Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="content-type" content="text/html; charset=utf-8">
      6   <title>The LLVM Target-Independent Code Generator</title>
      7   <link rel="stylesheet" href="llvm.css" type="text/css">
      8 
      9   <style type="text/css">
     10     .unknown { background-color: #C0C0C0; text-align: center; }
     11     .unknown:before { content: "?" }
     12     .no { background-color: #C11B17 }
     13     .no:before { content: "N" }
     14     .partial { background-color: #F88017 }
     15     .yes { background-color: #0F0; }
     16     .yes:before { content: "Y" }
     17   </style>
     18 
     19 </head>
     20 <body>
     21 
     22 <h1>
     23   The LLVM Target-Independent Code Generator
     24 </h1>
     25 
     26 <ol>
     27   <li><a href="#introduction">Introduction</a>
     28     <ul>
     29       <li><a href="#required">Required components in the code generator</a></li>
     30       <li><a href="#high-level-design">The high-level design of the code
     31           generator</a></li>
     32       <li><a href="#tablegen">Using TableGen for target description</a></li>
     33     </ul>
     34   </li>
     35   <li><a href="#targetdesc">Target description classes</a>
     36     <ul>
     37       <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
     38       <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
     39       <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
     40       <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
     41       <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
     42       <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
     43       <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
     44       <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
     45     </ul>
     46   </li>
     47   <li><a href="#codegendesc">The "Machine" Code Generator classes</a>
     48     <ul>
     49     <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
     50     <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
     51                                      class</a></li>
     52     <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
     53     </ul>
     54   </li>
     55   <li><a href="#mc">The "MC" Layer</a>
     56     <ul>
     57     <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li>
     58     <li><a href="#mccontext">The <tt>MCContext</tt> class</a>
     59     <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li>
     60     <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li>
     61     <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li>
     62     </ul>
     63   </li>
     64   <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
     65     <ul>
     66     <li><a href="#instselect">Instruction Selection</a>
     67       <ul>
     68       <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
     69       <li><a href="#selectiondag_process">SelectionDAG Code Generation
     70                                           Process</a></li>
     71       <li><a href="#selectiondag_build">Initial SelectionDAG
     72                                         Construction</a></li>
     73       <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
     74       <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
     75       <li><a href="#selectiondag_optimize">SelectionDAG Optimization
     76                                            Phase: the DAG Combiner</a></li>
     77       <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
     78       <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
     79                                         Phase</a></li>
     80       <li><a href="#selectiondag_future">Future directions for the
     81                                          SelectionDAG</a></li>
     82       </ul></li>
     83      <li><a href="#liveintervals">Live Intervals</a>
     84        <ul>
     85        <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
     86        <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
     87        </ul></li>
     88     <li><a href="#regalloc">Register Allocation</a>
     89       <ul>
     90       <li><a href="#regAlloc_represent">How registers are represented in
     91                                         LLVM</a></li>
     92       <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
     93                                     registers</a></li>
     94       <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
     95       <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
     96       <li><a href="#regAlloc_fold">Instruction folding</a></li>
     97       <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
     98       </ul></li>
     99     <li><a href="#codeemit">Code Emission</a></li>
    100     </ul>
    101   </li>
    102   <li><a href="#nativeassembler">Implementing a Native Assembler</a></li>
    103   
    104   <li><a href="#targetimpls">Target-specific Implementation Notes</a>
    105     <ul>
    106     <li><a href="#targetfeatures">Target Feature Matrix</a></li>
    107     <li><a href="#tailcallopt">Tail call optimization</a></li>
    108     <li><a href="#sibcallopt">Sibling call optimization</a></li>
    109     <li><a href="#x86">The X86 backend</a></li>
    110     <li><a href="#ppc">The PowerPC backend</a>
    111       <ul>
    112       <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
    113       <li><a href="#ppc_frame">Frame Layout</a></li>
    114       <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
    115       <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
    116       </ul></li>
    117     </ul></li>
    118 
    119 </ol>
    120 
    121 <div class="doc_author">
    122   <p>Written by the LLVM Team.</p>
    123 </div>
    124 
    125 <div class="doc_warning">
    126   <p>Warning: This is a work in progress.</p>
    127 </div>
    128 
    129 <!-- *********************************************************************** -->
    130 <h2>
    131   <a name="introduction">Introduction</a>
    132 </h2>
    133 <!-- *********************************************************************** -->
    134 
    135 <div>
    136 
    137 <p>The LLVM target-independent code generator is a framework that provides a
    138    suite of reusable components for translating the LLVM internal representation
    139    to the machine code for a specified target&mdash;either in assembly form
    140    (suitable for a static compiler) or in binary machine code format (usable for
    141    a JIT compiler). The LLVM target-independent code generator consists of six
    142    main components:</p>
    143 
    144 <ol>
    145   <li><a href="#targetdesc">Abstract target description</a> interfaces which
    146       capture important properties about various aspects of the machine,
    147       independently of how they will be used.  These interfaces are defined in
    148       <tt>include/llvm/Target/</tt>.</li>
    149 
    150   <li>Classes used to represent the <a href="#codegendesc">code being
    151       generated</a> for a target.  These classes are intended to be abstract
    152       enough to represent the machine code for <i>any</i> target machine.  These
    153       classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level,
    154       concepts like "constant pool entries" and "jump tables" are explicitly
    155       exposed.</li>
    156 
    157   <li>Classes and algorithms used to represent code as the object file level,
    158       the <a href="#mc">MC Layer</a>.  These classes represent assembly level
    159       constructs like labels, sections, and instructions.  At this level,
    160       concepts like "constant pool entries" and "jump tables" don't exist.</li>
    161 
    162   <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
    163       various phases of native code generation (register allocation, scheduling,
    164       stack frame representation, etc).  This code lives
    165       in <tt>lib/CodeGen/</tt>.</li>
    166 
    167   <li><a href="#targetimpls">Implementations of the abstract target description
    168       interfaces</a> for particular targets.  These machine descriptions make
    169       use of the components provided by LLVM, and can optionally provide custom
    170       target-specific passes, to build complete code generators for a specific
    171       target.  Target descriptions live in <tt>lib/Target/</tt>.</li>
    172 
    173   <li><a href="#jit">The target-independent JIT components</a>.  The LLVM JIT is
    174       completely target independent (it uses the <tt>TargetJITInfo</tt>
    175       structure to interface for target-specific issues.  The code for the
    176       target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
    177 </ol>
    178 
    179 <p>Depending on which part of the code generator you are interested in working
    180    on, different pieces of this will be useful to you.  In any case, you should
    181    be familiar with the <a href="#targetdesc">target description</a>
    182    and <a href="#codegendesc">machine code representation</a> classes.  If you
    183    want to add a backend for a new target, you will need
    184    to <a href="#targetimpls">implement the target description</a> classes for
    185    your new target and understand the <a href="LangRef.html">LLVM code
    186    representation</a>.  If you are interested in implementing a
    187    new <a href="#codegenalgs">code generation algorithm</a>, it should only
    188    depend on the target-description and machine code representation classes,
    189    ensuring that it is portable.</p>
    190 
    191 <!-- ======================================================================= -->
    192 <h3>
    193  <a name="required">Required components in the code generator</a>
    194 </h3>
    195 
    196 <div>
    197 
    198 <p>The two pieces of the LLVM code generator are the high-level interface to the
    199    code generator and the set of reusable components that can be used to build
    200    target-specific backends.  The two most important interfaces
    201    (<a href="#targetmachine"><tt>TargetMachine</tt></a>
    202    and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
    203    required to be defined for a backend to fit into the LLVM system, but the
    204    others must be defined if the reusable code generator components are going to
    205    be used.</p>
    206 
    207 <p>This design has two important implications.  The first is that LLVM can
    208    support completely non-traditional code generation targets.  For example, the
    209    C backend does not require register allocation, instruction selection, or any
    210    of the other standard components provided by the system.  As such, it only
    211    implements these two interfaces, and does its own thing.  Another example of
    212    a code generator like this is a (purely hypothetical) backend that converts
    213    LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
    214 
    215 <p>This design also implies that it is possible to design and implement
    216    radically different code generators in the LLVM system that do not make use
    217    of any of the built-in components.  Doing so is not recommended at all, but
    218    could be required for radically different targets that do not fit into the
    219    LLVM machine description model: FPGAs for example.</p>
    220 
    221 </div>
    222 
    223 <!-- ======================================================================= -->
    224 <h3>
    225  <a name="high-level-design">The high-level design of the code generator</a>
    226 </h3>
    227 
    228 <div>
    229 
    230 <p>The LLVM target-independent code generator is designed to support efficient
    231    and quality code generation for standard register-based microprocessors.
    232    Code generation in this model is divided into the following stages:</p>
    233 
    234 <ol>
    235   <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
    236       determines an efficient way to express the input LLVM code in the target
    237       instruction set.  This stage produces the initial code for the program in
    238       the target instruction set, then makes use of virtual registers in SSA
    239       form and physical registers that represent any required register
    240       assignments due to target constraints or calling conventions.  This step
    241       turns the LLVM code into a DAG of target instructions.</li>
    242 
    243   <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
    244       This phase takes the DAG of target instructions produced by the
    245       instruction selection phase, determines an ordering of the instructions,
    246       then emits the instructions
    247       as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
    248       Note that we describe this in the <a href="#instselect">instruction
    249       selection section</a> because it operates on
    250       a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
    251 
    252   <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
    253       This optional stage consists of a series of machine-code optimizations
    254       that operate on the SSA-form produced by the instruction selector.
    255       Optimizations like modulo-scheduling or peephole optimization work
    256       here.</li>
    257 
    258   <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
    259       is transformed from an infinite virtual register file in SSA form to the
    260       concrete register file used by the target.  This phase introduces spill
    261       code and eliminates all virtual register references from the program.</li>
    262 
    263   <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
    264       the machine code has been generated for the function and the amount of
    265       stack space required is known (used for LLVM alloca's and spill slots),
    266       the prolog and epilog code for the function can be inserted and "abstract
    267       stack location references" can be eliminated.  This stage is responsible
    268       for implementing optimizations like frame-pointer elimination and stack
    269       packing.</li>
    270 
    271   <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
    272       Optimizations that operate on "final" machine code can go here, such as
    273       spill code scheduling and peephole optimizations.</li>
    274 
    275   <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
    276       actually puts out the code for the current function, either in the target
    277       assembler format or in machine code.</li>
    278 </ol>
    279 
    280 <p>The code generator is based on the assumption that the instruction selector
    281    will use an optimal pattern matching selector to create high-quality
    282    sequences of native instructions.  Alternative code generator designs based
    283    on pattern expansion and aggressive iterative peephole optimization are much
    284    slower.  This design permits efficient compilation (important for JIT
    285    environments) and aggressive optimization (used when generating code offline)
    286    by allowing components of varying levels of sophistication to be used for any
    287    step of compilation.</p>
    288 
    289 <p>In addition to these stages, target implementations can insert arbitrary
    290    target-specific passes into the flow.  For example, the X86 target uses a
    291    special pass to handle the 80x87 floating point stack architecture.  Other
    292    targets with unusual requirements can be supported with custom passes as
    293    needed.</p>
    294 
    295 </div>
    296 
    297 <!-- ======================================================================= -->
    298 <h3>
    299  <a name="tablegen">Using TableGen for target description</a>
    300 </h3>
    301 
    302 <div>
    303 
    304 <p>The target description classes require a detailed description of the target
    305    architecture.  These target descriptions often have a large amount of common
    306    information (e.g., an <tt>add</tt> instruction is almost identical to a
    307    <tt>sub</tt> instruction).  In order to allow the maximum amount of
    308    commonality to be factored out, the LLVM code generator uses
    309    the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
    310    chunks of the target machine, which allows the use of domain-specific and
    311    target-specific abstractions to reduce the amount of repetition.</p>
    312 
    313 <p>As LLVM continues to be developed and refined, we plan to move more and more
    314    of the target description to the <tt>.td</tt> form.  Doing so gives us a
    315    number of advantages.  The most important is that it makes it easier to port
    316    LLVM because it reduces the amount of C++ code that has to be written, and
    317    the surface area of the code generator that needs to be understood before
    318    someone can get something working.  Second, it makes it easier to change
    319    things. In particular, if tables and other things are all emitted
    320    by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
    321    update all of the targets to a new interface.</p>
    322 
    323 </div>
    324 
    325 </div>
    326 
    327 <!-- *********************************************************************** -->
    328 <h2>
    329   <a name="targetdesc">Target description classes</a>
    330 </h2>
    331 <!-- *********************************************************************** -->
    332 
    333 <div>
    334 
    335 <p>The LLVM target description classes (located in the
    336    <tt>include/llvm/Target</tt> directory) provide an abstract description of
    337    the target machine independent of any particular client.  These classes are
    338    designed to capture the <i>abstract</i> properties of the target (such as the
    339    instructions and registers it has), and do not incorporate any particular
    340    pieces of code generation algorithms.</p>
    341 
    342 <p>All of the target description classes (except the
    343    <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
    344    subclassed by the concrete target implementation, and have virtual methods
    345    implemented.  To get to these implementations, the
    346    <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
    347    that should be implemented by the target.</p>
    348 
    349 <!-- ======================================================================= -->
    350 <h3>
    351   <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
    352 </h3>
    353 
    354 <div>
