %st0 and the imaginary part in
   1720     // %st1.
   1721   case ComplexX87:
   1722     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
   1723     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
   1724                                     llvm::Type::getX86_FP80Ty(getVMContext()),
   1725                                     NULL);
   1726     break;
   1727   }
   1728 
   1729   llvm::Type *HighPart = 0;
   1730   switch (Hi) {
   1731     // Memory was handled previously and X87 should
   1732     // never occur as a hi class.
   1733   case Memory:
   1734   case X87:
   1735     assert(0 && "Invalid classification for hi word.");
   1736 
   1737   case ComplexX87: // Previously handled.
   1738   case NoClass:
   1739     break;
   1740 
   1741   case Integer:
   1742     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   1743     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   1744       return ABIArgInfo::getDirect(HighPart, 8);
   1745     break;
   1746   case SSE:
   1747     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   1748     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   1749       return ABIArgInfo::getDirect(HighPart, 8);
   1750     break;
   1751 
   1752     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
   1753     // is passed in the next available eightbyte chunk if the last used
   1754     // vector register.
   1755     //
   1756     // SSEUP should always be preceded by SSE, just widen.
   1757   case SSEUp:
   1758     assert(Lo == SSE && "Unexpected SSEUp classification.");
   1759     ResType = GetByteVectorType(RetTy);
   1760     break;
   1761 
   1762     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
   1763     // returned together with the previous X87 value in %st0.
   1764   case X87Up:
   1765     // If X87Up is preceded by X87, we don't need to do
   1766     // anything. However, in some cases with unions it may not be
   1767     // preceded by X87. In such situations we follow gcc and pass the
   1768     // extra bits in an SSE reg.
   1769     if (Lo != X87) {
   1770       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   1771       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   1772         return ABIArgInfo::getDirect(HighPart, 8);
   1773     }
   1774     break;
   1775   }
   1776 
   1777   // If a high part was specified, merge it together with the low part.  It is
   1778   // known to pass in the high eightbyte of the result.  We do this by forming a
   1779   // first class struct aggregate with the high and low part: {low, high}
   1780   if (HighPart)
   1781     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
   1782 
   1783   return ABIArgInfo::getDirect(ResType);
   1784 }
   1785 
   1786 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
   1787                                                unsigned &neededSSE) const {
   1788   X86_64ABIInfo::Class Lo, Hi;
   1789   classify(Ty, 0, Lo, Hi);
   1790 
   1791   // Check some invariants.
   1792   // FIXME: Enforce these by construction.
   1793   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
   1794   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
   1795 
   1796   neededInt = 0;
   1797   neededSSE = 0;
   1798   llvm::Type *ResType = 0;
   1799   switch (Lo) {
   1800   case NoClass:
   1801     if (Hi == NoClass)
   1802       return ABIArgInfo::getIgnore();
   1803     // If the low part is just padding, it takes no register, leave ResType
   1804     // null.
   1805     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
   1806            "Unknown missing lo part");
   1807     break;
   1808 
   1809     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
   1810     // on the stack.
   1811   case Memory:
   1812 
   1813     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
   1814     // COMPLEX_X87, it is passed in memory.
   1815   case X87:
   1816   case ComplexX87:
   1817     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
   1818       ++neededInt;
   1819     return getIndirectResult(Ty);
   1820 
   1821   case SSEUp:
   1822   case X87Up:
   1823     assert(0 && "Invalid classification for lo word.");
   1824 
   1825     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
   1826     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
   1827     // and %r9 is used.
   1828   case Integer:
   1829     ++neededInt;
   1830 
   1831     // Pick an 8-byte type based on the preferred type.
   1832     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
   1833 
   1834     // If we have a sign or zero extended integer, make sure to return Extend
   1835     // so that the parameter gets the right LLVM IR attributes.
   1836     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
   1837       // Treat an enum type as its underlying type.
   1838       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   1839         Ty = EnumTy->getDecl()->getIntegerType();
   1840 
   1841       if (Ty->isIntegralOrEnumerationType() &&
   1842           Ty->isPromotableIntegerType())
   1843         return ABIArgInfo::getExtend();
   1844     }
   1845 
   1846     break;
   1847 
   1848     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
   1849     // available SSE register is used, the registers are taken in the
   1850     // order from %xmm0 to %xmm7.
   1851   case SSE: {
   1852     llvm::Type *IRType = CGT.ConvertType(Ty);
   1853     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
   1854     ++neededSSE;
   1855     break;
   1856   }
   1857   }
   1858 
   1859   llvm::Type *HighPart = 0;
   1860   switch (Hi) {
   1861     // Memory was handled previously, ComplexX87 and X87 should
   1862     // never occur as hi classes, and X87Up must be preceded by X87,
   1863     // which is passed in memory.
   1864   case Memory:
   1865   case X87:
   1866   case ComplexX87:
   1867     assert(0 && "Invalid classification for hi word.");
   1868     break;
   1869 
   1870   case NoClass: break;
   1871 
   1872   case Integer:
   1873     ++neededInt;
   1874     // Pick an 8-byte type based on the preferred type.
   1875     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
   1876 
   1877     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
   1878       return ABIArgInfo::getDirect(HighPart, 8);
   1879     break;
   1880 
   1881     // X87Up generally doesn't occur here (long double is passed in
   1882     // memory), except in situations involving unions.
