Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>LLVM Assembly Language Reference Manual</title>
      6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      7   <meta name="author" content="Chris Lattner">
      8   <meta name="description"
      9   content="LLVM Assembly Language Reference Manual.">
     10   <link rel="stylesheet" href="llvm.css" type="text/css">
     11 </head>
     12 
     13 <body>
     14 
     15 <h1>LLVM Language Reference Manual</h1>
     16 <ol>
     17   <li><a href="#abstract">Abstract</a></li>
     18   <li><a href="#introduction">Introduction</a></li>
     19   <li><a href="#identifiers">Identifiers</a></li>
     20   <li><a href="#highlevel">High Level Structure</a>
     21     <ol>
     22       <li><a href="#modulestructure">Module Structure</a></li>
     23       <li><a href="#linkage">Linkage Types</a>
     24         <ol>
     25           <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
     26           <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
     27           <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
     28           <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
     29           <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
     30           <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
     31           <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
     32           <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
     33           <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
     34           <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
     35           <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
     36           <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
     37           <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
     38           <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
     39           <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
     40           <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
     41         </ol>
     42       </li>
     43       <li><a href="#callingconv">Calling Conventions</a></li>
     44       <li><a href="#namedtypes">Named Types</a></li>
     45       <li><a href="#globalvars">Global Variables</a></li>
     46       <li><a href="#functionstructure">Functions</a></li>
     47       <li><a href="#aliasstructure">Aliases</a></li>
     48       <li><a href="#namedmetadatastructure">Named Metadata</a></li>
     49       <li><a href="#paramattrs">Parameter Attributes</a></li>
     50       <li><a href="#fnattrs">Function Attributes</a></li>
     51       <li><a href="#gc">Garbage Collector Names</a></li>
     52       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
     53       <li><a href="#datalayout">Data Layout</a></li>
     54       <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
     55       <li><a href="#volatile">Volatile Memory Accesses</a></li>
     56     </ol>
     57   </li>
     58   <li><a href="#typesystem">Type System</a>
     59     <ol>
     60       <li><a href="#t_classifications">Type Classifications</a></li>
     61       <li><a href="#t_primitive">Primitive Types</a>
     62         <ol>
     63           <li><a href="#t_integer">Integer Type</a></li>
     64           <li><a href="#t_floating">Floating Point Types</a></li>
     65           <li><a href="#t_x86mmx">X86mmx Type</a></li>
     66           <li><a href="#t_void">Void Type</a></li>
     67           <li><a href="#t_label">Label Type</a></li>
     68           <li><a href="#t_metadata">Metadata Type</a></li>
     69         </ol>
     70       </li>
     71       <li><a href="#t_derived">Derived Types</a>
     72         <ol>
     73           <li><a href="#t_aggregate">Aggregate Types</a>
     74             <ol>
     75               <li><a href="#t_array">Array Type</a></li>
     76               <li><a href="#t_struct">Structure Type</a></li>
     77               <li><a href="#t_opaque">Opaque Type</a></li>
     78               <li><a href="#t_vector">Vector Type</a></li>
     79             </ol>
     80           </li>
     81           <li><a href="#t_function">Function Type</a></li>
     82           <li><a href="#t_pointer">Pointer Type</a></li>
     83         </ol>
     84       </li>
     85     </ol>
     86   </li>
     87   <li><a href="#constants">Constants</a>
     88     <ol>
     89       <li><a href="#simpleconstants">Simple Constants</a></li>
     90       <li><a href="#complexconstants">Complex Constants</a></li>
     91       <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
     92       <li><a href="#undefvalues">Undefined Values</a></li>
     93       <li><a href="#trapvalues">Trap Values</a></li>
     94       <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
     95       <li><a href="#constantexprs">Constant Expressions</a></li>
     96     </ol>
     97   </li>
     98   <li><a href="#othervalues">Other Values</a>
     99     <ol>
    100       <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
    101       <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
    102     </ol>
    103   </li>
    104   <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
    105     <ol>
    106       <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
    107       <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
    108           Global Variable</a></li>
    109       <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
    110          Global Variable</a></li>
    111       <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
    112          Global Variable</a></li>
    113     </ol>
    114   </li>
    115   <li><a href="#instref">Instruction Reference</a>
    116     <ol>
    117       <li><a href="#terminators">Terminator Instructions</a>
    118         <ol>
    119           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
    120           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
    121           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
    122           <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
    123           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
    124           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
    125           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
    126         </ol>
    127       </li>
    128       <li><a href="#binaryops">Binary Operations</a>
    129         <ol>
    130           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
    131           <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
    132           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
    133           <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
    134           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
    135           <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
    136           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
    137           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
    138           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
    139           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
    140           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
    141           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
    142         </ol>
    143       </li>
    144       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
    145         <ol>
    146           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
    147           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
    148           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
    149           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
    150           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
    151           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
    152         </ol>
    153       </li>
    154       <li><a href="#vectorops">Vector Operations</a>
    155         <ol>
    156           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
    157           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
    158           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
    159         </ol>
    160       </li>
    161       <li><a href="#aggregateops">Aggregate Operations</a>
    162         <ol>
    163           <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
    164           <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
    165         </ol>
    166       </li>
    167       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
    168         <ol>
    169           <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li>
    170          <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li>
    171          <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li>
    172          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
    173         </ol>
    174       </li>
    175       <li><a href="#convertops">Conversion Operations</a>
    176         <ol>
    177           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
    178           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
    179           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
    180           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
    181           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
    182           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
    183           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
    184           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
    185           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
    186           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
    187           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
    188           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
    189         </ol>
    190       </li>
    191       <li><a href="#otherops">Other Operations</a>
    192         <ol>
    193           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
    194           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
    195           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
    196           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
    197           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
    198           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
    199         </ol>
    200       </li>
    201     </ol>
    202   </li>
    203   <li><a href="#intrinsics">Intrinsic Functions</a>
    204     <ol>
    205       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
    206         <ol>
    207           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
    208           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
    209           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
    210         </ol>
    211       </li>
    212       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
    213         <ol>
    214           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
    215           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
    216           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
    217         </ol>
    218       </li>
    219       <li><a href="#int_codegen">Code Generator Intrinsics</a>
    220         <ol>
    221           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
    222           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
    223           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
    224           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
    225           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
    226           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
    227           <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
    228         </ol>
    229       </li>
    230       <li><a href="#int_libc">Standard C Library Intrinsics</a>
    231         <ol>
    232           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
    233           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
    234           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
    235           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
    236           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
    237           <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
    238           <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
    239           <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
    240           <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
    241           <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
    242           <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
    243         </ol>
    244       </li>
    245       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
    246         <ol>
    247           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
    248           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
    249           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
    250           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
    251         </ol>
    252       </li>
    253       <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
    254         <ol>
    255           <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
    256           <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
    257           <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
    258           <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
    259           <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
    260           <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
    261         </ol>
    262       </li>
    263       <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
    264         <ol>
    265           <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
    266           <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
    267         </ol>
    268       </li>
    269       <li><a href="#int_debugger">Debugger intrinsics</a></li>
    270       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
    271       <li><a href="#int_trampoline">Trampoline Intrinsic</a>
    272         <ol>
    273           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
    274         </ol>
    275       </li>
    276       <li><a href="#int_atomics">Atomic intrinsics</a>
    277         <ol>
    278           <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
    279           <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
    280           <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
    281           <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
    282           <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
    283           <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
    284           <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
    285           <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
    286           <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
    287           <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
    288           <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
    289           <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
    290           <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
    291         </ol>
    292       </li>
    293       <li><a href="#int_memorymarkers">Memory Use Markers</a>
    294         <ol>
    295           <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
    296           <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
    297           <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
    298           <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
    299         </ol>
    300       </li>
    301       <li><a href="#int_general">General intrinsics</a>
    302         <ol>
    303           <li><a href="#int_var_annotation">
    304             '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
    305           <li><a href="#int_annotation">
    306             '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
    307           <li><a href="#int_trap">
    308             '<tt>llvm.trap</tt>' Intrinsic</a></li>
    309           <li><a href="#int_stackprotector">
    310             '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
    311 	  <li><a href="#int_objectsize">
    312             '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
    313         </ol>
    314       </li>
    315     </ol>
    316   </li>
    317 </ol>
    318 
    319 <div class="doc_author">
    320   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
    321             and <a href="mailto:vadve (a] cs.uiuc.edu">Vikram Adve</a></p>
    322 </div>
    323 
    324 <!-- *********************************************************************** -->
    325 <h2><a name="abstract">Abstract</a></h2>
    326 <!-- *********************************************************************** -->
    327 
    328 <div>
    329 
    330 <p>This document is a reference manual for the LLVM assembly language. LLVM is
    331    a Static Single Assignment (SSA) based representation that provides type
    332    safety, low-level operations, flexibility, and the capability of representing
    333    'all' high-level languages cleanly.  It is the common code representation
    334    used throughout all phases of the LLVM compilation strategy.</p>
    335 
    336 </div>
    337 
    338 <!-- *********************************************************************** -->
    339 <h2><a name="introduction">Introduction</a></h2>
    340 <!-- *********************************************************************** -->
    341 
    342 <div>
    343 
    344 <p>The LLVM code representation is designed to be used in three different forms:
    345    as an in-memory compiler IR, as an on-disk bitcode representation (suitable
    346    for fast loading by a Just-In-Time compiler), and as a human readable
    347    assembly language representation.  This allows LLVM to provide a powerful
    348    intermediate representation for efficient compiler transformations and
    349    analysis, while providing a natural means to debug and visualize the
    350    transformations.  The three different forms of LLVM are all equivalent.  This
    351    document describes the human readable representation and notation.</p>
    352 
    353 <p>The LLVM representation aims to be light-weight and low-level while being
    354    expressive, typed, and extensible at the same time.  It aims to be a
    355    "universal IR" of sorts, by being at a low enough level that high-level ideas
    356    may be cleanly mapped to it (similar to how microprocessors are "universal
    357    IR's", allowing many source languages to be mapped to them).  By providing
    358    type information, LLVM can be used as the target of optimizations: for
    359    example, through pointer analysis, it can be proven that a C automatic
    360    variable is never accessed outside of the current function, allowing it to
    361    be promoted to a simple SSA value instead of a memory location.</p>
    362 
    363 <!-- _______________________________________________________________________ -->
    364 <h4>
    365   <a name="wellformed">Well-Formedness</a>
    366 </h4>
    367 
    368 <div>
    369 
    370 <p>It is important to note that this document describes 'well formed' LLVM
    371    assembly language.  There is a difference between what the parser accepts and
    372    what is considered 'well formed'.  For example, the following instruction is
    373    syntactically okay, but not well formed:</p>
    374 
    375 <pre class="doc_code">
    376 %x = <a href="#i_add">add</a> i32 1, %x
    377 </pre>
    378 
    379 <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
    380    LLVM infrastructure provides a verification pass that may be used to verify
    381    that an LLVM module is well formed.  This pass is automatically run by the
    382    parser after parsing input assembly and by the optimizer before it outputs
    383    bitcode.  The violations pointed out by the verifier pass indicate bugs in
    384    transformation passes or input to the parser.</p>
    385 
    386 </div>
    387 
    388 </div>
    389 
    390 <!-- Describe the typesetting conventions here. -->
    391 
    392 <!-- *********************************************************************** -->
    393 <h2><a name="identifiers">Identifiers</a></h2>
    394 <!-- *********************************************************************** -->
    395 
    396 <div>
    397 
    398 <p>LLVM identifiers come in two basic types: global and local. Global
    399    identifiers (functions, global variables) begin with the <tt>'@'</tt>
    400    character. Local identifiers (register names, types) begin with
    401    the <tt>'%'</tt> character. Additionally, there are three different formats
    402    for identifiers, for different purposes:</p>
    403 
    404 <ol>
    405   <li>Named values are represented as a string of characters with their prefix.
    406       For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
    407       <tt>%a.really.long.identifier</tt>. The actual regular expression used is
    408       '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
    409       other characters in their names can be surrounded with quotes. Special
    410       characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
    411       ASCII code for the character in hexadecimal.  In this way, any character
    412       can be used in a name value, even quotes themselves.</li>
    413 
    414   <li>Unnamed values are represented as an unsigned numeric value with their
    415       prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
    416 
    417   <li>Constants, which are described in a <a href="#constants">section about
    418       constants</a>, below.</li>
    419 </ol>
    420 
    421 <p>LLVM requires that values start with a prefix for two reasons: Compilers
    422    don't need to worry about name clashes with reserved words, and the set of
    423    reserved words may be expanded in the future without penalty.  Additionally,
    424    unnamed identifiers allow a compiler to quickly come up with a temporary
    425    variable without having to avoid symbol table conflicts.</p>
    426 
    427 <p>Reserved words in LLVM are very similar to reserved words in other
    428    languages. There are keywords for different opcodes
    429    ('<tt><a href="#i_add">add</a></tt>',
    430    '<tt><a href="#i_bitcast">bitcast</a></tt>',
    431    '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
    432    ('<tt><a href="#t_void">void</a></tt>',
    433    '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
    434    reserved words cannot conflict with variable names, because none of them
    435    start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
    436 
    437 <p>Here is an example of LLVM code to multiply the integer variable
    438    '<tt>%X</tt>' by 8:</p>
    439 
    440 <p>The easy way:</p>
    441 
    442 <pre class="doc_code">
    443 %result = <a href="#i_mul">mul</a> i32 %X, 8
    444 </pre>
    445 
    446 <p>After strength reduction:</p>
    447 
    448 <pre class="doc_code">
    449 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
    450 </pre>
    451 
    452 <p>And the hard way:</p>
    453 
    454 <pre class="doc_code">
    455 %0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
    456 %1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
    457 %result = <a href="#i_add">add</a> i32 %1, %1
    458 </pre>
    459 
    460 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
    461    lexical features of LLVM:</p>
    462 
    463 <ol>
    464   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
    465       line.</li>
    466 
    467   <li>Unnamed temporaries are created when the result of a computation is not
    468       assigned to a named value.</li>
    469 
    470   <li>Unnamed temporaries are numbered sequentially</li>
    471 </ol>
    472 
    473 <p>It also shows a convention that we follow in this document.  When
    474    demonstrating instructions, we will follow an instruction with a comment that
    475    defines the type and name of value produced.  Comments are shown in italic
    476    text.</p>
    477 
    478 </div>
    479 
    480 <!-- *********************************************************************** -->
    481 <h2><a name="highlevel">High Level Structure</a></h2>
    482 <!-- *********************************************************************** -->
    483 <div>
    484 <!-- ======================================================================= -->
    485 <h3>
    486   <a name="modulestructure">Module Structure</a>
    487 </h3>
    488 
    489 <div>
    490 
    491 <p>LLVM programs are composed of "Module"s, each of which is a translation unit
    492    of the input programs.  Each module consists of functions, global variables,
    493    and symbol table entries.  Modules may be combined together with the LLVM
    494    linker, which merges function (and global variable) definitions, resolves
    495    forward declarations, and merges symbol table entries. Here is an example of
    496    the "hello world" module:</p>
    497 
    498 <pre class="doc_code">
    499 <i>; Declare the string constant as a global constant.</i>&nbsp;
    500 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"      <i>; [13 x i8]*</i>&nbsp;
    501 
    502 <i>; External declaration of the puts function</i>&nbsp;
    503 <a href="#functionstructure">declare</a> i32 @puts(i8*)                                      <i>; i32 (i8*)* </i>&nbsp;
    504 
    505 <i>; Definition of main function</i>
    506 define i32 @main() {   <i>; i32()* </i>&nbsp;
    507   <i>; Convert [13 x i8]* to i8  *...</i>&nbsp;
    508   %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0   <i>; i8*</i>&nbsp;
    509 
    510   <i>; Call puts function to write out the string to stdout.</i>&nbsp;
    511   <a href="#i_call">call</a> i32 @puts(i8* %cast210)           <i>; i32</i>&nbsp;
    512   <a href="#i_ret">ret</a> i32 0&nbsp;
    513 }
    514 
    515 <i>; Named metadata</i>
    516 !1 = metadata !{i32 41}
    517 !foo = !{!1, null}
    518 </pre>
    519 
    520 <p>This example is made up of a <a href="#globalvars">global variable</a> named
    521    "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
    522    a <a href="#functionstructure">function definition</a> for
    523    "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> 
    524    "<tt>foo"</tt>.</p>
    525 
    526 <p>In general, a module is made up of a list of global values, where both
    527    functions and global variables are global values.  Global values are
    528    represented by a pointer to a memory location (in this case, a pointer to an
    529    array of char, and a pointer to a function), and have one of the
    530    following <a href="#linkage">linkage types</a>.</p>
    531 
    532 </div>
    533 
    534 <!-- ======================================================================= -->
    535 <h3>
    536   <a name="linkage">Linkage Types</a>
    537 </h3>
    538 
    539 <div>
    540 
    541 <p>All Global Variables and Functions have one of the following types of
    542    linkage:</p>
    543 
    544 <dl>
    545   <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
    546   <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
    547       by objects in the current module. In particular, linking code into a
    548       module with an private global value may cause the private to be renamed as
    549       necessary to avoid collisions.  Because the symbol is private to the
    550       module, all references can be updated. This doesn't show up in any symbol
    551       table in the object file.</dd>
    552 
    553   <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
    554   <dd>Similar to <tt>private</tt>, but the symbol is passed through the
    555       assembler and evaluated by the linker. Unlike normal strong symbols, they
    556       are removed by the linker from the final linked image (executable or
    557       dynamic library).</dd>
    558 
    559   <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
    560   <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
    561       <tt>linker_private_weak</tt> symbols are subject to coalescing by the
    562       linker. The symbols are removed by the linker from the final linked image
    563       (executable or dynamic library).</dd>
    564 
    565   <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
    566   <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
    567       of the object is not taken. For instance, functions that had an inline
    568       definition, but the compiler decided not to inline it. Note,
    569       unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
    570       <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
    571       visibility.  The symbols are removed by the linker from the final linked
    572       image (executable or dynamic library).</dd>
    573 
    574   <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
    575   <dd>Similar to private, but the value shows as a local symbol
    576       (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
    577       corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
    578 
    579   <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
    580   <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
    581       into the object file corresponding to the LLVM module.  They exist to
    582       allow inlining and other optimizations to take place given knowledge of
    583       the definition of the global, which is known to be somewhere outside the
    584       module.  Globals with <tt>available_externally</tt> linkage are allowed to
    585       be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
    586       This linkage type is only allowed on definitions, not declarations.</dd>
    587 
    588   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
    589   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
    590       the same name when linkage occurs.  This can be used to implement
    591       some forms of inline functions, templates, or other code which must be
    592       generated in each translation unit that uses it, but where the body may
    593       be overridden with a more definitive definition later.  Unreferenced
    594       <tt>linkonce</tt> globals are allowed to be discarded.  Note that
    595       <tt>linkonce</tt> linkage does not actually allow the optimizer to
    596       inline the body of this function into callers because it doesn't know if
    597       this definition of the function is the definitive definition within the
    598       program or whether it will be overridden by a stronger definition.