    355 
    356 <p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
    357    access the target-specific implementations of the various target description
    358    classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
    359    <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.).  This class is
    360    designed to be specialized by a concrete target implementation
    361    (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
    362    methods.  The only required target description class is
    363    the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
    364    generator components are to be used, the other interfaces should be
    365    implemented as well.</p>
    366 
    367 </div>
    368 
    369 <!-- ======================================================================= -->
    370 <h3>
    371   <a name="targetdata">The <tt>TargetData</tt> class</a>
    372 </h3>
    373 
    374 <div>
    375 
    376 <p>The <tt>TargetData</tt> class is the only required target description class,
    377    and it is the only class that is not extensible (you cannot derived a new
    378    class from it).  <tt>TargetData</tt> specifies information about how the
    379    target lays out memory for structures, the alignment requirements for various
    380    data types, the size of pointers in the target, and whether the target is
    381    little-endian or big-endian.</p>
    382 
    383 </div>
    384 
    385 <!-- ======================================================================= -->
    386 <h3>
    387   <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
    388 </h3>
    389 
    390 <div>
    391 
    392 <p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
    393    selectors primarily to describe how LLVM code should be lowered to
    394    SelectionDAG operations.  Among other things, this class indicates:</p>
    395 
    396 <ul>
    397   <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
    398 
    399   <li>which operations are natively supported by the target machine,</li>
    400 
    401   <li>the return type of <tt>setcc</tt> operations,</li>
    402 
    403   <li>the type to use for shift amounts, and</li>
    404 
    405   <li>various high-level characteristics, like whether it is profitable to turn
    406       division by a constant into a multiplication sequence</li>
    407 </ul>
    408 
    409 </div>
    410 
    411 <!-- ======================================================================= -->
    412 <h3>
    413   <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
    414 </h3>
    415 
    416 <div>
    417 
    418 <p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
    419    of the target and any interactions between the registers.</p>
    420 
    421 <p>Registers in the code generator are represented in the code generator by
    422    unsigned integers.  Physical registers (those that actually exist in the
    423    target description) are unique small numbers, and virtual registers are
    424    generally large.  Note that register #0 is reserved as a flag value.</p>
    425 
    426 <p>Each register in the processor description has an associated
    427    <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
    428    register (used for assembly output and debugging dumps) and a set of aliases
    429    (used to indicate whether one register overlaps with another).</p>
    430 
    431 <p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
    432    class exposes a set of processor specific register classes (instances of the
    433    <tt>TargetRegisterClass</tt> class).  Each register class contains sets of
    434    registers that have the same properties (for example, they are all 32-bit
    435    integer registers).  Each SSA virtual register created by the instruction
    436    selector has an associated register class.  When the register allocator runs,
    437    it replaces virtual registers with a physical register in the set.</p>
    438 
    439 <p>The target-specific implementations of these classes is auto-generated from
    440    a <a href="TableGenFundamentals.html">TableGen</a> description of the
    441    register file.</p>
    442 
    443 </div>
    444 
    445 <!-- ======================================================================= -->
    446 <h3>
    447   <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
    448 </h3>
    449 
    450 <div>
    451 
    452 <p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
    453    instructions supported by the target. It is essentially an array of
    454    <tt>TargetInstrDescriptor</tt> objects, each of which describes one
    455    instruction the target supports. Descriptors define things like the mnemonic
    456    for the opcode, the number of operands, the list of implicit register uses
    457    and defs, whether the instruction has certain target-independent properties
    458    (accesses memory, is commutable, etc), and holds any target-specific
    459    flags.</p>
    460 
    461 </div>
    462 
    463 <!-- ======================================================================= -->
    464 <h3>
    465   <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
    466 </h3>
    467 
    468 <div>
    469 
    470 <p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
    471    stack frame layout of the target. It holds the direction of stack growth, the
    472    known stack alignment on entry to each function, and the offset to the local
    473    area.  The offset to the local area is the offset from the stack pointer on
    474    function entry to the first location where function data (local variables,
    475    spill locations) can be stored.</p>
    476 
    477 </div>
    478 
    479 <!-- ======================================================================= -->
    480 <h3>
    481   <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
    482 </h3>
    483 
    484 <div>
    485 
    486 <p>The <tt>TargetSubtarget</tt> class is used to provide information about the
    487    specific chip set being targeted.  A sub-target informs code generation of
    488    which instructions are supported, instruction latencies and instruction
    489    execution itinerary; i.e., which processing units are used, in what order,
    490    and for how long.</p>
    491 
    492 </div>
    493 
    494 
    495 <!-- ======================================================================= -->
    496 <h3>
    497   <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
    498 </h3>
    499 
    500 <div>
    501 
    502 <p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
    503    Just-In-Time code generator to perform target-specific activities, such as
    504    emitting stubs.  If a <tt>TargetMachine</tt> supports JIT code generation, it
    505    should provide one of these objects through the <tt>getJITInfo</tt>
    506    method.</p>
    507 
    508 </div>
    509 
    510 </div>
    511 
    512 <!-- *********************************************************************** -->
    513 <h2>
    514   <a name="codegendesc">Machine code description classes</a>
    515 </h2>
    516 <!-- *********************************************************************** -->
    517 
    518 <div>
    519 
    520 <p>At the high-level, LLVM code is translated to a machine specific
    521    representation formed out of
    522    <a href="#machinefunction"><tt>MachineFunction</tt></a>,
    523    <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
    524    and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
    525    in <tt>include/llvm/CodeGen</tt>).  This representation is completely target
    526    agnostic, representing instructions in their most abstract form: an opcode
    527    and a series of operands.  This representation is designed to support both an
    528    SSA representation for machine code, as well as a register allocated, non-SSA
    529    form.</p>
    530 
    531 <!-- ======================================================================= -->
    532 <h3>
    533   <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
    534 </h3>
    535 
    536 <div>
    537 
    538 <p>Target machine instructions are represented as instances of the
    539    <tt>MachineInstr</tt> class.  This class is an extremely abstract way of
    540    representing machine instructions.  In particular, it only keeps track of an
    541    opcode number and a set of operands.</p>
    542 
    543 <p>The opcode number is a simple unsigned integer that only has meaning to a
    544    specific backend.  All of the instructions for a target should be defined in
    545    the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
    546    auto-generated from this description.  The <tt>MachineInstr</tt> class does
    547    not have any information about how to interpret the instruction (i.e., what
    548    the semantics of the instruction are); for that you must refer to the
    549    <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p> 
    550 
    551 <p>The operands of a machine instruction can be of several different types: a
    552    register reference, a constant integer, a basic block reference, etc.  In
    553    addition, a machine operand should be marked as a def or a use of the value
    554    (though only registers are allowed to be defs).</p>
    555 
    556 <p>By convention, the LLVM code generator orders instruction operands so that
    557    all register definitions come before the register uses, even on architectures
    558    that are normally printed in other orders.  For example, the SPARC add
    559    instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
    560    and stores the result into the "%i3" register.  In the LLVM code generator,
    561    the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
    562    destination first.</p>
    563 
    564 <p>Keeping destination (definition) operands at the beginning of the operand
    565    list has several advantages.  In particular, the debugging printer will print
    566    the instruction like this:</p>
    567 
    568 <div class="doc_code">
    569 <pre>
    570 %r3 = add %i1, %i2
    571 </pre>
    572 </div>
    573 
    574 <p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
    575    instructions</a> whose only def is the first operand.</p>
    576 
    577 <!-- _______________________________________________________________________ -->
    578 <h4>
    579   <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
    580 </h4>
    581 
    582 <div>
    583 
    584 <p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
    585    located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file.  The
    586    <tt>BuildMI</tt> functions make it easy to build arbitrary machine
    587    instructions.  Usage of the <tt>BuildMI</tt> functions look like this:</p>
    588 
    589 <div class="doc_code">
    590 <pre>
    591 // Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
    592 // instruction.  The '1' specifies how many operands will be added.
    593 MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
    594 
    595 // Create the same instr, but insert it at the end of a basic block.
    596 MachineBasicBlock &amp;MBB = ...
    597 BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
    598 
    599 // Create the same instr, but insert it before a specified iterator point.
    600 MachineBasicBlock::iterator MBBI = ...
    601 BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
    602 
    603 // Create a 'cmp Reg, 0' instruction, no destination reg.
    604 MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
    605 // Create an 'sahf' instruction which takes no operands and stores nothing.
    606 MI = BuildMI(X86::SAHF, 0);
    607 
    608 // Create a self looping branch instruction.
    609 BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
    610 </pre>
    611 </div>
    612 
    613 <p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
    614    have to specify the number of operands that the machine instruction will
    615    take.  This allows for efficient memory allocation.  You also need to specify
    616    if operands default to be uses of values, not definitions.  If you need to
    617    add a definition operand (other than the optional destination register), you
    618    must explicitly mark it as such:</p>
    619 
    620 <div class="doc_code">
    621 <pre>
    622 MI.addReg(Reg, RegState::Define);
    623 </pre>
    624 </div>
    625 
    626 </div>
    627 
    628 <!-- _______________________________________________________________________ -->
    629 <h4>
    630   <a name="fixedregs">Fixed (preassigned) registers</a>
    631 </h4>
    632 
    633 <div>
    634 
    635 <p>One important issue that the code generator needs to be aware of is the
    636    presence of fixed registers.  In particular, there are often places in the
    637    instruction stream where the register allocator <em>must</em> arrange for a
    638    particular value to be in a particular register.  This can occur due to
    639    limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
    640    with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
    641    calling conventions.  In any case, the instruction selector should emit code
    642    that copies a virtual register into or out of a physical register when
    643    needed.</p>
    644 
    645 <p>For example, consider this simple LLVM example:</p>
    646 
    647 <div class="doc_code">
    648 <pre>
    649 define i32 @test(i32 %X, i32 %Y) {
    650   %Z = udiv i32 %X, %Y
    651   ret i32 %Z
    652 }
    653 </pre>
    654 </div>
    655 
    656 <p>The X86 instruction selector produces this machine code for the <tt>div</tt>
    657    and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
    658    get this):</p>
    659 
    660 <div class="doc_code">
    661 <pre>
    662 ;; Start of div
    663 %EAX = mov %reg1024           ;; Copy X (in reg1024) into EAX
    664 %reg1027 = sar %reg1024, 31
    665 %EDX = mov %reg1027           ;; Sign extend X into EDX
    666 idiv %reg1025                 ;; Divide by Y (in reg1025)
    667 %reg1026 = mov %EAX           ;; Read the result (Z) out of EAX
    668 
    669 ;; Start of ret
    670 %EAX = mov %reg1026           ;; 32-bit return value goes in EAX
    671 ret
    672 </pre>
    673 </div>
    674 
    675 <p>By the end of code generation, the register allocator has coalesced the
    676    registers and deleted the resultant identity moves producing the following
    677    code:</p>
    678 
    679 <div class="doc_code">
    680 <pre>
    681 ;; X is in EAX, Y is in ECX
    682 mov %EAX, %EDX
    683 sar %EDX, 31
    684 idiv %ECX
    685 ret 
    686 </pre>
    687 </div>
    688 
    689 <p>This approach is extremely general (if it can handle the X86 architecture, it
    690    can handle anything!) and allows all of the target specific knowledge about
    691    the instruction stream to be isolated in the instruction selector.  Note that
    692    physical registers should have a short lifetime for good code generation, and
    693    all physical registers are assumed dead on entry to and exit from basic
    694    blocks (before register allocation).  Thus, if you need a value to be live
    695    across basic block boundaries, it <em>must</em> live in a virtual
    696    register.</p>
    697 
    698 </div>
    699 
    700 <!-- _______________________________________________________________________ -->
    701 <h4>
    702   <a name="ssa">Machine code in SSA form</a>
    703 </h4>
    704 
    705 <div>
    706 
    707 <p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
    708    maintained in SSA-form until register allocation happens.  For the most part,
    709    this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
    710    become machine code PHI nodes, and virtual registers are only allowed to have
    711    a single definition.</p>
    712 
    713 <p>After register allocation, machine code is no longer in SSA-form because
    714    there are no virtual registers left in the code.</p>
    715 
    716 </div>
    717 
    718 </div>
    719 
    720 <!-- ======================================================================= -->
    721 <h3>
    722   <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
    723 </h3>
    724 
    725 <div>
    726 
    727 <p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
    728    (<tt><a href="#machineinstr">MachineInstr</a></tt> instances).  It roughly
    729    corresponds to the LLVM code input to the instruction selector, but there can
    730    be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
    731    machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
    732    "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
    733    comes from.</p>
    734 
    735 </div>
    736 
    737 <!-- ======================================================================= -->
    738 <h3>
    739   <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
    740 </h3>
    741 
    742 <div>
    743 
    744 <p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
    745    (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances).  It
    746    corresponds one-to-one with the LLVM function input to the instruction
    747    selector.  In addition to a list of basic blocks,
    748    the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
    749    a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
    750    <tt>MachineRegisterInfo</tt>.  See
    751    <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
    752 
    753 </div>
    754 
    755 </div>
    756 
    757 <!-- *********************************************************************** -->
    758 <h2>
    759   <a name="mc">The "MC" Layer</a>
    760 </h2>
    761 <!-- *********************************************************************** -->
    762 
    763 <div>
    764 
    765 <p>
    766 The MC Layer is used to represent and process code at the raw machine code
    767 level, devoid of "high level" information like "constant pools", "jump tables",
    768 "global variables" or anything like that.  At this level, LLVM handles things
    769 like label names, machine instructions, and sections in the object file.  The
    770 code in this layer is used for a number of important purposes: the tail end of
    771 the code generator uses it to write a .s or .o file, and it is also used by the
    772 llvm-mc tool to implement standalone machine code assemblers and disassemblers.
    773 </p>
    774 
    775 <p>
    776 This section describes some of the important classes.  There are also a number
    777 of important subsystems that interact at this layer, they are described later
    778 in this manual.