   1883   case X87Up:
   1884   case SSE:
   1885     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
   1886 
   1887     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
   1888       return ABIArgInfo::getDirect(HighPart, 8);
   1889 
   1890     ++neededSSE;
   1891     break;
   1892 
   1893     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
   1894     // eightbyte is passed in the upper half of the last used SSE
   1895     // register.  This only happens when 128-bit vectors are passed.
   1896   case SSEUp:
   1897     assert(Lo == SSE && "Unexpected SSEUp classification");
   1898     ResType = GetByteVectorType(Ty);
   1899     break;
   1900   }
   1901 
   1902   // If a high part was specified, merge it together with the low part.  It is
   1903   // known to pass in the high eightbyte of the result.  We do this by forming a
   1904   // first class struct aggregate with the high and low part: {low, high}
   1905   if (HighPart)
   1906     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
   1907 
   1908   return ABIArgInfo::getDirect(ResType);
   1909 }
   1910 
   1911 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   1912 
   1913   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   1914 
   1915   // Keep track of the number of assigned registers.
   1916   unsigned freeIntRegs = 6, freeSSERegs = 8;
   1917 
   1918   // If the return value is indirect, then the hidden argument is consuming one
   1919   // integer register.
   1920   if (FI.getReturnInfo().isIndirect())
   1921     --freeIntRegs;
   1922 
   1923   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
   1924   // get assigned (in left-to-right order) for passing as follows...
   1925   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   1926        it != ie; ++it) {
   1927     unsigned neededInt, neededSSE;
   1928     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
   1929 
   1930     // AMD64-ABI 3.2.3p3: If there are no registers available for any
   1931     // eightbyte of an argument, the whole argument is passed on the
   1932     // stack. If registers have already been assigned for some
   1933     // eightbytes of such an argument, the assignments get reverted.
   1934     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
   1935       freeIntRegs -= neededInt;
   1936       freeSSERegs -= neededSSE;
   1937     } else {
   1938       it->info = getIndirectResult(it->type);
   1939     }
   1940   }
   1941 }
   1942 
   1943 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
   1944                                         QualType Ty,
   1945                                         CodeGenFunction &CGF) {
   1946   llvm::Value *overflow_arg_area_p =
   1947     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
   1948   llvm::Value *overflow_arg_area =
   1949     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
   1950 
   1951   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
   1952   // byte boundary if alignment needed by type exceeds 8 byte boundary.
   1953   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
   1954   if (Align > 8) {
   1955     // Note that we follow the ABI & gcc here, even though the type
   1956     // could in theory have an alignment greater than 16. This case
   1957     // shouldn't ever matter in practice.
   1958 
   1959     // overflow_arg_area = (overflow_arg_area + 15) & ~15;
   1960     llvm::Value *Offset =
   1961       llvm::ConstantInt::get(CGF.Int32Ty, 15);
   1962     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
   1963     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
   1964                                                     CGF.Int64Ty);
   1965     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
   1966     overflow_arg_area =
   1967       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
   1968                                  overflow_arg_area->getType(),
   1969                                  "overflow_arg_area.align");
   1970   }
   1971 
   1972   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
   1973   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
   1974   llvm::Value *Res =
   1975     CGF.Builder.CreateBitCast(overflow_arg_area,
   1976                               llvm::PointerType::getUnqual(LTy));
   1977 
   1978   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
   1979   // l->overflow_arg_area + sizeof(type).
   1980   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
   1981   // an 8 byte boundary.
   1982 
   1983   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
   1984   llvm::Value *Offset =
   1985       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
   1986   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
   1987                                             "overflow_arg_area.next");
   1988   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
   1989 
   1990   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
   1991   return Res;
   1992 }
   1993 
   1994 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   1995                                       CodeGenFunction &CGF) const {
   1996   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
   1997 
   1998   // Assume that va_list type is correct; should be pointer to LLVM type:
   1999   // struct {
   2000   //   i32 gp_offset;
   2001   //   i32 fp_offset;
   2002   //   i8* overflow_arg_area;
   2003   //   i8* reg_save_area;
   2004   // };
   2005   unsigned neededInt, neededSSE;
   2006 
   2007   Ty = CGF.getContext().getCanonicalType(Ty);
   2008   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
   2009 
   2010   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
   2011   // in the registers. If not go to step 7.
   2012   if (!neededInt && !neededSSE)
   2013     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
   2014 
   2015   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
   2016   // general purpose registers needed to pass type and num_fp to hold
   2017   // the number of floating point registers needed.
   2018 
   2019   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
   2020   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
   2021   // l->fp_offset > 304 - num_fp * 16 go to step 7.
   2022   //
   2023   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
   2024   // register save space).
   2025 
   2026   llvm::Value *InRegs = 0;
   2027   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
   2028   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
   2029   if (neededInt) {
   2030     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
   2031     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
   2032     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
   2033     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
   2034   }
   2035 
   2036   if (neededSSE) {
   2037     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
   2038     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
   2039     llvm::Value *FitsInFP =
   2040       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
   2041     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
   2042     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
   2043   }
   2044 
   2045   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
   2046   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
   2047   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
   2048   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
   2049 
   2050   // Emit code to load the value if it was passed in registers.
   2051 
   2052   CGF.EmitBlock(InRegBlock);
   2053 
   2054   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
   2055   // an offset of l->gp_offset and/or l->fp_offset. This may require
   2056   // copying to a temporary location in case the parameter is passed
   2057   // in different register classes or requires an alignment greater
   2058   // than 8 for general purpose registers and 16 for XMM registers.