    599       To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
    600       linkage.</dd>
    601 
    602   <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
    603   <dd>"<tt>weak</tt>" linkage has the same merging semantics as
    604       <tt>linkonce</tt> linkage, except that unreferenced globals with
    605       <tt>weak</tt> linkage may not be discarded.  This is used for globals that
    606       are declared "weak" in C source code.</dd>
    607 
    608   <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
    609   <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
    610       they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
    611       global scope.
    612       Symbols with "<tt>common</tt>" linkage are merged in the same way as
    613       <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
    614       <tt>common</tt> symbols may not have an explicit section,
    615       must have a zero initializer, and may not be marked '<a
    616       href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
    617       have common linkage.</dd>
    618 
    619 
    620   <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
    621   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
    622       pointer to array type.  When two global variables with appending linkage
    623       are linked together, the two global arrays are appended together.  This is
    624       the LLVM, typesafe, equivalent of having the system linker append together
    625       "sections" with identical names when .o files are linked.</dd>
    626 
    627   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
    628   <dd>The semantics of this linkage follow the ELF object file model: the symbol
    629       is weak until linked, if not linked, the symbol becomes null instead of
    630       being an undefined reference.</dd>
    631 
    632   <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
    633   <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
    634   <dd>Some languages allow differing globals to be merged, such as two functions
    635       with different semantics.  Other languages, such as <tt>C++</tt>, ensure
    636       that only equivalent globals are ever merged (the "one definition rule"
    637       &mdash; "ODR").  Such languages can use the <tt>linkonce_odr</tt>
    638       and <tt>weak_odr</tt> linkage types to indicate that the global will only
    639       be merged with equivalent globals.  These linkage types are otherwise the
    640       same as their non-<tt>odr</tt> versions.</dd>
    641 
    642   <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
    643   <dd>If none of the above identifiers are used, the global is externally
    644       visible, meaning that it participates in linkage and can be used to
    645       resolve external symbol references.</dd>
    646 </dl>
    647 
    648 <p>The next two types of linkage are targeted for Microsoft Windows platform
    649    only. They are designed to support importing (exporting) symbols from (to)
    650    DLLs (Dynamic Link Libraries).</p>
    651 
    652 <dl>
    653   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
    654   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
    655       or variable via a global pointer to a pointer that is set up by the DLL
    656       exporting the symbol. On Microsoft Windows targets, the pointer name is
    657       formed by combining <code>__imp_</code> and the function or variable
    658       name.</dd>
    659 
    660   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
    661   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
    662       pointer to a pointer in a DLL, so that it can be referenced with the
    663       <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
    664       name is formed by combining <code>__imp_</code> and the function or
    665       variable name.</dd>
    666 </dl>
    667 
    668 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
    669    another module defined a "<tt>.LC0</tt>" variable and was linked with this
    670    one, one of the two would be renamed, preventing a collision.  Since
    671    "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
    672    declarations), they are accessible outside of the current module.</p>
    673 
    674 <p>It is illegal for a function <i>declaration</i> to have any linkage type
    675    other than "externally visible", <tt>dllimport</tt>
    676    or <tt>extern_weak</tt>.</p>
    677 
    678 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
    679    or <tt>weak_odr</tt> linkages.</p>
    680 
    681 </div>
    682 
    683 <!-- ======================================================================= -->
    684 <h3>
    685   <a name="callingconv">Calling Conventions</a>
    686 </h3>
    687 
    688 <div>
    689 
    690 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
    691    and <a href="#i_invoke">invokes</a> can all have an optional calling
    692    convention specified for the call.  The calling convention of any pair of
    693    dynamic caller/callee must match, or the behavior of the program is
    694    undefined.  The following calling conventions are supported by LLVM, and more
    695    may be added in the future:</p>
    696 
    697 <dl>
    698   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
    699   <dd>This calling convention (the default if no other calling convention is
    700       specified) matches the target C calling conventions.  This calling
    701       convention supports varargs function calls and tolerates some mismatch in
    702       the declared prototype and implemented declaration of the function (as
    703       does normal C).</dd>
    704 
    705   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
    706   <dd>This calling convention attempts to make calls as fast as possible
    707       (e.g. by passing things in registers).  This calling convention allows the
    708       target to use whatever tricks it wants to produce fast code for the
    709       target, without having to conform to an externally specified ABI
    710       (Application Binary Interface).
    711       <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
    712       when this or the GHC convention is used.</a>  This calling convention
    713       does not support varargs and requires the prototype of all callees to
    714       exactly match the prototype of the function definition.</dd>
    715 
    716   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
    717   <dd>This calling convention attempts to make code in the caller as efficient
    718       as possible under the assumption that the call is not commonly executed.
    719       As such, these calls often preserve all registers so that the call does
    720       not break any live ranges in the caller side.  This calling convention
    721       does not support varargs and requires the prototype of all callees to
    722       exactly match the prototype of the function definition.</dd>
    723 
    724   <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
    725   <dd>This calling convention has been implemented specifically for use by the
    726       <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
    727       It passes everything in registers, going to extremes to achieve this by
    728       disabling callee save registers. This calling convention should not be
    729       used lightly but only for specific situations such as an alternative to
    730       the <em>register pinning</em> performance technique often used when
    731       implementing functional programming languages.At the moment only X86
    732       supports this convention and it has the following limitations:
    733       <ul>
    734         <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
    735             floating point types are supported.</li>
    736         <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
    737             6 floating point parameters.</li>
    738       </ul>
    739       This calling convention supports
    740       <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
    741       requires both the caller and callee are using it.
    742   </dd>
    743 
    744   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
    745   <dd>Any calling convention may be specified by number, allowing
    746       target-specific calling conventions to be used.  Target specific calling
    747       conventions start at 64.</dd>
    748 </dl>
    749 
    750 <p>More calling conventions can be added/defined on an as-needed basis, to
    751    support Pascal conventions or any other well-known target-independent
    752    convention.</p>
    753 
    754 </div>
    755 
    756 <!-- ======================================================================= -->
    757 <h3>
    758   <a name="visibility">Visibility Styles</a>
    759 </h3>
    760 
    761 <div>
    762 
    763 <p>All Global Variables and Functions have one of the following visibility
    764    styles:</p>
    765 
    766 <dl>
    767   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
    768   <dd>On targets that use the ELF object file format, default visibility means
    769       that the declaration is visible to other modules and, in shared libraries,
    770       means that the declared entity may be overridden. On Darwin, default
    771       visibility means that the declaration is visible to other modules. Default
    772       visibility corresponds to "external linkage" in the language.</dd>
    773 
    774   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
    775   <dd>Two declarations of an object with hidden visibility refer to the same
    776       object if they are in the same shared object. Usually, hidden visibility
    777       indicates that the symbol will not be placed into the dynamic symbol
    778       table, so no other module (executable or shared library) can reference it
    779       directly.</dd>
    780 
    781   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
    782   <dd>On ELF, protected visibility indicates that the symbol will be placed in
    783       the dynamic symbol table, but that references within the defining module
    784       will bind to the local symbol. That is, the symbol cannot be overridden by
    785       another module.</dd>
    786 </dl>
    787 
    788 </div>
    789 
    790 <!-- ======================================================================= -->
    791 <h3>
    792   <a name="namedtypes">Named Types</a>
    793 </h3>
    794 
    795 <div>
    796 
    797 <p>LLVM IR allows you to specify name aliases for certain types.  This can make
    798    it easier to read the IR and make the IR more condensed (particularly when
    799    recursive types are involved).  An example of a name specification is:</p>
    800 
    801 <pre class="doc_code">
    802 %mytype = type { %mytype*, i32 }
    803 </pre>
    804 
    805 <p>You may give a name to any <a href="#typesystem">type</a> except
    806    "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
    807    is expected with the syntax "%mytype".</p>
    808 
    809 <p>Note that type names are aliases for the structural type that they indicate,
    810    and that you can therefore specify multiple names for the same type.  This
    811    often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
    812    uses structural typing, the name is not part of the type.  When printing out
    813    LLVM IR, the printer will pick <em>one name</em> to render all types of a
    814    particular shape.  This means that if you have code where two different
    815    source types end up having the same LLVM type, that the dumper will sometimes
    816    print the "wrong" or unexpected type.  This is an important design point and
    817    isn't going to change.</p>
    818 
    819 </div>
    820 
    821 <!-- ======================================================================= -->
    822 <h3>
    823   <a name="globalvars">Global Variables</a>
    824 </h3>
    825 
    826 <div>
    827 
    828 <p>Global variables define regions of memory allocated at compilation time
    829    instead of run-time.  Global variables may optionally be initialized, may
    830    have an explicit section to be placed in, and may have an optional explicit
    831    alignment specified.  A variable may be defined as "thread_local", which
    832    means that it will not be shared by threads (each thread will have a
    833    separated copy of the variable).  A variable may be defined as a global
    834    "constant," which indicates that the contents of the variable
    835    will <b>never</b> be modified (enabling better optimization, allowing the
    836    global data to be placed in the read-only section of an executable, etc).
    837    Note that variables that need runtime initialization cannot be marked
    838    "constant" as there is a store to the variable.</p>
    839 
    840 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
    841    constant, even if the final definition of the global is not.  This capability
    842    can be used to enable slightly better optimization of the program, but
    843    requires the language definition to guarantee that optimizations based on the
    844    'constantness' are valid for the translation units that do not include the
    845    definition.</p>
    846 
    847 <p>As SSA values, global variables define pointer values that are in scope
    848    (i.e. they dominate) all basic blocks in the program.  Global variables
    849    always define a pointer to their "content" type because they describe a
    850    region of memory, and all memory objects in LLVM are accessed through
    851    pointers.</p>
    852 
    853 <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
    854   that the address is not significant, only the content. Constants marked
    855   like this can be merged with other constants if they have the same
    856   initializer. Note that a constant with significant address <em>can</em>
    857   be merged with a <tt>unnamed_addr</tt> constant, the result being a
    858   constant whose address is significant.</p>
    859 
    860 <p>A global variable may be declared to reside in a target-specific numbered
    861    address space. For targets that support them, address spaces may affect how
    862    optimizations are performed and/or what target instructions are used to
    863    access the variable. The default address space is zero. The address space
    864    qualifier must precede any other attributes.</p>
    865 
    866 <p>LLVM allows an explicit section to be specified for globals.  If the target
    867    supports it, it will emit globals to the section specified.</p>
    868 
    869 <p>An explicit alignment may be specified for a global, which must be a power
    870    of 2.  If not present, or if the alignment is set to zero, the alignment of
    871    the global is set by the target to whatever it feels convenient.  If an
    872    explicit alignment is specified, the global is forced to have exactly that
    873    alignment.  Targets and optimizers are not allowed to over-align the global
    874    if the global has an assigned section.  In this case, the extra alignment
    875    could be observable: for example, code could assume that the globals are
    876    densely packed in their section and try to iterate over them as an array,
    877    alignment padding would break this iteration.</p>
    878 
    879 <p>For example, the following defines a global in a numbered address space with
    880    an initializer, section, and alignment:</p>
    881 
    882 <pre class="doc_code">
    883 @G = addrspace(5) constant float 1.0, section "foo", align 4
    884 </pre>
    885 
    886 </div>
    887 
    888 
    889 <!-- ======================================================================= -->
    890 <h3>
    891   <a name="functionstructure">Functions</a>
    892 </h3>
    893 
    894 <div>
    895 
    896 <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
    897    optional <a href="#linkage">linkage type</a>, an optional
    898    <a href="#visibility">visibility style</a>, an optional
    899    <a href="#callingconv">calling convention</a>,
    900    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    901    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    902    name, a (possibly empty) argument list (each with optional
    903    <a href="#paramattrs">parameter attributes</a>), optional
    904    <a href="#fnattrs">function attributes</a>, an optional section, an optional
    905    alignment, an optional <a href="#gc">garbage collector name</a>, an opening
    906    curly brace, a list of basic blocks, and a closing curly brace.</p>
    907 
    908 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
    909    optional <a href="#linkage">linkage type</a>, an optional
    910    <a href="#visibility">visibility style</a>, an optional
    911    <a href="#callingconv">calling convention</a>,
    912    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    913    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    914    name, a possibly empty list of arguments, an optional alignment, and an
    915    optional <a href="#gc">garbage collector name</a>.</p>
    916 
    917 <p>A function definition contains a list of basic blocks, forming the CFG
    918    (Control Flow Graph) for the function.  Each basic block may optionally start
    919    with a label (giving the basic block a symbol table entry), contains a list
    920    of instructions, and ends with a <a href="#terminators">terminator</a>
    921    instruction (such as a branch or function return).</p>
    922 
    923 <p>The first basic block in a function is special in two ways: it is immediately
    924    executed on entrance to the function, and it is not allowed to have
    925    predecessor basic blocks (i.e. there can not be any branches to the entry
    926    block of a function).  Because the block can have no predecessors, it also
    927    cannot have any <a href="#i_phi">PHI nodes</a>.</p>
    928 
    929 <p>LLVM allows an explicit section to be specified for functions.  If the target
    930    supports it, it will emit functions to the section specified.</p>
    931 
    932 <p>An explicit alignment may be specified for a function.  If not present, or if
    933    the alignment is set to zero, the alignment of the function is set by the
    934    target to whatever it feels convenient.  If an explicit alignment is
    935    specified, the function is forced to have at least that much alignment.  All
    936    alignments must be a power of 2.</p>
    937 
    938 <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
    939   be significant and two identical functions can be merged</p>.
    940 
    941 <h5>Syntax:</h5>
    942 <pre class="doc_code">
    943 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
    944        [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
    945        &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
    946        [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
    947        [<a href="#gc">gc</a>] { ... }
    948 </pre>
    949 
    950 </div>
    951 
    952 <!-- ======================================================================= -->
    953 <h3>
    954   <a name="aliasstructure">Aliases</a>
    955 </h3>
    956 
    957 <div>
    958 
    959 <p>Aliases act as "second name" for the aliasee value (which can be either
    960    function, global variable, another alias or bitcast of global value). Aliases
    961    may have an optional <a href="#linkage">linkage type</a>, and an
    962    optional <a href="#visibility">visibility style</a>.</p>
    963 
    964 <h5>Syntax:</h5>
    965 <pre class="doc_code">
    966 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
    967 </pre>
    968 
    969 </div>
    970 
    971 <!-- ======================================================================= -->
    972 <h3>
    973   <a name="namedmetadatastructure">Named Metadata</a>
    974 </h3>
    975 
    976 <div>
    977 
    978 <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
    979    nodes</a> (but not metadata strings) are the only valid operands for
    980    a named metadata.</p>
    981 
    982 <h5>Syntax:</h5>
    983 <pre class="doc_code">
    984 ; Some unnamed metadata nodes, which are referenced by the named metadata.
    985 !0 = metadata !{metadata !"zero"}
    986 !1 = metadata !{metadata !"one"}
    987 !2 = metadata !{metadata !"two"}
    988 ; A named metadata.
    989 !name = !{!0, !1, !2}
    990 </pre>
    991 
    992 </div>
    993 
    994 <!-- ======================================================================= -->
    995 <h3>
    996   <a name="paramattrs">Parameter Attributes</a>
    997 </h3>
    998 
    999 <div>
   1000 
   1001 <p>The return type and each parameter of a function type may have a set of
   1002    <i>parameter attributes</i> associated with them. Parameter attributes are
   1003    used to communicate additional information about the result or parameters of
   1004    a function. Parameter attributes are considered to be part of the function,
   1005    not of the function type, so functions with different parameter attributes
   1006    can have the same function type.</p>
   1007 
   1008 <p>Parameter attributes are simple keywords that follow the type specified. If
   1009    multiple parameter attributes are needed, they are space separated. For
   1010    example:</p>
   1011 
   1012 <pre class="doc_code">
   1013 declare i32 @printf(i8* noalias nocapture, ...)
   1014 declare i32 @atoi(i8 zeroext)
   1015 declare signext i8 @returns_signed_char()
   1016 </pre>
   1017 
   1018 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
   1019    <tt>readonly</tt>) come immediately after the argument list.</p>
   1020 
   1021 <p>Currently, only the following parameter attributes are defined:</p>
   1022 
   1023 <dl>
   1024   <dt><tt><b>zeroext</b></tt></dt>
   1025   <dd>This indicates to the code generator that the parameter or return value
   1026       should be zero-extended to the extent required by the target's ABI (which
   1027       is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
   1028       parameter) or the callee (for a return value).</dd>
   1029 
   1030   <dt><tt><b>signext</b></tt></dt>
   1031   <dd>This indicates to the code generator that the parameter or return value
   1032       should be sign-extended to the extent required by the target's ABI (which
   1033       is usually 32-bits) by the caller (for a parameter) or the callee (for a
   1034       return value).</dd>
   1035 
   1036   <dt><tt><b>inreg</b></tt></dt>
   1037   <dd>This indicates that this parameter or return value should be treated in a
   1038       special target-dependent fashion during while emitting code for a function
   1039       call or return (usually, by putting it in a register as opposed to memory,
   1040       though some targets use it to distinguish between two different kinds of
   1041       registers).  Use of this attribute is target-specific.</dd>
   1042 
   1043   <dt><tt><b><a name="byval">byval</a></b></tt></dt>
   1044   <dd><p>This indicates that the pointer parameter should really be passed by
   1045       value to the function.  The attribute implies that a hidden copy of the
   1046       pointee
   1047       is made between the caller and the callee, so the callee is unable to
   1048       modify the value in the callee.  This attribute is only valid on LLVM
   1049       pointer arguments.  It is generally used to pass structs and arrays by
   1050       value, but is also valid on pointers to scalars.  The copy is considered
   1051       to belong to the caller not the callee (for example,
   1052       <tt><a href="#readonly">readonly</a></tt> functions should not write to
   1053       <tt>byval</tt> parameters). This is not a valid attribute for return
   1054       values.</p>
   1055       
   1056       <p>The byval attribute also supports specifying an alignment with
   1057       the align attribute.  It indicates the alignment of the stack slot to
   1058       form and the known alignment of the pointer specified to the call site. If
   1059       the alignment is not specified, then the code generator makes a
   1060       target-specific assumption.</p></dd>
   1061 
   1062   <dt><tt><b><a name="sret">sret</a></b></tt></dt>
   1063   <dd>This indicates that the pointer parameter specifies the address of a
   1064       structure that is the return value of the function in the source program.
