Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>Exception Handling in LLVM</title>
      6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      7   <meta name="description"
      8         content="Exception Handling in LLVM.">
      9   <link rel="stylesheet" href="llvm.css" type="text/css">
     10 </head>
     11 
     12 <body>
     13 
     14 <h1>Exception Handling in LLVM</h1>
     15 
     16 <table class="layout" style="width:100%">
     17   <tr class="layout">
     18     <td class="left">
     19 <ul>
     20   <li><a href="#introduction">Introduction</a>
     21   <ol>
     22     <li><a href="#itanium">Itanium ABI Zero-cost Exception Handling</a></li>
     23     <li><a href="#sjlj">Setjmp/Longjmp Exception Handling</a></li>
     24     <li><a href="#overview">Overview</a></li>
     25   </ol></li>
     26   <li><a href="#codegen">LLVM Code Generation</a>
     27   <ol>
     28     <li><a href="#throw">Throw</a></li>
     29     <li><a href="#try_catch">Try/Catch</a></li>
     30     <li><a href="#cleanups">Cleanups</a></li>
     31     <li><a href="#throw_filters">Throw Filters</a></li>
     32     <li><a href="#restrictions">Restrictions</a></li>
     33   </ol></li>
     34   <li><a href="#format_common_intrinsics">Exception Handling Intrinsics</a>
     35   <ol>
     36   	<li><a href="#llvm_eh_exception"><tt>llvm.eh.exception</tt></a></li>
     37   	<li><a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a></li>
     38   	<li><a href="#llvm_eh_resume"><tt>llvm.eh.resume</tt></a></li>
     39   	<li><a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a></li>
     40   	<li><a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a></li>
     41   	<li><a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a></li>
     42   	<li><a href="#llvm_eh_sjlj_lsda"><tt>llvm.eh.sjlj.lsda</tt></a></li>
     43   	<li><a href="#llvm_eh_sjlj_callsite"><tt>llvm.eh.sjlj.callsite</tt></a></li>
     44   	<li><a href="#llvm_eh_sjlj_dispatchsetup"><tt>llvm.eh.sjlj.dispatchsetup</tt></a></li>
     45   </ol></li>
     46   <li><a href="#asm">Asm Table Formats</a>
     47   <ol>
     48     <li><a href="#unwind_tables">Exception Handling Frame</a></li>
     49     <li><a href="#exception_tables">Exception Tables</a></li>
     50   </ol></li>
     51   <li><a href="#todo">ToDo</a></li>
     52 </ul>
     53 </td>
     54 </tr></table>
     55 
     56 <div class="doc_author">
     57   <p>Written by <a href="mailto:jlaskey (a] mac.com">Jim Laskey</a></p>
     58 </div>
     59 
     60 
     61 <!-- *********************************************************************** -->
     62 <h2><a name="introduction">Introduction</a></h2>
     63 <!-- *********************************************************************** -->
     64 
     65 <div>
     66 
     67 <p>This document is the central repository for all information pertaining to
     68    exception handling in LLVM.  It describes the format that LLVM exception
     69    handling information takes, which is useful for those interested in creating
     70    front-ends or dealing directly with the information.  Further, this document
     71    provides specific examples of what exception handling information is used for
     72    in C/C++.</p>
     73 
     74 <!-- ======================================================================= -->
     75 <h3>
     76   <a name="itanium">Itanium ABI Zero-cost Exception Handling</a>
     77 </h3>
     78 
     79 <div>
     80 
     81 <p>Exception handling for most programming languages is designed to recover from
     82    conditions that rarely occur during general use of an application.  To that
     83    end, exception handling should not interfere with the main flow of an
     84    application's algorithm by performing checkpointing tasks, such as saving the
     85    current pc or register state.</p>
     86 
     87 <p>The Itanium ABI Exception Handling Specification defines a methodology for
     88    providing outlying data in the form of exception tables without inlining
     89    speculative exception handling code in the flow of an application's main
     90    algorithm.  Thus, the specification is said to add "zero-cost" to the normal
     91    execution of an application.</p>
     92 
     93 <p>A more complete description of the Itanium ABI exception handling runtime
     94    support of can be found at
     95    <a href="http://www.codesourcery.com/cxx-abi/abi-eh.html">Itanium C++ ABI:
     96    Exception Handling</a>. A description of the exception frame format can be
     97    found at
     98    <a href="http://refspecs.freestandards.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html">Exception
     99    Frames</a>, with details of the DWARF 3 specification at
    100    <a href="http://www.eagercon.com/dwarf/dwarf3std.htm">DWARF 3 Standard</a>.
