1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx (at) linutronix.de> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <linux/types.h> 18 #include <linux/ioctl.h> 19 #include <asm/byteorder.h> 20 21 /* 22 * User-space ABI bits: 23 */ 24 25 /* 26 * attr.type 27 */ 28 enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37 }; 38 39 /* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44 enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 56 PERF_COUNT_HW_MAX, /* non-ABI */ 57 }; 58 59 /* 60 * Generalized hardware cache events: 61 * 62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 63 * { read, write, prefetch } x 64 * { accesses, misses } 65 */ 66 enum perf_hw_cache_id { 67 PERF_COUNT_HW_CACHE_L1D = 0, 68 PERF_COUNT_HW_CACHE_L1I = 1, 69 PERF_COUNT_HW_CACHE_LL = 2, 70 PERF_COUNT_HW_CACHE_DTLB = 3, 71 PERF_COUNT_HW_CACHE_ITLB = 4, 72 PERF_COUNT_HW_CACHE_BPU = 5, 73 74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 75 }; 76 77 enum perf_hw_cache_op_id { 78 PERF_COUNT_HW_CACHE_OP_READ = 0, 79 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 81 82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 83 }; 84 85 enum perf_hw_cache_op_result_id { 86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 88 89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 90 }; 91 92 /* 93 * Special "software" events provided by the kernel, even if the hardware 94 * does not support performance events. These events measure various 95 * physical and sw events of the kernel (and allow the profiling of them as 96 * well): 97 */ 98 enum perf_sw_ids { 99 PERF_COUNT_SW_CPU_CLOCK = 0, 100 PERF_COUNT_SW_TASK_CLOCK = 1, 101 PERF_COUNT_SW_PAGE_FAULTS = 2, 102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 103 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 107 PERF_COUNT_SW_EMULATION_FAULTS = 8, 108 109 PERF_COUNT_SW_MAX, /* non-ABI */ 110 }; 111 112 /* 113 * Bits that can be set in attr.sample_type to request information 114 * in the overflow packets. 115 */ 116 enum perf_event_sample_format { 117 PERF_SAMPLE_IP = 1U << 0, 118 PERF_SAMPLE_TID = 1U << 1, 119 PERF_SAMPLE_TIME = 1U << 2, 120 PERF_SAMPLE_ADDR = 1U << 3, 121 PERF_SAMPLE_READ = 1U << 4, 122 PERF_SAMPLE_CALLCHAIN = 1U << 5, 123 PERF_SAMPLE_ID = 1U << 6, 124 PERF_SAMPLE_CPU = 1U << 7, 125 PERF_SAMPLE_PERIOD = 1U << 8, 126 PERF_SAMPLE_STREAM_ID = 1U << 9, 127 PERF_SAMPLE_RAW = 1U << 10, 128 129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 130 }; 131 132 /* 133 * The format of the data returned by read() on a perf event fd, 134 * as specified by attr.read_format: 135 * 136 * struct read_format { 137 * { u64 value; 138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 139 * { u64 time_running; } && PERF_FORMAT_RUNNING 140 * { u64 id; } && PERF_FORMAT_ID 141 * } && !PERF_FORMAT_GROUP 142 * 143 * { u64 nr; 144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 145 * { u64 time_running; } && PERF_FORMAT_RUNNING 146 * { u64 value; 147 * { u64 id; } && PERF_FORMAT_ID 148 * } cntr[nr]; 149 * } && PERF_FORMAT_GROUP 150 * }; 151 */ 152 enum perf_event_read_format { 153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 155 PERF_FORMAT_ID = 1U << 2, 156 PERF_FORMAT_GROUP = 1U << 3, 157 158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 159 }; 160 161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 162 163 /* 164 * Hardware event_id to monitor via a performance monitoring event: 165 */ 166 struct perf_event_attr { 167 168 /* 169 * Major type: hardware/software/tracepoint/etc. 170 */ 171 __u32 type; 172 173 /* 174 * Size of the attr structure, for fwd/bwd compat. 