    779 </p>
    780 
    781 <!-- ======================================================================= -->
    782 <h3>
    783   <a name="mcstreamer">The <tt>MCStreamer</tt> API</a>
    784 </h3>
    785 
    786 <div>
    787 
    788 <p>
    789 MCStreamer is best thought of as an assembler API.  It is an abstract API which
    790 is <em>implemented</em> in different ways (e.g. to output a .s file, output an
    791 ELF .o file, etc) but whose API correspond directly to what you see in a .s
    792 file.  MCStreamer has one method per directive, such as EmitLabel,
    793 EmitSymbolAttribute, SwitchSection, EmitValue (for .byte, .word), etc, which
    794 directly correspond to assembly level directives.  It also has an
    795 EmitInstruction method, which is used to output an MCInst to the streamer.
    796 </p>
    797 
    798 <p>
    799 This API is most important for two clients: the llvm-mc stand-alone assembler is
    800 effectively a parser that parses a line, then invokes a method on MCStreamer. In
    801 the code generator, the <a href="#codeemit">Code Emission</a> phase of the code
    802 generator lowers higher level LLVM IR and Machine* constructs down to the MC
    803 layer, emitting directives through MCStreamer.</p>
    804 
    805 <p>
    806 On the implementation side of MCStreamer, there are two major implementations:
    807 one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
    808 file (MCObjectStreamer).  MCAsmStreamer is a straight-forward implementation
    809 that prints out a directive for each method (e.g. EmitValue -&gt; .byte), but
    810 MCObjectStreamer implements a full assembler.
    811 </p>
    812 
    813 </div>
    814 
    815 <!-- ======================================================================= -->
    816 <h3>
    817   <a name="mccontext">The <tt>MCContext</tt> class</a>
    818 </h3>
    819 
    820 <div>
    821 
    822 <p>
    823 The MCContext class is the owner of a variety of uniqued data structures at the
    824 MC layer, including symbols, sections, etc.  As such, this is the class that you
    825 interact with to create symbols and sections.  This class can not be subclassed.
    826 </p>
    827 
    828 </div>
    829 
    830 <!-- ======================================================================= -->
    831 <h3>
    832   <a name="mcsymbol">The <tt>MCSymbol</tt> class</a>
    833 </h3>
    834 
    835 <div>
    836 
    837 <p>
    838 The MCSymbol class represents a symbol (aka label) in the assembly file.  There
    839 are two interesting kinds of symbols: assembler temporary symbols, and normal
    840 symbols.  Assembler temporary symbols are used and processed by the assembler
    841 but are discarded when the object file is produced.  The distinction is usually
    842 represented by adding a prefix to the label, for example "L" labels are
    843 assembler temporary labels in MachO.
    844 </p>
    845 
    846 <p>MCSymbols are created by MCContext and uniqued there.  This means that
    847 MCSymbols can be compared for pointer equivalence to find out if they are the
    848 same symbol.  Note that pointer inequality does not guarantee the labels will
    849 end up at different addresses though.  It's perfectly legal to output something
    850 like this to the .s file:<p>
    851 
    852 <pre>
    853   foo:
    854   bar:
    855     .byte 4
    856 </pre>
    857 
    858 <p>In this case, both the foo and bar symbols will have the same address.</p>
    859 
    860 </div>
    861 
    862 <!-- ======================================================================= -->
    863 <h3>
    864   <a name="mcsection">The <tt>MCSection</tt> class</a>
    865 </h3>
    866 
    867 <div>
    868 
    869 <p>
    870 The MCSection class represents an object-file specific section. It is subclassed
    871 by object file specific implementations (e.g. <tt>MCSectionMachO</tt>, 
    872 <tt>MCSectionCOFF</tt>, <tt>MCSectionELF</tt>) and these are created and uniqued
    873 by MCContext.  The MCStreamer has a notion of the current section, which can be
    874 changed with the SwitchToSection method (which corresponds to a ".section"
    875 directive in a .s file).
    876 </p>
    877 
    878 </div>
    879 
    880 <!-- ======================================================================= -->
    881 <h3>
    882   <a name="mcinst">The <tt>MCInst</tt> class</a>
    883 </h3>
    884 
    885 <div>
    886 
    887 <p>
    888 The MCInst class is a target-independent representation of an instruction.  It
    889 is a simple class (much more so than <a href="#machineinstr">MachineInstr</a>)
    890 that holds a target-specific opcode and a vector of MCOperands.  MCOperand, in
    891 turn, is a simple discriminated union of three cases: 1) a simple immediate, 
    892 2) a target register ID, 3) a symbolic expression (e.g. "Lfoo-Lbar+42") as an
    893 MCExpr.
    894 </p>
    895 
    896 <p>MCInst is the common currency used to represent machine instructions at the
    897 MC layer.  It is the type used by the instruction encoder, the instruction
    898 printer, and the type generated by the assembly parser and disassembler.
    899 </p>
    900 
    901 </div>
    902 
    903 </div>
    904 
    905 <!-- *********************************************************************** -->
    906 <h2>
    907   <a name="codegenalgs">Target-independent code generation algorithms</a>
    908 </h2>
    909 <!-- *********************************************************************** -->
    910 
    911 <div>
    912 
    913 <p>This section documents the phases described in the
    914    <a href="#high-level-design">high-level design of the code generator</a>.
    915    It explains how they work and some of the rationale behind their design.</p>
    916 
    917 <!-- ======================================================================= -->
    918 <h3>
    919   <a name="instselect">Instruction Selection</a>
    920 </h3>
    921 
    922 <div>
    923 
    924 <p>Instruction Selection is the process of translating LLVM code presented to
    925    the code generator into target-specific machine instructions.  There are
    926    several well-known ways to do this in the literature.  LLVM uses a
    927    SelectionDAG based instruction selector.</p>
    928 
    929 <p>Portions of the DAG instruction selector are generated from the target
    930    description (<tt>*.td</tt>) files.  Our goal is for the entire instruction
    931    selector to be generated from these <tt>.td</tt> files, though currently
    932    there are still things that require custom C++ code.</p>
    933 
    934 <!-- _______________________________________________________________________ -->
    935 <h4>
    936   <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
    937 </h4>
    938 
    939 <div>
    940 
    941 <p>The SelectionDAG provides an abstraction for code representation in a way
    942    that is amenable to instruction selection using automatic techniques
    943    (e.g. dynamic-programming based optimal pattern matching selectors). It is
    944    also well-suited to other phases of code generation; in particular,
    945    instruction scheduling (SelectionDAG's are very close to scheduling DAGs
    946    post-selection).  Additionally, the SelectionDAG provides a host
    947    representation where a large variety of very-low-level (but
    948    target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
    949    performed; ones which require extensive information about the instructions
    950    efficiently supported by the target.</p>
    951 
    952 <p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
    953    <tt>SDNode</tt> class.  The primary payload of the <tt>SDNode</tt> is its
    954    operation code (Opcode) that indicates what operation the node performs and
    955    the operands to the operation.  The various operation node types are
    956    described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
    957    file.</p>
    958 
    959 <p>Although most operations define a single value, each node in the graph may
    960    define multiple values.  For example, a combined div/rem operation will
    961    define both the dividend and the remainder. Many other situations require
    962    multiple values as well.  Each node also has some number of operands, which
    963    are edges to the node defining the used value.  Because nodes may define
    964    multiple values, edges are represented by instances of the <tt>SDValue</tt>
    965    class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
    966    and result value being used, respectively.  Each value produced by
    967    an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
    968    indicating what the type of the value is.</p>
    969 
    970 <p>SelectionDAGs contain two different kinds of values: those that represent
    971    data flow and those that represent control flow dependencies.  Data values
    972    are simple edges with an integer or floating point value type.  Control edges
    973    are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
    974    These edges provide an ordering between nodes that have side effects (such as
    975    loads, stores, calls, returns, etc).  All nodes that have side effects should
    976    take a token chain as input and produce a new one as output.  By convention,
    977    token chain inputs are always operand #0, and chain results are always the
    978    last value produced by an operation.</p>
    979 
    980 <p>A SelectionDAG has designated "Entry" and "Root" nodes.  The Entry node is
    981    always a marker node with an Opcode of <tt>ISD::EntryToken</tt>.  The Root
    982    node is the final side-effecting node in the token chain. For example, in a
    983    single basic block function it would be the return node.</p>
    984 
    985 <p>One important concept for SelectionDAGs is the notion of a "legal" vs.
    986    "illegal" DAG.  A legal DAG for a target is one that only uses supported
    987    operations and supported types.  On a 32-bit PowerPC, for example, a DAG with
    988    a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
    989    uses a SREM or UREM operation.  The
    990    <a href="#selectinodag_legalize_types">legalize types</a> and
    991    <a href="#selectiondag_legalize">legalize operations</a> phases are
    992    responsible for turning an illegal DAG into a legal DAG.</p>
    993 
    994 </div>
    995 
    996 <!-- _______________________________________________________________________ -->
    997 <h4>
    998   <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
    999 </h4>
   1000 
   1001 <div>
   1002 
   1003 <p>SelectionDAG-based instruction selection consists of the following steps:</p>
   1004 
   1005 <ol>
   1006   <li><a href="#selectiondag_build">Build initial DAG</a> &mdash; This stage
   1007       performs a simple translation from the input LLVM code to an illegal
   1008       SelectionDAG.</li>
   1009 
   1010   <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; This
   1011       stage performs simple optimizations on the SelectionDAG to simplify it,
   1012       and recognize meta instructions (like rotates
   1013       and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
   1014       operations.  This makes the resultant code more efficient and
   1015       the <a href="#selectiondag_select">select instructions from DAG</a> phase
   1016       (below) simpler.</li>
   1017 
   1018   <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
   1019       &mdash; This stage transforms SelectionDAG nodes to eliminate any types
   1020       that are unsupported on the target.</li>
   1021 
   1022   <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
   1023       SelectionDAG optimizer is run to clean up redundancies exposed by type
   1024       legalization.</li>
   1025 
   1026   <li><a href="#selectiondag_legalize">Legalize SelectionDAG Ops</a> &mdash;
   1027       This stage transforms SelectionDAG nodes to eliminate any operations 
   1028       that are unsupported on the target.</li>
   1029 
   1030   <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
   1031       SelectionDAG optimizer is run to eliminate inefficiencies introduced by
   1032       operation legalization.</li>
   1033 
   1034   <li><a href="#selectiondag_select">Select instructions from DAG</a> &mdash;
   1035       Finally, the target instruction selector matches the DAG operations to
   1036       target instructions.  This process translates the target-independent input
   1037       DAG into another DAG of target instructions.</li>
   1038 
   1039   <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
   1040       &mdash; The last phase assigns a linear order to the instructions in the
   1041       target-instruction DAG and emits them into the MachineFunction being
   1042       compiled.  This step uses traditional prepass scheduling techniques.</li>
   1043 </ol>
   1044 
   1045 <p>After all of these steps are complete, the SelectionDAG is destroyed and the
   1046    rest of the code generation passes are run.</p>
   1047 
   1048 <p>One great way to visualize what is going on here is to take advantage of a
   1049    few LLC command line options.  The following options pop up a window
   1050    displaying the SelectionDAG at specific times (if you only get errors printed
   1051    to the console while using this, you probably
   1052    <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
   1053    to add support for it).</p>
   1054 
   1055 <ul>
   1056   <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
   1057       before the first optimization pass.</li>
   1058 
   1059   <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>
   1060 
   1061   <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
   1062       optimization pass.</li>
   1063 
   1064   <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>
   1065 
   1066   <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
   1067 </ul>
   1068 
   1069 <p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
   1070    This graph is based on the final SelectionDAG, with nodes that must be
   1071    scheduled together bundled into a single scheduling-unit node, and with
   1072    immediate operands and other nodes that aren't relevant for scheduling
   1073    omitted.</p>
   1074 
   1075 </div>
   1076 
   1077 <!-- _______________________________________________________________________ -->
   1078 <h4>
   1079   <a name="selectiondag_build">Initial SelectionDAG Construction</a>
   1080 </h4>
   1081 
   1082 <div>
   1083 
   1084 <p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
   1085    input by the <tt>SelectionDAGLowering</tt> class in the
   1086    <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file.  The intent of
   1087    this pass is to expose as much low-level, target-specific details to the
   1088    SelectionDAG as possible.  This pass is mostly hard-coded (e.g. an
   1089    LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
   1090    <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
   1091    requires target-specific hooks to lower calls, returns, varargs, etc.  For
   1092    these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
   1093    interface is used.</p>
   1094 
   1095 </div>
   1096 
   1097 <!-- _______________________________________________________________________ -->
   1098 <h4>