   2059   //
   2060   // FIXME: This really results in shameful code when we end up needing to
   2061   // collect arguments from different places; often what should result in a
   2062   // simple assembling of a structure from scattered addresses has many more
   2063   // loads than necessary. Can we clean this up?
   2064   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
   2065   llvm::Value *RegAddr =
   2066     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
   2067                            "reg_save_area");
   2068   if (neededInt && neededSSE) {
   2069     // FIXME: Cleanup.
   2070     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
   2071     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
   2072     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
   2073     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
   2074     llvm::Type *TyLo = ST->getElementType(0);
   2075     llvm::Type *TyHi = ST->getElementType(1);
   2076     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
   2077            "Unexpected ABI info for mixed regs");
   2078     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
   2079     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
   2080     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
   2081     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
   2082     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
   2083     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
   2084     llvm::Value *V =
   2085       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
   2086     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
   2087     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
   2088     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
   2089 
   2090     RegAddr = CGF.Builder.CreateBitCast(Tmp,
   2091                                         llvm::PointerType::getUnqual(LTy));
   2092   } else if (neededInt) {
   2093     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
   2094     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
   2095                                         llvm::PointerType::getUnqual(LTy));
   2096   } else if (neededSSE == 1) {
   2097     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
   2098     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
   2099                                         llvm::PointerType::getUnqual(LTy));
   2100   } else {
   2101     assert(neededSSE == 2 && "Invalid number of needed registers!");
   2102     // SSE registers are spaced 16 bytes apart in the register save
   2103     // area, we need to collect the two eightbytes together.
   2104     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
   2105     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
   2106     llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
   2107     llvm::Type *DblPtrTy =
   2108       llvm::PointerType::getUnqual(DoubleTy);
   2109     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
   2110                                                        DoubleTy, NULL);
   2111     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
   2112     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
   2113                                                          DblPtrTy));
   2114     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
   2115     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
   2116                                                          DblPtrTy));
   2117     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
   2118     RegAddr = CGF.Builder.CreateBitCast(Tmp,
   2119                                         llvm::PointerType::getUnqual(LTy));
   2120   }
   2121 
   2122   // AMD64-ABI 3.5.7p5: Step 5. Set:
   2123   // l->gp_offset = l->gp_offset + num_gp * 8
   2124   // l->fp_offset = l->fp_offset + num_fp * 16.
   2125   if (neededInt) {
   2126     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
   2127     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
   2128                             gp_offset_p);
   2129   }
   2130   if (neededSSE) {
   2131     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
   2132     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
   2133                             fp_offset_p);
   2134   }
   2135   CGF.EmitBranch(ContBlock);
   2136 
   2137   // Emit code to load the value if it was passed in memory.
   2138 
   2139   CGF.EmitBlock(InMemBlock);
   2140   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
   2141 
   2142   // Return the appropriate result.
   2143 
   2144   CGF.EmitBlock(ContBlock);
   2145   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
   2146                                                  "vaarg.addr");
   2147   ResAddr->addIncoming(RegAddr, InRegBlock);
   2148   ResAddr->addIncoming(MemAddr, InMemBlock);
   2149   return ResAddr;
   2150 }
   2151 
   2152 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
   2153 
   2154   if (Ty->isVoidType())
   2155     return ABIArgInfo::getIgnore();
   2156 
   2157   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2158     Ty = EnumTy->getDecl()->getIntegerType();
   2159 
   2160   uint64_t Size = getContext().getTypeSize(Ty);
   2161 
   2162   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2163     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
   2164         RT->getDecl()->hasFlexibleArrayMember())
   2165       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   2166 
   2167     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
   2168     if (Size == 128 &&
   2169         getContext().Target.getTriple().getOS() == llvm::Triple::MinGW32)
   2170       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   2171                                                           Size));
   2172 
   2173     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
   2174     // not 1, 2, 4, or 8 bytes, must be passed by reference."
   2175     if (Size <= 64 &&
   2176         (Size & (Size - 1)) == 0)
   2177       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   2178                                                           Size));
   2179 
   2180     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   2181   }
   2182 
   2183   if (Ty->isPromotableIntegerType())
   2184     return ABIArgInfo::getExtend();
   2185 
   2186   return ABIArgInfo::getDirect();
   2187 }
   2188 
   2189 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   2190 
   2191   QualType RetTy = FI.getReturnType();
   2192   FI.getReturnInfo() = classify(RetTy);
   2193 
   2194   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2195        it != ie; ++it)
   2196     it->info = classify(it->type);
   2197 }
   2198 
   2199 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2200                                       CodeGenFunction &CGF) const {
   2201   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
   2202   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
   2203 
   2204   CGBuilderTy &Builder = CGF.Builder;
   2205   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
   2206                                                        "ap");
   2207   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
   2208   llvm::Type *PTy =
   2209     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
   2210   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
   2211 
   2212   uint64_t Offset =
   2213     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
   2214   llvm::Value *NextAddr =
   2215     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
   2216                       "ap.next");
   2217   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
   2218 
   2219   return AddrTyped;
   2220 }
   2221 
   2222 // PowerPC-32
   2223 
   2224 namespace {
   2225 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
   2226 public:
   2227   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
   2228 
   2229   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
   2230     // This is recovered from gcc output.