175 */ 176 __u32 size; 177 178 /* 179 * Type specific configuration information. 180 */ 181 __u64 config; 182 183 union { 184 __u64 sample_period; 185 __u64 sample_freq; 186 }; 187 188 __u64 sample_type; 189 __u64 read_format; 190 191 __u64 disabled : 1, /* off by default */ 192 inherit : 1, /* children inherit it */ 193 pinned : 1, /* must always be on PMU */ 194 exclusive : 1, /* only group on PMU */ 195 exclude_user : 1, /* don't count user */ 196 exclude_kernel : 1, /* ditto kernel */ 197 exclude_hv : 1, /* ditto hypervisor */ 198 exclude_idle : 1, /* don't count when idle */ 199 mmap : 1, /* include mmap data */ 200 comm : 1, /* include comm data */ 201 freq : 1, /* use freq, not period */ 202 inherit_stat : 1, /* per task counts */ 203 enable_on_exec : 1, /* next exec enables */ 204 task : 1, /* trace fork/exit */ 205 watermark : 1, /* wakeup_watermark */ 206 /* 207 * precise_ip: 208 * 209 * 0 - SAMPLE_IP can have arbitrary skid 210 * 1 - SAMPLE_IP must have constant skid 211 * 2 - SAMPLE_IP requested to have 0 skid 212 * 3 - SAMPLE_IP must have 0 skid 213 * 214 * See also PERF_RECORD_MISC_EXACT_IP 215 */ 216 precise_ip : 2, /* skid constraint */ 217 218 __reserved_1 : 47; 219 220 union { 221 __u32 wakeup_events; /* wakeup every n events */ 222 __u32 wakeup_watermark; /* bytes before wakeup */ 223 }; 224 225 __u32 bp_type; 226 __u64 bp_addr; 227 __u64 bp_len; 228 }; 229 230 /* 231 * Ioctls that can be done on a perf event fd: 232 */ 233 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 234 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 235 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 236 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 237 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 238 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 239 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 240 241 enum perf_event_ioc_flags { 242 PERF_IOC_FLAG_GROUP = 1U << 0, 243 }; 244 245 /* 246 * Structure of the page that can be mapped via mmap 247 */ 248 struct perf_event_mmap_page { 249 __u32 version; /* version number of this structure */ 250 __u32 compat_version; /* lowest version this is compat with */ 251 252 /* 253 * Bits needed to read the hw events in user-space. 254 * 255 * u32 seq; 256 * s64 count; 257 * 258 * do { 259 * seq = pc->lock; 260 * 261 * barrier() 262 * if (pc->index) { 263 * count = pmc_read(pc->index - 1); 264 * count += pc->offset; 265 * } else 266 * goto regular_read; 267 * 268 * barrier(); 269 * } while (pc->lock != seq); 270 * 271 * NOTE: for obvious reason this only works on self-monitoring 272 * processes. 273 */ 274 __u32 lock; /* seqlock for synchronization */ 275 __u32 index; /* hardware event identifier */ 276 __s64 offset; /* add to hardware event value */ 277 __u64 time_enabled; /* time event active */ 278 __u64 time_running; /* time event on cpu */ 279 280 /* 281 * Hole for extension of the self monitor capabilities 282 */ 283 284 __u64 __reserved[123]; /* align to 1k */ 285 286 /* 287 * Control data for the mmap() data buffer. 288 * 289 * User-space reading the @data_head value should issue an rmb(), on 290 * SMP capable platforms, after reading this value -- see 291 * perf_event_wakeup(). 