    101    A description for the C++ exception table formats can be found at
    102    <a href="http://www.codesourcery.com/cxx-abi/exceptions.pdf">Exception Handling
    103    Tables</a>.</p>
    104 
    105 </div>
    106 
    107 <!-- ======================================================================= -->
    108 <h3>
    109   <a name="sjlj">Setjmp/Longjmp Exception Handling</a>
    110 </h3>
    111 
    112 <div>
    113 
    114 <p>Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics
    115    <a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a> and
    116    <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a> to
    117    handle control flow for exception handling.</p>
    118 
    119 <p>For each function which does exception processing, be it try/catch blocks
    120    or cleanups, that function registers itself on a global frame list. When
    121    exceptions are being unwound, the runtime uses this list to identify which
    122    functions need processing.<p>
    123 
    124 <p>Landing pad selection is encoded in the call site entry of the function
    125    context. The runtime returns to the function via
    126    <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a>, where
    127    a switch table transfers control to the appropriate landing pad based on
    128    the index stored in the function context.</p>
    129 
    130 <p>In contrast to DWARF exception handling, which encodes exception regions
    131    and frame information in out-of-line tables, SJLJ exception handling
    132    builds and removes the unwind frame context at runtime. This results in
    133    faster exception handling at the expense of slower execution when no
    134    exceptions are thrown. As exceptions are, by their nature, intended for
    135    uncommon code paths, DWARF exception handling is generally preferred to
    136    SJLJ.</p>
    137 </div>
    138 
    139 <!-- ======================================================================= -->
    140 <h3>
    141   <a name="overview">Overview</a>
    142 </h3>
    143 
    144 <div>
    145 
    146 <p>When an exception is thrown in LLVM code, the runtime does its best to find a
    147    handler suited to processing the circumstance.</p>
    148 
    149 <p>The runtime first attempts to find an <i>exception frame</i> corresponding to
    150    the function where the exception was thrown.  If the programming language
    151    (e.g. C++) supports exception handling, the exception frame contains a
    152    reference to an exception table describing how to process the exception.  If
    153    the language (e.g. C) does not support exception handling, or if the
    154    exception needs to be forwarded to a prior activation, the exception frame
    155    contains information about how to unwind the current activation and restore
    156    the state of the prior activation.  This process is repeated until the
    157    exception is handled.  If the exception is not handled and no activations
    158    remain, then the application is terminated with an appropriate error
    159    message.</p>
    160 
    161 <p>Because different programming languages have different behaviors when
    162    handling exceptions, the exception handling ABI provides a mechanism for
    163    supplying <i>personalities.</i> An exception handling personality is defined
    164    by way of a <i>personality function</i> (e.g. <tt>__gxx_personality_v0</tt>
    165    in C++), which receives the context of the exception, an <i>exception
    166    structure</i> containing the exception object type and value, and a reference
    167    to the exception table for the current function.  The personality function
    168    for the current compile unit is specified in a <i>common exception
    169    frame</i>.</p>
    170 
    171 <p>The organization of an exception table is language dependent.  For C++, an
    172    exception table is organized as a series of code ranges defining what to do
    173    if an exception occurs in that range.  Typically, the information associated
    174    with a range defines which types of exception objects (using C++ <i>type
    175    info</i>) that are handled in that range, and an associated action that
    176    should take place.  Actions typically pass control to a <i>landing
    177    pad</i>.</p>
    178 
    179 <p>A landing pad corresponds to the code found in the <i>catch</i> portion of
    180    a <i>try</i>/<i>catch</i> sequence.  When execution resumes at a landing
    181    pad, it receives the exception structure and a selector corresponding to
    182    the <i>type</i> of exception thrown.  The selector is then used to determine
    183    which <i>catch</i> should actually process the exception.</p>
    184 