   2231     return 1; // r1 is the dedicated stack pointer
   2232   }
   2233 
   2234   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2235                                llvm::Value *Address) const;
   2236 };
   2237 
   2238 }
   2239 
   2240 bool
   2241 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2242                                                 llvm::Value *Address) const {
   2243   // This is calculated from the LLVM and GCC tables and verified
   2244   // against gcc output.  AFAIK all ABIs use the same encoding.
   2245 
   2246   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   2247   llvm::LLVMContext &Context = CGF.getLLVMContext();
   2248 
   2249   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
   2250   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   2251   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
   2252   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
   2253 
   2254   // 0-31: r0-31, the 4-byte general-purpose registers
   2255   AssignToArrayRange(Builder, Address, Four8, 0, 31);
   2256 
   2257   // 32-63: fp0-31, the 8-byte floating-point registers
   2258   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
   2259 
   2260   // 64-76 are various 4-byte special-purpose registers:
   2261   // 64: mq
   2262   // 65: lr
   2263   // 66: ctr
   2264   // 67: ap
   2265   // 68-75 cr0-7
   2266   // 76: xer
   2267   AssignToArrayRange(Builder, Address, Four8, 64, 76);
   2268 
   2269   // 77-108: v0-31, the 16-byte vector registers
   2270   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
   2271 
   2272   // 109: vrsave
   2273   // 110: vscr
   2274   // 111: spe_acc
   2275   // 112: spefscr
   2276   // 113: sfp
   2277   AssignToArrayRange(Builder, Address, Four8, 109, 113);
   2278 
   2279   return false;
   2280 }
   2281 
   2282 
   2283 //===----------------------------------------------------------------------===//
   2284 // ARM ABI Implementation
   2285 //===----------------------------------------------------------------------===//
   2286 
   2287 namespace {
   2288 
   2289 class ARMABIInfo : public ABIInfo {
   2290 public:
   2291   enum ABIKind {
   2292     APCS = 0,
   2293     AAPCS = 1,
   2294     AAPCS_VFP
   2295   };
   2296 
   2297 private:
   2298   ABIKind Kind;
   2299 
   2300 public:
   2301   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
   2302 
   2303 private:
   2304   ABIKind getABIKind() const { return Kind; }
   2305 
   2306   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2307   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   2308 
   2309   virtual void computeInfo(CGFunctionInfo &FI) const;
   2310 
   2311   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2312                                  CodeGenFunction &CGF) const;
   2313 };
   2314 
   2315 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
   2316 public:
   2317   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
   2318     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
   2319 
   2320   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
   2321     return 13;
   2322   }
   2323 
   2324   llvm::StringRef getARCRetainAutoreleasedReturnValueMarker() const {
   2325     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
   2326   }
   2327 
   2328   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2329                                llvm::Value *Address) const {
   2330     CodeGen::CGBuilderTy &Builder = CGF.Builder;
   2331     llvm::LLVMContext &Context = CGF.getLLVMContext();
   2332 
   2333     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
   2334     llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   2335 
   2336     // 0-15 are the 16 integer registers.
   2337     AssignToArrayRange(Builder, Address, Four8, 0, 15);
   2338 
   2339     return false;
   2340   }
   2341 };
   2342 
   2343 }
   2344 
   2345 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
   2346   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2347   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2348        it != ie; ++it)
   2349     it->info = classifyArgumentType(it->type);
   2350 
   2351   // Always honor user-specified calling convention.
   2352   if (FI.getCallingConvention() != llvm::CallingConv::C)
   2353     return;
   2354 
   2355   // Calling convention as default by an ABI.
   2356   llvm::CallingConv::ID DefaultCC;
   2357   llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName();
   2358   if (Env == "gnueabi" || Env == "eabi")
   2359     DefaultCC = llvm::CallingConv::ARM_AAPCS;
   2360   else
   2361     DefaultCC = llvm::CallingConv::ARM_APCS;
   2362 
   2363   // If user did not ask for specific calling convention explicitly (e.g. via
   2364   // pcs attribute), set effective calling convention if it's different than ABI
   2365   // default.
   2366   switch (getABIKind()) {
   2367   case APCS:
   2368     if (DefaultCC != llvm::CallingConv::ARM_APCS)
   2369       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
   2370     break;
   2371   case AAPCS:
   2372     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
   2373       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
   2374     break;
   2375   case AAPCS_VFP:
   2376     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
   2377       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
   2378     break;
   2379   }
   2380 }
   2381 
   2382 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
   2383   if (!isAggregateTypeForABI(Ty)) {
   2384     // Treat an enum type as its underlying type.
   2385     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2386       Ty = EnumTy->getDecl()->getIntegerType();
   2387 
   2388     return (Ty->isPromotableIntegerType() ?
   2389             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2390   }
   2391 
   2392   // Ignore empty records.
   2393   if (isEmptyRecord(getContext(), Ty, true))
   2394     return ABIArgInfo::getIgnore();
   2395 
   2396   // Structures with either a non-trivial destructor or a non-trivial
   2397   // copy constructor are always indirect.
   2398   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
   2399     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   2400 
   2401   // Otherwise, pass by coercing to a structure of the appropriate size.
   2402   //
   2403   // FIXME: This doesn't handle alignment > 64 bits.