292 * 293 * When the mapping is PROT_WRITE the @data_tail value should be 294 * written by userspace to reflect the last read data. In this case 295 * the kernel will not over-write unread data. 296 */ 297 __u64 data_head; /* head in the data section */ 298 __u64 data_tail; /* user-space written tail */ 299 }; 300 301 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 302 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 303 #define PERF_RECORD_MISC_KERNEL (1 << 0) 304 #define PERF_RECORD_MISC_USER (2 << 0) 305 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 306 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 307 #define PERF_RECORD_MISC_GUEST_USER (5 << 0) 308 309 /* 310 * Indicates that the content of PERF_SAMPLE_IP points to 311 * the actual instruction that triggered the event. See also 312 * perf_event_attr::precise_ip. 313 */ 314 #define PERF_RECORD_MISC_EXACT_IP (1 << 14) 315 /* 316 * Reserve the last bit to indicate some extended misc field 317 */ 318 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 319 320 struct perf_event_header { 321 __u32 type; 322 __u16 misc; 323 __u16 size; 324 }; 325 326 enum perf_event_type { 327 328 /* 329 * The MMAP events record the PROT_EXEC mappings so that we can 330 * correlate userspace IPs to code. They have the following structure: 331 * 332 * struct { 333 * struct perf_event_header header; 334 * 335 * u32 pid, tid; 336 * u64 addr; 337 * u64 len; 338 * u64 pgoff; 339 * char filename[]; 340 * }; 341 */ 342 PERF_RECORD_MMAP = 1, 343 344 /* 345 * struct { 346 * struct perf_event_header header; 347 * u64 id; 348 * u64 lost; 349 * }; 350 */ 351 PERF_RECORD_LOST = 2, 352 353 /* 354 * struct { 355 * struct perf_event_header header; 356 * 357 * u32 pid, tid; 358 * char comm[]; 359 * }; 360 */ 361 PERF_RECORD_COMM = 3, 362 363 /* 364 * struct { 365 * struct perf_event_header header; 366 * u32 pid, ppid; 367 * u32 tid, ptid; 368 * u64 time; 369 * }; 370 */ 371 PERF_RECORD_EXIT = 4, 372 373 /* 374 * struct { 375 * struct perf_event_header header; 376 * u64 time; 377 * u64 id; 378 * u64 stream_id; 379 * }; 380 */ 381 PERF_RECORD_THROTTLE = 5, 382 PERF_RECORD_UNTHROTTLE = 6, 383 384 /* 385 * struct { 386 * struct perf_event_header header; 387 * u32 pid, ppid; 388 * u32 tid, ptid; 389 * u64 time; 390 * }; 391 */ 392 PERF_RECORD_FORK = 7, 393 394 /* 395 * struct { 396 * struct perf_event_header header; 397 * u32 pid, tid; 398 * 399 * struct read_format values; 400 * }; 401 */ 402 PERF_RECORD_READ = 8, 403 404 /* 405 * struct { 406 * struct perf_event_header header; 407 * 408 * { u64 ip; } && PERF_SAMPLE_IP 409 * { u32 pid, tid; } && PERF_SAMPLE_TID 410 * { u64 time; } && PERF_SAMPLE_TIME 411 * { u64 addr; } && PERF_SAMPLE_ADDR 412 * { u64 id; } && PERF_SAMPLE_ID 413 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 414 * { u32 cpu, res; } && PERF_SAMPLE_CPU 415 * { u64 period; } && PERF_SAMPLE_PERIOD 416 * 417 * { struct read_format values; } && PERF_SAMPLE_READ 418 * 419 * { u64 nr, 420 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 421 * 422 * # 423 * # The RAW record below is opaque data wrt the ABI 424 * # 425 * # That is, the ABI doesn't make any promises wrt to 426 * # the stability of its content, it may vary depending 427 * # on event, hardware, kernel version and phase of 428 * # the moon. 429 * # 430 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 431 * # 432 * 433 * { u32 size; 434 * char data[size];}&& PERF_SAMPLE_RAW 435 * }; 436 */ 437 PERF_RECORD_SAMPLE = 9, 438 439 PERF_RECORD_MAX, /* non-ABI */ 440 }; 441 442 enum perf_callchain_context { 443 PERF_CONTEXT_HV = (__u64)-32, 444 PERF_CONTEXT_KERNEL = (__u64)-128, 445 PERF_CONTEXT_USER = (__u64)-512, 446 447 PERF_CONTEXT_GUEST = (__u64)-2048, 448 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 449 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 450 451 