    185 </div>
    186 
    187 </div>
    188 
    189 <!-- ======================================================================= -->
    190 <h2>
    191   <a name="codegen">LLVM Code Generation</a>
    192 </h2>
    193 
    194 <div>
    195 
    196 <p>At the time of this writing, only C++ exception handling support is available
    197    in LLVM.  So the remainder of this document will be somewhat C++-centric.</p>
    198 
    199 <p>From the C++ developers perspective, exceptions are defined in terms of the
    200    <tt>throw</tt> and <tt>try</tt>/<tt>catch</tt> statements.  In this section
    201    we will describe the implementation of LLVM exception handling in terms of
    202    C++ examples.</p>
    203 
    204 <!-- ======================================================================= -->
    205 <h3>
    206   <a name="throw">Throw</a>
    207 </h3>
    208 
    209 <div>
    210 
    211 <p>Languages that support exception handling typically provide a <tt>throw</tt>
    212    operation to initiate the exception process.  Internally, a throw operation
    213    breaks down into two steps.  First, a request is made to allocate exception
    214    space for an exception structure.  This structure needs to survive beyond the
    215    current activation.  This structure will contain the type and value of the
    216    object being thrown.  Second, a call is made to the runtime to raise the
    217    exception, passing the exception structure as an argument.</p>
    218 
    219 <p>In C++, the allocation of the exception structure is done by
    220    the <tt>__cxa_allocate_exception</tt> runtime function.  The exception
    221    raising is handled by <tt>__cxa_throw</tt>.  The type of the exception is
    222    represented using a C++ RTTI structure.</p>
    223 
    224 </div>
    225 
    226 <!-- ======================================================================= -->
    227 <h3>
    228   <a name="try_catch">Try/Catch</a>
    229 </h3>
    230 
    231 <div>
    232 
    233 <p>A call within the scope of a <i>try</i> statement can potentially raise an
    234    exception.  In those circumstances, the LLVM C++ front-end replaces the call
    235    with an <tt>invoke</tt> instruction.  Unlike a call, the <tt>invoke</tt> has
    236    two potential continuation points: where to continue when the call succeeds
    237    as per normal; and where to continue if the call raises an exception, either
    238    by a throw or the unwinding of a throw.</p>
    239 
    240 <p>The term used to define a the place where an <tt>invoke</tt> continues after
    241    an exception is called a <i>landing pad</i>.  LLVM landing pads are
    242    conceptually alternative function entry points where an exception structure
    243    reference and a type info index are passed in as arguments.  The landing pad
    244    saves the exception structure reference and then proceeds to select the catch
    245    block that corresponds to the type info of the exception object.</p>
    246 
    247 <p>Two LLVM intrinsic functions are used to convey information about the landing
    248    pad to the back end.</p>
    249 
    250 <ol>
    251   <li><a href="#llvm_eh_exception"><tt>llvm.eh.exception</tt></a> takes no
    252       arguments and returns a pointer to the exception structure.  This only
    253       returns a sensible value if called after an <tt>invoke</tt> has branched
    254       to a landing pad.  Due to code generation limitations, it must currently
    255       be called in the landing pad itself.</li>
    256 
    257   <li><a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> takes a minimum
    258       of three arguments.  The first argument is the reference to the exception
    259       structure. The second argument is a reference to the personality function
    260       to be used for this <tt>try</tt>/<tt>catch</tt> sequence. Each of the
    261       remaining arguments is either a reference to the type info for
    262       a <tt>catch</tt> statement, a <a href="#throw_filters">filter</a>
    263       expression, or the number zero (<tt>0</tt>) representing
    264       a <a href="#cleanups">cleanup</a>.  The exception is tested against the
    265       arguments sequentially from first to last.  The result of
    266       the <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> is a
    267       positive number if the exception matched a type info, a negative number if
    268       it matched a filter, and zero if it matched a cleanup.  If nothing is
    269       matched, the behaviour of the program
    270       is <a href="#restrictions">undefined</a>.  This only returns a sensible
    271       value if called after an <tt>invoke</tt> has branched to a landing pad.