   2404   llvm::Type* ElemTy;
   2405   unsigned SizeRegs;
   2406   if (getContext().getTypeSizeInChars(Ty) <= CharUnits::fromQuantity(64)) {
   2407     ElemTy = llvm::Type::getInt32Ty(getVMContext());
   2408     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
   2409   } else if (getABIKind() == ARMABIInfo::APCS) {
   2410     // Initial ARM ByVal support is APCS-only.
   2411     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
   2412   } else {
   2413     // FIXME: This is kind of nasty... but there isn't much choice
   2414     // because most of the ARM calling conventions don't yet support
   2415     // byval.
   2416     ElemTy = llvm::Type::getInt64Ty(getVMContext());
   2417     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
   2418   }
   2419 
   2420   llvm::Type *STy =
   2421     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
   2422   return ABIArgInfo::getDirect(STy);
   2423 }
   2424 
   2425 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
   2426                               llvm::LLVMContext &VMContext) {
   2427   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
   2428   // is called integer-like if its size is less than or equal to one word, and
   2429   // the offset of each of its addressable sub-fields is zero.
   2430 
   2431   uint64_t Size = Context.getTypeSize(Ty);
   2432 
   2433   // Check that the type fits in a word.
   2434   if (Size > 32)
   2435     return false;
   2436 
   2437   // FIXME: Handle vector types!
   2438   if (Ty->isVectorType())
   2439     return false;
   2440 
   2441   // Float types are never treated as "integer like".
   2442   if (Ty->isRealFloatingType())
   2443     return false;
   2444 
   2445   // If this is a builtin or pointer type then it is ok.
   2446   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
   2447     return true;
   2448 
   2449   // Small complex integer types are "integer like".
   2450   if (const ComplexType *CT = Ty->getAs<ComplexType>())
   2451     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
   2452 
   2453   // Single element and zero sized arrays should be allowed, by the definition
   2454   // above, but they are not.
   2455 
   2456   // Otherwise, it must be a record type.
   2457   const RecordType *RT = Ty->getAs<RecordType>();
   2458   if (!RT) return false;
   2459 
   2460   // Ignore records with flexible arrays.
   2461   const RecordDecl *RD = RT->getDecl();
   2462   if (RD->hasFlexibleArrayMember())
   2463     return false;
   2464 
   2465   // Check that all sub-fields are at offset 0, and are themselves "integer
   2466   // like".
   2467   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   2468 
   2469   bool HadField = false;
   2470   unsigned idx = 0;
   2471   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2472        i != e; ++i, ++idx) {
   2473     const FieldDecl *FD = *i;
   2474 
   2475     // Bit-fields are not addressable, we only need to verify they are "integer
   2476     // like". We still have to disallow a subsequent non-bitfield, for example:
   2477     //   struct { int : 0; int x }
   2478     // is non-integer like according to gcc.
   2479     if (FD->isBitField()) {
   2480       if (!RD->isUnion())
   2481         HadField = true;
   2482 
   2483       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
   2484         return false;
   2485 
   2486       continue;
   2487     }
   2488 
   2489     // Check if this field is at offset 0.
   2490     if (Layout.getFieldOffset(idx) != 0)
   2491       return false;
   2492 
   2493     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
   2494       return false;
   2495 
   2496     // Only allow at most one field in a structure. This doesn't match the
   2497     // wording above, but follows gcc in situations with a field following an
   2498     // empty structure.
   2499     if (!RD->isUnion()) {
   2500       if (HadField)
   2501         return false;
   2502 
   2503       HadField = true;
   2504     }
   2505   }
   2506 
   2507   return true;
   2508 }
   2509 
   2510 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
   2511   if (RetTy->isVoidType())
   2512     return ABIArgInfo::getIgnore();
   2513 
   2514   // Large vector types should be returned via memory.
   2515   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
   2516     return ABIArgInfo::getIndirect(0);
   2517 
   2518   if (!isAggregateTypeForABI(RetTy)) {
   2519     // Treat an enum type as its underlying type.
   2520     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   2521       RetTy = EnumTy->getDecl()->getIntegerType();
   2522 
   2523     return (RetTy->isPromotableIntegerType() ?
   2524             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2525   }
   2526 
   2527   // Structures with either a non-trivial destructor or a non-trivial
   2528   // copy constructor are always indirect.
   2529   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
   2530     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
   2531 
   2532   // Are we following APCS?
   2533   if (getABIKind() == APCS) {
   2534     if (isEmptyRecord(getContext(), RetTy, false))
   2535       return ABIArgInfo::getIgnore();
   2536 
   2537     // Complex types are all returned as packed integers.
   2538     //
   2539     // FIXME: Consider using 2 x vector types if the back end handles them
   2540     // correctly.
   2541     if (RetTy->isAnyComplexType())
   2542       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   2543                                               getContext().getTypeSize(RetTy)));
   2544 
   2545     // Integer like structures are returned in r0.
   2546     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
   2547       // Return in the smallest viable integer type.
   2548       uint64_t Size = getContext().getTypeSize(RetTy);
   2549       if (Size <= 8)
   2550         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   2551       if (Size <= 16)
   2552         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   2553       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   2554     }
   2555 
   2556     // Otherwise return in memory.
   2557     return ABIArgInfo::getIndirect(0);
   2558   }
   2559 
   2560   // Otherwise this is an AAPCS variant.
   2561 
   2562   if (isEmptyRecord(getContext(), RetTy, true))
   2563     return ABIArgInfo::getIgnore();
   2564 
   2565   // Aggregates <= 4 bytes are returned in r0; other aggregates
   2566   // are returned indirectly.