   1065       This pointer must be guaranteed by the caller to be valid: loads and
   1066       stores to the structure may be assumed by the callee to not to trap.  This
   1067       may only be applied to the first parameter. This is not a valid attribute
   1068       for return values. </dd>
   1069 
   1070   <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
   1071   <dd>This indicates that pointer values
   1072       <a href="#pointeraliasing"><i>based</i></a> on the argument or return
   1073       value do not alias pointer values which are not <i>based</i> on it,
   1074       ignoring certain "irrelevant" dependencies.
   1075       For a call to the parent function, dependencies between memory
   1076       references from before or after the call and from those during the call
   1077       are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
   1078       return value used in that call.
   1079       The caller shares the responsibility with the callee for ensuring that
   1080       these requirements are met.
   1081       For further details, please see the discussion of the NoAlias response in
   1082       <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
   1083 <br>
   1084       Note that this definition of <tt>noalias</tt> is intentionally
   1085       similar to the definition of <tt>restrict</tt> in C99 for function
   1086       arguments, though it is slightly weaker.
   1087 <br>
   1088       For function return values, C99's <tt>restrict</tt> is not meaningful,
   1089       while LLVM's <tt>noalias</tt> is.
   1090       </dd>
   1091 
   1092   <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
   1093   <dd>This indicates that the callee does not make any copies of the pointer
   1094       that outlive the callee itself. This is not a valid attribute for return
   1095       values.</dd>
   1096 
   1097   <dt><tt><b><a name="nest">nest</a></b></tt></dt>
   1098   <dd>This indicates that the pointer parameter can be excised using the
   1099       <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
   1100       attribute for return values.</dd>
   1101 </dl>
   1102 
   1103 </div>
   1104 
   1105 <!-- ======================================================================= -->
   1106 <h3>
   1107   <a name="gc">Garbage Collector Names</a>
   1108 </h3>
   1109 
   1110 <div>
   1111 
   1112 <p>Each function may specify a garbage collector name, which is simply a
   1113    string:</p>
   1114 
   1115 <pre class="doc_code">
   1116 define void @f() gc "name" { ... }
   1117 </pre>
   1118 
   1119 <p>The compiler declares the supported values of <i>name</i>. Specifying a
   1120    collector which will cause the compiler to alter its output in order to
   1121    support the named garbage collection algorithm.</p>
   1122 
   1123 </div>
   1124 
   1125 <!-- ======================================================================= -->
   1126 <h3>
   1127   <a name="fnattrs">Function Attributes</a>
   1128 </h3>
   1129 
   1130 <div>
   1131 
   1132 <p>Function attributes are set to communicate additional information about a
   1133    function. Function attributes are considered to be part of the function, not
   1134    of the function type, so functions with different parameter attributes can
   1135    have the same function type.</p>
   1136 
   1137 <p>Function attributes are simple keywords that follow the type specified. If
   1138    multiple attributes are needed, they are space separated. For example:</p>
   1139 
   1140 <pre class="doc_code">
   1141 define void @f() noinline { ... }
   1142 define void @f() alwaysinline { ... }
   1143 define void @f() alwaysinline optsize { ... }
   1144 define void @f() optsize { ... }
   1145 </pre>
   1146 
   1147 <dl>
   1148   <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
   1149   <dd>This attribute indicates that, when emitting the prologue and epilogue,
   1150       the backend should forcibly align the stack pointer. Specify the
   1151       desired alignment, which must be a power of two, in parentheses.
   1152 
   1153   <dt><tt><b>alwaysinline</b></tt></dt>
   1154   <dd>This attribute indicates that the inliner should attempt to inline this
   1155       function into callers whenever possible, ignoring any active inlining size
   1156       threshold for this caller.</dd>
   1157 
   1158   <dt><tt><b>hotpatch</b></tt></dt>
   1159   <dd>This attribute indicates that the function should be 'hotpatchable',
   1160       meaning the function can be patched and/or hooked even while it is
   1161       loaded into memory. On x86, the function prologue will be preceded
   1162       by six bytes of padding and will begin with a two-byte instruction.
   1163       Most of the functions in the Windows system DLLs in Windows XP SP2 or
   1164       higher were compiled in this fashion.</dd>
   1165 
   1166   <dt><tt><b>nonlazybind</b></tt></dt>
   1167   <dd>This attribute suppresses lazy symbol binding for the function. This
   1168       may make calls to the function faster, at the cost of extra program
   1169       startup time if the function is not called during program startup.</dd>
   1170 
   1171   <dt><tt><b>inlinehint</b></tt></dt>
   1172   <dd>This attribute indicates that the source code contained a hint that inlining
   1173       this function is desirable (such as the "inline" keyword in C/C++).  It
   1174       is just a hint; it imposes no requirements on the inliner.</dd>
   1175 
   1176   <dt><tt><b>naked</b></tt></dt>
   1177   <dd>This attribute disables prologue / epilogue emission for the function.
   1178       This can have very system-specific consequences.</dd>
   1179 
   1180   <dt><tt><b>noimplicitfloat</b></tt></dt>
   1181   <dd>This attributes disables implicit floating point instructions.</dd>
   1182 
   1183   <dt><tt><b>noinline</b></tt></dt>
   1184   <dd>This attribute indicates that the inliner should never inline this
   1185       function in any situation. This attribute may not be used together with
   1186       the <tt>alwaysinline</tt> attribute.</dd>
   1187 
   1188   <dt><tt><b>noredzone</b></tt></dt>
   1189   <dd>This attribute indicates that the code generator should not use a red
   1190       zone, even if the target-specific ABI normally permits it.</dd>
   1191 
   1192   <dt><tt><b>noreturn</b></tt></dt>
   1193   <dd>This function attribute indicates that the function never returns
   1194       normally.  This produces undefined behavior at runtime if the function
   1195       ever does dynamically return.</dd>
   1196 
   1197   <dt><tt><b>nounwind</b></tt></dt>
   1198   <dd>This function attribute indicates that the function never returns with an
   1199       unwind or exceptional control flow.  If the function does unwind, its
   1200       runtime behavior is undefined.</dd>
   1201 
   1202   <dt><tt><b>optsize</b></tt></dt>
   1203   <dd>This attribute suggests that optimization passes and code generator passes
   1204       make choices that keep the code size of this function low, and otherwise
   1205       do optimizations specifically to reduce code size.</dd>
   1206 
   1207   <dt><tt><b>readnone</b></tt></dt>
   1208   <dd>This attribute indicates that the function computes its result (or decides
   1209       to unwind an exception) based strictly on its arguments, without
   1210       dereferencing any pointer arguments or otherwise accessing any mutable
   1211       state (e.g. memory, control registers, etc) visible to caller functions.
   1212       It does not write through any pointer arguments
   1213       (including <tt><a href="#byval">byval</a></tt> arguments) and never
   1214       changes any state visible to callers.  This means that it cannot unwind
   1215       exceptions by calling the <tt>C++</tt> exception throwing methods, but
   1216       could use the <tt>unwind</tt> instruction.</dd>
   1217 
   1218   <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
   1219   <dd>This attribute indicates that the function does not write through any
   1220       pointer arguments (including <tt><a href="#byval">byval</a></tt>
   1221       arguments) or otherwise modify any state (e.g. memory, control registers,
   1222       etc) visible to caller functions.  It may dereference pointer arguments
   1223       and read state that may be set in the caller.  A readonly function always
   1224       returns the same value (or unwinds an exception identically) when called
   1225       with the same set of arguments and global state.  It cannot unwind an
   1226       exception by calling the <tt>C++</tt> exception throwing methods, but may
   1227       use the <tt>unwind</tt> instruction.</dd>
   1228 
   1229   <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
   1230   <dd>This attribute indicates that the function should emit a stack smashing
   1231       protector. It is in the form of a "canary"&mdash;a random value placed on
   1232       the stack before the local variables that's checked upon return from the
   1233       function to see if it has been overwritten. A heuristic is used to
   1234       determine if a function needs stack protectors or not.<br>
   1235 <br>
   1236       If a function that has an <tt>ssp</tt> attribute is inlined into a
   1237       function that doesn't have an <tt>ssp</tt> attribute, then the resulting
   1238       function will have an <tt>ssp</tt> attribute.</dd>
   1239 
   1240   <dt><tt><b>sspreq</b></tt></dt>
   1241   <dd>This attribute indicates that the function should <em>always</em> emit a
   1242       stack smashing protector. This overrides
   1243       the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
   1244 <br>
   1245       If a function that has an <tt>sspreq</tt> attribute is inlined into a
   1246       function that doesn't have an <tt>sspreq</tt> attribute or which has
   1247       an <tt>ssp</tt> attribute, then the resulting function will have
   1248       an <tt>sspreq</tt> attribute.</dd>
   1249 </dl>
   1250 
   1251 </div>
   1252 
   1253 <!-- ======================================================================= -->
   1254 <h3>
   1255   <a name="moduleasm">Module-Level Inline Assembly</a>
   1256 </h3>
   1257 
   1258 <div>
   1259 
   1260 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
   1261    the GCC "file scope inline asm" blocks.  These blocks are internally
   1262    concatenated by LLVM and treated as a single unit, but may be separated in
   1263    the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
   1264 
   1265 <pre class="doc_code">
   1266 module asm "inline asm code goes here"
   1267 module asm "more can go here"
   1268 </pre>
   1269 
   1270 <p>The strings can contain any character by escaping non-printable characters.
   1271    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
   1272    for the number.</p>
   1273 
   1274 <p>The inline asm code is simply printed to the machine code .s file when
   1275    assembly code is generated.</p>
   1276 
   1277 </div>
   1278 
   1279 <!-- ======================================================================= -->
   1280 <h3>
   1281   <a name="datalayout">Data Layout</a>
   1282 </h3>
   1283 
   1284 <div>
   1285 
   1286 <p>A module may specify a target specific data layout string that specifies how
   1287    data is to be laid out in memory. The syntax for the data layout is
   1288    simply:</p>
   1289 
   1290 <pre class="doc_code">
   1291 target datalayout = "<i>layout specification</i>"
   1292 </pre>
   1293 
   1294 <p>The <i>layout specification</i> consists of a list of specifications
   1295    separated by the minus sign character ('-').  Each specification starts with
   1296    a letter and may include other information after the letter to define some
   1297    aspect of the data layout.  The specifications accepted are as follows:</p>
   1298 
   1299 <dl>
   1300   <dt><tt>E</tt></dt>
   1301   <dd>Specifies that the target lays out data in big-endian form. That is, the
   1302       bits with the most significance have the lowest address location.</dd>
   1303 
   1304   <dt><tt>e</tt></dt>
   1305   <dd>Specifies that the target lays out data in little-endian form. That is,
   1306       the bits with the least significance have the lowest address
   1307       location.</dd>
   1308 
   1309   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1310   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
   1311       <i>preferred</i> alignments. All sizes are in bits. Specifying
   1312       the <i>pref</i> alignment is optional. If omitted, the
   1313       preceding <tt>:</tt> should be omitted too.</dd>
   1314 
   1315   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1316   <dd>This specifies the alignment for an integer type of a given bit
   1317       <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
   1318 
   1319   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1320   <dd>This specifies the alignment for a vector type of a given bit
   1321       <i>size</i>.</dd>
   1322 
   1323   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1324   <dd>This specifies the alignment for a floating point type of a given bit
   1325       <i>size</i>. Only values of <i>size</i> that are supported by the target
   1326       will work.  32 (float) and 64 (double) are supported on all targets;
   1327       80 or 128 (different flavors of long double) are also supported on some
   1328       targets.
   1329 
   1330   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1331   <dd>This specifies the alignment for an aggregate type of a given bit
   1332       <i>size</i>.</dd>
   1333 
   1334   <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1335   <dd>This specifies the alignment for a stack object of a given bit
   1336       <i>size</i>.</dd>
   1337 
   1338   <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
   1339   <dd>This specifies a set of native integer widths for the target CPU
   1340       in bits.  For example, it might contain "n32" for 32-bit PowerPC,
   1341       "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
   1342       this set are considered to support most general arithmetic
   1343       operations efficiently.</dd>
   1344 </dl>
   1345 
   1346 <p>When constructing the data layout for a given target, LLVM starts with a
   1347    default set of specifications which are then (possibly) overridden by the
   1348    specifications in the <tt>datalayout</tt> keyword. The default specifications
   1349    are given in this list:</p>
   1350 
   1351 <ul>
   1352   <li><tt>E</tt> - big endian</li>
   1353   <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
   1354   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
   1355   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
   1356   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
   1357   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
   1358   <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
   1359   alignment of 64-bits</li>
   1360   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
   1361   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
   1362   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
   1363   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
   1364   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
   1365   <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
   1366 </ul>
   1367 
   1368 <p>When LLVM is determining the alignment for a given type, it uses the
   1369    following rules:</p>
   1370 
   1371 <ol>
   1372   <li>If the type sought is an exact match for one of the specifications, that
   1373       specification is used.</li>
   1374 
   1375   <li>If no match is found, and the type sought is an integer type, then the
   1376       smallest integer type that is larger than the bitwidth of the sought type
   1377       is used. If none of the specifications are larger than the bitwidth then
   1378       the the largest integer type is used. For example, given the default
   1379       specifications above, the i7 type will use the alignment of i8 (next
   1380       largest) while both i65 and i256 will use the alignment of i64 (largest
   1381       specified).</li>
   1382 
   1383   <li>If no match is found, and the type sought is a vector type, then the
   1384       largest vector type that is smaller than the sought vector type will be
   1385       used as a fall back.  This happens because &lt;128 x double&gt; can be
   1386       implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
   1387 </ol>
   1388 
   1389 </div>
   1390 
   1391 <!-- ======================================================================= -->
   1392 <h3>
   1393   <a name="pointeraliasing">Pointer Aliasing Rules</a>
   1394 </h3>
   1395 
   1396 <div>
   1397 
   1398 <p>Any memory access must be done through a pointer value associated
   1399 with an address range of the memory access, otherwise the behavior
   1400 is undefined. Pointer values are associated with address ranges
   1401 according to the following rules:</p>
   1402 
   1403 <ul>
   1404   <li>A pointer value is associated with the addresses associated with
   1405       any value it is <i>based</i> on.
   1406   <li>An address of a global variable is associated with the address
   1407       range of the variable's storage.</li>
   1408   <li>The result value of an allocation instruction is associated with
   1409       the address range of the allocated storage.</li>
   1410   <li>A null pointer in the default address-space is associated with
   1411       no address.</li>
   1412   <li>An integer constant other than zero or a pointer value returned
   1413       from a function not defined within LLVM may be associated with address
   1414       ranges allocated through mechanisms other than those provided by
   1415       LLVM. Such ranges shall not overlap with any ranges of addresses
   1416       allocated by mechanisms provided by LLVM.</li>
   1417 </ul>
   1418 
   1419 <p>A pointer value is <i>based</i> on another pointer value according
   1420    to the following rules:</p>
   1421 
   1422 <ul>
   1423   <li>A pointer value formed from a
   1424       <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
   1425       is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
   1426   <li>The result value of a
   1427       <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
   1428       of the <tt>bitcast</tt>.</li>
   1429   <li>A pointer value formed by an
   1430       <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
   1431       pointer values that contribute (directly or indirectly) to the
   1432       computation of the pointer's value.</li>
   1433   <li>The "<i>based</i> on" relationship is transitive.</li>
   1434 </ul>
   1435 
   1436 <p>Note that this definition of <i>"based"</i> is intentionally
   1437    similar to the definition of <i>"based"</i> in C99, though it is
   1438    slightly weaker.</p>
   1439 
   1440 <p>LLVM IR does not associate types with memory. The result type of a
   1441 <tt><a href="#i_load">load</a></tt> merely indicates the size and
   1442 alignment of the memory from which to load, as well as the
   1443 interpretation of the value. The first operand type of a
   1444 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
   1445 and alignment of the store.</p>
   1446 
   1447 <p>Consequently, type-based alias analysis, aka TBAA, aka
   1448 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
   1449 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
   1450 additional information which specialized optimization passes may use
   1451 to implement type-based alias analysis.</p>
   1452 
   1453 </div>
   1454 
   1455 <!-- ======================================================================= -->
   1456 <h3>
   1457   <a name="volatile">Volatile Memory Accesses</a>
   1458 </h3>
   1459 
   1460 <div>
   1461 
   1462 <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
   1463 href="#i_store"><tt>store</tt></a>s, and <a
   1464 href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
   1465 The optimizers must not change the number of volatile operations or change their
   1466 order of execution relative to other volatile operations.  The optimizers
   1467 <i>may</i> change the order of volatile operations relative to non-volatile
   1468 operations.  This is not Java's "volatile" and has no cross-thread
   1469 synchronization behavior.</p>
   1470 
   1471 </div>
   1472 
   1473 </div>
   1474 
   1475 <!-- *********************************************************************** -->
   1476 <h2><a name="typesystem">Type System</a></h2>
   1477 <!-- *********************************************************************** -->
   1478 
   1479 <div>
   1480 
   1481 <p>The LLVM type system is one of the most important features of the
   1482    intermediate representation.  Being typed enables a number of optimizations
   1483    to be performed on the intermediate representation directly, without having
   1484    to do extra analyses on the side before the transformation.  A strong type
   1485    system makes it easier to read the generated code and enables novel analyses
   1486    and transformations that are not feasible to perform on normal three address
   1487    code representations.</p>
   1488 
   1489 <!-- ======================================================================= -->
   1490 <h3>
   1491   <a name="t_classifications">Type Classifications</a>
   1492 </h3>
   1493 
   1494 <div>
   1495 
   1496 <p>The types fall into a few useful classifications:</p>
   1497 
   1498 <table border="1" cellspacing="0" cellpadding="4">
   1499   <tbody>
   1500     <tr><th>Classification</th><th>Types</th></tr>
   1501     <tr>
   1502       <td><a href="#t_integer">integer</a></td>
   1503       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
   1504     </tr>
   1505     <tr>
   1506       <td><a href="#t_floating">floating point</a></td>
   1507       <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
   1508     </tr>
   1509     <tr>
   1510       <td><a name="t_firstclass">first class</a></td>
   1511       <td><a href="#t_integer">integer</a>,
   1512           <a href="#t_floating">floating point</a>,
   1513           <a href="#t_pointer">pointer</a>,
   1514           <a href="#t_vector">vector</a>,
   1515           <a href="#t_struct">structure</a>,
   1516           <a href="#t_array">array</a>,
   1517           <a href="#t_label">label</a>,
   1518           <a href="#t_metadata">metadata</a>.