PERF_CONTEXT_MAX = (__u64)-4095, 452 }; 453 454 #define PERF_FLAG_FD_NO_GROUP (1U << 0) 455 #define PERF_FLAG_FD_OUTPUT (1U << 1) 456 457 #ifdef __KERNEL__ 458 /* 459 * Kernel-internal data types and definitions: 460 */ 461 462 #ifdef CONFIG_PERF_EVENTS 463 # include <asm/perf_event.h> 464 #endif 465 466 struct perf_guest_info_callbacks { 467 int (*is_in_guest) (void); 468 int (*is_user_mode) (void); 469 unsigned long (*get_guest_ip) (void); 470 }; 471 472 #ifdef CONFIG_HAVE_HW_BREAKPOINT 473 #include <asm/hw_breakpoint.h> 474 #endif 475 476 #include <linux/list.h> 477 #include <linux/mutex.h> 478 #include <linux/rculist.h> 479 #include <linux/rcupdate.h> 480 #include <linux/spinlock.h> 481 #include <linux/hrtimer.h> 482 #include <linux/fs.h> 483 #include <linux/pid_namespace.h> 484 #include <linux/workqueue.h> 485 #include <linux/ftrace.h> 486 #include <linux/cpu.h> 487 #include <asm/atomic.h> 488 #include <asm/local.h> 489 490 #define PERF_MAX_STACK_DEPTH 255 491 492 struct perf_callchain_entry { 493 __u64 nr; 494 __u64 ip[PERF_MAX_STACK_DEPTH]; 495 }; 496 497 struct perf_raw_record { 498 u32 size; 499 void *data; 500 }; 501 502 struct perf_branch_entry { 503 __u64 from; 504 __u64 to; 505 __u64 flags; 506 }; 507 508 struct perf_branch_stack { 509 __u64 nr; 510 struct perf_branch_entry entries[0]; 511 }; 512 513 struct task_struct; 514 515 /** 516 * struct hw_perf_event - performance event hardware details: 517 */ 518 struct hw_perf_event { 519 #ifdef CONFIG_PERF_EVENTS 520 union { 521 struct { /* hardware */ 522 u64 config; 523 u64 last_tag; 524 unsigned long config_base; 525 unsigned long event_base; 526 int idx; 527 int last_cpu; 528 }; 529 struct { /* software */ 530 s64 remaining; 531 struct hrtimer hrtimer; 532 }; 533 #ifdef CONFIG_HAVE_HW_BREAKPOINT 534 /* breakpoint */ 535 struct arch_hw_breakpoint info; 536 #endif 537 }; 538 atomic64_t prev_count; 539 u64 sample_period; 540 u64 last_period; 541 atomic64_t period_left; 542 u64 interrupts; 543 544 u64 freq_time_stamp; 545 u64 freq_count_stamp; 546 #endif 547 }; 548 549 struct perf_event; 550 551 #define PERF_EVENT_TXN_STARTED 1 552 553 /** 554 * struct pmu - generic performance monitoring unit 555 */ 556 struct pmu { 557 int (*enable) (struct perf_event *event); 558 void (*disable) (struct perf_event *event); 559 int (*start) (struct perf_event *event); 560 void (*stop) (struct perf_event *event); 561 void (*read) (struct perf_event *event); 562 void (*unthrottle) (struct perf_event *event); 563 564 /* 565 * group events scheduling is treated as a transaction, 566 * add group events as a whole and perform one schedulability test. 567 * If test fails, roll back the whole group 568 */ 569 570 void (*start_txn) (const struct pmu *pmu); 571 void (*cancel_txn) (const struct pmu *pmu); 572 int (*commit_txn) (const struct pmu *pmu); 573 }; 574 575 /** 576 * enum perf_event_active_state - the states of a event 577 */ 578 enum perf_event_active_state { 579 PERF_EVENT_STATE_ERROR = -2, 580 PERF_EVENT_STATE_OFF = -1, 581 PERF_EVENT_STATE_INACTIVE = 0, 582 PERF_EVENT_STATE_ACTIVE = 1, 583 }; 584 585 struct file; 586 587 struct perf_mmap_data { 588 atomic_t refcount; 589 struct rcu_head rcu_head; 590 #ifdef CONFIG_PERF_USE_VMALLOC 591 struct work_struct work; 592 int page_order; /* allocation order */ 593 #endif 594 int nr_pages; /* nr of data pages */ 595 int writable; /* are we writable */ 596 597 atomic_t poll; /* POLL_ for wakeups */ 598 599 local_t head; /* write position */ 600 local_t nest; /* nested writers */ 601 local_t events; /* event limit */ 