   2567   uint64_t Size = getContext().getTypeSize(RetTy);
   2568   if (Size <= 32) {
   2569     // Return in the smallest viable integer type.
   2570     if (Size <= 8)
   2571       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   2572     if (Size <= 16)
   2573       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   2574     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   2575   }
   2576 
   2577   return ABIArgInfo::getIndirect(0);
   2578 }
   2579 
   2580 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2581                                    CodeGenFunction &CGF) const {
   2582   // FIXME: Need to handle alignment
   2583   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
   2584   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
   2585 
   2586   CGBuilderTy &Builder = CGF.Builder;
   2587   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
   2588                                                        "ap");
   2589   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
   2590   llvm::Type *PTy =
   2591     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
   2592   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
   2593 
   2594   uint64_t Offset =
   2595     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
   2596   llvm::Value *NextAddr =
   2597     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
   2598                       "ap.next");
   2599   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
   2600 
   2601   return AddrTyped;
   2602 }
   2603 
   2604 //===----------------------------------------------------------------------===//
   2605 // PTX ABI Implementation
   2606 //===----------------------------------------------------------------------===//
   2607 
   2608 namespace {
   2609 
   2610 class PTXABIInfo : public ABIInfo {
   2611 public:
   2612   PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   2613 
   2614   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2615   ABIArgInfo classifyArgumentType(QualType Ty) const;
   2616 
   2617   virtual void computeInfo(CGFunctionInfo &FI) const;
   2618   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2619                                  CodeGenFunction &CFG) const;
   2620 };
   2621 
   2622 class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
   2623 public:
   2624   PTXTargetCodeGenInfo(CodeGenTypes &CGT)
   2625     : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
   2626 };
   2627 
   2628 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
   2629   if (RetTy->isVoidType())
   2630     return ABIArgInfo::getIgnore();
   2631   if (isAggregateTypeForABI(RetTy))
   2632     return ABIArgInfo::getIndirect(0);
   2633   return ABIArgInfo::getDirect();
   2634 }
   2635 
   2636 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
   2637   if (isAggregateTypeForABI(Ty))
   2638     return ABIArgInfo::getIndirect(0);
   2639 
   2640   return ABIArgInfo::getDirect();
   2641 }
   2642 
   2643 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
   2644   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2645   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2646        it != ie; ++it)
   2647     it->info = classifyArgumentType(it->type);
   2648 
   2649   // Always honor user-specified calling convention.
   2650   if (FI.getCallingConvention() != llvm::CallingConv::C)
   2651     return;
   2652 
   2653   // Calling convention as default by an ABI.
   2654   llvm::CallingConv::ID DefaultCC;
   2655   llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName();
   2656   if (Env == "device")
   2657     DefaultCC = llvm::CallingConv::PTX_Device;
   2658   else
   2659     DefaultCC = llvm::CallingConv::PTX_Kernel;
   2660 
   2661   FI.setEffectiveCallingConvention(DefaultCC);
   2662 }
   2663 
   2664 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2665                                    CodeGenFunction &CFG) const {
   2666   llvm_unreachable("PTX does not support varargs");
   2667   return 0;
   2668 }
   2669 
   2670 }
   2671 
   2672 //===----------------------------------------------------------------------===//
   2673 // SystemZ ABI Implementation
   2674 //===----------------------------------------------------------------------===//
   2675 
   2676 namespace {
   2677 
   2678 class SystemZABIInfo : public ABIInfo {
   2679 public:
   2680   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   2681 
   2682   bool isPromotableIntegerType(QualType Ty) const;
   2683 
   2684   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2685   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   2686 
   2687   virtual void computeInfo(CGFunctionInfo &FI) const {
   2688     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2689     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2690          it != ie; ++it)
   2691       it->info = classifyArgumentType(it->type);
   2692   }
   2693 
   2694   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2695                                  CodeGenFunction &CGF) const;
   2696 };
   2697 
   2698 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
   2699 public:
   2700   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
   2701     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
   2702 };
   2703 
   2704 }
   2705 
   2706 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
   2707   // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
   2708   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   2709     switch (BT->getKind()) {
   2710     case BuiltinType::Bool:
   2711     case BuiltinType::Char_S:
   2712     case BuiltinType::Char_U:
   2713     case BuiltinType::SChar:
   2714     case BuiltinType::UChar:
   2715     case BuiltinType::Short:
   2716     case BuiltinType::UShort:
   2717     case BuiltinType::Int:
   2718     case BuiltinType::UInt:
   2719       return true;
   2720     default:
   2721       return false;
   2722     }
   2723   return false;
   2724 }
   2725 
   2726 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2727                                        CodeGenFunction &CGF) const {
   2728   // FIXME: Implement
   2729   return 0;
   2730 }
   2731 
   2732 
   2733 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
   2734   if (RetTy->isVoidType())
   2735     return ABIArgInfo::getIgnore();
   2736   if (isAggregateTypeForABI(RetTy))
   2737     return ABIArgInfo::getIndirect(0);
   2738 
   2739   return (isPromotableIntegerType(RetTy) ?
   2740           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2741 }
   2742 
   2743 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
   2744   if (isAggregateTypeForABI(Ty))
   2745     return ABIArgInfo::getIndirect(0);
   2746 
   2747   return (isPromotableIntegerType(Ty) ?