   1099   <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
   1100 </h4>
   1101 
   1102 <div>
   1103 
   1104 <p>The Legalize phase is in charge of converting a DAG to only use the types
   1105    that are natively supported by the target.</p>
   1106 
   1107 <p>There are two main ways of converting values of unsupported scalar types to
   1108    values of supported types: converting small types to larger types
   1109    ("promoting"), and breaking up large integer types into smaller ones
   1110    ("expanding").  For example, a target might require that all f32 values are
   1111    promoted to f64 and that all i1/i8/i16 values are promoted to i32.  The same
   1112    target might require that all i64 values be expanded into pairs of i32
   1113    values.  These changes can insert sign and zero extensions as needed to make
   1114    sure that the final code has the same behavior as the input.</p>
   1115 
   1116 <p>There are two main ways of converting values of unsupported vector types to
   1117    value of supported types: splitting vector types, multiple times if
   1118    necessary, until a legal type is found, and extending vector types by adding
   1119    elements to the end to round them out to legal types ("widening").  If a
   1120    vector gets split all the way down to single-element parts with no supported
   1121    vector type being found, the elements are converted to scalars
   1122    ("scalarizing").</p>
   1123 
   1124 <p>A target implementation tells the legalizer which types are supported (and
   1125    which register class to use for them) by calling the
   1126    <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
   1127 
   1128 </div>
   1129 
   1130 <!-- _______________________________________________________________________ -->
   1131 <h4>
   1132   <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
   1133 </h4>
   1134 
   1135 <div>
   1136 
   1137 <p>The Legalize phase is in charge of converting a DAG to only use the
   1138    operations that are natively supported by the target.</p>
   1139 
   1140 <p>Targets often have weird constraints, such as not supporting every operation
   1141    on every supported datatype (e.g. X86 does not support byte conditional moves
   1142    and PowerPC does not support sign-extending loads from a 16-bit memory
   1143    location).  Legalize takes care of this by open-coding another sequence of
   1144    operations to emulate the operation ("expansion"), by promoting one type to a
   1145    larger type that supports the operation ("promotion"), or by using a
   1146    target-specific hook to implement the legalization ("custom").</p>
   1147 
   1148 <p>A target implementation tells the legalizer which operations are not
   1149    supported (and which of the above three actions to take) by calling the
   1150    <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
   1151    constructor.</p>
   1152 
   1153 <p>Prior to the existence of the Legalize passes, we required that every target
   1154    <a href="#selectiondag_optimize">selector</a> supported and handled every
   1155    operator and type even if they are not natively supported.  The introduction
   1156    of the Legalize phases allows all of the canonicalization patterns to be
   1157    shared across targets, and makes it very easy to optimize the canonicalized
   1158    code because it is still in the form of a DAG.</p>
   1159 
   1160 </div>
   1161 
   1162 <!-- _______________________________________________________________________ -->
   1163 <h4>
   1164   <a name="selectiondag_optimize">
   1165     SelectionDAG Optimization Phase: the DAG Combiner
   1166   </a>
   1167 </h4>
   1168 
   1169 <div>
   1170 
   1171 <p>The SelectionDAG optimization phase is run multiple times for code
   1172    generation, immediately after the DAG is built and once after each
   1173    legalization.  The first run of the pass allows the initial code to be
   1174    cleaned up (e.g. performing optimizations that depend on knowing that the
   1175    operators have restricted type inputs).  Subsequent runs of the pass clean up
   1176    the messy code generated by the Legalize passes, which allows Legalize to be
   1177    very simple (it can focus on making code legal instead of focusing on
   1178    generating <em>good</em> and legal code).</p>
   1179 
   1180 <p>One important class of optimizations performed is optimizing inserted sign
   1181    and zero extension instructions.  We currently use ad-hoc techniques, but
   1182    could move to more rigorous techniques in the future.  Here are some good
   1183    papers on the subject:</p>
   1184 
   1185 <p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
   1186    integer arithmetic</a>"<br>
   1187    Kevin Redwine and Norman Ramsey<br>
   1188    International Conference on Compiler Construction (CC) 2004</p>
   1189 
   1190 <p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
   1191    sign extension elimination</a>"<br>
   1192    Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
   1193    Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
   1194    and Implementation.</p>
   1195 
   1196 </div>
   1197 
   1198 <!-- _______________________________________________________________________ -->
   1199 <h4>
   1200   <a name="selectiondag_select">SelectionDAG Select Phase</a>
   1201 </h4>
   1202 
   1203 <div>
   1204 
   1205 <p>The Select phase is the bulk of the target-specific code for instruction
   1206    selection.  This phase takes a legal SelectionDAG as input, pattern matches
   1207    the instructions supported by the target to this DAG, and produces a new DAG
   1208    of target code.  For example, consider the following LLVM fragment:</p>
   1209 
   1210 <div class="doc_code">
   1211 <pre>
   1212 %t1 = fadd float %W, %X
   1213 %t2 = fmul float %t1, %Y
   1214 %t3 = fadd float %t2, %Z
   1215 </pre>
   1216 </div>
   1217 
   1218 <p>This LLVM code corresponds to a SelectionDAG that looks basically like
   1219    this:</p>
   1220 
   1221 <div class="doc_code">
   1222 <pre>
   1223 (fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
   1224 </pre>
   1225 </div>
   1226 
   1227 <p>If a target supports floating point multiply-and-add (FMA) operations, one of
   1228    the adds can be merged with the multiply.  On the PowerPC, for example, the
   1229    output of the instruction selector might look like this DAG:</p>
   1230 
   1231 <div class="doc_code">
   1232 <pre>
   1233 (FMADDS (FADDS W, X), Y, Z)
   1234 </pre>
   1235 </div>
   1236 
   1237 <p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
   1238 first two operands and adds the third (as single-precision floating-point
   1239 numbers).  The <tt>FADDS</tt> instruction is a simple binary single-precision
   1240 add instruction.  To perform this pattern match, the PowerPC backend includes
   1241 the following instruction definitions:</p>
   1242 
   1243 <div class="doc_code">
   1244 <pre>
   1245 def FMADDS : AForm_1&lt;59, 29,
   1246                     (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
   1247                     "fmadds $FRT, $FRA, $FRC, $FRB",
   1248                     [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
   1249                                            F4RC:$FRB))</b>]&gt;;
   1250 def FADDS : AForm_2&lt;59, 21,
   1251                     (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
   1252                     "fadds $FRT, $FRA, $FRB",
   1253                     [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
   1254 </pre>
   1255 </div>
   1256 
   1257 <p>The portion of the instruction definition in bold indicates the pattern used
   1258    to match the instruction.  The DAG operators
   1259    (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
   1260    the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file.  "
   1261    <tt>F4RC</tt>" is the register class of the input and result values.</p>
   1262 
   1263 <p>The TableGen DAG instruction selector generator reads the instruction
   1264    patterns in the <tt>.td</tt> file and automatically builds parts of the
   1265    pattern matching code for your target.  It has the following strengths:</p>
   1266 
   1267 <ul>
   1268   <li>At compiler-compiler time, it analyzes your instruction patterns and tells
   1269       you if your patterns make sense or not.</li>
   1270 
   1271   <li>It can handle arbitrary constraints on operands for the pattern match.  In
   1272       particular, it is straight-forward to say things like "match any immediate
   1273       that is a 13-bit sign-extended value".  For examples, see the
   1274       <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
   1275       backend.</li>
   1276 
   1277   <li>It knows several important identities for the patterns defined.  For
   1278       example, it knows that addition is commutative, so it allows the
   1279       <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
   1280       well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
   1281       to specially handle this case.</li>
   1282 
   1283   <li>It has a full-featured type-inferencing system.  In particular, you should
   1284       rarely have to explicitly tell the system what type parts of your patterns
   1285       are.  In the <tt>FMADDS</tt> case above, we didn't have to tell
   1286       <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
   1287       It was able to infer and propagate this knowledge from the fact that
   1288       <tt>F4RC</tt> has type 'f32'.</li>
   1289 
   1290   <li>Targets can define their own (and rely on built-in) "pattern fragments".
   1291       Pattern fragments are chunks of reusable patterns that get inlined into
   1292       your patterns during compiler-compiler time.  For example, the integer
   1293       "<tt>(not x)</tt>" operation is actually defined as a pattern fragment
   1294       that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
   1295       have a native '<tt>not</tt>' operation.  Targets can define their own
   1296       short-hand fragments as they see fit.  See the definition of
   1297       '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>
   1298 
   1299   <li>In addition to instructions, targets can specify arbitrary patterns that
   1300       map to one or more instructions using the 'Pat' class.  For example, the
   1301       PowerPC has no way to load an arbitrary integer immediate into a register
   1302       in one instruction. To tell tblgen how to do this, it defines:
   1303       <br>
   1304       <br>
   1305 <div class="doc_code">
   1306 <pre>
   1307 // Arbitrary immediate support.  Implement in terms of LIS/ORI.
   1308 def : Pat&lt;(i32 imm:$imm),
   1309           (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
   1310 </pre>
   1311 </div>
   1312       <br>
   1313       If none of the single-instruction patterns for loading an immediate into a
   1314       register match, this will be used.  This rule says "match an arbitrary i32
   1315       immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
   1316       an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
   1317       the left 16 bits') instruction".  To make this work, the
   1318       <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
   1319       the input immediate (in this case, take the high or low 16-bits of the
   1320       immediate).</li>
   1321 
   1322   <li>While the system does automate a lot, it still allows you to write custom
   1323       C++ code to match special cases if there is something that is hard to
   1324       express.</li>
   1325 </ul>
   1326 
   1327 <p>While it has many strengths, the system currently has some limitations,
   1328    primarily because it is a work in progress and is not yet finished:</p>
   1329 
   1330 <ul>
   1331   <li>Overall, there is no way to define or match SelectionDAG nodes that define
   1332       multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
   1333       etc).  This is the biggest reason that you currently still <em>have
   1334       to</em> write custom C++ code for your instruction selector.</li>
   1335 
   1336   <li>There is no great way to support matching complex addressing modes yet.
   1337       In the future, we will extend pattern fragments to allow them to define
   1338       multiple values (e.g. the four operands of the <a href="#x86_memory">X86
   1339       addressing mode</a>, which are currently matched with custom C++ code).
   1340       In addition, we'll extend fragments so that a fragment can match multiple
   1341       different patterns.</li>
   1342 
   1343   <li>We don't automatically infer flags like isStore/isLoad yet.</li>
   1344 
   1345   <li>We don't automatically generate the set of supported registers and
   1346       operations for the <a href="#selectiondag_legalize">Legalizer</a>
   1347       yet.</li>
   1348 
   1349   <li>We don't have a way of tying in custom legalized nodes yet.</li>
   1350 </ul>
   1351 
   1352 <p>Despite these limitations, the instruction selector generator is still quite
   1353    useful for most of the binary and logical operations in typical instruction
   1354    sets.  If you run into any problems or can't figure out how to do something,
   1355    please let Chris know!</p>
   1356 
   1357 </div>
   1358 
   1359 <!-- _______________________________________________________________________ -->
   1360 <h4>
   1361   <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
   1362 </h4>
   1363 
   1364 <div>
   1365 
   1366 <p>The scheduling phase takes the DAG of target instructions from the selection
   1367    phase and assigns an order.  The scheduler can pick an order depending on
   1368    various constraints of the machines (i.e. order for minimal register pressure
   1369    or try to cover instruction latencies).  Once an order is established, the
   1370    DAG is converted to a list
   1371    of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
   1372    destroyed.</p>
   1373 
   1374 <p>Note that this phase is logically separate from the instruction selection
   1375    phase, but is tied to it closely in the code because it operates on
   1376    SelectionDAGs.</p>
   1377 
   1378 </div>
   1379 
   1380 <!-- _______________________________________________________________________ -->
   1381 <h4>
   1382   <a name="selectiondag_future">Future directions for the SelectionDAG</a>
   1383 </h4>
   1384 
   1385 <div>
   1386 
   1387 <ol>
   1388   <li>Optional function-at-a-time selection.</li>
   1389 
   1390   <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
   1391 </ol>
   1392 
   1393 </div>
   1394  
   1395 </div>
   1396 
   1397 <!-- ======================================================================= -->
   1398 <h3>
   1399   <a name="ssamco">SSA-based Machine Code Optimizations</a>
   1400 </h3>
   1401 <div><p>To Be Written</p></div>
   1402 
   1403 <!-- ======================================================================= -->
   1404 <h3>
   1405   <a name="liveintervals">Live Intervals</a>
   1406 </h3>
   1407 
   1408 <div>
   1409 
   1410 <p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
   1411    They are used by some <a href="#regalloc">register allocator</a> passes to
   1412    determine if two or more virtual registers which require the same physical
   1413    register are live at the same point in the program (i.e., they conflict).