    272       Due to codegen limitations, it must currently be called in the landing pad
    273       itself.  If a type info matched, then the selector value is the index of
    274       the type info in the exception table, which can be obtained using the
    275       <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a>
    276       intrinsic.</li>
    277 </ol>
    278 
    279 <p>Once the landing pad has the type info selector, the code branches to the
    280    code for the first catch.  The catch then checks the value of the type info
    281    selector against the index of type info for that catch.  Since the type info
    282    index is not known until all the type info have been gathered in the backend,
    283    the catch code will call the
    284    <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a> intrinsic
    285    to determine the index for a given type info.  If the catch fails to match
    286    the selector then control is passed on to the next catch. Note: Since the
    287    landing pad will not be used if there is no match in the list of type info on
    288    the call to <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a>, then
    289    neither the last catch nor <i>catch all</i> need to perform the check
    290    against the selector.</p>
    291 
    292 <p>Finally, the entry and exit of catch code is bracketed with calls
    293    to <tt>__cxa_begin_catch</tt> and <tt>__cxa_end_catch</tt>.</p>
    294 
    295 <ul>
    296   <li><tt>__cxa_begin_catch</tt> takes a exception structure reference as an
    297       argument and returns the value of the exception object.</li>
    298 
    299   <li><tt>__cxa_end_catch</tt> takes no arguments. This function:<br><br>
    300     <ol>
    301       <li>Locates the most recently caught exception and decrements its handler
    302           count,</li>
    303       <li>Removes the exception from the "caught" stack if the handler count
    304           goes to zero, and</li>
    305       <li>Destroys the exception if the handler count goes to zero, and the
    306           exception was not re-thrown by throw.</li>
    307     </ol>
    308     <p>Note: a rethrow from within the catch may replace this call with
    309        a <tt>__cxa_rethrow</tt>.</p></li>
    310 </ul>
    311 
    312 </div>
    313 
    314 <!-- ======================================================================= -->
    315 <h3>
    316   <a name="cleanups">Cleanups</a>
    317 </h3>
    318 
    319 <div>
    320 
    321 <p>A cleanup is extra code which needs to be run as part of unwinding
    322    a scope.  C++ destructors are a prominent example, but other
    323    languages and language extensions provide a variety of different
    324    kinds of cleanup.  In general, a landing pad may need to run
    325    arbitrary amounts of cleanup code before actually entering a catch
    326    block.  To indicate the presence of cleanups, a landing pad's call
    327    to <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> should
    328    end with the argument <tt>i32 0</tt>; otherwise, the unwinder will
    329    not stop at the landing pad if there are no catches or filters that
    330    require it to.</p>
    331 
    332 <p>Do not allow a new exception to propagate out of the execution of a
    333    cleanup.  This can corrupt the internal state of the unwinder.
    334    Different languages describe different high-level semantics for
    335    these situations: for example, C++ requires that the process be
    336    terminated, whereas Ada cancels both exceptions and throws a third.</p>
    337 
    338 <p>When all cleanups have completed, if the exception is not handled
    339    by the current function, resume unwinding by calling the
    340    <a href="#llvm_eh_resume"><tt>llvm.eh.resume</tt></a> intrinsic,
    341    passing in the results of <tt>llvm.eh.exception</tt> and
    342    <tt>llvm.eh.selector</tt> for the original landing pad.</p>
    343 
    344 </div>
    345 
    346 <!-- ======================================================================= -->
    347 <h3>
    348   <a name="throw_filters">Throw Filters</a>
    349 </h3>
    350 
    351 <div>
    352 
    353 <p>C++ allows the specification of which exception types can be thrown from a
    354    function.  To represent this a top level landing pad may exist to filter out
    355    invalid types.  To express this in LLVM code the landing pad will
    356    call <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a>.  The
    357    arguments are a reference to the exception structure, a reference to the
    358    personality function, the length of the filter expression (the number of type
    359    infos plus one), followed by the type infos themselves.
    360    <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> will return a
    361    negative value if the exception does not match any of the type infos.  If no
    362    match is found then a call to <tt>__cxa_call_unexpected</tt> should be made,
    363    otherwise <tt>_Unwind_Resume</tt>.  Each of these functions requires a
    364    reference to the exception structure.  Note that the most general form of an
    365    <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> call can contain
    366    any number of type infos, filter expressions and cleanups (though having more
    367    than one cleanup is pointless).  The LLVM C++ front-end can generate such
    368    <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> calls due to
    369    inlining creating nested exception handling scopes.</p>
    370 
    371 </div>
    372 
    373 <!-- ======================================================================= -->
    374 <h3>
    375   <a name="restrictions">Restrictions</a>
    376 </h3>
    377 
    378 <div>
    379 
    380 <p>The unwinder delegates the decision of whether to stop in a call
    381    frame to that call frame's language-specific personality function.