602 local_t wakeup; /* wakeup stamp */ 603 local_t lost; /* nr records lost */ 604 605 long watermark; /* wakeup watermark */ 606 607 struct perf_event_mmap_page *user_page; 608 void *data_pages[0]; 609 }; 610 611 struct perf_pending_entry { 612 struct perf_pending_entry *next; 613 void (*func)(struct perf_pending_entry *); 614 }; 615 616 struct perf_sample_data; 617 618 typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 619 struct perf_sample_data *, 620 struct pt_regs *regs); 621 622 enum perf_group_flag { 623 PERF_GROUP_SOFTWARE = 0x1, 624 }; 625 626 #define SWEVENT_HLIST_BITS 8 627 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 628 629 struct swevent_hlist { 630 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 631 struct rcu_head rcu_head; 632 }; 633 634 #define PERF_ATTACH_CONTEXT 0x01 635 #define PERF_ATTACH_GROUP 0x02 636 637 /** 638 * struct perf_event - performance event kernel representation: 639 */ 640 struct perf_event { 641 #ifdef CONFIG_PERF_EVENTS 642 struct list_head group_entry; 643 struct list_head event_entry; 644 struct list_head sibling_list; 645 struct hlist_node hlist_entry; 646 int nr_siblings; 647 int group_flags; 648 struct perf_event *group_leader; 649 const struct pmu *pmu; 650 651 enum perf_event_active_state state; 652 unsigned int attach_state; 653 atomic64_t count; 654 655 /* 656 * These are the total time in nanoseconds that the event 657 * has been enabled (i.e. eligible to run, and the task has 658 * been scheduled in, if this is a per-task event) 659 * and running (scheduled onto the CPU), respectively. 660 * 661 * They are computed from tstamp_enabled, tstamp_running and 662 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 663 */ 664 u64 total_time_enabled; 665 u64 total_time_running; 666 667 /* 668 * These are timestamps used for computing total_time_enabled 669 * and total_time_running when the event is in INACTIVE or 670 * ACTIVE state, measured in nanoseconds from an arbitrary point 671 * in time. 672 * tstamp_enabled: the notional time when the event was enabled 673 * tstamp_running: the notional time when the event was scheduled on 674 * tstamp_stopped: in INACTIVE state, the notional time when the 675 * event was scheduled off. 676 */ 677 u64 tstamp_enabled; 678 u64 tstamp_running; 679 u64 tstamp_stopped; 680 681 struct perf_event_attr attr; 682 struct hw_perf_event hw; 683 684 struct perf_event_context *ctx; 685 struct file *filp; 686 687 /* 688 * These accumulate total time (in nanoseconds) that children 689 * events have been enabled and running, respectively. 690 */ 691 atomic64_t child_total_time_enabled; 692 atomic64_t child_total_time_running; 693 694 /* 695 * Protect attach/detach and child_list: 696 */ 697 struct mutex child_mutex; 698 struct list_head child_list; 699 struct perf_event *parent; 700 701 int oncpu; 702 int cpu; 703 704 struct list_head owner_entry; 705 struct task_struct *owner; 706 707 /* mmap bits */ 708 struct mutex mmap_mutex; 709 atomic_t mmap_count; 710 int mmap_locked; 711 struct user_struct *mmap_user; 712 struct perf_mmap_data *data; 713 714 /* poll related */ 715 wait_queue_head_t waitq; 716 struct fasync_struct *fasync; 717 718 /* delayed work for NMIs and such */ 719 int pending_wakeup; 720 int pending_kill; 721 int pending_disable; 722 struct perf_pending_entry pending; 723 724 atomic_t event_limit; 725 726 void (*destroy)(struct perf_event *); 727 struct rcu_head rcu_head; 728 729 struct pid_namespace *ns; 730 u64 id; 731 732 perf_overflow_handler_t overflow_handler; 733 734 #ifdef CONFIG_EVENT_TRACING 