   2748           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2749 }
   2750 
   2751 //===----------------------------------------------------------------------===//
   2752 // MBlaze ABI Implementation
   2753 //===----------------------------------------------------------------------===//
   2754 
   2755 namespace {
   2756 
   2757 class MBlazeABIInfo : public ABIInfo {
   2758 public:
   2759   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   2760 
   2761   bool isPromotableIntegerType(QualType Ty) const;
   2762 
   2763   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2764   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   2765 
   2766   virtual void computeInfo(CGFunctionInfo &FI) const {
   2767     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2768     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2769          it != ie; ++it)
   2770       it->info = classifyArgumentType(it->type);
   2771   }
   2772 
   2773   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2774                                  CodeGenFunction &CGF) const;
   2775 };
   2776 
   2777 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
   2778 public:
   2779   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
   2780     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
   2781   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   2782                            CodeGen::CodeGenModule &M) const;
   2783 };
   2784 
   2785 }
   2786 
   2787 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
   2788   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
   2789   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   2790     switch (BT->getKind()) {
   2791     case BuiltinType::Bool:
   2792     case BuiltinType::Char_S:
   2793     case BuiltinType::Char_U:
   2794     case BuiltinType::SChar:
   2795     case BuiltinType::UChar:
   2796     case BuiltinType::Short:
   2797     case BuiltinType::UShort:
   2798       return true;
   2799     default:
   2800       return false;
   2801     }
   2802   return false;
   2803 }
   2804 
   2805 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2806                                       CodeGenFunction &CGF) const {
   2807   // FIXME: Implement
   2808   return 0;
   2809 }
   2810 
   2811 
   2812 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
   2813   if (RetTy->isVoidType())
   2814     return ABIArgInfo::getIgnore();
   2815   if (isAggregateTypeForABI(RetTy))
   2816     return ABIArgInfo::getIndirect(0);
   2817 
   2818   return (isPromotableIntegerType(RetTy) ?
   2819           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2820 }
   2821 
   2822 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
   2823   if (isAggregateTypeForABI(Ty))
   2824     return ABIArgInfo::getIndirect(0);
   2825 
   2826   return (isPromotableIntegerType(Ty) ?
   2827           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2828 }
   2829 
   2830 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
   2831                                                   llvm::GlobalValue *GV,
   2832                                                   CodeGen::CodeGenModule &M)
   2833                                                   const {
   2834   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
   2835   if (!FD) return;
   2836 
   2837   llvm::CallingConv::ID CC = llvm::CallingConv::C;
   2838   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
   2839     CC = llvm::CallingConv::MBLAZE_INTR;
   2840   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
   2841     CC = llvm::CallingConv::MBLAZE_SVOL;
   2842 
   2843   if (CC != llvm::CallingConv::C) {
   2844       // Handle 'interrupt_handler' attribute:
   2845       llvm::Function *F = cast<llvm::Function>(GV);
   2846 
   2847       // Step 1: Set ISR calling convention.
   2848       F->setCallingConv(CC);
   2849 
   2850       // Step 2: Add attributes goodness.
   2851       F->addFnAttr(llvm::Attribute::NoInline);
   2852   }
   2853 
   2854   // Step 3: Emit _interrupt_handler alias.
   2855   if (CC == llvm::CallingConv::MBLAZE_INTR)
   2856     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
   2857                           "_interrupt_handler", GV, &M.getModule());
   2858 }
   2859 
   2860 
   2861 //===----------------------------------------------------------------------===//
   2862 // MSP430 ABI Implementation
   2863 //===----------------------------------------------------------------------===//
   2864 
   2865 namespace {
   2866 
   2867 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
   2868 public:
   2869   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
   2870     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
   2871   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   2872                            CodeGen::CodeGenModule &M) const;
   2873 };
   2874 
   2875 }
   2876 
   2877 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
   2878                                                   llvm::GlobalValue *GV,
   2879                                              CodeGen::CodeGenModule &M) const {
   2880   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2881     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
   2882       // Handle 'interrupt' attribute:
   2883       llvm::Function *F = cast<llvm::Function>(GV);
   2884 
   2885       // Step 1: Set ISR calling convention.
   2886       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
   2887 
   2888       // Step 2: Add attributes goodness.
   2889       F->addFnAttr(llvm::Attribute::NoInline);
   2890 
   2891       // Step 3: Emit ISR vector alias.
   2892       unsigned Num = attr->getNumber() + 0xffe0;
   2893       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
   2894                             "vector_" + llvm::Twine::utohexstr(Num),
   2895                             GV, &M.getModule());
   2896     }
   2897   }
   2898 }
   2899 
   2900 //===----------------------------------------------------------------------===//
   2901 // MIPS ABI Implementation.  This works for both little-endian and
   2902 // big-endian variants.
   2903 //===----------------------------------------------------------------------===//
   2904 
   2905 namespace {
   2906 class MipsABIInfo : public ABIInfo {
   2907 public:
   2908   MipsABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   2909 
   2910   ABIArgInfo classifyReturnType(QualType RetTy) const;
   2911   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   2912   virtual void computeInfo(CGFunctionInfo &FI) const;
   2913   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2914                                  CodeGenFunction &CGF) const;
   2915 };
   2916 
   2917 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
   2918 public:
   2919   MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
   2920     : TargetCodeGenInfo(new MipsABIInfo(CGT)) {}
   2921 
   2922   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
   2923     return 29;
   2924   }
   2925 
   2926   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2927                                llvm::Value *Address) const;
   2928 };
   2929 }
   2930 
   2931 ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const {
   2932   if (isAggregateTypeForABI(Ty)) {
   2933     // Ignore empty aggregates.