    382    Not all personalities functions guarantee that they will stop to
    383    perform cleanups: for example, the GNU C++ personality doesn't do
    384    so unless the exception is actually caught somewhere further up the
    385    stack.  When using this personality to implement EH for a language
    386    that guarantees that cleanups will always be run, be sure to
    387    indicate a catch-all in the
    388    <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> call
    389    rather than just cleanups.</p>
    390 
    391 <p>In order for inlining to behave correctly, landing pads must be
    392    prepared to handle selector results that they did not originally
    393    advertise.  Suppose that a function catches exceptions of
    394    type <tt>A</tt>, and it's inlined into a function that catches
    395    exceptions of type <tt>B</tt>.  The inliner will update the
    396    selector for the inlined landing pad to include the fact
    397    that <tt>B</tt> is caught.  If that landing pad assumes that it
    398    will only be entered to catch an <tt>A</tt>, it's in for a rude
    399    surprise.  Consequently, landing pads must test for the selector
    400    results they understand and then resume exception propagation
    401    with the <a href="#llvm_eh_resume"><tt>llvm.eh.resume</tt></a>
    402    intrinsic if none of the conditions match.</p>
    403 
    404 </div>
    405 
    406 </div>
    407 
    408 <!-- ======================================================================= -->
    409 <h2>
    410   <a name="format_common_intrinsics">Exception Handling Intrinsics</a>
    411 </h2>
    412 
    413 <div>
    414 
    415 <p>LLVM uses several intrinsic functions (name prefixed with "llvm.eh") to
    416    provide exception handling information at various points in generated
    417    code.</p>
    418 
    419 <!-- ======================================================================= -->
    420 <h4>
    421   <a name="llvm_eh_exception">llvm.eh.exception</a>
    422 </h4>
    423 
    424 <div>
    425 
    426 <pre>
    427   i8* %<a href="#llvm_eh_exception">llvm.eh.exception</a>()
    428 </pre>
    429 
    430 <p>This intrinsic returns a pointer to the exception structure.</p>
    431 
    432 </div>
    433 
    434 <!-- ======================================================================= -->
    435 <h4>
    436   <a name="llvm_eh_selector">llvm.eh.selector</a>
    437 </h4>
    438 
    439 <div>
    440 
    441 <pre>
    442   i32 %<a href="#llvm_eh_selector">llvm.eh.selector</a>(i8*, i8*, ...)
    443 </pre>
    444 
    445 <p>This intrinsic is used to compare the exception with the given type infos,
    446    filters and cleanups.</p>
    447 
    448 <p><a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> takes a
    449    minimum of three arguments.  The first argument is the reference to
    450    the exception structure. The second argument is a reference to the
    451    personality function to be used for this try catch sequence. Each
    452    of the remaining arguments is either a reference to the type info
    453    for a catch statement, a <a href="#throw_filters">filter</a>
    454    expression, or the number zero representing
    455    a <a href="#cleanups">cleanup</a>.  The exception is tested against
    456    the arguments sequentially from first to last.  The result of
    457    the <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a> is a
    458    positive number if the exception matched a type info, a negative
    459    number if it matched a filter, and zero if it matched a cleanup.