   1414    When this situation occurs, one virtual register must be <i>spilled</i>.</p>
   1415 
   1416 <!-- _______________________________________________________________________ -->
   1417 <h4>
   1418   <a name="livevariable_analysis">Live Variable Analysis</a>
   1419 </h4>
   1420 
   1421 <div>
   1422 
   1423 <p>The first step in determining the live intervals of variables is to calculate
   1424    the set of registers that are immediately dead after the instruction (i.e.,
   1425    the instruction calculates the value, but it is never used) and the set of
   1426    registers that are used by the instruction, but are never used after the
   1427    instruction (i.e., they are killed). Live variable information is computed
   1428    for each <i>virtual</i> register and <i>register allocatable</i> physical
   1429    register in the function.  This is done in a very efficient manner because it
   1430    uses SSA to sparsely compute lifetime information for virtual registers
   1431    (which are in SSA form) and only has to track physical registers within a
   1432    block.  Before register allocation, LLVM can assume that physical registers
   1433    are only live within a single basic block.  This allows it to do a single,
   1434    local analysis to resolve physical register lifetimes within each basic
   1435    block. If a physical register is not register allocatable (e.g., a stack
   1436    pointer or condition codes), it is not tracked.</p>
   1437 
   1438 <p>Physical registers may be live in to or out of a function. Live in values are
   1439    typically arguments in registers. Live out values are typically return values
   1440    in registers. Live in values are marked as such, and are given a dummy
   1441    "defining" instruction during live intervals analysis. If the last basic
   1442    block of a function is a <tt>return</tt>, then it's marked as using all live
   1443    out values in the function.</p>
   1444 
   1445 <p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
   1446    the live variable information from a depth first traversal of the CFG of the
   1447    function won't guarantee that a virtual register used by the <tt>PHI</tt>
   1448    node is defined before it's used. When a <tt>PHI</tt> node is encountered,
   1449    only the definition is handled, because the uses will be handled in other
   1450    basic blocks.</p>
   1451 
   1452 <p>For each <tt>PHI</tt> node of the current basic block, we simulate an
   1453    assignment at the end of the current basic block and traverse the successor
   1454    basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
   1455    the <tt>PHI</tt> node's operands is coming from the current basic block, then
   1456    the variable is marked as <i>alive</i> within the current basic block and all
   1457    of its predecessor basic blocks, until the basic block with the defining
   1458    instruction is encountered.</p>
   1459 
   1460 </div>
   1461 
   1462 <!-- _______________________________________________________________________ -->
   1463 <h4>
   1464   <a name="liveintervals_analysis">Live Intervals Analysis</a>
   1465 </h4>
   1466 
   1467 <div>
   1468 
   1469 <p>We now have the information available to perform the live intervals analysis
   1470    and build the live intervals themselves.  We start off by numbering the basic
   1471    blocks and machine instructions.  We then handle the "live-in" values.  These
   1472    are in physical registers, so the physical register is assumed to be killed
   1473    by the end of the basic block.  Live intervals for virtual registers are
   1474    computed for some ordering of the machine instructions <tt>[1, N]</tt>.  A
   1475    live interval is an interval <tt>[i, j)</tt>, where <tt>1 &lt;= i &lt;= j
   1476    &lt; N</tt>, for which a variable is live.</p>
   1477 
   1478 <p><i><b>More to come...</b></i></p>
   1479 
   1480 </div>
   1481 
   1482 </div>
   1483 
   1484 <!-- ======================================================================= -->
   1485 <h3>
   1486   <a name="regalloc">Register Allocation</a>
   1487 </h3>
   1488 
   1489 <div>
   1490 
   1491 <p>The <i>Register Allocation problem</i> consists in mapping a program
   1492    <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
   1493    to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
   1494    number of physical registers. Each target architecture has a different number
   1495    of physical registers. If the number of physical registers is not enough to
   1496    accommodate all the virtual registers, some of them will have to be mapped
   1497    into memory. These virtuals are called <i>spilled virtuals</i>.</p>
   1498 
   1499 <!-- _______________________________________________________________________ -->
   1500 
   1501 <h4>
   1502   <a name="regAlloc_represent">How registers are represented in LLVM</a>
   1503 </h4>
   1504 
   1505 <div>
   1506 
   1507 <p>In LLVM, physical registers are denoted by integer numbers that normally
   1508    range from 1 to 1023. To see how this numbering is defined for a particular
   1509    architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
   1510    architecture. For instance, by
   1511    inspecting <tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the
   1512    32-bit register <tt>EAX</tt> is denoted by 15, and the MMX register
   1513    <tt>MM0</tt> is mapped to 48.</p>
   1514 
   1515 <p>Some architectures contain registers that share the same physical location. A
   1516    notable example is the X86 platform. For instance, in the X86 architecture,
   1517    the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
   1518    bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
   1519    particular architecture, you can check which registers are aliased by
   1520    inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
   1521    <tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
   1522    all the physical registers aliased to the register <tt>p_reg</tt>.</p>
   1523 
   1524 <p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
   1525    Elements in the same register class are functionally equivalent, and can be
   1526    interchangeably used. Each virtual register can only be mapped to physical
   1527    registers of a particular class. For instance, in the X86 architecture, some
   1528    virtuals can only be allocated to 8 bit registers.  A register class is
   1529    described by <tt>TargetRegisterClass</tt> objects.  To discover if a virtual
   1530    register is compatible with a given physical, this code can be used:</p>
   1531 
   1532 <div class="doc_code">
   1533 <pre>
   1534 bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
   1535                                       unsigned v_reg,
   1536                                       unsigned p_reg) {
   1537   assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
   1538          "Target register must be physical");
   1539   const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
   1540   return trc-&gt;contains(p_reg);
   1541 }
   1542 </pre>
   1543 </div>
   1544 
   1545 <p>Sometimes, mostly for debugging purposes, it is useful to change the number
   1546    of physical registers available in the target architecture. This must be done
   1547    statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
   1548    for <tt>RegisterClass</tt>, the last parameter of which is a list of
   1549    registers. Just commenting some out is one simple way to avoid them being
   1550    used. A more polite way is to explicitly exclude some registers from
   1551    the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
   1552    class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
   1553    </p>
   1554 
   1555 <p>Virtual registers are also denoted by integer numbers. Contrary to physical
   1556    registers, different virtual registers never share the same number. Whereas
   1557    physical registers are statically defined in a <tt>TargetRegisterInfo.td</tt>
   1558    file and cannot be created by the application developer, that is not the case
   1559    with virtual registers. In order to create new virtual registers, use the
   1560    method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
   1561    will return a new virtual register. Use an <tt>IndexedMap&lt;Foo,
   1562    VirtReg2IndexFunctor&gt;</tt> to hold information per virtual register. If you
   1563    need to enumerate all virtual registers, use the function
   1564    <tt>TargetRegisterInfo::index2VirtReg()</tt> to find the virtual register
   1565    numbers:</p>
   1566 
   1567 <div class="doc_code">
   1568 <pre>
   1569   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
   1570     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
   1571     stuff(VirtReg);
   1572   }
   1573 </pre>
   1574 </div>
   1575 
   1576 <p>Before register allocation, the operands of an instruction are mostly virtual
   1577    registers, although physical registers may also be used. In order to check if
   1578    a given machine operand is a register, use the boolean
   1579    function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
   1580    a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
   1581    or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
   1582    defines the registers 1024, and uses registers 1025 and 1026. Given a
   1583    register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
   1584    register is being used by the instruction. The
   1585    method <tt>MachineOperand::isDef()</tt> informs if that registers is being
   1586    defined.</p>
   1587 
   1588 <p>We will call physical registers present in the LLVM bitcode before register
   1589    allocation <i>pre-colored registers</i>. Pre-colored registers are used in
   1590    many different situations, for instance, to pass parameters of functions
   1591    calls, and to store results of particular instructions. There are two types
   1592    of pre-colored registers: the ones <i>implicitly</i> defined, and
   1593    those <i>explicitly</i> defined. Explicitly defined registers are normal
   1594    operands, and can be accessed
   1595    with <tt>MachineInstr::getOperand(int)::getReg()</tt>.  In order to check
   1596    which registers are implicitly defined by an instruction, use
   1597    the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
   1598    where <tt>opcode</tt> is the opcode of the target instruction. One important
   1599    difference between explicit and implicit physical registers is that the
   1600    latter are defined statically for each instruction, whereas the former may
   1601    vary depending on the program being compiled. For example, an instruction
   1602    that represents a function call will always implicitly define or use the same
   1603    set of physical registers. To read the registers implicitly used by an
   1604    instruction,
   1605    use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
   1606    registers impose constraints on any register allocation algorithm. The
   1607    register allocator must make sure that none of them are overwritten by
   1608    the values of virtual registers while still alive.</p>
   1609 
   1610 </div>
   1611 
   1612 <!-- _______________________________________________________________________ -->
   1613 
   1614 <h4>
   1615   <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
   1616 </h4>
   1617 
   1618 <div>
   1619 
   1620 <p>There are two ways to map virtual registers to physical registers (or to
   1621    memory slots). The first way, that we will call <i>direct mapping</i>, is
   1622    based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
   1623    and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
   1624    mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
   1625    and stores sending and getting values to and from memory.</p>
   1626 
   1627 <p>The direct mapping provides more flexibility to the developer of the register
   1628    allocator; however, it is more error prone, and demands more implementation
   1629    work.  Basically, the programmer will have to specify where load and store
   1630    instructions should be inserted in the target function being compiled in
   1631    order to get and store values in memory. To assign a physical register to a
   1632    virtual register present in a given operand,
   1633    use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
   1634    use <tt>TargetInstrInfo::storeRegToStackSlot(...)</tt>, and to insert a
   1635    load instruction, use <tt>TargetInstrInfo::loadRegFromStackSlot</tt>.</p>
   1636 
   1637 <p>The indirect mapping shields the application developer from the complexities
   1638    of inserting load and store instructions. In order to map a virtual register
   1639    to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>.  In
   1640    order to map a certain virtual register to memory,
   1641    use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
   1642    the stack slot where <tt>vreg</tt>'s value will be located.  If it is
   1643    necessary to map another virtual register to the same stack slot,
   1644    use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
   1645    important point to consider when using the indirect mapping, is that even if
   1646    a virtual register is mapped to memory, it still needs to be mapped to a
   1647    physical register. This physical register is the location where the virtual
   1648    register is supposed to be found before being stored or after being
   1649    reloaded.</p>
   1650 
   1651 <p>If the indirect strategy is used, after all the virtual registers have been
   1652    mapped to physical registers or stack slots, it is necessary to use a spiller
   1653    object to place load and store instructions in the code. Every virtual that
   1654    has been mapped to a stack slot will be stored to memory after been defined
   1655    and will be loaded before being used. The implementation of the spiller tries
   1656    to recycle load/store instructions, avoiding unnecessary instructions. For an
   1657    example of how to invoke the spiller,
   1658    see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
   1659    in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
   1660 
   1661 </div>
   1662 
   1663 <!-- _______________________________________________________________________ -->
   1664 <h4>
   1665   <a name="regAlloc_twoAddr">Handling two address instructions</a>
   1666 </h4>
   1667 
   1668 <div>
   1669 
   1670 <p>With very rare exceptions (e.g., function calls), the LLVM machine code
   1671    instructions are three address instructions. That is, each instruction is
   1672    expected to define at most one register, and to use at most two registers.
   1673    However, some architectures use two address instructions. In this case, the
   1674    defined register is also one of the used register. For instance, an
   1675    instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
   1676    to <tt>%EAX = %EAX + %EBX</tt>.</p>
   1677 
   1678 <p>In order to produce correct code, LLVM must convert three address
   1679    instructions that represent two address instructions into true two address
   1680    instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
   1681    this specific purpose. It must be run before register allocation takes
   1682    place. After its execution, the resulting code may no longer be in SSA
   1683    form. This happens, for instance, in situations where an instruction such
   1684    as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>
   1685 
   1686 <div class="doc_code">
   1687 <pre>
   1688 %a = MOVE %b
   1689 %a = ADD %a %c
   1690 </pre>
   1691 </div>
   1692 
   1693 <p>Notice that, internally, the second instruction is represented as
   1694    <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
   1695    used and defined by the instruction.</p>
   1696 
   1697 </div>
   1698 
   1699 <!-- _______________________________________________________________________ -->
   1700 <h4>
   1701   <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
   1702 </h4>
   1703 
   1704 <div>
   1705 
   1706 <p>An important transformation that happens during register allocation is called
   1707    the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
   1708    that are performed on the control flow graph of programs. However,
   1709    traditional instruction sets do not implement PHI instructions. Thus, in
   1710    order to generate executable code, compilers must replace PHI instructions
   1711    with other instructions that preserve their semantics.</p>
   1712 
   1713 <p>There are many ways in which PHI instructions can safely be removed from the
   1714    target code. The most traditional PHI deconstruction algorithm replaces PHI
   1715    instructions with copy instructions. That is the strategy adopted by
   1716    LLVM. The SSA deconstruction algorithm is implemented
   1717    in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
   1718    identifier <tt>PHIEliminationID</tt> must be marked as required in the code
   1719    of the register allocator.</p>
   1720 
   1721 </div>
   1722 
   1723 <!-- _______________________________________________________________________ -->
   1724 <h4>
   1725   <a name="regAlloc_fold">Instruction folding</a>
   1726 </h4>
   1727 
   1728 <div>
   1729 
   1730 <p><i>Instruction folding</i> is an optimization performed during register
   1731    allocation that removes unnecessary copy instructions. For instance, a
   1732    sequence of instructions such as:</p>
   1733 
   1734 <div class="doc_code">
   1735 <pre>
   1736 %EBX = LOAD %mem_address
   1737 %EAX = COPY %EBX
   1738 </pre>
   1739 </div>
   1740 
   1741 <p>can be safely substituted by the single instruction:</p>
   1742 
   1743 <div class="doc_code">
   1744 <pre>
   1745 %EAX = LOAD %mem_address
   1746 </pre>
   1747 </div>
   1748 
   1749 <p>Instructions can be folded with
   1750    the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
   1751    taken when folding instructions; a folded instruction can be quite different
   1752    from the original
   1753    instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
   1754    in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
   1755    use.</p>
   1756 
   1757 </div>
   1758 
   1759 <!-- _______________________________________________________________________ -->
   1760 
   1761 <h4>
   1762   <a name="regAlloc_builtIn">Built in register allocators</a>
   1763 </h4>
   1764 
   1765 <div>
   1766 
   1767 <p>The LLVM infrastructure provides the application developer with three
   1768    different register allocators:</p>
   1769 
   1770 <ul>
   1771   <li><i>Linear Scan</i> &mdash; <i>The default allocator</i>. This is the
   1772       well-know linear scan register allocator. Whereas the
   1773       <i>Simple</i> and <i>Local</i> algorithms use a direct mapping
   1774       implementation technique, the <i>Linear Scan</i> implementation
   1775       uses a spiller in order to place load and stores.</li>
   1776 
   1777   <li><i>Fast</i> &mdash; This register allocator is the default for debug
   1778       builds. It allocates registers on a basic block level, attempting to keep
   1779       values in registers and reusing registers as appropriate.</li>
   1780 
   1781   <li><i>PBQP</i> &mdash; A Partitioned Boolean Quadratic Programming (PBQP)
   1782       based register allocator. This allocator works by constructing a PBQP
   1783       problem representing the register allocation problem under consideration,
   1784       solving this using a PBQP solver, and mapping the solution back to a
   1785       register assignment.</li>
   1786 
   1787 </ul>
   1788 
   1789 <p>The type of register allocator used in <tt>llc</tt> can be chosen with the
   1790    command line option <tt>-regalloc=...</tt>:</p>
   1791 
   1792 <div class="doc_code">
   1793 <pre>
   1794 $ llc -regalloc=linearscan file.bc -o ln.s;
   1795 $ llc -regalloc=fast file.bc -o fa.s;
   1796 $ llc -regalloc=pbqp file.bc -o pbqp.s;
   1797 </pre>
   1798 </div>
   1799 
   1800 </div>
   1801 
   1802 </div>
   1803 
   1804 <!-- ======================================================================= -->
   1805 <h3>
   1806   <a name="proepicode">Prolog/Epilog Code Insertion</a>
   1807 </h3>
   1808 <div><p>To Be Written</p></div>
   1809 <!-- ======================================================================= -->
   1810 <h3>
   1811   <a name="latemco">Late Machine Code Optimizations</a>
   1812 </h3>
   1813 <div><p>To Be Written</p></div>
   1814 
   1815 <!-- ======================================================================= -->
   1816 <h3>
   1817   <a name="codeemit">Code Emission</a>
   1818 </h3>
   1819 
   1820 <div>
   1821 
   1822 <p>The code emission step of code generation is responsible for lowering from
   1823 the code generator abstractions (like <a 
   1824 href="#machinefunction">MachineFunction</a>, <a 
   1825 href="#machineinstr">MachineInstr</a>, etc) down
   1826 to the abstractions used by the MC layer (<a href="#mcinst">MCInst</a>, 
   1827 <a href="#mcstreamer">MCStreamer</a>, etc).  This is
   1828 done with a combination of several different classes: the (misnamed)
   1829 target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
   1830 (such as SparcAsmPrinter), and the TargetLoweringObjectFile class.</p>
   1831 
   1832 <p>Since the MC layer works at the level of abstraction of object files, it
   1833 doesn't have a notion of functions, global variables etc.  Instead, it thinks
   1834 about labels, directives, and instructions.  A key class used at this time is
   1835 the MCStreamer class.  This is an abstract API that is implemented in different
   1836 ways (e.g. to output a .s file, output an ELF .o file, etc) that is effectively
   1837 an "assembler API".  MCStreamer has one method per directive, such as EmitLabel,
   1838 EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
   1839 level directives.