   1519       </td>
   1520     </tr>
   1521     <tr>
   1522       <td><a href="#t_primitive">primitive</a></td>
   1523       <td><a href="#t_label">label</a>,
   1524           <a href="#t_void">void</a>,
   1525           <a href="#t_integer">integer</a>,
   1526           <a href="#t_floating">floating point</a>,
   1527           <a href="#t_x86mmx">x86mmx</a>,
   1528           <a href="#t_metadata">metadata</a>.</td>
   1529     </tr>
   1530     <tr>
   1531       <td><a href="#t_derived">derived</a></td>
   1532       <td><a href="#t_array">array</a>,
   1533           <a href="#t_function">function</a>,
   1534           <a href="#t_pointer">pointer</a>,
   1535           <a href="#t_struct">structure</a>,
   1536           <a href="#t_vector">vector</a>,
   1537           <a href="#t_opaque">opaque</a>.
   1538       </td>
   1539     </tr>
   1540   </tbody>
   1541 </table>
   1542 
   1543 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
   1544    important.  Values of these types are the only ones which can be produced by
   1545    instructions.</p>
   1546 
   1547 </div>
   1548 
   1549 <!-- ======================================================================= -->
   1550 <h3>
   1551   <a name="t_primitive">Primitive Types</a>
   1552 </h3>
   1553 
   1554 <div>
   1555 
   1556 <p>The primitive types are the fundamental building blocks of the LLVM
   1557    system.</p>
   1558 
   1559 <!-- _______________________________________________________________________ -->
   1560 <h4>
   1561   <a name="t_integer">Integer Type</a>
   1562 </h4>
   1563 
   1564 <div>
   1565 
   1566 <h5>Overview:</h5>
   1567 <p>The integer type is a very simple type that simply specifies an arbitrary
   1568    bit width for the integer type desired. Any bit width from 1 bit to
   1569    2<sup>23</sup>-1 (about 8 million) can be specified.</p>
   1570 
   1571 <h5>Syntax:</h5>
   1572 <pre>
   1573   iN
   1574 </pre>
   1575 
   1576 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
   1577    value.</p>
   1578 
   1579 <h5>Examples:</h5>
   1580 <table class="layout">
   1581   <tr class="layout">
   1582     <td class="left"><tt>i1</tt></td>
   1583     <td class="left">a single-bit integer.</td>
   1584   </tr>
   1585   <tr class="layout">
   1586     <td class="left"><tt>i32</tt></td>
   1587     <td class="left">a 32-bit integer.</td>
   1588   </tr>
   1589   <tr class="layout">
   1590     <td class="left"><tt>i1942652</tt></td>
   1591     <td class="left">a really big integer of over 1 million bits.</td>
   1592   </tr>
   1593 </table>
   1594 
   1595 </div>
   1596 
   1597 <!-- _______________________________________________________________________ -->
   1598 <h4>
   1599   <a name="t_floating">Floating Point Types</a>
   1600 </h4>
   1601 
   1602 <div>
   1603 
   1604 <table>
   1605   <tbody>
   1606     <tr><th>Type</th><th>Description</th></tr>
   1607     <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
   1608     <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
   1609     <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
   1610     <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
   1611     <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
   1612   </tbody>
   1613 </table>
   1614 
   1615 </div>
   1616 
   1617 <!-- _______________________________________________________________________ -->
   1618 <h4>
   1619   <a name="t_x86mmx">X86mmx Type</a>
   1620 </h4>
   1621 
   1622 <div>
   1623 
   1624 <h5>Overview:</h5>
   1625 <p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
   1626 
   1627 <h5>Syntax:</h5>
   1628 <pre>
   1629   x86mmx
   1630 </pre>
   1631 
   1632 </div>
   1633 
   1634 <!-- _______________________________________________________________________ -->
   1635 <h4>
   1636   <a name="t_void">Void Type</a>
   1637 </h4>
   1638 
   1639 <div>
   1640 
   1641 <h5>Overview:</h5>
   1642 <p>The void type does not represent any value and has no size.</p>
   1643 
   1644 <h5>Syntax:</h5>
   1645 <pre>
   1646   void
   1647 </pre>
   1648 
   1649 </div>
   1650 
   1651 <!-- _______________________________________________________________________ -->
   1652 <h4>
   1653   <a name="t_label">Label Type</a>
   1654 </h4>
   1655 
   1656 <div>
   1657 
   1658 <h5>Overview:</h5>
   1659 <p>The label type represents code labels.</p>
   1660 
   1661 <h5>Syntax:</h5>
   1662 <pre>
   1663   label
   1664 </pre>
   1665 
   1666 </div>
   1667 
   1668 <!-- _______________________________________________________________________ -->
   1669 <h4>
   1670   <a name="t_metadata">Metadata Type</a>
   1671 </h4>
   1672 
   1673 <div>
   1674 
   1675 <h5>Overview:</h5>
   1676 <p>The metadata type represents embedded metadata. No derived types may be
   1677    created from metadata except for <a href="#t_function">function</a>
   1678    arguments.
   1679 
   1680 <h5>Syntax:</h5>
   1681 <pre>
   1682   metadata
   1683 </pre>
   1684 
   1685 </div>
   1686 
   1687 </div>
   1688 
   1689 <!-- ======================================================================= -->
   1690 <h3>
   1691   <a name="t_derived">Derived Types</a>
   1692 </h3>
   1693 
   1694 <div>
   1695 
   1696 <p>The real power in LLVM comes from the derived types in the system.  This is
   1697    what allows a programmer to represent arrays, functions, pointers, and other
   1698    useful types.  Each of these types contain one or more element types which
   1699    may be a primitive type, or another derived type.  For example, it is
   1700    possible to have a two dimensional array, using an array as the element type
   1701    of another array.</p>
   1702 
   1703 </div>
   1704   
   1705 
   1706 <!-- _______________________________________________________________________ -->
   1707 <h4>
   1708   <a name="t_aggregate">Aggregate Types</a>
   1709 </h4>
   1710 
   1711 <div>
   1712 
   1713 <p>Aggregate Types are a subset of derived types that can contain multiple
   1714   member types. <a href="#t_array">Arrays</a>,
   1715   <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
   1716   aggregate types.</p>
   1717 
   1718 </div>
   1719 
   1720 <!-- _______________________________________________________________________ -->
   1721 <h4>
   1722   <a name="t_array">Array Type</a>
   1723 </h4>
   1724 
   1725 <div>
   1726 
   1727 <h5>Overview:</h5>
   1728 <p>The array type is a very simple derived type that arranges elements
   1729    sequentially in memory.  The array type requires a size (number of elements)
   1730    and an underlying data type.</p>
   1731 
   1732 <h5>Syntax:</h5>
   1733 <pre>
   1734   [&lt;# elements&gt; x &lt;elementtype&gt;]
   1735 </pre>
   1736 
   1737 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
   1738    be any type with a size.</p>
   1739 
   1740 <h5>Examples:</h5>
   1741 <table class="layout">
   1742   <tr class="layout">
   1743     <td class="left"><tt>[40 x i32]</tt></td>
   1744     <td class="left">Array of 40 32-bit integer values.</td>
   1745   </tr>
   1746   <tr class="layout">
   1747     <td class="left"><tt>[41 x i32]</tt></td>
   1748     <td class="left">Array of 41 32-bit integer values.</td>
   1749   </tr>
   1750   <tr class="layout">
   1751     <td class="left"><tt>[4 x i8]</tt></td>
   1752     <td class="left">Array of 4 8-bit integer values.</td>
   1753   </tr>
   1754 </table>
   1755 <p>Here are some examples of multidimensional arrays:</p>
   1756 <table class="layout">
   1757   <tr class="layout">
   1758     <td class="left"><tt>[3 x [4 x i32]]</tt></td>
   1759     <td class="left">3x4 array of 32-bit integer values.</td>
   1760   </tr>
   1761   <tr class="layout">
   1762     <td class="left"><tt>[12 x [10 x float]]</tt></td>
   1763     <td class="left">12x10 array of single precision floating point values.</td>
   1764   </tr>
   1765   <tr class="layout">
   1766     <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
   1767     <td class="left">2x3x4 array of 16-bit integer  values.</td>
   1768   </tr>
   1769 </table>
   1770 
   1771 <p>There is no restriction on indexing beyond the end of the array implied by
   1772    a static type (though there are restrictions on indexing beyond the bounds
   1773    of an allocated object in some cases). This means that single-dimension
   1774    'variable sized array' addressing can be implemented in LLVM with a zero
   1775    length array type. An implementation of 'pascal style arrays' in LLVM could
   1776    use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
   1777 
   1778 </div>
   1779 
   1780 <!-- _______________________________________________________________________ -->
   1781 <h4>
   1782   <a name="t_function">Function Type</a>
   1783 </h4>
   1784 
   1785 <div>
   1786 
   1787 <h5>Overview:</h5>
   1788 <p>The function type can be thought of as a function signature.  It consists of
   1789    a return type and a list of formal parameter types. The return type of a
   1790    function type is a first class type or a void type.</p>
   1791 
   1792 <h5>Syntax:</h5>
   1793 <pre>
   1794   &lt;returntype&gt; (&lt;parameter list&gt;)
   1795 </pre>
   1796 
   1797 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
   1798    specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
   1799    which indicates that the function takes a variable number of arguments.
   1800    Variable argument functions can access their arguments with
   1801    the <a href="#int_varargs">variable argument handling intrinsic</a>
   1802    functions.  '<tt>&lt;returntype&gt;</tt>' is any type except
   1803    <a href="#t_label">label</a>.</p>
   1804 
   1805 <h5>Examples:</h5>
   1806 <table class="layout">
   1807   <tr class="layout">
   1808     <td class="left"><tt>i32 (i32)</tt></td>
   1809     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
   1810     </td>
   1811   </tr><tr class="layout">
   1812     <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
   1813     </tt></td>
   1814     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
   1815       an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
   1816       returning <tt>float</tt>.
   1817     </td>
   1818   </tr><tr class="layout">
   1819     <td class="left"><tt>i32 (i8*, ...)</tt></td>
   1820     <td class="left">A vararg function that takes at least one
   1821       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
   1822       which returns an integer.  This is the signature for <tt>printf</tt> in
   1823       LLVM.
   1824     </td>
   1825   </tr><tr class="layout">
   1826     <td class="left"><tt>{i32, i32} (i32)</tt></td>
   1827     <td class="left">A function taking an <tt>i32</tt>, returning a
   1828         <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
   1829     </td>
   1830   </tr>
   1831 </table>
   1832 
   1833 </div>
   1834 
   1835 <!-- _______________________________________________________________________ -->
   1836 <h4>
   1837   <a name="t_struct">Structure Type</a>
   1838 </h4>
   1839 
   1840 <div>
   1841 
   1842 <h5>Overview:</h5>
   1843 <p>The structure type is used to represent a collection of data members together
   1844   in memory.  The elements of a structure may be any type that has a size.</p>
   1845 
   1846 <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
   1847    and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
   1848    with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
   1849    Structures in registers are accessed using the
   1850    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
   1851    '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
   1852   
   1853 <p>Structures may optionally be "packed" structures, which indicate that the 
   1854   alignment of the struct is one byte, and that there is no padding between
   1855   the elements.  In non-packed structs, padding between field types is defined
   1856   by the target data string to match the underlying processor.</p>
   1857 
   1858 <p>Structures can either be "anonymous" or "named".  An anonymous structure is
   1859   defined inline with other types (e.g. <tt>{i32, i32}*</tt>) and a named types
   1860   are always defined at the top level with a name.  Anonmyous types are uniqued
   1861   by their contents and can never be recursive since there is no way to write
   1862   one.  Named types can be recursive.
   1863 </p>
   1864   
   1865 <h5>Syntax:</h5>
   1866 <pre>
   1867   %T1 = type { &lt;type list&gt; }     <i>; Named normal struct type</i>
   1868   %T2 = type &lt;{ &lt;type list&gt; }&gt;   <i>; Named packed struct type</i>
   1869 </pre>
   1870   
   1871 <h5>Examples:</h5>
   1872 <table class="layout">
   1873   <tr class="layout">
   1874     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
   1875     <td class="left">A triple of three <tt>i32</tt> values</td>
   1876   </tr>
   1877   <tr class="layout">
   1878     <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
   1879     <td class="left">A pair, where the first element is a <tt>float</tt> and the
   1880       second element is a <a href="#t_pointer">pointer</a> to a
   1881       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
   1882       an <tt>i32</tt>.</td>
   1883   </tr>
   1884   <tr class="layout">
   1885     <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
   1886     <td class="left">A packed struct known to be 5 bytes in size.</td>
   1887   </tr>
   1888 </table>
   1889 
   1890 </div>
   1891   
   1892 <!-- _______________________________________________________________________ -->
   1893 <h4>
   1894   <a name="t_opaque">Opaque Type</a>
   1895 </h4>
   1896 
   1897 <div>
   1898 
   1899 <h5>Overview:</h5>
   1900 <p>Opaque types are used to represent named structure types that do not have a
   1901    body specified.  This corresponds (for example) to the C notion of a forward 
   1902    declared structure.</p>
   1903 
   1904 <h5>Syntax:</h5>
   1905 <pre>
   1906   %X = type opaque
   1907   %52 = type opaque
   1908 </pre>
   1909 
   1910 <h5>Examples:</h5>
   1911 <table class="layout">
   1912   <tr class="layout">
   1913     <td class="left"><tt>opaque</tt></td>
   1914     <td class="left">An opaque type.</td>
   1915   </tr>
   1916 </table>
   1917 
   1918 </div>
   1919 
   1920 
   1921 
   1922 <!-- _______________________________________________________________________ -->
   1923 <h4>
   1924   <a name="t_pointer">Pointer Type</a>
   1925 </h4>
   1926 
   1927 <div>
   1928 
   1929 <h5>Overview:</h5>
   1930 <p>The pointer type is used to specify memory locations.
   1931    Pointers are commonly used to reference objects in memory.</p>
   1932    
   1933 <p>Pointer types may have an optional address space attribute defining the
   1934    numbered address space where the pointed-to object resides. The default
   1935    address space is number zero. The semantics of non-zero address
   1936    spaces are target-specific.</p>
   1937 
   1938 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
   1939    permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
   1940 
   1941 <h5>Syntax:</h5>
   1942 <pre>
   1943   &lt;type&gt; *
   1944 </pre>
   1945 
   1946 <h5>Examples:</h5>
   1947 <table class="layout">
   1948   <tr class="layout">
   1949     <td class="left"><tt>[4 x i32]*</tt></td>
   1950     <td class="left">A <a href="#t_pointer">pointer</a> to <a
   1951                     href="#t_array">array</a> of four <tt>i32</tt> values.</td>
   1952   </tr>
   1953   <tr class="layout">
   1954     <td class="left"><tt>i32 (i32*) *</tt></td>
   1955     <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
   1956       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
   1957       <tt>i32</tt>.</td>
   1958   </tr>
   1959   <tr class="layout">
   1960     <td class="left"><tt>i32 addrspace(5)*</tt></td>
   1961     <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
   1962      that resides in address space #5.</td>
   1963   </tr>
   1964 </table>
   1965 
   1966 </div>
   1967 
   1968 <!-- _______________________________________________________________________ -->
   1969 <h4>
   1970   <a name="t_vector">Vector Type</a>
   1971 </h4>
   1972 
   1973 <div>
   1974 
   1975 <h5>Overview:</h5>
   1976 <p>A vector type is a simple derived type that represents a vector of elements.
   1977    Vector types are used when multiple primitive data are operated in parallel
   1978    using a single instruction (SIMD).  A vector type requires a size (number of
   1979    elements) and an underlying primitive data type.  Vector types are considered
   1980    <a href="#t_firstclass">first class</a>.</p>
   1981 
   1982 <h5>Syntax:</h5>
   1983 <pre>
   1984   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
   1985 </pre>
   1986 
   1987 <p>The number of elements is a constant integer value larger than 0; elementtype
   1988    may be any integer or floating point type.  Vectors of size zero are not
   1989    allowed, and pointers are not allowed as the element type.</p>
   1990 
   1991 <h5>Examples:</h5>
   1992 <table class="layout">
   1993   <tr class="layout">
   1994     <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
   1995     <td class="left">Vector of 4 32-bit integer values.</td>
   1996   </tr>
   1997   <tr class="layout">
   1998     <td class="left"><tt>&lt;8 x float&gt;</tt></td>
   1999     <td class="left">Vector of 8 32-bit floating-point values.</td>
   2000   </tr>
   2001   <tr class="layout">
   2002     <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
   2003     <td class="left">Vector of 2 64-bit integer values.</td>
   2004   </tr>
   2005 </table>
   2006 
   2007 </div>
   2008 
   2009 <!-- *********************************************************************** -->
   2010 <h2><a name="constants">Constants</a></h2>
   2011 <!-- *********************************************************************** -->
   2012 
   2013 <div>
   2014 
   2015 <p>LLVM has several different basic types of constants.  This section describes
   2016    them all and their syntax.</p>
   2017 
   2018 <!-- ======================================================================= -->
   2019 <h3>
   2020   <a name="simpleconstants">Simple Constants</a>
   2021 </h3>
   2022 
   2023 <div>
   2024 
   2025 <dl>
   2026   <dt><b>Boolean constants</b></dt>
   2027   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
   2028       constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
   2029 
   2030   <dt><b>Integer constants</b></dt>
   2031   <dd>Standard integers (such as '4') are constants of
   2032       the <a href="#t_integer">integer</a> type.  Negative numbers may be used
   2033       with integer types.</dd>
   2034 
   2035   <dt><b>Floating point constants</b></dt>
   2036   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
   2037       exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
   2038       notation (see below).  The assembler requires the exact decimal value of a
   2039       floating-point constant.  For example, the assembler accepts 1.25 but
   2040       rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
   2041       constants must have a <a href="#t_floating">floating point</a> type. </dd>
   2042 
   2043   <dt><b>Null pointer constants</b></dt>
   2044   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
   2045       and must be of <a href="#t_pointer">pointer type</a>.</dd>
   2046 </dl>
   2047 
   2048 <p>The one non-intuitive notation for constants is the hexadecimal form of
   2049    floating point constants.  For example, the form '<tt>double
   2050    0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
   2051    '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
   2052    constants are required (and the only time that they are generated by the
   2053    disassembler) is when a floating point constant must be emitted but it cannot
   2054    be represented as a decimal floating point number in a reasonable number of
   2055    digits.  For example, NaN's, infinities, and other special values are
   2056    represented in their IEEE hexadecimal format so that assembly and disassembly
   2057    do not cause any bits to change in the constants.</p>
   2058 
   2059 <p>When using the hexadecimal form, constants of types float and double are
   2060    represented using the 16-digit form shown above (which matches the IEEE754
   2061    representation for double); float values must, however, be exactly
   2062    representable as IEE754 single precision.  Hexadecimal format is always used
   2063    for long double, and there are three forms of long double.  The 80-bit format
   2064    used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
   2065    The 128-bit format used by PowerPC (two adjacent doubles) is represented
   2066    by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
   2067    is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
   2068    currently supported target uses this format.  Long doubles will only work if
   2069    they match the long double format on your target.  All hexadecimal formats
   2070    are big-endian (sign bit at the left).</p>
   2071 
   2072 <p>There are no constants of type x86mmx.</p>
   2073 </div>
   2074 
   2075 <!-- ======================================================================= -->
   2076 <h3>
   2077 <a name="aggregateconstants"></a> <!-- old anchor -->
   2078 <a name="complexconstants">Complex Constants</a>
   2079 </h3>
   2080 
   2081 <div>
   2082 
   2083 <p>Complex constants are a (potentially recursive) combination of simple
   2084    constants and smaller complex constants.</p>
   2085 
   2086 <dl>
   2087   <dt><b>Structure constants</b></dt>
   2088   <dd>Structure constants are represented with notation similar to structure
   2089       type definitions (a comma separated list of elements, surrounded by braces
   2090       (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
   2091       where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
   2092       Structure constants must have <a href="#t_struct">structure type</a>, and
   2093       the number and types of elements must match those specified by the
   2094       type.</dd>
   2095 
   2096   <dt><b>Array constants</b></dt>
   2097   <dd>Array constants are represented with notation similar to array type
   2098      definitions (a comma separated list of elements, surrounded by square
   2099      brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
   2100      ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
   2101      the number and types of elements must match those specified by the
   2102      type.</dd>
   2103 
   2104   <dt><b>Vector constants</b></dt>
   2105   <dd>Vector constants are represented with notation similar to vector type
   2106       definitions (a comma separated list of elements, surrounded by
   2107       less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
   2108       42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
   2109       have <a href="#t_vector">vector type</a>, and the number and types of
   2110       elements must match those specified by the type.</dd>
   2111 
   2112   <dt><b>Zero initialization</b></dt>
   2113   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
   2114       value to zero of <em>any</em> type, including scalar and
   2115       <a href="#t_aggregate">aggregate</a> types.