    460    If nothing is matched, or if only a cleanup is matched, different
    461    personality functions may or may not cause control to stop at the
    462    landing pad; see <a href="#restrictions">the restrictions</a> for
    463    more information.  If a type info matched then the selector value
    464    is the index of the type info in the exception table, which can be
    465    obtained using the
    466    <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a> intrinsic.</p>
    467 
    468 <p>If a landing pad containing a call to <tt>llvm.eh.selector</tt> is
    469    inlined into an <tt>invoke</tt> instruction, the selector arguments
    470    for the outer landing pad are appended to those of the inlined
    471    landing pad.  Consequently, landing pads must be written to ignore
    472    selector values that they did not originally advertise.</p>
    473 
    474 </div>
    475 
    476 <!-- ======================================================================= -->
    477 <h4>
    478   <a name="llvm_eh_typeid_for">llvm.eh.typeid.for</a>
    479 </h4>
    480 
    481 <div>
    482 
    483 <pre>
    484   i32 %<a href="#llvm_eh_typeid_for">llvm.eh.typeid.for</a>(i8*)
    485 </pre>
    486 
    487 <p>This intrinsic returns the type info index in the exception table of the
    488    current function.  This value can be used to compare against the result
    489    of <a href="#llvm_eh_selector"><tt>llvm.eh.selector</tt></a>.  The single
    490    argument is a reference to a type info.</p>
    491 
    492 </div>
    493 
    494 <!-- ======================================================================= -->
    495 <h4>
    496   <a name="llvm_eh_resume">llvm.eh.resume</a>
    497 </h4>
    498 
    499 <div>
    500 
    501 <pre>
    502   void %<a href="#llvm_eh_resume">llvm.eh.resume</a>(i8*, i32) noreturn
    503 </pre>
    504 
    505 <p>This intrinsic is used to resume propagation of an exception after
    506    landing at a landing pad.  The first argument should be the result
    507    of <a href="#llvm_eh_exception">llvm.eh.exception</a> for that
    508    landing pad, and the second argument should be the result of
    509    <a href="#llvm_eh_selector">llvm.eh.selector</a>.  When a call to
    510    this intrinsic is inlined into an invoke, the call is transformed
    511    into a branch to the invoke's unwind destination, using its
    512    arguments in place of the calls
    513    to <a href="#llvm_eh_exception">llvm.eh.exception</a> and
    514    <a href="#llvm_eh_selector">llvm.eh.selector</a> there.</p>
    515 
    516 <p>This intrinsic is not implicitly <tt>nounwind</tt>; calls to it
    517    will always throw.  It may not be invoked.</p>
    518 
    519 </div>
    520 
    521 <!-- ======================================================================= -->
    522 <h4>
    523   <a name="llvm_eh_sjlj_setjmp">llvm.eh.sjlj.setjmp</a>
    524 </h4>
    525 
    526 <div>
    527 
    528 <pre>
    529   i32 %<a href="#llvm_eh_sjlj_setjmp">llvm.eh.sjlj.setjmp</a>(i8*)
    530 </pre>
    531 
    532 <p>The SJLJ exception handling uses this intrinsic to force register saving for
    533    the current function and to store the address of the following instruction
    534    for use as a destination address by <a href="#llvm_eh_sjlj_longjmp">
    535    <tt>llvm.eh.sjlj.longjmp</tt></a>. The buffer format and the overall
    536    functioning of this intrinsic is compatible with the GCC
    537    <tt>__builtin_setjmp</tt> implementation, allowing code built with the
    538    two compilers to interoperate.</p>
    539 
    540 <p>The single parameter is a pointer to a five word buffer in which the calling
    541    context is saved. The front end places the frame pointer in the first word,
    542    and the target implementation of this intrinsic should place the destination
    543    address for a
    544    <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a> in the
    545    second word. The following three words are available for use in a
    546    target-specific manner.</p>
    547 
    548 </div>
    549 
    550 <!-- ======================================================================= -->
    551 <h4>
    552   <a name="llvm_eh_sjlj_longjmp">llvm.eh.sjlj.longjmp</a>
    553 </h4>
    554 
    555 <div>
    556 
    557 <pre>
    558   void %<a href="#llvm_eh_sjlj_longjmp">llvm.eh.sjlj.setjmp</a>(i8*)
    559 </pre>
    560 
    561 <p>The <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a>
    562    intrinsic is used to implement <tt>__builtin_longjmp()</tt> for SJLJ
    563    style exception handling. The single parameter is a pointer to a
    564    buffer populated by <a href="#llvm_eh_sjlj_setjmp">
    565      <tt>llvm.eh.sjlj.setjmp</tt></a>. The frame pointer and stack pointer
    566    are restored from the buffer, then control is transferred to the