735 struct ftrace_event_call *tp_event; 736 struct event_filter *filter; 737 #endif 738 739 #endif /* CONFIG_PERF_EVENTS */ 740 }; 741 742 /** 743 * struct perf_event_context - event context structure 744 * 745 * Used as a container for task events and CPU events as well: 746 */ 747 struct perf_event_context { 748 /* 749 * Protect the states of the events in the list, 750 * nr_active, and the list: 751 */ 752 raw_spinlock_t lock; 753 /* 754 * Protect the list of events. Locking either mutex or lock 755 * is sufficient to ensure the list doesn't change; to change 756 * the list you need to lock both the mutex and the spinlock. 757 */ 758 struct mutex mutex; 759 760 struct list_head pinned_groups; 761 struct list_head flexible_groups; 762 struct list_head event_list; 763 int nr_events; 764 int nr_active; 765 int is_active; 766 int nr_stat; 767 atomic_t refcount; 768 struct task_struct *task; 769 770 /* 771 * Context clock, runs when context enabled. 772 */ 773 u64 time; 774 u64 timestamp; 775 776 /* 777 * These fields let us detect when two contexts have both 778 * been cloned (inherited) from a common ancestor. 779 */ 780 struct perf_event_context *parent_ctx; 781 u64 parent_gen; 782 u64 generation; 783 int pin_count; 784 struct rcu_head rcu_head; 785 }; 786 787 /** 788 * struct perf_event_cpu_context - per cpu event context structure 789 */ 790 struct perf_cpu_context { 791 struct perf_event_context ctx; 792 struct perf_event_context *task_ctx; 793 int active_oncpu; 794 int max_pertask; 795 int exclusive; 796 struct swevent_hlist *swevent_hlist; 797 struct mutex hlist_mutex; 798 int hlist_refcount; 799 800 /* 801 * Recursion avoidance: 802 * 803 * task, softirq, irq, nmi context 804 */ 805 int recursion[4]; 806 }; 807 808 struct perf_output_handle { 809 struct perf_event *event; 810 struct perf_mmap_data *data; 811 unsigned long wakeup; 812 unsigned long size; 813 void *addr; 814 int page; 815 int nmi; 816 int sample; 817 }; 818 819 #ifdef CONFIG_PERF_EVENTS 820 821 /* 822 * Set by architecture code: 823 */ 824 extern int perf_max_events; 825 826 extern const struct pmu *hw_perf_event_init(struct perf_event *event); 827 828 extern void perf_event_task_sched_in(struct task_struct *task); 829 extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next); 830 extern void perf_event_task_tick(struct task_struct *task); 831 extern int perf_event_init_task(struct task_struct *child); 832 extern void perf_event_exit_task(struct task_struct *child); 833 extern void perf_event_free_task(struct task_struct *task); 834 extern void set_perf_event_pending(void); 835 extern void perf_event_do_pending(void); 836 extern void perf_event_print_debug(void); 837 extern void __perf_disable(void); 838 extern bool __perf_enable(void); 839 extern void perf_disable(void); 840 extern void perf_enable(void); 841 extern int perf_event_task_disable(void); 842 extern int perf_event_task_enable(void); 843 extern void perf_event_update_userpage(struct perf_event *event); 844 extern int perf_event_release_kernel(struct perf_event *event); 845 extern struct perf_event * 846 perf_event_create_kernel_counter(struct perf_event_attr *attr, 847 int cpu, 848 pid_t pid, 849 perf_overflow_handler_t callback); 850 extern u64 perf_event_read_value(struct perf_event *event, 851 u64 *enabled, u64 *running); 852 853 struct perf_sample_data { 854 u64 type; 855 856 u64 ip; 857 struct { 858 u32 pid; 859 u32 tid; 860 } tid_entry; 861 u64 time; 862 u64 addr; 863 u64 id; 864 u64 stream_id; 865 struct { 866 u32 cpu; 867 u32 reserved; 868 } cpu_entry; 