   2116       This is often used to avoid having to print large zero initializers
   2117       (e.g. for large arrays) and is always exactly equivalent to using explicit
   2118       zero initializers.</dd>
   2119 
   2120   <dt><b>Metadata node</b></dt>
   2121   <dd>A metadata node is a structure-like constant with
   2122       <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
   2123       i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
   2124       be interpreted as part of the instruction stream, metadata is a place to
   2125       attach additional information such as debug info.</dd>
   2126 </dl>
   2127 
   2128 </div>
   2129 
   2130 <!-- ======================================================================= -->
   2131 <h3>
   2132   <a name="globalconstants">Global Variable and Function Addresses</a>
   2133 </h3>
   2134 
   2135 <div>
   2136 
   2137 <p>The addresses of <a href="#globalvars">global variables</a>
   2138    and <a href="#functionstructure">functions</a> are always implicitly valid
   2139    (link-time) constants.  These constants are explicitly referenced when
   2140    the <a href="#identifiers">identifier for the global</a> is used and always
   2141    have <a href="#t_pointer">pointer</a> type. For example, the following is a
   2142    legal LLVM file:</p>
   2143 
   2144 <pre class="doc_code">
   2145 @X = global i32 17
   2146 @Y = global i32 42
   2147 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
   2148 </pre>
   2149 
   2150 </div>
   2151 
   2152 <!-- ======================================================================= -->
   2153 <h3>
   2154   <a name="undefvalues">Undefined Values</a>
   2155 </h3>
   2156 
   2157 <div>
   2158 
   2159 <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
   2160    indicates that the user of the value may receive an unspecified bit-pattern.
   2161    Undefined values may be of any type (other than '<tt>label</tt>'
   2162    or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
   2163 
   2164 <p>Undefined values are useful because they indicate to the compiler that the
   2165    program is well defined no matter what value is used.  This gives the
   2166    compiler more freedom to optimize.  Here are some examples of (potentially
   2167    surprising) transformations that are valid (in pseudo IR):</p>
   2168 
   2169 
   2170 <pre class="doc_code">
   2171   %A = add %X, undef
   2172   %B = sub %X, undef
   2173   %C = xor %X, undef
   2174 Safe:
   2175   %A = undef
   2176   %B = undef
   2177   %C = undef
   2178 </pre>
   2179 
   2180 <p>This is safe because all of the output bits are affected by the undef bits.
   2181    Any output bit can have a zero or one depending on the input bits.</p>
   2182 
   2183 <pre class="doc_code">
   2184   %A = or %X, undef
   2185   %B = and %X, undef
   2186 Safe:
   2187   %A = -1
   2188   %B = 0
   2189 Unsafe:
   2190   %A = undef
   2191   %B = undef
   2192 </pre>
   2193 
   2194 <p>These logical operations have bits that are not always affected by the input.
   2195    For example, if <tt>%X</tt> has a zero bit, then the output of the
   2196    '<tt>and</tt>' operation will always be a zero for that bit, no matter what
   2197    the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
   2198    optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
   2199    However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
   2200    0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
   2201    all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
   2202    set, allowing the '<tt>or</tt>' to be folded to -1.</p>
   2203 
   2204 <pre class="doc_code">
   2205   %A = select undef, %X, %Y
   2206   %B = select undef, 42, %Y
   2207   %C = select %X, %Y, undef
   2208 Safe:
   2209   %A = %X     (or %Y)
   2210   %B = 42     (or %Y)
   2211   %C = %Y
   2212 Unsafe:
   2213   %A = undef
   2214   %B = undef
   2215   %C = undef
   2216 </pre>
   2217 
   2218 <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
   2219    branch) conditions can go <em>either way</em>, but they have to come from one
   2220    of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
   2221    <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
   2222    have to have a cleared low bit. However, in the <tt>%C</tt> example, the
   2223    optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
   2224    same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
   2225    eliminated.</p>
   2226 
   2227 <pre class="doc_code">
   2228   %A = xor undef, undef
   2229 
   2230   %B = undef
   2231   %C = xor %B, %B
   2232 
   2233   %D = undef
   2234   %E = icmp lt %D, 4
   2235   %F = icmp gte %D, 4
   2236 
   2237 Safe:
   2238   %A = undef
   2239   %B = undef
   2240   %C = undef
   2241   %D = undef
   2242   %E = undef
   2243   %F = undef
   2244 </pre>
   2245 
   2246 <p>This example points out that two '<tt>undef</tt>' operands are not
   2247    necessarily the same. This can be surprising to people (and also matches C
   2248    semantics) where they assume that "<tt>X^X</tt>" is always zero, even
   2249    if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
   2250    short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
   2251    its value over its "live range".  This is true because the variable doesn't
   2252    actually <em>have a live range</em>. Instead, the value is logically read
   2253    from arbitrary registers that happen to be around when needed, so the value
   2254    is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
   2255    need to have the same semantics or the core LLVM "replace all uses with"
   2256    concept would not hold.</p>
   2257 
   2258 <pre class="doc_code">
   2259   %A = fdiv undef, %X
   2260   %B = fdiv %X, undef
   2261 Safe:
   2262   %A = undef
   2263 b: unreachable
   2264 </pre>
   2265 
   2266 <p>These examples show the crucial difference between an <em>undefined
   2267   value</em> and <em>undefined behavior</em>. An undefined value (like
   2268   '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
   2269   the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
   2270   the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
   2271   defined on SNaN's. However, in the second example, we can make a more
   2272   aggressive assumption: because the <tt>undef</tt> is allowed to be an
   2273   arbitrary value, we are allowed to assume that it could be zero. Since a
   2274   divide by zero has <em>undefined behavior</em>, we are allowed to assume that
   2275   the operation does not execute at all. This allows us to delete the divide and
   2276   all code after it. Because the undefined operation "can't happen", the
   2277   optimizer can assume that it occurs in dead code.</p>
   2278 
   2279 <pre class="doc_code">
   2280 a:  store undef -> %X
   2281 b:  store %X -> undef
   2282 Safe:
   2283 a: &lt;deleted&gt;
   2284 b: unreachable
   2285 </pre>
   2286 
   2287 <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
   2288    undefined value can be assumed to not have any effect; we can assume that the
   2289    value is overwritten with bits that happen to match what was already there.
   2290    However, a store <em>to</em> an undefined location could clobber arbitrary
   2291    memory, therefore, it has undefined behavior.</p>
   2292 
   2293 </div>
   2294 
   2295 <!-- ======================================================================= -->
   2296 <h3>
   2297   <a name="trapvalues">Trap Values</a>
   2298 </h3>
   2299 
   2300 <div>
   2301 
   2302 <p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
   2303    instead of representing an unspecified bit pattern, they represent the
   2304    fact that an instruction or constant expression which cannot evoke side
   2305    effects has nevertheless detected a condition which results in undefined
   2306    behavior.</p>
   2307 
   2308 <p>There is currently no way of representing a trap value in the IR; they
   2309    only exist when produced by operations such as
   2310    <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
   2311 
   2312 <p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
   2313 
   2314 <ul>
   2315 <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
   2316     their operands.</li>
   2317 
   2318 <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
   2319     to their dynamic predecessor basic block.</li>
   2320 
   2321 <li>Function arguments depend on the corresponding actual argument values in
   2322     the dynamic callers of their functions.</li>
   2323 
   2324 <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
   2325     <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
   2326     control back to them.</li>
   2327 
   2328 <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
   2329     <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
   2330     or exception-throwing call instructions that dynamically transfer control
   2331     back to them.</li>
   2332 
   2333 <li>Non-volatile loads and stores depend on the most recent stores to all of the
   2334     referenced memory addresses, following the order in the IR
   2335     (including loads and stores implied by intrinsics such as
   2336     <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
   2337 
   2338 <!-- TODO: In the case of multiple threads, this only applies if the store
   2339      "happens-before" the load or store. -->
   2340 
   2341 <!-- TODO: floating-point exception state -->
   2342 
   2343 <li>An instruction with externally visible side effects depends on the most
   2344     recent preceding instruction with externally visible side effects, following
   2345     the order in the IR. (This includes
   2346     <a href="#volatile">volatile operations</a>.)</li>
   2347 
   2348 <li>An instruction <i>control-depends</i> on a
   2349     <a href="#terminators">terminator instruction</a>
   2350     if the terminator instruction has multiple successors and the instruction
   2351     is always executed when control transfers to one of the successors, and
   2352     may not be executed when control is transferred to another.</li>
   2353 
   2354 <li>Additionally, an instruction also <i>control-depends</i> on a terminator
   2355     instruction if the set of instructions it otherwise depends on would be
   2356     different if the terminator had transferred control to a different
   2357     successor.</li>
   2358 
   2359 <li>Dependence is transitive.</li>
   2360 
   2361 </ul>
   2362 
   2363 <p>Whenever a trap value is generated, all values which depend on it evaluate
   2364    to trap. If they have side effects, the evoke their side effects as if each
   2365    operand with a trap value were undef. If they have externally-visible side
   2366    effects, the behavior is undefined.</p>
   2367 
   2368 <p>Here are some examples:</p>
   2369 
   2370 <pre class="doc_code">
   2371 entry:
   2372   %trap = sub nuw i32 0, 1           ; Results in a trap value.
   2373   %still_trap = and i32 %trap, 0     ; Whereas (and i32 undef, 0) would return 0.
   2374   %trap_yet_again = getelementptr i32* @h, i32 %still_trap
   2375   store i32 0, i32* %trap_yet_again  ; undefined behavior
   2376 
   2377   store i32 %trap, i32* @g           ; Trap value conceptually stored to memory.
   2378   %trap2 = load i32* @g              ; Returns a trap value, not just undef.
   2379 
   2380   volatile store i32 %trap, i32* @g  ; External observation; undefined behavior.
   2381 
   2382   %narrowaddr = bitcast i32* @g to i16*
   2383   %wideaddr = bitcast i32* @g to i64*
   2384   %trap3 = load i16* %narrowaddr     ; Returns a trap value.
   2385   %trap4 = load i64* %wideaddr       ; Returns a trap value.
   2386 
   2387   %cmp = icmp slt i32 %trap, 0       ; Returns a trap value.
   2388   br i1 %cmp, label %true, label %end ; Branch to either destination.
   2389 
   2390 true:
   2391   volatile store i32 0, i32* @g      ; This is control-dependent on %cmp, so
   2392                                      ; it has undefined behavior.
   2393   br label %end
   2394 
   2395 end:
   2396   %p = phi i32 [ 0, %entry ], [ 1, %true ]
   2397                                      ; Both edges into this PHI are
   2398                                      ; control-dependent on %cmp, so this
   2399                                      ; always results in a trap value.
   2400 
   2401   volatile store i32 0, i32* @g      ; This would depend on the store in %true
   2402                                      ; if %cmp is true, or the store in %entry
   2403                                      ; otherwise, so this is undefined behavior.
   2404 
   2405   br i1 %cmp, label %second_true, label %second_end
   2406                                      ; The same branch again, but this time the
   2407                                      ; true block doesn't have side effects.
   2408 
   2409 second_true:
   2410   ; No side effects!
   2411   ret void
   2412 
   2413 second_end:
   2414   volatile store i32 0, i32* @g      ; This time, the instruction always depends
   2415                                      ; on the store in %end. Also, it is
   2416                                      ; control-equivalent to %end, so this is
   2417                                      ; well-defined (again, ignoring earlier
   2418                                      ; undefined behavior in this example).
   2419 </pre>
   2420 
   2421 </div>
   2422 
   2423 <!-- ======================================================================= -->
   2424 <h3>
   2425   <a name="blockaddress">Addresses of Basic Blocks</a>
   2426 </h3>
   2427 
   2428 <div>
   2429 
   2430 <p><b><tt>blockaddress(@function, %block)</tt></b></p>
   2431 
   2432 <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
   2433    basic block in the specified function, and always has an i8* type.  Taking
   2434    the address of the entry block is illegal.</p>
   2435 
   2436 <p>This value only has defined behavior when used as an operand to the
   2437    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
   2438    comparisons against null. Pointer equality tests between labels addresses
   2439    results in undefined behavior &mdash; though, again, comparison against null
   2440    is ok, and no label is equal to the null pointer. This may be passed around
   2441    as an opaque pointer sized value as long as the bits are not inspected. This
   2442    allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
   2443    long as the original value is reconstituted before the <tt>indirectbr</tt>
   2444    instruction.</p>
   2445 
   2446 <p>Finally, some targets may provide defined semantics when using the value as
   2447    the operand to an inline assembly, but that is target specific.</p>
   2448 
   2449 </div>
   2450 
   2451 
   2452 <!-- ======================================================================= -->
   2453 <h3>
   2454   <a name="constantexprs">Constant Expressions</a>
   2455 </h3>
   2456 
   2457 <div>
   2458 
   2459 <p>Constant expressions are used to allow expressions involving other constants
   2460    to be used as constants.  Constant expressions may be of
   2461    any <a href="#t_firstclass">first class</a> type and may involve any LLVM
   2462    operation that does not have side effects (e.g. load and call are not
   2463    supported). The following is the syntax for constant expressions:</p>
   2464 
   2465 <dl>
   2466   <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
   2467   <dd>Truncate a constant to another type. The bit size of CST must be larger
   2468       than the bit size of TYPE. Both types must be integers.</dd>
   2469 
   2470   <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
   2471   <dd>Zero extend a constant to another type. The bit size of CST must be
   2472       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2473 
   2474   <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
   2475   <dd>Sign extend a constant to another type. The bit size of CST must be
   2476       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2477 
   2478   <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
   2479   <dd>Truncate a floating point constant to another floating point type. The
   2480       size of CST must be larger than the size of TYPE. Both types must be
   2481       floating point.</dd>
   2482 
   2483   <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
   2484   <dd>Floating point extend a constant to another type. The size of CST must be
   2485       smaller or equal to the size of TYPE. Both types must be floating
   2486       point.</dd>
   2487 
   2488   <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
   2489   <dd>Convert a floating point constant to the corresponding unsigned integer
   2490       constant. TYPE must be a scalar or vector integer type. CST must be of
   2491       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2492       or vectors of the same number of elements. If the value won't fit in the
   2493       integer type, the results are undefined.</dd>
   2494 
   2495   <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
   2496   <dd>Convert a floating point constant to the corresponding signed integer
   2497       constant.  TYPE must be a scalar or vector integer type. CST must be of
   2498       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2499       or vectors of the same number of elements. If the value won't fit in the
   2500       integer type, the results are undefined.</dd>
   2501 
   2502   <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
   2503   <dd>Convert an unsigned integer constant to the corresponding floating point
   2504       constant. TYPE must be a scalar or vector floating point type. CST must be
   2505       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2506       vectors of the same number of elements. If the value won't fit in the
   2507       floating point type, the results are undefined.</dd>
   2508 
   2509   <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
   2510   <dd>Convert a signed integer constant to the corresponding floating point
   2511       constant. TYPE must be a scalar or vector floating point type. CST must be
   2512       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2513       vectors of the same number of elements. If the value won't fit in the
   2514       floating point type, the results are undefined.</dd>
   2515 
   2516   <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
   2517   <dd>Convert a pointer typed constant to the corresponding integer constant
   2518       <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
   2519       type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
   2520       make it fit in <tt>TYPE</tt>.</dd>
   2521 
   2522   <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
   2523   <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer
   2524       type.  CST must be of integer type. The CST value is zero extended,
   2525       truncated, or unchanged to make it fit in a pointer size. This one is
   2526       <i>really</i> dangerous!</dd>
   2527 
   2528   <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
   2529   <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
   2530       are the same as those for the <a href="#i_bitcast">bitcast
   2531       instruction</a>.</dd>
   2532 
   2533   <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2534   <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2535   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
   2536       constants.  As with the <a href="#i_getelementptr">getelementptr</a>
   2537       instruction, the index list may have zero or more indexes, which are
   2538       required to make sense for the type of "CSTPTR".</dd>
   2539 
   2540   <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
   2541   <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
   2542 
   2543   <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
   2544   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
   2545 
   2546   <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
   2547   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
   2548 
   2549   <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
   2550   <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
   2551       constants.</dd>
   2552 
   2553   <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
   2554   <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
   2555     constants.</dd>
   2556 
   2557   <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
   2558   <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
   2559       constants.</dd>
   2560 
   2561   <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
   2562   <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
   2563     constants. The index list is interpreted in a similar manner as indices in
   2564     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2565     index value must be specified.</dd>
   2566 
   2567   <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
   2568   <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
   2569     constants. The index list is interpreted in a similar manner as indices in
   2570     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2571     index value must be specified.</dd>
   2572 
   2573   <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
   2574   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
   2575       be any of the <a href="#binaryops">binary</a>
   2576       or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
   2577       on operands are the same as those for the corresponding instruction
   2578       (e.g. no bitwise operations on floating point values are allowed).</dd>
   2579 </dl>
   2580 
   2581 </div>
   2582 
   2583 </div>
   2584 
   2585 <!-- *********************************************************************** -->
   2586 <h2><a name="othervalues">Other Values</a></h2>
   2587 <!-- *********************************************************************** -->
   2588 <div>
   2589 <!-- ======================================================================= -->
   2590 <h3>
   2591 <a name="inlineasm">Inline Assembler Expressions</a>
   2592 </h3>
   2593 
   2594 <div>
   2595 
   2596 <p>LLVM supports inline assembler expressions (as opposed
   2597    to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
   2598    a special value.  This value represents the inline assembler as a string
   2599    (containing the instructions to emit), a list of operand constraints (stored
   2600    as a string), a flag that indicates whether or not the inline asm
   2601    expression has side effects, and a flag indicating whether the function
   2602    containing the asm needs to align its stack conservatively.  An example
   2603    inline assembler expression is:</p>
   2604 
   2605 <pre class="doc_code">
   2606 i32 (i32) asm "bswap $0", "=r,r"
   2607 </pre>
   2608 
   2609 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
   2610    a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we
   2611    have:</p>
   2612 
   2613 <pre class="doc_code">
   2614 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
   2615 </pre>
   2616 
   2617 <p>Inline asms with side effects not visible in the constraint list must be
   2618    marked as having side effects.  This is done through the use of the
   2619    '<tt>sideeffect</tt>' keyword, like so:</p>
   2620 
   2621 <pre class="doc_code">
   2622 call void asm sideeffect "eieio", ""()
   2623 </pre>
   2624 
   2625 <p>In some cases inline asms will contain code that will not work unless the
   2626    stack is aligned in some way, such as calls or SSE instructions on x86,
   2627    yet will not contain code that does that alignment within the asm.