   1840 </p>
   1841 
   1842 <p>If you are interested in implementing a code generator for a target, there
   1843 are three important things that you have to implement for your target:</p>
   1844 
   1845 <ol>
   1846 <li>First, you need a subclass of AsmPrinter for your target.  This class
   1847 implements the general lowering process converting MachineFunction's into MC
   1848 label constructs.  The AsmPrinter base class provides a number of useful methods
   1849 and routines, and also allows you to override the lowering process in some
   1850 important ways.  You should get much of the lowering for free if you are
   1851 implementing an ELF, COFF, or MachO target, because the TargetLoweringObjectFile
   1852 class implements much of the common logic.</li>
   1853 
   1854 <li>Second, you need to implement an instruction printer for your target.  The
   1855 instruction printer takes an <a href="#mcinst">MCInst</a> and renders it to a
   1856 raw_ostream as text.  Most of this is automatically generated from the .td file
   1857 (when you specify something like "<tt>add $dst, $src1, $src2</tt>" in the
   1858 instructions), but you need to implement routines to print operands.</li>
   1859 
   1860 <li>Third, you need to implement code that lowers a <a
   1861 href="#machineinstr">MachineInstr</a> to an MCInst, usually implemented in
   1862 "&lt;target&gt;MCInstLower.cpp".  This lowering process is often target
   1863 specific, and is responsible for turning jump table entries, constant pool
   1864 indices, global variable addresses, etc into MCLabels as appropriate.  This
   1865 translation layer is also responsible for expanding pseudo ops used by the code
   1866 generator into the actual machine instructions they correspond to. The MCInsts
   1867 that are generated by this are fed into the instruction printer or the encoder.
   1868 </li>
   1869 
   1870 </ol>
   1871 
   1872 <p>Finally, at your choosing, you can also implement an subclass of
   1873 MCCodeEmitter which lowers MCInst's into machine code bytes and relocations.
   1874 This is important if you want to support direct .o file emission, or would like
   1875 to implement an assembler for your target.</p>
   1876 
   1877 </div>
   1878 
   1879 </div>
   1880 
   1881 <!-- *********************************************************************** -->
   1882 <h2>
   1883   <a name="nativeassembler">Implementing a Native Assembler</a>
   1884 </h2>
   1885 <!-- *********************************************************************** -->
   1886 
   1887 <div>
   1888 
   1889 <p>Though you're probably reading this because you want to write or maintain a
   1890 compiler backend, LLVM also fully supports building a native assemblers too.
   1891 We've tried hard to automate the generation of the assembler from the .td files
   1892 (in particular the instruction syntax and encodings), which means that a large
   1893 part of the manual and repetitive data entry can be factored and shared with the
   1894 compiler.</p>
   1895 
   1896 <!-- ======================================================================= -->
   1897 <h3 id="na_instparsing">Instruction Parsing</h3>
   1898 
   1899 <div><p>To Be Written</p></div>
   1900 
   1901 
   1902 <!-- ======================================================================= -->
   1903 <h3 id="na_instaliases">
   1904   Instruction Alias Processing
   1905 </h3>
   1906 
   1907 <div>
   1908 <p>Once the instruction is parsed, it enters the MatchInstructionImpl function.
   1909 The MatchInstructionImpl function performs alias processing and then does
   1910 actual matching.</p>
   1911 
   1912 <p>Alias processing is the phase that canonicalizes different lexical forms of
   1913 the same instructions down to one representation.  There are several different
   1914 kinds of alias that are possible to implement and they are listed below in the
   1915 order that they are processed (which is in order from simplest/weakest to most
   1916 complex/powerful).  Generally you want to use the first alias mechanism that
   1917 meets the needs of your instruction, because it will allow a more concise
   1918 description.</p>
   1919 
   1920 <!-- _______________________________________________________________________ -->
   1921 <h4>Mnemonic Aliases</h4>
   1922 
   1923 <div>
   1924 
   1925 <p>The first phase of alias processing is simple instruction mnemonic
   1926 remapping for classes of instructions which are allowed with two different
   1927 mnemonics.  This phase is a simple and unconditionally remapping from one input
   1928 mnemonic to one output mnemonic.  It isn't possible for this form of alias to
   1929 look at the operands at all, so the remapping must apply for all forms of a
   1930 given mnemonic.  Mnemonic aliases are defined simply, for example X86 has:
   1931 </p>
   1932 
   1933 <div class="doc_code">
   1934 <pre>
   1935 def : MnemonicAlias&lt;"cbw",     "cbtw"&gt;;
   1936 def : MnemonicAlias&lt;"smovq",   "movsq"&gt;;
   1937 def : MnemonicAlias&lt;"fldcww",  "fldcw"&gt;;
   1938 def : MnemonicAlias&lt;"fucompi", "fucomip"&gt;;
   1939 def : MnemonicAlias&lt;"ud2a",    "ud2"&gt;;
   1940 </pre>
   1941 </div>
   1942 
   1943 <p>... and many others.  With a MnemonicAlias definition, the mnemonic is
   1944 remapped simply and directly.  Though MnemonicAlias's can't look at any aspect
   1945 of the instruction (such as the operands) they can depend on global modes (the
   1946 same ones supported by the matcher), through a Requires clause:</p>
   1947 
   1948 <div class="doc_code">
   1949 <pre>
   1950 def : MnemonicAlias&lt;"pushf", "pushfq"&gt;, Requires&lt;[In64BitMode]&gt;;
   1951 def : MnemonicAlias&lt;"pushf", "pushfl"&gt;, Requires&lt;[In32BitMode]&gt;;
   1952 </pre>
   1953 </div>
   1954 
   1955 <p>In this example, the mnemonic gets mapped into different a new one depending
   1956 on the current instruction set.</p>
   1957 
   1958 </div>
   1959 
   1960 <!-- _______________________________________________________________________ -->
   1961 <h4>Instruction Aliases</h4>
   1962 
   1963 <div>
   1964 
   1965 <p>The most general phase of alias processing occurs while matching is
   1966 happening: it provides new forms for the matcher to match along with a specific
   1967 instruction to generate.  An instruction alias has two parts: the string to
   1968 match and the instruction to generate.  For example:
   1969 </p>
   1970 
   1971 <div class="doc_code">
   1972 <pre>
   1973 def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8  :$src)&gt;;
   1974 def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)&gt;;
   1975 def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr8  GR32:$dst, GR8  :$src)&gt;;
   1976 def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)&gt;;
   1977 def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr8  GR64:$dst, GR8  :$src)&gt;;
   1978 def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)&gt;;
   1979 def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)&gt;;
   1980 </pre>
   1981 </div>
   1982 
   1983 <p>This shows a powerful example of the instruction aliases, matching the
   1984 same mnemonic in multiple different ways depending on what operands are present
   1985 in the assembly.  The result of instruction aliases can include operands in a
   1986 different order than the destination instruction, and can use an input
   1987 multiple times, for example:</p>
   1988 
   1989 <div class="doc_code">
   1990 <pre>
   1991 def : InstAlias&lt;"clrb $reg", (XOR8rr  GR8 :$reg, GR8 :$reg)&gt;;
   1992 def : InstAlias&lt;"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)&gt;;
   1993 def : InstAlias&lt;"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)&gt;;
   1994 def : InstAlias&lt;"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)&gt;;
   1995 </pre>
   1996 </div>
   1997 
   1998 <p>This example also shows that tied operands are only listed once.  In the X86
   1999 backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied
   2000 to the output).  InstAliases take a flattened operand list without duplicates
   2001 for tied operands.  The result of an instruction alias can also use immediates
   2002 and fixed physical registers which are added as simple immediate operands in the
   2003 result, for example:</p>
   2004 
   2005 <div class="doc_code">
   2006 <pre>
   2007 // Fixed Immediate operand.
   2008 def : InstAlias&lt;"aad", (AAD8i8 10)&gt;;
   2009 
   2010 // Fixed register operand.
   2011 def : InstAlias&lt;"fcomi", (COM_FIr ST1)&gt;;
   2012 
   2013 // Simple alias.
   2014 def : InstAlias&lt;"fcomi $reg", (COM_FIr RST:$reg)&gt;;
   2015 </pre>
   2016 </div>
   2017 
   2018 
   2019 <p>Instruction aliases can also have a Requires clause to make them
   2020 subtarget specific.</p>
   2021 
   2022 <p>If the back-end supports it, the instruction printer can automatically emit
   2023    the alias rather than what's being aliased. It typically leads to better,
   2024    more readable code. If it's better to print out what's being aliased, then
   2025    pass a '0' as the third parameter to the InstAlias definition.</p>
   2026 
   2027 </div>
   2028 
   2029 </div>
   2030 
   2031 <!-- ======================================================================= -->
   2032 <h3 id="na_matching">Instruction Matching</h3>
   2033 
   2034 <div><p>To Be Written</p></div>
   2035 
   2036 </div>
   2037 
   2038 <!-- *********************************************************************** -->
   2039 <h2>
   2040   <a name="targetimpls">Target-specific Implementation Notes</a>
   2041 </h2>
   2042 <!-- *********************************************************************** -->
   2043 
   2044 <div>
   2045 
   2046 <p>This section of the document explains features or design decisions that are
   2047    specific to the code generator for a particular target.  First we start
   2048    with a table that summarizes what features are supported by each target.</p>
   2049 
   2050 <!-- ======================================================================= -->
   2051 <h3>
   2052   <a name="targetfeatures">Target Feature Matrix</a>
   2053 </h3>
   2054 
   2055 <div>
   2056 
   2057 <p>Note that this table does not include the C backend or Cpp backends, since
   2058 they do not use the target independent code generator infrastructure.  It also
   2059 doesn't list features that are not supported fully by any target yet.  It
   2060 considers a feature to be supported if at least one subtarget supports it.  A
   2061 feature being supported means that it is useful and works for most cases, it
   2062 does not indicate that there are zero known bugs in the implementation.  Here
   2063 is the key:</p>
   2064 
   2065 
   2066 <table border="1" cellspacing="0">
   2067   <tr>
   2068     <th>Unknown</th>
   2069     <th>No support</th>
   2070     <th>Partial Support</th>
   2071     <th>Complete Support</th>
   2072   </tr>
   2073   <tr>
   2074     <td class="unknown"></td>
   2075     <td class="no"></td>
   2076     <td class="partial"></td>
   2077     <td class="yes"></td>
   2078   </tr>
   2079 </table>
   2080 
   2081 <p>Here is the table:</p>
   2082 
   2083 <table width="689" border="1" cellspacing="0">
   2084 <tr><td></td>
   2085 <td colspan="13" align="center" style="background-color:#ffc">Target</td>
   2086 </tr>
   2087   <tr>
   2088     <th>Feature</th>
   2089     <th>ARM</th>
   2090     <th>Alpha</th>
   2091     <th>Blackfin</th>
   2092     <th>CellSPU</th>
   2093     <th>MBlaze</th>
   2094     <th>MSP430</th>
   2095     <th>Mips</th>
   2096     <th>PTX</th>
   2097     <th>PowerPC</th>
   2098     <th>Sparc</th>
   2099     <th>SystemZ</th>
   2100     <th>X86</th>
   2101     <th>XCore</th>
   2102   </tr>
   2103 
   2104 <tr>
   2105   <td><a href="#feat_reliable">is generally reliable</a></td>
   2106   <td class="yes"></td> <!-- ARM -->
   2107   <td class="unknown"></td> <!-- Alpha -->