869 u64 period; 870 struct perf_callchain_entry *callchain; 871 struct perf_raw_record *raw; 872 }; 873 874 static inline 875 void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 876 { 877 data->addr = addr; 878 data->raw = NULL; 879 } 880 881 extern void perf_output_sample(struct perf_output_handle *handle, 882 struct perf_event_header *header, 883 struct perf_sample_data *data, 884 struct perf_event *event); 885 extern void perf_prepare_sample(struct perf_event_header *header, 886 struct perf_sample_data *data, 887 struct perf_event *event, 888 struct pt_regs *regs); 889 890 extern int perf_event_overflow(struct perf_event *event, int nmi, 891 struct perf_sample_data *data, 892 struct pt_regs *regs); 893 894 /* 895 * Return 1 for a software event, 0 for a hardware event 896 */ 897 static inline int is_software_event(struct perf_event *event) 898 { 899 switch (event->attr.type) { 900 case PERF_TYPE_SOFTWARE: 901 case PERF_TYPE_TRACEPOINT: 902 /* for now the breakpoint stuff also works as software event */ 903 case PERF_TYPE_BREAKPOINT: 904 return 1; 905 } 906 return 0; 907 } 908 909 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 910 911 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 912 913 extern void 914 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip); 915 916 /* 917 * Take a snapshot of the regs. Skip ip and frame pointer to 918 * the nth caller. We only need a few of the regs: 919 * - ip for PERF_SAMPLE_IP 920 * - cs for user_mode() tests 921 * - bp for callchains 922 * - eflags, for future purposes, just in case 923 */ 924 static inline void perf_fetch_caller_regs(struct pt_regs *regs, int skip) 925 { 926 unsigned long ip; 927 928 memset(regs, 0, sizeof(*regs)); 929 930 switch (skip) { 931 case 1 : 932 ip = CALLER_ADDR0; 933 break; 934 case 2 : 935 ip = CALLER_ADDR1; 936 break; 937 case 3 : 938 ip = CALLER_ADDR2; 939 break; 940 case 4: 941 ip = CALLER_ADDR3; 942 break; 943 /* No need to support further for now */ 944 default: 945 ip = 0; 946 } 947 948 return perf_arch_fetch_caller_regs(regs, ip, skip); 949 } 950 951 static inline void 952 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 953 { 954 if (atomic_read(&perf_swevent_enabled[event_id])) { 955 struct pt_regs hot_regs; 956 957 if (!regs) { 958 perf_fetch_caller_regs(&hot_regs, 1); 959 regs = &hot_regs; 960 } 961 __perf_sw_event(event_id, nr, nmi, regs, addr); 962 } 963 } 964 965 extern void __perf_event_mmap(struct vm_area_struct *vma); 966 967 static inline void perf_event_mmap(struct vm_area_struct *vma) 968 { 969 if (vma->vm_flags & VM_EXEC) 970 __perf_event_mmap(vma); 971 } 972 973 extern struct perf_guest_info_callbacks *perf_guest_cbs; 974 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 975 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 976 977 extern void perf_event_comm(struct task_struct *tsk); 978 extern void perf_event_fork(struct task_struct *tsk); 979 980 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs); 981 982 extern int sysctl_perf_event_paranoid; 983 extern int sysctl_perf_event_mlock; 984 extern int sysctl_perf_event_sample_rate; 985 986 static inline bool perf_paranoid_tracepoint_raw(void) 987 { 988 return sysctl_perf_event_paranoid > -1; 989 } 990 991 static inline bool perf_paranoid_cpu(void) 992 { 993 return sysctl_perf_event_paranoid > 0; 994 } 995 996 static inline bool perf_paranoid_kernel(void) 997 { 998 return sysctl_perf_event_paranoid > 1; 999 } 1000 1001 extern void perf_event_init(void); 1002 extern void perf_tp_event(u64 addr, u64 count, void *record, 1003 