   2628    The compiler should make conservative assumptions about what the asm might
   2629    contain and should generate its usual stack alignment code in the prologue
   2630    if the '<tt>alignstack</tt>' keyword is present:</p>
   2631 
   2632 <pre class="doc_code">
   2633 call void asm alignstack "eieio", ""()
   2634 </pre>
   2635 
   2636 <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
   2637    first.</p>
   2638 
   2639 <p>TODO: The format of the asm and constraints string still need to be
   2640    documented here.  Constraints on what can be done (e.g. duplication, moving,
   2641    etc need to be documented).  This is probably best done by reference to
   2642    another document that covers inline asm from a holistic perspective.</p>
   2643 
   2644 <h4>
   2645 <a name="inlineasm_md">Inline Asm Metadata</a>
   2646 </h4>
   2647 
   2648 <div>
   2649 
   2650 <p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
   2651    attached to it that contains a list of constant integers.  If present, the
   2652   code generator will use the integer as the location cookie value when report
   2653    errors through the LLVMContext error reporting mechanisms.  This allows a
   2654    front-end to correlate backend errors that occur with inline asm back to the
   2655    source code that produced it.  For example:</p>
   2656 
   2657 <pre class="doc_code">
   2658 call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
   2659 ...
   2660 !42 = !{ i32 1234567 }
   2661 </pre>
   2662 
   2663 <p>It is up to the front-end to make sense of the magic numbers it places in the
   2664    IR.  If the MDNode contains multiple constants, the code generator will use
   2665    the one that corresponds to the line of the asm that the error occurs on.</p>
   2666 
   2667 </div>
   2668 
   2669 </div>
   2670 
   2671 <!-- ======================================================================= -->
   2672 <h3>
   2673   <a name="metadata">Metadata Nodes and Metadata Strings</a>
   2674 </h3>
   2675 
   2676 <div>
   2677 
   2678 <p>LLVM IR allows metadata to be attached to instructions in the program that
   2679    can convey extra information about the code to the optimizers and code
   2680    generator.  One example application of metadata is source-level debug
   2681    information.  There are two metadata primitives: strings and nodes. All
   2682    metadata has the <tt>metadata</tt> type and is identified in syntax by a
   2683    preceding exclamation point ('<tt>!</tt>').</p>
   2684 
   2685 <p>A metadata string is a string surrounded by double quotes.  It can contain
   2686    any character by escaping non-printable characters with "\xx" where "xx" is
   2687    the two digit hex code.  For example: "<tt>!"test\00"</tt>".</p>
   2688 
   2689 <p>Metadata nodes are represented with notation similar to structure constants
   2690    (a comma separated list of elements, surrounded by braces and preceded by an
   2691    exclamation point).  For example: "<tt>!{ metadata !"test\00", i32
   2692    10}</tt>".  Metadata nodes can have any values as their operand.</p>
   2693 
   2694 <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of 
   2695    metadata nodes, which can be looked up in the module symbol table. For
   2696    example: "<tt>!foo =  metadata !{!4, !3}</tt>".
   2697 
   2698 <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt> 
   2699    function is using two metadata arguments.</p>
   2700 
   2701 <div class="doc_code">
   2702 <pre>
   2703 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
   2704 </pre>
   2705 </div>
   2706 
   2707 <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
   2708    attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
   2709 
   2710 <div class="doc_code">
   2711 <pre>
   2712 %indvar.next = add i64 %indvar, 1, !dbg !21
   2713 </pre>
   2714 </div>
   2715 
   2716 </div>
   2717 
   2718 </div>
   2719 
   2720 <!-- *********************************************************************** -->
   2721 <h2>
   2722   <a name="intrinsic_globals">Intrinsic Global Variables</a>
   2723 </h2>
   2724 <!-- *********************************************************************** -->
   2725 <div>
   2726 <p>LLVM has a number of "magic" global variables that contain data that affect
   2727 code generation or other IR semantics.  These are documented here.  All globals
   2728 of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
   2729 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
   2730 by LLVM.</p>
   2731 
   2732 <!-- ======================================================================= -->
   2733 <h3>
   2734 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
   2735 </h3>
   2736 
   2737 <div>
   2738 
   2739 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
   2740 href="#linkage_appending">appending linkage</a>.  This array contains a list of
   2741 pointers to global variables and functions which may optionally have a pointer
   2742 cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
   2743 
   2744 <pre>
   2745   @X = global i8 4
   2746   @Y = global i32 123
   2747 
   2748   @llvm.used = appending global [2 x i8*] [
   2749      i8* @X,
   2750      i8* bitcast (i32* @Y to i8*)
   2751   ], section "llvm.metadata"
   2752 </pre>
   2753 
   2754 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
   2755 compiler, assembler, and linker are required to treat the symbol as if there is
   2756 a reference to the global that it cannot see.  For example, if a variable has
   2757 internal linkage and no references other than that from the <tt>@llvm.used</tt>
   2758 list, it cannot be deleted.  This is commonly used to represent references from
   2759 inline asms and other things the compiler cannot "see", and corresponds to
   2760 "attribute((used))" in GNU C.</p>
   2761 
   2762 <p>On some targets, the code generator must emit a directive to the assembler or
   2763 object file to prevent the assembler and linker from molesting the symbol.</p>
   2764 
   2765 </div>
   2766 
   2767 <!-- ======================================================================= -->
   2768 <h3>
   2769   <a name="intg_compiler_used">
   2770     The '<tt>llvm.compiler.used</tt>' Global Variable
   2771   </a>
   2772 </h3>
   2773 
   2774 <div>
   2775 
   2776 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
   2777 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
   2778 touching the symbol.  On targets that support it, this allows an intelligent
   2779 linker to optimize references to the symbol without being impeded as it would be
   2780 by <tt>@llvm.used</tt>.</p>
   2781 
   2782 <p>This is a rare construct that should only be used in rare circumstances, and
   2783 should not be exposed to source languages.</p>
   2784 
   2785 </div>
   2786 
   2787 <!-- ======================================================================= -->
   2788 <h3>
   2789 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
   2790 </h3>
   2791 
   2792 <div>
   2793 <pre>
   2794 %0 = type { i32, void ()* }
   2795 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
   2796 </pre>
   2797 <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities.  The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded.  The order of functions with the same priority is not defined.
   2798 </p>
   2799 
   2800 </div>
   2801 
   2802 <!-- ======================================================================= -->
   2803 <h3>
   2804 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
   2805 </h3>
   2806 
   2807 <div>
   2808 <pre>
   2809 %0 = type { i32, void ()* }
   2810 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
   2811 </pre>
   2812 
   2813 <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities.  The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded.  The order of functions with the same priority is not defined.
   2814 </p>
   2815 
   2816 </div>
   2817 
   2818 </div>
   2819 
   2820 <!-- *********************************************************************** -->
   2821 <h2><a name="instref">Instruction Reference</a></h2>
   2822 <!-- *********************************************************************** -->
   2823 
   2824 <div>
   2825 
   2826 <p>The LLVM instruction set consists of several different classifications of
   2827    instructions: <a href="#terminators">terminator
   2828    instructions</a>, <a href="#binaryops">binary instructions</a>,
   2829    <a href="#bitwiseops">bitwise binary instructions</a>,
   2830    <a href="#memoryops">memory instructions</a>, and
   2831    <a href="#otherops">other instructions</a>.</p>
   2832 
   2833 <!-- ======================================================================= -->
   2834 <h3>
   2835   <a name="terminators">Terminator Instructions</a>
   2836 </h3>
   2837 
   2838 <div>
   2839 
   2840 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
   2841    in a program ends with a "Terminator" instruction, which indicates which
   2842    block should be executed after the current block is finished. These
   2843    terminator instructions typically yield a '<tt>void</tt>' value: they produce
   2844    control flow, not values (the one exception being the
   2845    '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
   2846 
   2847 <p>There are seven different terminator instructions: the
   2848    '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
   2849    '<a href="#i_br"><tt>br</tt></a>' instruction, the
   2850    '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
   2851    '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
   2852    '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
   2853    '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
   2854    '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
   2855 
   2856 <!-- _______________________________________________________________________ -->
   2857 <h4>
   2858   <a name="i_ret">'<tt>ret</tt>' Instruction</a>
   2859 </h4>
   2860 
   2861 <div>
   2862 
   2863 <h5>Syntax:</h5>
   2864 <pre>
   2865   ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
   2866   ret void                 <i>; Return from void function</i>
   2867 </pre>
   2868 
   2869 <h5>Overview:</h5>
   2870 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
   2871    a value) from a function back to the caller.</p>
   2872 
   2873 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
   2874    value and then causes control flow, and one that just causes control flow to
   2875    occur.</p>
   2876 
   2877 <h5>Arguments:</h5>
   2878 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
   2879    return value. The type of the return value must be a
   2880    '<a href="#t_firstclass">first class</a>' type.</p>
   2881 
   2882 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
   2883    non-void return type and contains a '<tt>ret</tt>' instruction with no return
   2884    value or a return value with a type that does not match its type, or if it
   2885    has a void return type and contains a '<tt>ret</tt>' instruction with a
   2886    return value.</p>
   2887 
   2888 <h5>Semantics:</h5>
   2889 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
   2890    the calling function's context.  If the caller is a
   2891    "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
   2892    instruction after the call.  If the caller was an
   2893    "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
   2894    the beginning of the "normal" destination block.  If the instruction returns
   2895    a value, that value shall set the call or invoke instruction's return
   2896    value.</p>
   2897 
   2898 <h5>Example:</h5>
   2899 <pre>
   2900   ret i32 5                       <i>; Return an integer value of 5</i>
   2901   ret void                        <i>; Return from a void function</i>
   2902   ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
   2903 </pre>
   2904 
   2905 </div>
   2906 <!-- _______________________________________________________________________ -->
   2907 <h4>
   2908   <a name="i_br">'<tt>br</tt>' Instruction</a>
   2909 </h4>
   2910 
   2911 <div>
   2912 
   2913 <h5>Syntax:</h5>
   2914 <pre>
   2915   br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br>  br label &lt;dest&gt;          <i>; Unconditional branch</i>
   2916 </pre>
   2917 
   2918 <h5>Overview:</h5>
   2919 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
   2920    different basic block in the current function.  There are two forms of this
   2921    instruction, corresponding to a conditional branch and an unconditional
   2922    branch.</p>
   2923 
   2924 <h5>Arguments:</h5>
   2925 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
   2926    '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
   2927    of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
   2928    target.</p>
   2929 
   2930 <h5>Semantics:</h5>
   2931 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
   2932    argument is evaluated.  If the value is <tt>true</tt>, control flows to the
   2933    '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
   2934    control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
   2935 
   2936 <h5>Example:</h5>
   2937 <pre>
   2938 Test:
   2939   %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
   2940   br i1 %cond, label %IfEqual, label %IfUnequal
   2941 IfEqual:
   2942   <a href="#i_ret">ret</a> i32 1
   2943 IfUnequal:
   2944   <a href="#i_ret">ret</a> i32 0
   2945 </pre>
   2946 
   2947 </div>
   2948 
   2949 <!-- _______________________________________________________________________ -->
   2950 <h4>
   2951    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
   2952 </h4>
   2953 
   2954 <div>
   2955 
   2956 <h5>Syntax:</h5>
   2957 <pre>
   2958   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
   2959 </pre>
   2960 
   2961 <h5>Overview:</h5>
   2962 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
   2963    several different places.  It is a generalization of the '<tt>br</tt>'
   2964    instruction, allowing a branch to occur to one of many possible
   2965    destinations.</p>
   2966 
   2967 <h5>Arguments:</h5>
   2968 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
   2969    comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
   2970    and an array of pairs of comparison value constants and '<tt>label</tt>'s.