   2934     if (getContext().getTypeSize(Ty) == 0)
   2935       return ABIArgInfo::getIgnore();
   2936 
   2937     return ABIArgInfo::getIndirect(0);
   2938   }
   2939 
   2940   // Treat an enum type as its underlying type.
   2941   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2942     Ty = EnumTy->getDecl()->getIntegerType();
   2943 
   2944   return (Ty->isPromotableIntegerType() ?
   2945           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2946 }
   2947 
   2948 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
   2949   if (RetTy->isVoidType())
   2950     return ABIArgInfo::getIgnore();
   2951 
   2952   if (isAggregateTypeForABI(RetTy)) {
   2953     if (RetTy->isAnyComplexType())
   2954       return ABIArgInfo::getDirect();
   2955 
   2956     return ABIArgInfo::getIndirect(0);
   2957   }
   2958 
   2959   // Treat an enum type as its underlying type.
   2960   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   2961     RetTy = EnumTy->getDecl()->getIntegerType();
   2962 
   2963   return (RetTy->isPromotableIntegerType() ?
   2964           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2965 }
   2966 
   2967 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
   2968   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   2969   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   2970        it != ie; ++it)
   2971     it->info = classifyArgumentType(it->type);
   2972 }
   2973 
   2974 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
   2975                                     CodeGenFunction &CGF) const {
   2976   return 0;
   2977 }
   2978 
   2979 bool
   2980 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2981                                                llvm::Value *Address) const {
   2982   // This information comes from gcc's implementation, which seems to
   2983   // as canonical as it gets.
   2984 
   2985   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   2986   llvm::LLVMContext &Context = CGF.getLLVMContext();
   2987 
   2988   // Everything on MIPS is 4 bytes.  Double-precision FP registers
   2989   // are aliased to pairs of single-precision FP registers.
   2990   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
   2991   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   2992 
   2993   // 0-31 are the general purpose registers, $0 - $31.
   2994   // 32-63 are the floating-point registers, $f0 - $f31.
   2995   // 64 and 65 are the multiply/divide registers, $hi and $lo.
   2996   // 66 is the (notional, I think) register for signal-handler return.
   2997   AssignToArrayRange(Builder, Address, Four8, 0, 65);
   2998 
   2999   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
   3000   // They are one bit wide and ignored here.
   3001 
   3002   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
   3003   // (coprocessor 1 is the FP unit)
   3004   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
   3005   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
   3006   // 176-181 are the DSP accumulator registers.
   3007   AssignToArrayRange(Builder, Address, Four8, 80, 181);
   3008 
   3009   return false;
   3010 }
   3011 
   3012 
   3013 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
   3014   if (TheTargetCodeGenInfo)
   3015     return *TheTargetCodeGenInfo;
   3016 
   3017   // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
   3018   // free it.
   3019 
   3020   const llvm::Triple &Triple = getContext().Target.getTriple();
   3021   switch (Triple.getArch()) {
   3022   default:
   3023     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
   3024 
   3025   case llvm::Triple::mips:
   3026   case llvm::Triple::mipsel:
   3027     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
   3028 
   3029   case llvm::Triple::arm:
   3030   case llvm::Triple::thumb:
   3031     {
   3032       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
   3033 
   3034       if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
   3035         Kind = ARMABIInfo::APCS;
   3036       else if (CodeGenOpts.FloatABI == "hard")
   3037         Kind = ARMABIInfo::AAPCS_VFP;
   3038 
   3039       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
   3040     }
   3041 
   3042   case llvm::Triple::ppc:
   3043     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
   3044 
   3045   case llvm::Triple::ptx32:
   3046   case llvm::Triple::ptx64:
   3047     return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
   3048 
   3049   case llvm::Triple::systemz:
   3050     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
   3051 
   3052   case llvm::Triple::mblaze:
   3053     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
   3054 
   3055   case llvm::Triple::msp430:
   3056     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
   3057 
   3058   case llvm::Triple::x86: {
   3059     bool DisableMMX = strcmp(getContext().Target.getABI(), "no-mmx") == 0;
   3060 
   3061     if (Triple.isOSDarwin())
   3062       return *(TheTargetCodeGenInfo =
   3063                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX));
   3064 
   3065     switch (Triple.getOS()) {
   3066     case llvm::Triple::Cygwin:
   3067     case llvm::Triple::MinGW32:
   3068     case llvm::Triple::AuroraUX:
   3069     case llvm::Triple::DragonFly:
   3070     case llvm::Triple::FreeBSD:
   3071     case llvm::Triple::OpenBSD:
   3072     case llvm::Triple::NetBSD:
   3073       return *(TheTargetCodeGenInfo =
   3074                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX));
   3075 
   3076     default:
   3077       return *(TheTargetCodeGenInfo =
   3078                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX));
   3079     }
   3080   }
   3081 
   3082   case llvm::Triple::x86_64:
   3083     switch (Triple.getOS()) {
   3084     case llvm::Triple::Win32:
   3085     case llvm::Triple::MinGW32:
   3086     case llvm::Triple::Cygwin:
   3087       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
   3088     default:
   3089       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
   3090     }
   3091   }
   3092 }
   3093