int entry_size, struct pt_regs *regs, 1004 struct hlist_head *head); 1005 extern void perf_bp_event(struct perf_event *event, void *data); 1006 1007 #ifndef perf_misc_flags 1008 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 1009 PERF_RECORD_MISC_KERNEL) 1010 #define perf_instruction_pointer(regs) instruction_pointer(regs) 1011 #endif 1012 1013 extern int perf_output_begin(struct perf_output_handle *handle, 1014 struct perf_event *event, unsigned int size, 1015 int nmi, int sample); 1016 extern void perf_output_end(struct perf_output_handle *handle); 1017 extern void perf_output_copy(struct perf_output_handle *handle, 1018 const void *buf, unsigned int len); 1019 extern int perf_swevent_get_recursion_context(void); 1020 extern void perf_swevent_put_recursion_context(int rctx); 1021 extern void perf_event_enable(struct perf_event *event); 1022 extern void perf_event_disable(struct perf_event *event); 1023 #else 1024 static inline void 1025 perf_event_task_sched_in(struct task_struct *task) { } 1026 static inline void 1027 perf_event_task_sched_out(struct task_struct *task, 1028 struct task_struct *next) { } 1029 static inline void 1030 perf_event_task_tick(struct task_struct *task) { } 1031 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1032 static inline void perf_event_exit_task(struct task_struct *child) { } 1033 static inline void perf_event_free_task(struct task_struct *task) { } 1034 static inline void perf_event_do_pending(void) { } 1035 static inline void perf_event_print_debug(void) { } 1036 static inline void perf_disable(void) { } 1037 static inline void perf_enable(void) { } 1038 static inline int perf_event_task_disable(void) { return -EINVAL; } 1039 static inline int perf_event_task_enable(void) { return -EINVAL; } 1040 1041 static inline void 1042 perf_sw_event(u32 event_id, u64 nr, int nmi, 1043 struct pt_regs *regs, u64 addr) { } 1044 static inline void 1045 perf_bp_event(struct perf_event *event, void *data) { } 1046 1047 static inline int perf_register_guest_info_callbacks 1048 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1049 static inline int perf_unregister_guest_info_callbacks 1050 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1051 1052 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1053 static inline void perf_event_comm(struct task_struct *tsk) { } 1054 static inline void perf_event_fork(struct task_struct *tsk) { } 1055 static inline void perf_event_init(void) { } 1056 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1057 static inline void perf_swevent_put_recursion_context(int rctx) { } 1058 static inline void perf_event_enable(struct perf_event *event) { } 1059 static inline void perf_event_disable(struct perf_event *event) { } 1060 #endif 1061 1062 #define perf_output_put(handle, x) \ 1063 perf_output_copy((handle), &(x), sizeof(x)) 1064 1065 /* 1066 * This has to have a higher priority than migration_notifier in sched.c. 1067 */ 1068 #define perf_cpu_notifier(fn) \ 1069 do { \ 1070 static struct notifier_block fn##_nb __cpuinitdata = \ 1071 { .notifier_call = fn, .priority = 20 }; \ 1072 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1073 (void *)(unsigned long)smp_processor_id()); \ 1074 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1075 (void *)(unsigned long)smp_processor_id()); \ 1076 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1077 (void *)(unsigned long)smp_processor_id()); \ 1078 register_cpu_notifier(&fn##_nb); \ 1079 } while (0) 1080 1081 #endif /* __KERNEL__ */ 1082 #endif /* _LINUX_PERF_EVENT_H */ 1083