   2971    The table is not allowed to contain duplicate constant entries.</p>
   2972 
   2973 <h5>Semantics:</h5>
   2974 <p>The <tt>switch</tt> instruction specifies a table of values and
   2975    destinations. When the '<tt>switch</tt>' instruction is executed, this table
   2976    is searched for the given value.  If the value is found, control flow is
   2977    transferred to the corresponding destination; otherwise, control flow is
   2978    transferred to the default destination.</p>
   2979 
   2980 <h5>Implementation:</h5>
   2981 <p>Depending on properties of the target machine and the particular
   2982    <tt>switch</tt> instruction, this instruction may be code generated in
   2983    different ways.  For example, it could be generated as a series of chained
   2984    conditional branches or with a lookup table.</p>
   2985 
   2986 <h5>Example:</h5>
   2987 <pre>
   2988  <i>; Emulate a conditional br instruction</i>
   2989  %Val = <a href="#i_zext">zext</a> i1 %value to i32
   2990  switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
   2991 
   2992  <i>; Emulate an unconditional br instruction</i>
   2993  switch i32 0, label %dest [ ]
   2994 
   2995  <i>; Implement a jump table:</i>
   2996  switch i32 %val, label %otherwise [ i32 0, label %onzero
   2997                                      i32 1, label %onone
   2998                                      i32 2, label %ontwo ]
   2999 </pre>
   3000 
   3001 </div>
   3002 
   3003 
   3004 <!-- _______________________________________________________________________ -->
   3005 <h4>
   3006    <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
   3007 </h4>
   3008 
   3009 <div>
   3010 
   3011 <h5>Syntax:</h5>
   3012 <pre>
   3013   indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
   3014 </pre>
   3015 
   3016 <h5>Overview:</h5>
   3017 
   3018 <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
   3019    within the current function, whose address is specified by
   3020    "<tt>address</tt>".  Address must be derived from a <a
   3021    href="#blockaddress">blockaddress</a> constant.</p>
   3022 
   3023 <h5>Arguments:</h5>
   3024 
   3025 <p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
   3026    rest of the arguments indicate the full set of possible destinations that the
   3027    address may point to.  Blocks are allowed to occur multiple times in the
   3028    destination list, though this isn't particularly useful.</p>
   3029 
   3030 <p>This destination list is required so that dataflow analysis has an accurate
   3031    understanding of the CFG.</p>
   3032 
   3033 <h5>Semantics:</h5>
   3034 
   3035 <p>Control transfers to the block specified in the address argument.  All
   3036    possible destination blocks must be listed in the label list, otherwise this
   3037    instruction has undefined behavior.  This implies that jumps to labels
   3038    defined in other functions have undefined behavior as well.</p>
   3039 
   3040 <h5>Implementation:</h5>
   3041 
   3042 <p>This is typically implemented with a jump through a register.</p>
   3043 
   3044 <h5>Example:</h5>
   3045 <pre>
   3046  indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
   3047 </pre>
   3048 
   3049 </div>
   3050 
   3051 
   3052 <!-- _______________________________________________________________________ -->
   3053 <h4>
   3054   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
   3055 </h4>
   3056 
   3057 <div>
   3058 
   3059 <h5>Syntax:</h5>
   3060 <pre>
   3061   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   3062                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
   3063 </pre>
   3064 
   3065 <h5>Overview:</h5>
   3066 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
   3067    function, with the possibility of control flow transfer to either the
   3068    '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
   3069    function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
   3070    control flow will return to the "normal" label.  If the callee (or any
   3071    indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
   3072    instruction, control is interrupted and continued at the dynamically nearest
   3073    "exception" label.</p>
   3074 
   3075 <h5>Arguments:</h5>
   3076 <p>This instruction requires several arguments:</p>
   3077 
   3078 <ol>
   3079   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   3080       convention</a> the call should use.  If none is specified, the call
   3081       defaults to using C calling conventions.</li>
   3082 
   3083   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   3084       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   3085       '<tt>inreg</tt>' attributes are valid here.</li>
   3086 
   3087   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
   3088       function value being invoked.  In most cases, this is a direct function
   3089       invocation, but indirect <tt>invoke</tt>s are just as possible, branching
   3090       off an arbitrary pointer to function value.</li>
   3091 
   3092   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
   3093       function to be invoked. </li>
   3094 
   3095   <li>'<tt>function args</tt>': argument list whose types match the function
   3096       signature argument types and parameter attributes. All arguments must be
   3097       of <a href="#t_firstclass">first class</a> type. If the function
   3098       signature indicates the function accepts a variable number of arguments,
   3099       the extra arguments can be specified.</li>
   3100 
   3101   <li>'<tt>normal label</tt>': the label reached when the called function
   3102       executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
   3103 
   3104   <li>'<tt>exception label</tt>': the label reached when a callee returns with
   3105       the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
   3106 
   3107   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   3108       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   3109       '<tt>readnone</tt>' attributes are valid here.</li>
   3110 </ol>
   3111 
   3112 <h5>Semantics:</h5>
   3113 <p>This instruction is designed to operate as a standard
   3114    '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
   3115    primary difference is that it establishes an association with a label, which
   3116    is used by the runtime library to unwind the stack.</p>
   3117 
   3118 <p>This instruction is used in languages with destructors to ensure that proper
   3119    cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
   3120    exception.  Additionally, this is important for implementation of
   3121    '<tt>catch</tt>' clauses in high-level languages that support them.</p>
   3122 
   3123 <p>For the purposes of the SSA form, the definition of the value returned by the
   3124    '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
   3125    block to the "normal" label. If the callee unwinds then no return value is
   3126    available.</p>
   3127 
   3128 <p>Note that the code generator does not yet completely support unwind, and
   3129 that the invoke/unwind semantics are likely to change in future versions.</p>
   3130 
   3131 <h5>Example:</h5>
   3132 <pre>
   3133   %retval = invoke i32 @Test(i32 15) to label %Continue
   3134               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3135   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
   3136               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3137 </pre>
   3138 
   3139 </div>
   3140 
   3141 <!-- _______________________________________________________________________ -->
   3142 
   3143 <h4>
   3144   <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
   3145 </h4>
   3146 
   3147 <div>
   3148 
   3149 <h5>Syntax:</h5>
   3150 <pre>
   3151   unwind
   3152 </pre>
   3153 
   3154 <h5>Overview:</h5>
   3155 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
   3156    at the first callee in the dynamic call stack which used
   3157    an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
   3158    This is primarily used to implement exception handling.</p>
   3159 
   3160 <h5>Semantics:</h5>
   3161 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
   3162    immediately halt.  The dynamic call stack is then searched for the
   3163    first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
   3164    Once found, execution continues at the "exceptional" destination block
   3165    specified by the <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt>
   3166    instruction in the dynamic call chain, undefined behavior results.</p>
   3167 
   3168 <p>Note that the code generator does not yet completely support unwind, and
   3169 that the invoke/unwind semantics are likely to change in future versions.</p>
   3170 
   3171 </div>
   3172 
   3173 <!-- _______________________________________________________________________ -->
   3174 
   3175 <h4>
   3176   <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
   3177 </h4>
   3178 
   3179 <div>
   3180 
   3181 <h5>Syntax:</h5>
   3182 <pre>
   3183   unreachable
   3184 </pre>
   3185 
   3186 <h5>Overview:</h5>
   3187 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
   3188    instruction is used to inform the optimizer that a particular portion of the
   3189    code is not reachable.  This can be used to indicate that the code after a
   3190    no-return function cannot be reached, and other facts.</p>
   3191 
   3192 <h5>Semantics:</h5>
   3193 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
   3194 
   3195 </div>
   3196 
   3197 </div>
   3198 
   3199 <!-- ======================================================================= -->
   3200 <h3>
   3201   <a name="binaryops">Binary Operations</a>
   3202 </h3>
   3203 
   3204 <div>
   3205 
   3206 <p>Binary operators are used to do most of the computation in a program.  They
   3207    require two operands of the same type, execute an operation on them, and
   3208    produce a single value.  The operands might represent multiple data, as is
   3209    the case with the <a href="#t_vector">vector</a> data type.  The result value
   3210    has the same type as its operands.</p>
   3211 
   3212 <p>There are several different binary operators:</p>
   3213 
   3214 <!-- _______________________________________________________________________ -->
   3215 <h4>
   3216   <a name="i_add">'<tt>add</tt>' Instruction</a>
   3217 </h4>
   3218 
   3219 <div>
   3220 
   3221 <h5>Syntax:</h5>
   3222 <pre>
   3223   &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3224   &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3225   &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3226   &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3227 </pre>
   3228 
   3229 <h5>Overview:</h5>
   3230 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
   3231 
   3232 <h5>Arguments:</h5>
   3233 <p>The two arguments to the '<tt>add</tt>' instruction must
   3234    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3235    integer values. Both arguments must have identical types.</p>
   3236 
   3237 <h5>Semantics:</h5>
   3238 <p>The value produced is the integer sum of the two operands.</p>
   3239 
   3240 <p>If the sum has unsigned overflow, the result returned is the mathematical
   3241    result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
   3242 
   3243 <p>Because LLVM integers use a two's complement representation, this instruction
   3244    is appropriate for both signed and unsigned integers.</p>
   3245 
   3246 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3247    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3248    <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
   3249    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3250    respectively, occurs.</p>
   3251 
   3252 <h5>Example:</h5>
   3253 <pre>
   3254   &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
   3255 </pre>
   3256 
   3257 </div>
   3258 
   3259 <!-- _______________________________________________________________________ -->
   3260 <h4>
   3261   <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
   3262 </h4>
   3263 
   3264 <div>
   3265 
   3266 <h5>Syntax:</h5>
   3267 <pre>
   3268   &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3269 </pre>
   3270 
   3271 <h5>Overview:</h5>
   3272 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
   3273 
   3274 <h5>Arguments:</h5>
   3275 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
   3276    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3277    floating point values. Both arguments must have identical types.</p>
   3278 
   3279 <h5>Semantics:</h5>
   3280 <p>The value produced is the floating point sum of the two operands.</p>
   3281 
   3282 <h5>Example:</h5>
   3283 <pre>
   3284   &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
   3285 </pre>
   3286 
   3287 </div>
   3288 
   3289 <!-- _______________________________________________________________________ -->
   3290 <h4>
   3291    <a name="i_sub">'<tt>sub</tt>' Instruction</a>
   3292 </h4>
   3293 
   3294 <div>
   3295 
   3296 <h5>Syntax:</h5>
   3297 <pre>
   3298   &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3299   &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3300   &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3301   &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3302 </pre>
   3303 
   3304 <h5>Overview:</h5>
   3305 <p>The '<tt>sub</tt>' instruction returns the difference of its two
   3306    operands.</p>
   3307 
   3308 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
   3309    '<tt>neg</tt>' instruction present in most other intermediate
   3310    representations.</p>
   3311 
   3312 <h5>Arguments:</h5>
   3313 <p>The two arguments to the '<tt>sub</tt>' instruction must
   3314    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3315    integer values.  Both arguments must have identical types.</p>
   3316 
   3317 <h5>Semantics:</h5>
   3318 <p>The value produced is the integer difference of the two operands.</p>
   3319 
   3320 <p>If the difference has unsigned overflow, the result returned is the
   3321    mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
   3322    result.</p>
   3323 
   3324 <p>Because LLVM integers use a two's complement representation, this instruction
   3325    is appropriate for both signed and unsigned integers.</p>
   3326 
   3327 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3328    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3329    <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
   3330    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3331    respectively, occurs.</p>
   3332 
   3333 <h5>Example:</h5>
   3334 <pre>
   3335   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
   3336   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
   3337 </pre>
   3338 
   3339 </div>
   3340 
   3341 <!-- _______________________________________________________________________ -->
   3342 <h4>
   3343    <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
   3344 </h4>
   3345 
   3346 <div>
   3347 
   3348 <h5>Syntax:</h5>
   3349 <pre>
   3350   &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3351 </pre>
   3352 
   3353 <h5>Overview:</h5>
   3354 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
   3355    operands.</p>
   3356 
   3357 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
   3358    '<tt>fneg</tt>' instruction present in most other intermediate
   3359    representations.</p>
   3360 
   3361 <h5>Arguments:</h5>
   3362 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
   3363    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3364    floating point values.  Both arguments must have identical types.</p>
   3365 
   3366 <h5>Semantics:</h5>
   3367 <p>The value produced is the floating point difference of the two operands.</p>
   3368 
   3369 <h5>Example:</h5>
   3370 <pre>
   3371   &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
   3372   &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
   3373 </pre>
   3374 
   3375 </div>
   3376 
   3377 <!-- _______________________________________________________________________ -->
   3378 <h4>
   3379   <a name="i_mul">'<tt>mul</tt>' Instruction</a>
   3380 </h4>
   3381 
   3382 <div>
   3383 
   3384 <h5>Syntax:</h5>
   3385 <pre>
   3386   &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3387   &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3388   &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3389   &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3390 </pre>
   3391 
   3392 <h5>Overview:</h5>
   3393 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
   3394 
   3395 <h5>Arguments:</h5>
   3396 <p>The two arguments to the '<tt>mul</tt>' instruction must
   3397    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3398    integer values.  Both arguments must have identical types.</p>
   3399 
   3400 <h5>Semantics:</h5>
   3401 <p>The value produced is the integer product of the two operands.</p>
   3402 
   3403 <p>If the result of the multiplication has unsigned overflow, the result
   3404    returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
   3405    width of the result.</p>
   3406 
   3407 <p>Because LLVM integers use a two's complement representation, and the result
   3408    is the same width as the operands, this instruction returns the correct
   3409    result for both signed and unsigned integers.  If a full product
   3410    (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
   3411    be sign-extended or zero-extended as appropriate to the width of the full
   3412    product.</p>
   3413 
   3414 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3415    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3416    <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
   3417    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3418    respectively, occurs.</p>
   3419 
   3420 <h5>Example:</h5>
   3421 <pre>
   3422   &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
   3423 </pre>
   3424 
   3425 </div>
   3426 
   3427 <!-- _______________________________________________________________________ -->
   3428 <h4>
   3429   <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
   3430 </h4>
   3431 
   3432 <div>
   3433 
   3434 <h5>Syntax:</h5>
   3435 <pre>
   3436   &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3437 </pre>
   3438 
   3439 <h5>Overview:</h5>
   3440 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
   3441 
   3442 <h5>Arguments:</h5>
   3443 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
   3444    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3445    floating point values.  Both arguments must have identical types.</p>
   3446 
   3447 <h5>Semantics:</h5>
   3448 <p>The value produced is the floating point product of the two operands.</p>
   3449 
   3450 <h5>Example:</h5>
   3451 <pre>
   3452   &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
   3453 </pre>
   3454 
   3455 </div>
   3456 
   3457 <!-- _______________________________________________________________________ -->
   3458 <h4>
   3459   <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
   3460 </h4>
   3461 
   3462 <div>
   3463 
   3464 <h5>Syntax:</h5>
   3465 <pre>
   3466   &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   3467   &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3468 </pre>
   3469 
   3470 <h5>Overview:</h5>
   3471 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
   3472 
   3473 <h5>Arguments:</h5>
   3474 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
   3475    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3476    values.  Both arguments must have identical types.</p>
   3477 
   3478 <h5>Semantics:</h5>
   3479 <p>The value produced is the unsigned integer quotient of the two operands.</p>
   3480 
   3481 <p>Note that unsigned integer division and signed integer division are distinct
   3482    operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
   3483 
   3484 <p>Division by zero leads to undefined behavior.</p>
   3485 
   3486 <p>If the <tt>exact</tt> keyword is present, the result value of the
   3487    <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
   3488   multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
   3489 
   3490 
   3491 <h5>Example:</h5>
   3492 <pre>
   3493   &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   3494 </pre>
   3495 
   3496 </div>
   3497 
   3498 <!-- _______________________________________________________________________ -->
   3499 <h4>
   3500   <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
   3501 </h4>
   3502 
   3503 <div>
   3504 
   3505 <h5>Syntax:</h5>
   3506 <pre>
   3507   &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   3508   &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3509 </pre>
   3510 
   3511 <h5>Overview:</h5>
   3512 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
   3513 
   3514 <h5>Arguments:</h5>
   3515 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
   3516    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3517    values.  Both arguments must have identical types.</p>
   3518 
   3519 <h5>Semantics:</h5>
   3520 <p>The value produced is the signed integer quotient of the two operands rounded
   3521    towards zero.</p>
   3522 
   3523 <p>Note that signed integer division and unsigned integer division are distinct
   3524    operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
   3525 
   3526 <p>Division by zero leads to undefined behavior. Overflow also leads to
   3527    undefined behavior; this is a rare case, but can occur, for example, by doing
   3528    a 32-bit division of -2147483648 by -1.</p>
   3529 
   3530 <p>If the <tt>exact</tt> keyword is present, the result value of the
   3531    <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
   3532    be rounded.</p>
   3533 
   3534 <h5>Example:</h5>
   3535 <pre>
   3536   &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   3537 </pre>
   3538 
   3539 </div>
   3540 
   3541 <!-- _______________________________________________________________________ -->
   3542 <h4>
   3543   <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
   3544 </h4>
   3545 
   3546 <div>
   3547 
   3548 <h5>Syntax:</h5>
   3549 <pre>
   3550   &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3551 </pre>
   3552 
   3553 <h5>Overview:</h5>
   3554 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
   3555 
   3556 <h5>Arguments:</h5>
   3557 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
   3558    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3559    floating point values.  Both arguments must have identical types.</p>
   3560 
   3561 <h5>Semantics:</h5>
   3562 <p>The value produced is the floating point quotient of the two operands.</p>
   3563 
   3564 <h5>Example:</h5>
   3565 <pre>
   3566   &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
   3567 </pre>
   3568 
   3569 </div>
   3570 
   3571 <!-- _______________________________________________________________________ -->
   3572 <h4>
   3573   <a name="i_urem">'<tt>urem</tt>' Instruction</a>
   3574 </h4>
   3575 
   3576 <div>
   3577 
   3578 <h5>Syntax:</h5>
   3579 <pre>
   3580   &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3581 </pre>
   3582 
   3583 <h5>Overview:</h5>
   3584 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
   3585    division of its two arguments.</p>
   3586 
   3587 <h5>Arguments:</h5>
   3588 <p>The two arguments to the '<tt>urem</tt>' instruction must be
   3589    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3590    values.  Both arguments must have identical types.</p>
   3591 
   3592 <h5>Semantics:</h5>
   3593 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
   3594    This instruction always performs an unsigned division to get the
   3595    remainder.</p>
   3596 
   3597 <p>Note that unsigned integer remainder and signed integer remainder are
   3598    distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
   3599 
   3600 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
   3601 
   3602 <h5>Example:</h5>
   3603 <pre>
   3604   &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   3605 </pre>
   3606 
   3607 </div>
   3608 
   3609 <!-- _______________________________________________________________________ -->
   3610 <h4>
   3611   <a name="i_srem">'<tt>srem</tt>' Instruction</a>
   3612 </h4>
   3613 
   3614 <div>
   3615 
   3616 <h5>Syntax:</h5>
   3617 <pre>
   3618   &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3619 </pre>
   3620 
   3621 <h5>Overview:</h5>
   3622 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
   3623    division of its two operands. This instruction can also take
   3624    <a href="#t_vector">vector</a> versions of the values in which case the
   3625    elements must be integers.</p>
   3626 
   3627 <h5>Arguments:</h5>
   3628 <p>The two arguments to the '<tt>srem</tt>' instruction must be
   3629    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3630    values.  Both arguments must have identical types.</p>
   3631 
   3632 <h5>Semantics:</h5>
   3633 <p>This instruction returns the <i>remainder</i> of a division (where the result
   3634    is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
   3635    <i>modulo</i> operator (where the result is either zero or has the same sign
   3636    as the divisor, <tt>op2</tt>) of a value.
   3637    For more information about the difference,
   3638    see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
   3639    Math Forum</a>. For a table of how this is implemented in various languages,
   3640    please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
   3641    Wikipedia: modulo operation</a>.</p>
   3642 
   3643 <p>Note that signed integer remainder and unsigned integer remainder are
   3644    distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
   3645 
   3646 <p>Taking the remainder of a division by zero leads to undefined behavior.
   3647    Overflow also leads to undefined behavior; this is a rare case, but can
   3648    occur, for example, by taking the remainder of a 32-bit division of
   3649    -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
   3650    lets srem be implemented using instructions that return both the result of
   3651    the division and the remainder.)</p>
   3652 
   3653 <h5>Example:</h5>
   3654 <pre>
   3655   &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   3656 </pre>
   3657 
   3658 </div>
   3659 
   3660 <!-- _______________________________________________________________________ -->
   3661 <h4>
   3662   <a name="i_frem">'<tt>frem</tt>' Instruction</a>
   3663 </h4>
   3664 
   3665 <div>
   3666 
   3667 <h5>Syntax:</h5>
   3668 <pre>
   3669   &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3670 </pre>
   3671 
   3672 <h5>Overview:</h5>
   3673 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
   3674    its two operands.</p>
   3675 
   3676 <h5>Arguments:</h5>
   3677 <p>The two arguments to the '<tt>frem</tt>' instruction must be
   3678    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3679    floating point values.  Both arguments must have identical types.</p>
   3680 
   3681 <h5>Semantics:</h5>
   3682 <p>This instruction returns the <i>remainder</i> of a division.  The remainder
   3683    has the same sign as the dividend.</p>
   3684 
   3685 <h5>Example:</h5>
   3686 <pre>
   3687   &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
   3688 </pre>
   3689 
   3690 </div>
   3691 
   3692 </div>
   3693 
   3694 <!-- ======================================================================= -->
   3695 <h3>
   3696   <a name="bitwiseops">Bitwise Binary Operations</a>
   3697 </h3>
   3698 
   3699 <div>
   3700 
   3701 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
   3702    program.  They are generally very efficient instructions and can commonly be
   3703    strength reduced from other instructions.  They require two operands of the
   3704    same type, execute an operation on them, and produce a single value.  The
   3705    resulting value is the same type as its operands.</p>
   3706 
   3707 <!-- _______________________________________________________________________ -->
   3708 <h4>
   3709   <a name="i_shl">'<tt>shl</tt>' Instruction</a>
   3710 </h4>
   3711 
   3712 <div>
   3713 
   3714 <h5>Syntax:</h5>
   3715 <pre>
   3716   &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;           <i>; yields {ty}:result</i>
   3717   &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   3718   &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   3719   &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3720 </pre>
   3721 
   3722 <h5>Overview:</h5>
   3723 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
   3724    a specified number of bits.</p>
   3725 
   3726 <h5>Arguments:</h5>
   3727 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
   3728     same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3729     integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   3730 
   3731 <h5>Semantics:</h5>
   3732 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
   3733    2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
   3734    is (statically or dynamically) negative or equal to or larger than the number
   3735    of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
   3736    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   3737    shift amount in <tt>op2</tt>.</p>
   3738 
   3739 <p>If the <tt>nuw</tt> keyword is present, then the shift produces a 
   3740    <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits.  If
   3741    the <tt>nsw</tt> keyword is present, then the shift produces a
   3742    <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
   3743    with the resultant sign bit.  As such, NUW/NSW have the same semantics as
   3744    they would if the shift were expressed as a mul instruction with the same
   3745    nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
   3746 
   3747 <h5>Example:</h5>
   3748 <pre>
   3749   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
   3750   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
   3751   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
   3752   &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
   3753   &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
   3754 </pre>
   3755 
   3756 </div>
   3757 
   3758 <!-- _______________________________________________________________________ -->
   3759 <h4>
   3760   <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
   3761 </h4>
   3762 
   3763 <div>
   3764 
   3765 <h5>Syntax:</h5>
   3766 <pre>
   3767   &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   3768   &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3769 </pre>
   3770 
   3771 <h5>Overview:</h5>
   3772 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
   3773    operand shifted to the right a specified number of bits with zero fill.</p>
   3774 
   3775 <h5>Arguments:</h5>
   3776 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
   3777    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3778    type. '<tt>op2</tt>' is treated as an unsigned value.</p>
   3779 
   3780 <h5>Semantics:</h5>
   3781 <p>This instruction always performs a logical shift right operation. The most
   3782    significant bits of the result will be filled with zero bits after the shift.