   2108   <td class="no"></td> <!-- Blackfin -->
   2109   <td class="no"></td> <!-- CellSPU -->
   2110   <td class="no"></td> <!-- MBlaze -->
   2111   <td class="unknown"></td> <!-- MSP430 -->
   2112   <td class="no"></td> <!-- Mips -->
   2113   <td class="no"></td> <!-- PTX -->
   2114   <td class="yes"></td> <!-- PowerPC -->
   2115   <td class="yes"></td> <!-- Sparc -->
   2116   <td class="unknown"></td> <!-- SystemZ -->
   2117   <td class="yes"></td> <!-- X86 -->
   2118   <td class="unknown"></td> <!-- XCore -->
   2119 </tr>
   2120 
   2121 <tr>
   2122   <td><a href="#feat_asmparser">assembly parser</a></td>
   2123   <td class="no"></td> <!-- ARM -->
   2124   <td class="no"></td> <!-- Alpha -->
   2125   <td class="no"></td> <!-- Blackfin -->
   2126   <td class="no"></td> <!-- CellSPU -->
   2127   <td class="yes"></td> <!-- MBlaze -->
   2128   <td class="no"></td> <!-- MSP430 -->
   2129   <td class="no"></td> <!-- Mips -->
   2130   <td class="no"></td> <!-- PTX -->
   2131   <td class="no"></td> <!-- PowerPC -->
   2132   <td class="no"></td> <!-- Sparc -->
   2133   <td class="no"></td> <!-- SystemZ -->
   2134   <td class="yes"></td> <!-- X86 -->
   2135   <td class="no"></td> <!-- XCore -->
   2136 </tr>
   2137 
   2138 <tr>
   2139   <td><a href="#feat_disassembler">disassembler</a></td>
   2140   <td class="yes"></td> <!-- ARM -->
   2141   <td class="no"></td> <!-- Alpha -->
   2142   <td class="no"></td> <!-- Blackfin -->
   2143   <td class="no"></td> <!-- CellSPU -->
   2144   <td class="yes"></td> <!-- MBlaze -->
   2145   <td class="no"></td> <!-- MSP430 -->
   2146   <td class="no"></td> <!-- Mips -->
   2147   <td class="no"></td> <!-- PTX -->
   2148   <td class="no"></td> <!-- PowerPC -->
   2149   <td class="no"></td> <!-- Sparc -->
   2150   <td class="no"></td> <!-- SystemZ -->
   2151   <td class="yes"></td> <!-- X86 -->
   2152   <td class="no"></td> <!-- XCore -->
   2153 </tr>
   2154 
   2155 <tr>
   2156   <td><a href="#feat_inlineasm">inline asm</a></td>
   2157   <td class="yes"></td> <!-- ARM -->
   2158   <td class="unknown"></td> <!-- Alpha -->
   2159   <td class="yes"></td> <!-- Blackfin -->
   2160   <td class="no"></td> <!-- CellSPU -->
   2161   <td class="yes"></td> <!-- MBlaze -->
   2162   <td class="unknown"></td> <!-- MSP430 -->
   2163   <td class="no"></td> <!-- Mips -->
   2164   <td class="unknown"></td> <!-- PTX -->
   2165   <td class="yes"></td> <!-- PowerPC -->
   2166   <td class="unknown"></td> <!-- Sparc -->
   2167   <td class="unknown"></td> <!-- SystemZ -->
   2168   <td class="yes"><a href="#feat_inlineasm_x86">*</a></td> <!-- X86 -->
   2169   <td class="unknown"></td> <!-- XCore -->
   2170 </tr>
   2171 
   2172 <tr>
   2173   <td><a href="#feat_jit">jit</a></td>
   2174   <td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->
   2175   <td class="no"></td> <!-- Alpha -->
   2176   <td class="no"></td> <!-- Blackfin -->
   2177   <td class="no"></td> <!-- CellSPU -->
   2178   <td class="no"></td> <!-- MBlaze -->
   2179   <td class="unknown"></td> <!-- MSP430 -->
   2180   <td class="no"></td> <!-- Mips -->
   2181   <td class="unknown"></td> <!-- PTX -->
   2182   <td class="yes"></td> <!-- PowerPC -->
   2183   <td class="unknown"></td> <!-- Sparc -->
   2184   <td class="unknown"></td> <!-- SystemZ -->
   2185   <td class="yes"></td> <!-- X86 -->
   2186   <td class="unknown"></td> <!-- XCore -->
   2187 </tr>
   2188 
   2189 <tr>
   2190   <td><a href="#feat_objectwrite">.o&nbsp;file writing</a></td>
   2191   <td class="no"></td> <!-- ARM -->
   2192   <td class="no"></td> <!-- Alpha -->
   2193   <td class="no"></td> <!-- Blackfin -->
   2194   <td class="no"></td> <!-- CellSPU -->
   2195   <td class="yes"></td> <!-- MBlaze -->
   2196   <td class="no"></td> <!-- MSP430 -->
   2197   <td class="no"></td> <!-- Mips -->
   2198   <td class="no"></td> <!-- PTX -->
   2199   <td class="no"></td> <!-- PowerPC -->
   2200   <td class="no"></td> <!-- Sparc -->
   2201   <td class="no"></td> <!-- SystemZ -->
   2202   <td class="yes"></td> <!-- X86 -->
   2203   <td class="no"></td> <!-- XCore -->
   2204 </tr>
   2205 
   2206 <tr>
   2207   <td><a href="#feat_tailcall">tail calls</a></td>
   2208   <td class="yes"></td> <!-- ARM -->
   2209   <td class="unknown"></td> <!-- Alpha -->
   2210   <td class="no"></td> <!-- Blackfin -->
   2211   <td class="no"></td> <!-- CellSPU -->
   2212   <td class="no"></td> <!-- MBlaze -->
   2213   <td class="unknown"></td> <!-- MSP430 -->
   2214   <td class="no"></td> <!-- Mips -->
   2215   <td class="unknown"></td> <!-- PTX -->
   2216   <td class="yes"></td> <!-- PowerPC -->
   2217   <td class="unknown"></td> <!-- Sparc -->
   2218   <td class="unknown"></td> <!-- SystemZ -->
   2219   <td class="yes"></td> <!-- X86 -->
   2220   <td class="unknown"></td> <!-- XCore -->
   2221 </tr>
   2222 
   2223 
   2224 </table>
   2225 
   2226 <!-- _______________________________________________________________________ -->
   2227 <h4 id="feat_reliable">Is Generally Reliable</h4>
   2228 
   2229 <div>
   2230 <p>This box indicates whether the target is considered to be production quality.
   2231 This indicates that the target has been used as a static compiler to
   2232 compile large amounts of code by a variety of different people and is in
   2233 continuous use.</p>
   2234 </div>
   2235 
   2236 <!-- _______________________________________________________________________ -->
   2237 <h4 id="feat_asmparser">Assembly Parser</h4>
   2238 
   2239 <div>
   2240 <p>This box indicates whether the target supports parsing target specific .s
   2241 files by implementing the MCAsmParser interface.  This is required for llvm-mc
   2242 to be able to act as a native assembler and is required for inline assembly
   2243 support in the native .o file writer.</p>
   2244 
   2245 </div>
   2246 
   2247 
   2248 <!-- _______________________________________________________________________ -->
   2249 <h4 id="feat_disassembler">Disassembler</h4>
   2250 
   2251 <div>
   2252 <p>This box indicates whether the target supports the MCDisassembler API for
   2253 disassembling machine opcode bytes into MCInst's.</p>
   2254 
   2255 </div>
   2256 
   2257 <!-- _______________________________________________________________________ -->
   2258 <h4 id="feat_inlineasm">Inline Asm</h4>
   2259 
   2260 <div>
   2261 <p>This box indicates whether the target supports most popular inline assembly
   2262 constraints and modifiers.</p>
   2263 
   2264 <p id="feat_inlineasm_x86">X86 lacks reliable support for inline assembly
   2265 constraints relating to the X86 floating point stack.</p>
   2266 
   2267 </div>
   2268 
   2269 <!-- _______________________________________________________________________ -->
   2270 <h4 id="feat_jit">JIT Support</h4>
   2271 
   2272 <div>
   2273 <p>This box indicates whether the target supports the JIT compiler through
   2274 the ExecutionEngine interface.</p>
   2275 
   2276 <p id="feat_jit_arm">The ARM backend has basic support for integer code
   2277 in ARM codegen mode, but lacks NEON and full Thumb support.</p>
   2278 
   2279 </div>
   2280 
   2281 <!-- _______________________________________________________________________ -->
   2282 <h4 id="feat_objectwrite">.o File Writing</h4>
   2283 
   2284 <div>
   2285 
   2286 <p>This box indicates whether the target supports writing .o files (e.g. MachO,
   2287 ELF, and/or COFF) files directly from the target.  Note that the target also
   2288 must include an assembly parser and general inline assembly support for full
   2289 inline assembly support in the .o writer.</p>
   2290 
   2291 <p>Targets that don't support this feature can obviously still write out .o
   2292 files, they just rely on having an external assembler to translate from a .s
   2293 file to a .o file (as is the case for many C compilers).</p>
   2294 
   2295 </div>
   2296 
   2297 <!-- _______________________________________________________________________ -->
   2298 <h4 id="feat_tailcall">Tail Calls</h4>
   2299 
   2300 <div>
   2301 
   2302 <p>This box indicates whether the target supports guaranteed tail calls.  These
   2303 are calls marked "<a href="LangRef.html#i_call">tail</a>" and use the fastcc
   2304 calling convention.  Please see the <a href="#tailcallopt">tail call section
   2305 more more details</a>.</p>
   2306 
   2307 </div>
   2308 
   2309 </div>
   2310 
   2311 <!-- ======================================================================= -->
   2312 <h3>
   2313   <a name="tailcallopt">Tail call optimization</a>
   2314 </h3>
   2315 
   2316 <div>
   2317 
   2318 <p>Tail call optimization, callee reusing the stack of the caller, is currently
   2319    supported on x86/x86-64 and PowerPC. It is performed if:</p>
   2320 
   2321 <ul>
   2322   <li>Caller and callee have the calling convention <tt>fastcc</tt> or
   2323        <tt>cc 10</tt> (GHC call convention).</li>
   2324 
   2325   <li>The call is a tail call - in tail position (ret immediately follows call
   2326       and ret uses value of call or is void).</li>
   2327 
   2328   <li>Option <tt>-tailcallopt</tt> is enabled.</li>
   2329 
   2330   <li>Platform specific constraints are met.</li>
   2331 </ul>
   2332 
   2333 <p>x86/x86-64 constraints:</p>
   2334 
   2335 <ul>
   2336   <li>No variable argument lists are used.</li>
   2337 
   2338   <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
   2339   = hidden or protected) are supported.</li>
   2340 </ul>
   2341 
   2342 <p>PowerPC constraints:</p>
   2343 
   2344 <ul>
   2345   <li>No variable argument lists are used.</li>
   2346 
   2347   <li>No byval parameters are used.</li>
   2348 
   2349   <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
   2350 </ul>
   2351 
   2352 <p>Example:</p>
   2353 
   2354 <p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>
   2355 
   2356 <div class="doc_code">
   2357 <pre>
   2358 declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
   2359 
   2360 define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
   2361   %l1 = add i32 %in1, %in2
   2362   %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
   2363   ret i32 %tmp
   2364 }
   2365 </pre>
   2366 </div>
   2367 
   2368 <p>Implications of <tt>-tailcallopt</tt>:</p>
   2369 
   2370 <p>To support tail call optimization in situations where the callee has more
   2371    arguments than the caller a 'callee pops arguments' convention is used. This
   2372    currently causes each <tt>fastcc</tt> call that is not tail call optimized
   2373    (because one or more of above constraints are not met) to be followed by a
   2374    readjustment of the stack. So performance might be worse in such cases.</p>
   2375 
   2376 </div>
   2377 <!-- ======================================================================= -->
   2378 <h3>
   2379   <a name="sibcallopt">Sibling call optimization</a>
   2380 </h3>
   2381 
   2382 <div>
   2383 
   2384 <p>Sibling call optimization is a restricted form of tail call optimization.
   2385    Unlike tail call optimization described in the previous section, it can be
   2386    performed automatically on any tail calls when <tt>-tailcallopt</tt> option
   2387    is not specified.</p>
   2388 
   2389 <p>Sibling call optimization is currently performed on x86/x86-64 when the
   2390    following constraints are met:</p>
   2391 
   2392 <ul>
   2393   <li>Caller and callee have the same calling convention. It can be either
   2394       <tt>c</tt> or <tt>fastcc</tt>.
   2395 
   2396   <li>The call is a tail call - in tail position (ret immediately follows call
   2397       and ret uses value of call or is void).</li>
   2398 
   2399   <li>Caller and callee have matching return type or the callee result is not
   2400       used.
   2401 
   2402   <li>If any of the callee arguments are being passed in stack, they must be
   2403       available in caller's own incoming argument stack and the frame offsets
   2404       must be the same.