    567    destination address.</p>
    568 
    569 </div>
    570 <!-- ======================================================================= -->
    571 <h4>
    572   <a name="llvm_eh_sjlj_lsda">llvm.eh.sjlj.lsda</a>
    573 </h4>
    574 
    575 <div>
    576 
    577 <pre>
    578   i8* %<a href="#llvm_eh_sjlj_lsda">llvm.eh.sjlj.lsda</a>()
    579 </pre>
    580 
    581 <p>Used for SJLJ based exception handling, the <a href="#llvm_eh_sjlj_lsda">
    582    <tt>llvm.eh.sjlj.lsda</tt></a> intrinsic returns the address of the Language
    583    Specific Data Area (LSDA) for the current function. The SJLJ front-end code
    584    stores this address in the exception handling function context for use by the
    585    runtime.</p>
    586 
    587 </div>
    588 
    589 <!-- ======================================================================= -->
    590 <h4>
    591   <a name="llvm_eh_sjlj_callsite">llvm.eh.sjlj.callsite</a>
    592 </h4>
    593 
    594 <div>
    595 
    596 <pre>
    597   void %<a href="#llvm_eh_sjlj_callsite">llvm.eh.sjlj.callsite</a>(i32)
    598 </pre>
    599 
    600 <p>For SJLJ based exception handling, the <a href="#llvm_eh_sjlj_callsite">
    601   <tt>llvm.eh.sjlj.callsite</tt></a> intrinsic identifies the callsite value
    602   associated with the following invoke instruction. This is used to ensure
    603   that landing pad entries in the LSDA are generated in the matching order.</p>
    604 
    605 </div>
    606 
    607 <!-- ======================================================================= -->
    608 <h4>
    609   <a name="llvm_eh_sjlj_dispatchsetup">llvm.eh.sjlj.dispatchsetup</a>
    610 </h4>
    611 
    612 <div>
    613 
    614 <pre>
    615   void %<a href="#llvm_eh_sjlj_dispatchsetup">llvm.eh.sjlj.dispatchsetup</a>(i32)
    616 </pre>
    617 
    618 <p>For SJLJ based exception handling, the <a href="#llvm_eh_sjlj_dispatchsetup">
    619   <tt>llvm.eh.sjlj.dispatchsetup</tt></a> intrinsic is used by targets to do
    620   any unwind-edge setup they need. By default, no action is taken.  </p>
    621 
    622 </div>
    623 
    624 </div>
    625 
    626 <!-- ======================================================================= -->
    627 <h2>
    628   <a name="asm">Asm Table Formats</a>
    629 </h2>
    630 
    631 <div>
    632 
    633 <p>There are two tables that are used by the exception handling runtime to
    634    determine which actions should take place when an exception is thrown.</p>
    635 
    636 <!-- ======================================================================= -->
    637 <h3>
    638   <a name="unwind_tables">Exception Handling Frame</a>
    639 </h3>
    640 
    641 <div>
    642 
    643 <p>An exception handling frame <tt>eh_frame</tt> is very similar to the unwind
    644    frame used by dwarf debug info.  The frame contains all the information
    645    necessary to tear down the current frame and restore the state of the prior
    646    frame.  There is an exception handling frame for each function in a compile
    647    unit, plus a common exception handling frame that defines information common
    648    to all functions in the unit.</p>
    649 
    650 <p>Todo - Table details here.</p>
    651 
    652 </div>
    653 
    654 <!-- ======================================================================= -->
    655 <h3>
    656   <a name="exception_tables">Exception Tables</a>
    657 </h3>
    658 
    659 <div>
    660 
    661 <p>An exception table contains information about what actions to take when an
    662    exception is thrown in a particular part of a function's code.  There is one
    663    exception table per function except leaf routines and functions that have
    664    only calls to non-throwing functions will not need an exception table.</p>
    665 
    666 <p>Todo - Table details here.</p>
    667 
    668 </div>
    669 
    670 </div>
    671 
    672 <!-- ======================================================================= -->
    673 <h2>
    674   <a name="todo">ToDo</a>
    675 </h2>
    676 
    677 <div>
    678 
    679 <ol>
    680 
    681   <li>Testing/Testing/Testing.</li>
    682 
    683 </ol>
    684 
    685 </div>
    686 
    687 <!-- *********************************************************************** -->
    688 
    689 <hr>
    690 <address>
    691   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
    692   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
    693   <a href="http://validator.w3.org/check/referer"><img
    694   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
    695 
    696   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
    697   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
    698   Last modified: $Date$
    699 </address>
    700 
    701 </body>
    702 </html>
    703