   2405 </ul>
   2406 
   2407 <p>Example:</p>
   2408 <div class="doc_code">
   2409 <pre>
   2410 declare i32 @bar(i32, i32)
   2411 
   2412 define i32 @foo(i32 %a, i32 %b, i32 %c) {
   2413 entry:
   2414   %0 = tail call i32 @bar(i32 %a, i32 %b)
   2415   ret i32 %0
   2416 }
   2417 </pre>
   2418 </div>
   2419 
   2420 </div>
   2421 <!-- ======================================================================= -->
   2422 <h3>
   2423   <a name="x86">The X86 backend</a>
   2424 </h3>
   2425 
   2426 <div>
   2427 
   2428 <p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory.  This
   2429    code generator is capable of targeting a variety of x86-32 and x86-64
   2430    processors, and includes support for ISA extensions such as MMX and SSE.</p>
   2431 
   2432 <!-- _______________________________________________________________________ -->
   2433 <h4>
   2434   <a name="x86_tt">X86 Target Triples supported</a>
   2435 </h4>
   2436 
   2437 <div>
   2438 
   2439 <p>The following are the known target triples that are supported by the X86
   2440    backend.  This is not an exhaustive list, and it would be useful to add those
   2441    that people test.</p>
   2442 
   2443 <ul>
   2444   <li><b>i686-pc-linux-gnu</b> &mdash; Linux</li>
   2445 
   2446   <li><b>i386-unknown-freebsd5.3</b> &mdash; FreeBSD 5.3</li>
   2447 
   2448   <li><b>i686-pc-cygwin</b> &mdash; Cygwin on Win32</li>
   2449 
   2450   <li><b>i686-pc-mingw32</b> &mdash; MingW on Win32</li>
   2451 
   2452   <li><b>i386-pc-mingw32msvc</b> &mdash; MingW crosscompiler on Linux</li>
   2453 
   2454   <li><b>i686-apple-darwin*</b> &mdash; Apple Darwin on X86</li>
   2455 
   2456   <li><b>x86_64-unknown-linux-gnu</b> &mdash; Linux</li>
   2457 </ul>
   2458 
   2459 </div>
   2460 
   2461 <!-- _______________________________________________________________________ -->
   2462 <h4>
   2463   <a name="x86_cc">X86 Calling Conventions supported</a>
   2464 </h4>
   2465 
   2466 
   2467 <div>
   2468 
   2469 <p>The following target-specific calling conventions are known to backend:</p>
   2470 
   2471 <ul>
   2472 <li><b>x86_StdCall</b> &mdash; stdcall calling convention seen on Microsoft
   2473     Windows platform (CC ID = 64).</li>
   2474 <li><b>x86_FastCall</b> &mdash; fastcall calling convention seen on Microsoft
   2475     Windows platform (CC ID = 65).</li>
   2476 <li><b>x86_ThisCall</b> &mdash; Similar to X86_StdCall. Passes first argument
   2477     in ECX,  others via stack. Callee is responsible for stack cleaning. This
   2478     convention is used by MSVC by default for methods in its ABI
   2479     (CC ID = 70).</li>
   2480 </ul>
   2481 
   2482 </div>
   2483 
   2484 <!-- _______________________________________________________________________ -->
   2485 <h4>
   2486   <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
   2487 </h4>
   2488 
   2489 <div>
   2490 
   2491 <p>The x86 has a very flexible way of accessing memory.  It is capable of
   2492    forming memory addresses of the following expression directly in integer
   2493    instructions (which use ModR/M addressing):</p>
   2494 
   2495 <div class="doc_code">
   2496 <pre>
   2497 SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
   2498 </pre>
   2499 </div>
   2500 
   2501 <p>In order to represent this, LLVM tracks no less than 5 operands for each
   2502    memory operand of this form.  This means that the "load" form of
   2503    '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>
   2504 
   2505 <div class="doc_code">
   2506 <pre>
   2507 Index:        0     |    1        2       3           4          5
   2508 Meaning:   DestReg, | BaseReg,  Scale, IndexReg, Displacement Segment
   2509 OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg,   SignExtImm  PhysReg
   2510 </pre>
   2511 </div>
   2512 
   2513 <p>Stores, and all other instructions, treat the four memory operands in the
   2514    same way and in the same order.  If the segment register is unspecified
   2515    (regno = 0), then no segment override is generated.  "Lea" operations do not
   2516    have a segment register specified, so they only have 4 operands for their
   2517    memory reference.</p>
   2518 
   2519 </div>
   2520 
   2521 <!-- _______________________________________________________________________ -->
   2522 <h4>
   2523   <a name="x86_memory">X86 address spaces supported</a>
   2524 </h4>
   2525 
   2526 <div>
   2527 
   2528 <p>x86 has a feature which provides
   2529    the ability to perform loads and stores to different address spaces
   2530    via the x86 segment registers.  A segment override prefix byte on an
   2531    instruction causes the instruction's memory access to go to the specified
   2532    segment.  LLVM address space 0 is the default address space, which includes
   2533    the stack, and any unqualified memory accesses in a program.  Address spaces
   2534    1-255 are currently reserved for user-defined code.  The GS-segment is
   2535    represented by address space 256, while the FS-segment is represented by 
   2536    address space 257. Other x86 segments have yet to be allocated address space
   2537    numbers.</p>
   2538 
   2539 <p>While these address spaces may seem similar to TLS via the
   2540    <tt>thread_local</tt> keyword, and often use the same underlying hardware,
   2541    there are some fundamental differences.</p>
   2542 
   2543 <p>The <tt>thread_local</tt> keyword applies to global variables and
   2544    specifies that they are to be allocated in thread-local memory. There are
   2545    no type qualifiers involved, and these variables can be pointed to with
   2546    normal pointers and accessed with normal loads and stores.
   2547    The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
   2548    level (though LLVM doesn't yet have implementations of it for some
   2549    configurations).<p>
   2550 
   2551 <p>Special address spaces, in contrast, apply to static types. Every
   2552    load and store has a particular address space in its address operand type,
   2553    and this is what determines which address space is accessed.
   2554    LLVM ignores these special address space qualifiers on global variables,
   2555    and does not provide a way to directly allocate storage in them.
   2556    At the LLVM IR level, the behavior of these special address spaces depends
   2557    in part on the underlying OS or runtime environment, and they are specific
   2558    to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>
   2559 
   2560 <p>Some operating systems and runtime environments use (or may in the future
   2561    use) the FS/GS-segment registers for various low-level purposes, so care
   2562    should be taken when considering them.</p>
   2563 
   2564 </div>
   2565 
   2566 <!-- _______________________________________________________________________ -->
   2567 <h4>
   2568   <a name="x86_names">Instruction naming</a>
   2569 </h4>
   2570 
   2571 <div>
   2572 
   2573 <p>An instruction name consists of the base name, a default operand size, and a
   2574    a character per operand with an optional special size. For example:</p>
   2575 
   2576 <div class="doc_code">
   2577 <pre>
   2578 ADD8rr      -&gt; add, 8-bit register, 8-bit register
   2579 IMUL16rmi   -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate
   2580 IMUL16rmi8  -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate
   2581 MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
   2582 </pre>
   2583 </div>
   2584 
   2585 </div>
   2586 
   2587 </div>
   2588 
   2589 <!-- ======================================================================= -->
   2590 <h3>
   2591   <a name="ppc">The PowerPC backend</a>
   2592 </h3>
   2593 
   2594 <div>
   2595 
   2596 <p>The PowerPC code generator lives in the lib/Target/PowerPC directory.  The
   2597    code generation is retargetable to several variations or <i>subtargets</i> of
   2598    the PowerPC ISA; including ppc32, ppc64 and altivec.</p>
   2599 
   2600 <!-- _______________________________________________________________________ -->
   2601 <h4>
   2602   <a name="ppc_abi">LLVM PowerPC ABI</a>
   2603 </h4>
   2604 
   2605 <div>
   2606 
   2607 <p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
   2608    relative (PIC) or static addressing for accessing global values, so no TOC
   2609    (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
   2610    of a stack frame.  LLVM takes advantage of having no TOC to provide space to
   2611    save the frame pointer in the PowerPC linkage area of the caller frame.
   2612    Other details of PowerPC ABI can be found at <a href=
   2613    "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
   2614    >PowerPC ABI.</a> Note: This link describes the 32 bit ABI.  The 64 bit ABI
   2615    is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
   2616    for system use.</p>
   2617 
   2618 </div>
   2619 
   2620 <!-- _______________________________________________________________________ -->
   2621 <h4>
   2622   <a name="ppc_frame">Frame Layout</a>
   2623 </h4>
   2624 
   2625 <div>
   2626 
   2627 <p>The size of a PowerPC frame is usually fixed for the duration of a
   2628    function's invocation.  Since the frame is fixed size, all references
   2629    into the frame can be accessed via fixed offsets from the stack pointer.  The
   2630    exception to this is when dynamic alloca or variable sized arrays are
   2631    present, then a base pointer (r31) is used as a proxy for the stack pointer
   2632    and stack pointer is free to grow or shrink.  A base pointer is also used if
   2633    llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
   2634    always aligned to 16 bytes, so that space allocated for altivec vectors will
   2635    be properly aligned.</p>
   2636 
   2637 <p>An invocation frame is laid out as follows (low memory at top);</p>
   2638 
   2639 <table class="layout">
   2640   <tr>
   2641     <td>Linkage<br><br></td>
   2642   </tr>
   2643   <tr>
   2644     <td>Parameter area<br><br></td>
   2645   </tr>
   2646   <tr>
   2647     <td>Dynamic area<br><br></td>
   2648   </tr>
   2649   <tr>
   2650     <td>Locals area<br><br></td>
   2651   </tr>
   2652   <tr>
   2653     <td>Saved registers area<br><br></td>
   2654   </tr>
   2655   <tr style="border-style: none hidden none hidden;">
   2656     <td><br></td>
   2657   </tr>
   2658   <tr>
   2659     <td>Previous Frame<br><br></td>
   2660   </tr>
   2661 </table>
   2662 
   2663 <p>The <i>linkage</i> area is used by a callee to save special registers prior
   2664    to allocating its own frame.  Only three entries are relevant to LLVM. The
   2665    first entry is the previous stack pointer (sp), aka link.  This allows
   2666    probing tools like gdb or exception handlers to quickly scan the frames in
   2667    the stack.  A function epilog can also use the link to pop the frame from the
   2668    stack.  The third entry in the linkage area is used to save the return
   2669    address from the lr register. Finally, as mentioned above, the last entry is
   2670    used to save the previous frame pointer (r31.)  The entries in the linkage
   2671    area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
   2672    mode and 48 bytes in 64 bit mode.</p>
   2673 
   2674 <p>32 bit linkage area</p>
   2675 
   2676 <table class="layout">
   2677   <tr>
   2678     <td>0</td>
   2679     <td>Saved SP (r1)</td>
   2680   </tr>
   2681   <tr>
   2682     <td>4</td>
   2683     <td>Saved CR</td>
   2684   </tr>
   2685   <tr>
   2686     <td>8</td>
   2687     <td>Saved LR</td>
   2688   </tr>
   2689   <tr>
   2690     <td>12</td>
   2691     <td>Reserved</td>
   2692   </tr>
   2693   <tr>
   2694     <td>16</td>
   2695     <td>Reserved</td>
   2696   </tr>
   2697   <tr>
   2698     <td>20</td>
   2699     <td>Saved FP (r31)</td>
   2700   </tr>
   2701 </table>
   2702 
   2703 <p>64 bit linkage area</p>
   2704 
   2705 <table class="layout">
   2706   <tr>
   2707     <td>0</td>
   2708     <td>Saved SP (r1)</td>
   2709   </tr>
   2710   <tr>
   2711     <td>8</td>
   2712     <td>Saved CR</td>
   2713   </tr>
   2714   <tr>
   2715     <td>16</td>
   2716     <td>Saved LR</td>
   2717   </tr>
   2718   <tr>
   2719     <td>24</td>
   2720     <td>Reserved</td>
   2721   </tr>
   2722   <tr>
   2723     <td>32</td>
   2724     <td>Reserved</td>
   2725   </tr>
   2726   <tr>
   2727     <td>40</td>
   2728     <td>Saved FP (r31)</td>
   2729   </tr>
   2730 </table>
   2731 
   2732 <p>The <i>parameter area</i> is used to store arguments being passed to a callee
   2733    function.  Following the PowerPC ABI, the first few arguments are actually
   2734    passed in registers, with the space in the parameter area unused.  However,
   2735    if there are not enough registers or the callee is a thunk or vararg
   2736    function, these register arguments can be spilled into the parameter area.
   2737    Thus, the parameter area must be large enough to store all the parameters for
   2738    the largest call sequence made by the caller.  The size must also be
   2739    minimally large enough to spill registers r3-r10.  This allows callees blind
   2740    to the call signature, such as thunks and vararg functions, enough space to
   2741    cache the argument registers.  Therefore, the parameter area is minimally 32
   2742    bytes (64 bytes in 64 bit mode.)  Also note that since the parameter area is
   2743    a fixed offset from the top of the frame, that a callee can access its spilt
   2744    arguments using fixed offsets from the stack pointer (or base pointer.)</p>
   2745 
   2746 <p>Combining the information about the linkage, parameter areas and alignment. A
   2747    stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
   2748    mode.</p>
   2749 
   2750 <p>The <i>dynamic area</i> starts out as size zero.  If a function uses dynamic
   2751    alloca then space is added to the stack, the linkage and parameter areas are
   2752    shifted to top of stack, and the new space is available immediately below the
   2753    linkage and parameter areas.  The cost of shifting the linkage and parameter
   2754    areas is minor since only the link value needs to be copied.  The link value
   2755    can be easily fetched by adding the original frame size to the base pointer.
   2756    Note that allocations in the dynamic space need to observe 16 byte
   2757    alignment.</p>
   2758 
   2759 <p>The <i>locals area</i> is where the llvm compiler reserves space for local
   2760    variables.</p>
   2761 
   2762 <p>The <i>saved registers area</i> is where the llvm compiler spills callee
   2763    saved registers on entry to the callee.</p>
   2764 
   2765 </div>
   2766 
   2767 <!-- _______________________________________________________________________ -->
   2768 <h4>
   2769   <a name="ppc_prolog">Prolog/Epilog</a>
   2770 </h4>
   2771 
   2772 <div>
   2773 
   2774 <p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
   2775    the following exceptions.  Callee saved registers are spilled after the frame
   2776    is created.  This allows the llvm epilog/prolog support to be common with
   2777    other targets.  The base pointer callee saved register r31 is saved in the
   2778    TOC slot of linkage area.  This simplifies allocation of space for the base
   2779    pointer and makes it convenient to locate programatically and during
   2780    debugging.</p>
   2781 
   2782 </div>
   2783 
   2784 <!-- _______________________________________________________________________ -->
   2785 <h4>
   2786   <a name="ppc_dynamic">Dynamic Allocation</a>
   2787 </h4>
   2788 
   2789 <div>
   2790 
   2791 <p><i>TODO - More to come.</i></p>
   2792 
   2793 </div>
   2794 
   2795 </div>
   2796 
   2797 </div>
   2798 
   2799 <!-- *********************************************************************** -->
   2800 <hr>
   2801 <address>
   2802   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   2803   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   2804   <a href="http://validator.w3.org/check/referer"><img
   2805   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   2806 
   2807   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   2808   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   2809   Last modified: $Date$
   2810 </address>
   2811 
   2812 </body>
   2813 </html>
   2814