   3783    If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
   3784    number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
   3785    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   3786    shift amount in <tt>op2</tt>.</p>
   3787 
   3788 <p>If the <tt>exact</tt> keyword is present, the result value of the
   3789    <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
   3790    shifted out are non-zero.</p>
   3791 
   3792 
   3793 <h5>Example:</h5>
   3794 <pre>
   3795   &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
   3796   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
   3797   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
   3798   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
   3799   &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
   3800   &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
   3801 </pre>
   3802 
   3803 </div>
   3804 
   3805 <!-- _______________________________________________________________________ -->
   3806 <h4>
   3807   <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
   3808 </h4>
   3809 
   3810 <div>
   3811 
   3812 <h5>Syntax:</h5>
   3813 <pre>
   3814   &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   3815   &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3816 </pre>
   3817 
   3818 <h5>Overview:</h5>
   3819 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
   3820    operand shifted to the right a specified number of bits with sign
   3821    extension.</p>
   3822 
   3823 <h5>Arguments:</h5>
   3824 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
   3825    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3826    type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   3827 
   3828 <h5>Semantics:</h5>
   3829 <p>This instruction always performs an arithmetic shift right operation, The
   3830    most significant bits of the result will be filled with the sign bit
   3831    of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
   3832    larger than the number of bits in <tt>op1</tt>, the result is undefined. If
   3833    the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
   3834    the corresponding shift amount in <tt>op2</tt>.</p>
   3835 
   3836 <p>If the <tt>exact</tt> keyword is present, the result value of the
   3837    <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
   3838    shifted out are non-zero.</p>
   3839 
   3840 <h5>Example:</h5>
   3841 <pre>
   3842   &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
   3843   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
   3844   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
   3845   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
   3846   &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
   3847   &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
   3848 </pre>
   3849 
   3850 </div>
   3851 
   3852 <!-- _______________________________________________________________________ -->
   3853 <h4>
   3854   <a name="i_and">'<tt>and</tt>' Instruction</a>
   3855 </h4>
   3856 
   3857 <div>
   3858 
   3859 <h5>Syntax:</h5>
   3860 <pre>
   3861   &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3862 </pre>
   3863 
   3864 <h5>Overview:</h5>
   3865 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
   3866    operands.</p>
   3867 
   3868 <h5>Arguments:</h5>
   3869 <p>The two arguments to the '<tt>and</tt>' instruction must be
   3870    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3871    values.  Both arguments must have identical types.</p>
   3872 
   3873 <h5>Semantics:</h5>
   3874 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
   3875 
   3876 <table border="1" cellspacing="0" cellpadding="4">
   3877   <tbody>
   3878     <tr>
   3879       <td>In0</td>
   3880       <td>In1</td>
   3881       <td>Out</td>
   3882     </tr>
   3883     <tr>
   3884       <td>0</td>
   3885       <td>0</td>
   3886       <td>0</td>
   3887     </tr>
   3888     <tr>
   3889       <td>0</td>
   3890       <td>1</td>
   3891       <td>0</td>
   3892     </tr>
   3893     <tr>
   3894       <td>1</td>
   3895       <td>0</td>
   3896       <td>0</td>
   3897     </tr>
   3898     <tr>
   3899       <td>1</td>
   3900       <td>1</td>
   3901       <td>1</td>
   3902     </tr>
   3903   </tbody>
   3904 </table>
   3905 
   3906 <h5>Example:</h5>
   3907 <pre>
   3908   &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
   3909   &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
   3910   &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
   3911 </pre>
   3912 </div>
   3913 <!-- _______________________________________________________________________ -->
   3914 <h4>
   3915   <a name="i_or">'<tt>or</tt>' Instruction</a>
   3916 </h4>
   3917 
   3918 <div>
   3919 
   3920 <h5>Syntax:</h5>
   3921 <pre>
   3922   &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3923 </pre>
   3924 
   3925 <h5>Overview:</h5>
   3926 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
   3927    two operands.</p>
   3928 
   3929 <h5>Arguments:</h5>
   3930 <p>The two arguments to the '<tt>or</tt>' instruction must be
   3931    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3932    values.  Both arguments must have identical types.</p>
   3933 
   3934 <h5>Semantics:</h5>
   3935 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
   3936 
   3937 <table border="1" cellspacing="0" cellpadding="4">
   3938   <tbody>
   3939     <tr>
   3940       <td>In0</td>
   3941       <td>In1</td>
   3942       <td>Out</td>
   3943     </tr>
   3944     <tr>
   3945       <td>0</td>
   3946       <td>0</td>
   3947       <td>0</td>
   3948     </tr>
   3949     <tr>
   3950       <td>0</td>
   3951       <td>1</td>
   3952       <td>1</td>
   3953     </tr>
   3954     <tr>
   3955       <td>1</td>
   3956       <td>0</td>
   3957       <td>1</td>
   3958     </tr>
   3959     <tr>
   3960       <td>1</td>
   3961       <td>1</td>
   3962       <td>1</td>
   3963     </tr>
   3964   </tbody>
   3965 </table>
   3966 
   3967 <h5>Example:</h5>
   3968 <pre>
   3969   &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
   3970   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
   3971   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
   3972 </pre>
   3973 
   3974 </div>
   3975 
   3976 <!-- _______________________________________________________________________ -->
   3977 <h4>
   3978   <a name="i_xor">'<tt>xor</tt>' Instruction</a>
   3979 </h4>
   3980 
   3981 <div>
   3982 
   3983 <h5>Syntax:</h5>
   3984 <pre>
   3985   &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3986 </pre>
   3987 
   3988 <h5>Overview:</h5>
   3989 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
   3990    its two operands.  The <tt>xor</tt> is used to implement the "one's
   3991    complement" operation, which is the "~" operator in C.</p>
   3992 
   3993 <h5>Arguments:</h5>
   3994 <p>The two arguments to the '<tt>xor</tt>' instruction must be
   3995    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3996    values.  Both arguments must have identical types.</p>
   3997 
   3998 <h5>Semantics:</h5>
   3999 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
   4000 
   4001 <table border="1" cellspacing="0" cellpadding="4">
   4002   <tbody>
   4003     <tr>
   4004       <td>In0</td>
   4005       <td>In1</td>
   4006       <td>Out</td>
   4007     </tr>
   4008     <tr>
   4009       <td>0</td>
   4010       <td>0</td>
   4011       <td>0</td>
   4012     </tr>
   4013     <tr>
   4014       <td>0</td>
   4015       <td>1</td>
   4016       <td>1</td>
   4017     </tr>
   4018     <tr>
   4019       <td>1</td>
   4020       <td>0</td>
   4021       <td>1</td>
   4022     </tr>
   4023     <tr>
   4024       <td>1</td>
   4025       <td>1</td>
   4026       <td>0</td>
   4027     </tr>
   4028   </tbody>
   4029 </table>
   4030 
   4031 <h5>Example:</h5>
   4032 <pre>
   4033   &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
   4034   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
   4035   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
   4036   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
   4037 </pre>
   4038 
   4039 </div>
   4040 
   4041 </div>
   4042 
   4043 <!-- ======================================================================= -->
   4044 <h3>
   4045   <a name="vectorops">Vector Operations</a>
   4046 </h3>
   4047 
   4048 <div>
   4049 
   4050 <p>LLVM supports several instructions to represent vector operations in a
   4051    target-independent manner.  These instructions cover the element-access and
   4052    vector-specific operations needed to process vectors effectively.  While LLVM
   4053    does directly support these vector operations, many sophisticated algorithms
   4054    will want to use target-specific intrinsics to take full advantage of a
   4055    specific target.</p>
   4056 
   4057 <!-- _______________________________________________________________________ -->
   4058 <h4>
   4059    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
   4060 </h4>
   4061 
   4062 <div>
   4063 
   4064 <h5>Syntax:</h5>
   4065 <pre>
   4066   &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
   4067 </pre>
   4068 
   4069 <h5>Overview:</h5>
   4070 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
   4071    from a vector at a specified index.</p>
   4072 
   4073 
   4074 <h5>Arguments:</h5>
   4075 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
   4076    of <a href="#t_vector">vector</a> type.  The second operand is an index
   4077    indicating the position from which to extract the element.  The index may be
   4078    a variable.</p>
   4079 
   4080 <h5>Semantics:</h5>
   4081 <p>The result is a scalar of the same type as the element type of
   4082    <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
   4083    <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4084    results are undefined.</p>
   4085 
   4086 <h5>Example:</h5>
   4087 <pre>
   4088   &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
   4089 </pre>
   4090 
   4091 </div>
   4092 
   4093 <!-- _______________________________________________________________________ -->
   4094 <h4>
   4095    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
   4096 </h4>
   4097 
   4098 <div>
   4099 
   4100 <h5>Syntax:</h5>
   4101 <pre>
   4102   &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
   4103 </pre>
   4104 
   4105 <h5>Overview:</h5>
   4106 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
   4107    vector at a specified index.</p>
   4108 
   4109 <h5>Arguments:</h5>
   4110 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
   4111    of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
   4112    whose type must equal the element type of the first operand.  The third
   4113    operand is an index indicating the position at which to insert the value.
   4114    The index may be a variable.</p>
   4115 
   4116 <h5>Semantics:</h5>
   4117 <p>The result is a vector of the same type as <tt>val</tt>.  Its element values
   4118    are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
   4119    value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4120    results are undefined.</p>
   4121 
   4122 <h5>Example:</h5>
   4123 <pre>
   4124   &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
   4125 </pre>
   4126 
   4127 </div>
   4128 
   4129 <!-- _______________________________________________________________________ -->
   4130 <h4>
   4131    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
   4132 </h4>
   4133 
   4134 <div>
   4135 
   4136 <h5>Syntax:</h5>
   4137 <pre>
   4138   &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
   4139 </pre>
   4140 
   4141 <h5>Overview:</h5>
   4142 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
   4143    from two input vectors, returning a vector with the same element type as the
   4144    input and length that is the same as the shuffle mask.</p>
   4145 
   4146 <h5>Arguments:</h5>
   4147 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
   4148    with types that match each other. The third argument is a shuffle mask whose
   4149    element type is always 'i32'.  The result of the instruction is a vector
   4150    whose length is the same as the shuffle mask and whose element type is the
   4151    same as the element type of the first two operands.</p>
   4152 
   4153 <p>The shuffle mask operand is required to be a constant vector with either
   4154    constant integer or undef values.</p>
   4155 
   4156 <h5>Semantics:</h5>
   4157 <p>The elements of the two input vectors are numbered from left to right across
   4158    both of the vectors.  The shuffle mask operand specifies, for each element of
   4159    the result vector, which element of the two input vectors the result element
   4160    gets.  The element selector may be undef (meaning "don't care") and the
   4161    second operand may be undef if performing a shuffle from only one vector.</p>
   4162 
   4163 <h5>Example:</h5>
   4164 <pre>
   4165   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4166                           &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4167   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
   4168                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
   4169   &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
   4170                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4171   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4172                           &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
   4173 </pre>
   4174 
   4175 </div>
   4176 
   4177 </div>
   4178 
   4179 <!-- ======================================================================= -->
   4180 <h3>
   4181   <a name="aggregateops">Aggregate Operations</a>
   4182 </h3>
   4183 
   4184 <div>
   4185 
   4186 <p>LLVM supports several instructions for working with
   4187   <a href="#t_aggregate">aggregate</a> values.</p>
   4188 
   4189 <!-- _______________________________________________________________________ -->
   4190 <h4>
   4191    <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
   4192 </h4>
   4193 
   4194 <div>
   4195 
   4196 <h5>Syntax:</h5>
   4197 <pre>
   4198   &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
   4199 </pre>
   4200 
   4201 <h5>Overview:</h5>
   4202 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
   4203    from an <a href="#t_aggregate">aggregate</a> value.</p>
   4204 
   4205 <h5>Arguments:</h5>
   4206 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
   4207    of <a href="#t_struct">struct</a> or
   4208    <a href="#t_array">array</a> type.  The operands are constant indices to
   4209    specify which value to extract in a similar manner as indices in a
   4210    '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
   4211    <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
   4212      <ul>
   4213        <li>Since the value being indexed is not a pointer, the first index is
   4214            omitted and assumed to be zero.</li>
   4215        <li>At least one index must be specified.</li>
   4216        <li>Not only struct indices but also array indices must be in
   4217            bounds.</li>
   4218      </ul>
   4219 
   4220 <h5>Semantics:</h5>
   4221 <p>The result is the value at the position in the aggregate specified by the
   4222    index operands.</p>
   4223 
   4224 <h5>Example:</h5>
   4225 <pre>
   4226   &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
   4227 </pre>
   4228 
   4229 </div>
   4230 
   4231 <!-- _______________________________________________________________________ -->
   4232 <h4>
   4233    <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
   4234 </h4>
   4235 
   4236 <div>
   4237 
   4238 <h5>Syntax:</h5>
   4239 <pre>
   4240   &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, <idx>}*    <i>; yields &lt;aggregate type&gt;</i>
   4241 </pre>
   4242 
   4243 <h5>Overview:</h5>
   4244 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
   4245    in an <a href="#t_aggregate">aggregate</a> value.</p>
   4246 
   4247 <h5>Arguments:</h5>
   4248 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
   4249    of <a href="#t_struct">struct</a> or
   4250    <a href="#t_array">array</a> type.  The second operand is a first-class
   4251    value to insert.  The following operands are constant indices indicating
   4252    the position at which to insert the value in a similar manner as indices in a
   4253    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
   4254    value to insert must have the same type as the value identified by the
   4255    indices.</p>
   4256 
   4257 <h5>Semantics:</h5>
   4258 <p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
   4259    that of <tt>val</tt> except that the value at the position specified by the
   4260    indices is that of <tt>elt</tt>.</p>
   4261 
   4262 <h5>Example:</h5>
   4263 <pre>
   4264   %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
   4265   %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
   4266   %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
   4267 </pre>
   4268 
   4269 </div>
   4270 
   4271 </div>
   4272 
   4273 <!-- ======================================================================= -->
   4274 <h3>
   4275   <a name="memoryops">Memory Access and Addressing Operations</a>
   4276 </h3>
   4277 
   4278 <div>
   4279 
   4280 <p>A key design point of an SSA-based representation is how it represents
   4281    memory.  In LLVM, no memory locations are in SSA form, which makes things
   4282    very simple.  This section describes how to read, write, and allocate
   4283    memory in LLVM.</p>
   4284 
   4285 <!-- _______________________________________________________________________ -->
   4286 <h4>
   4287   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
   4288 </h4>
   4289 
   4290 <div>
   4291 
   4292 <h5>Syntax:</h5>
   4293 <pre>
   4294   &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
   4295 </pre>
   4296 
   4297 <h5>Overview:</h5>
   4298 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
   4299    currently executing function, to be automatically released when this function
   4300    returns to its caller. The object is always allocated in the generic address
   4301    space (address space zero).</p>
   4302 
   4303 <h5>Arguments:</h5>
   4304 <p>The '<tt>alloca</tt>' instruction
   4305    allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
   4306    runtime stack, returning a pointer of the appropriate type to the program.
   4307    If "NumElements" is specified, it is the number of elements allocated,
   4308    otherwise "NumElements" is defaulted to be one.  If a constant alignment is
   4309    specified, the value result of the allocation is guaranteed to be aligned to
   4310    at least that boundary.  If not specified, or if zero, the target can choose
   4311    to align the allocation on any convenient boundary compatible with the
   4312    type.</p>
   4313 
   4314 <p>'<tt>type</tt>' may be any sized type.</p>
   4315 
   4316 <h5>Semantics:</h5>
   4317 <p>Memory is allocated; a pointer is returned.  The operation is undefined if
   4318    there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
   4319    memory is automatically released when the function returns.  The
   4320    '<tt>alloca</tt>' instruction is commonly used to represent automatic
   4321    variables that must have an address available.  When the function returns
   4322    (either with the <tt><a href="#i_ret">ret</a></tt>
   4323    or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
   4324    reclaimed.  Allocating zero bytes is legal, but the result is undefined.</p>
   4325 
   4326 <h5>Example:</h5>
   4327 <pre>
   4328   %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
   4329   %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
   4330   %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
   4331   %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
   4332 </pre>
   4333 
   4334 </div>
   4335 
   4336 <!-- _______________________________________________________________________ -->
   4337 <h4>
   4338   <a name="i_load">'<tt>load</tt>' Instruction</a>
   4339 </h4>
   4340 
   4341 <div>
   4342 
   4343 <h5>Syntax:</h5>
   4344 <pre>
   4345   &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
   4346   &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
   4347   !&lt;index&gt; = !{ i32 1 }
   4348 </pre>
   4349 
   4350 <h5>Overview:</h5>
   4351 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
   4352 
   4353 <h5>Arguments:</h5>
   4354 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
   4355    from which to load.  The pointer must point to
   4356    a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
   4357    marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
   4358    number or order of execution of this <tt>load</tt> with other <a
   4359    href="#volatile">volatile operations</a>.</p>
   4360 
   4361 <p>The optional constant <tt>align</tt> argument specifies the alignment of the
   4362    operation (that is, the alignment of the memory address). A value of 0 or an
   4363    omitted <tt>align</tt> argument means that the operation has the preferential
   4364    alignment for the target. It is the responsibility of the code emitter to
   4365    ensure that the alignment information is correct. Overestimating the
   4366    alignment results in undefined behavior. Underestimating the alignment may
   4367    produce less efficient code. An alignment of 1 is always safe.</p>
   4368 
   4369 <p>The optional <tt>!nontemporal</tt> metadata must reference a single
   4370    metatadata name &lt;index&gt; corresponding to a metadata node with
   4371    one <tt>i32</tt> entry of value 1.  The existence of
   4372    the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
   4373    and code generator that this load is not expected to be reused in the cache.
   4374    The code generator may select special instructions to save cache bandwidth,
   4375    such as the <tt>MOVNT</tt> instruction on x86.</p>
   4376 
   4377 <h5>Semantics:</h5>
   4378 <p>The location of memory pointed to is loaded.  If the value being loaded is of
   4379    scalar type then the number of bytes read does not exceed the minimum number
   4380    of bytes needed to hold all bits of the type.  For example, loading an
   4381    <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
   4382    <tt>i20</tt> with a size that is not an integral number of bytes, the result
   4383    is undefined if the value was not originally written using a store of the
   4384    same type.</p>
   4385 
   4386 <h5>Examples:</h5>
   4387 <pre>
   4388   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   4389   <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
   4390   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   4391 </pre>
   4392 
   4393 </div>
   4394 
   4395 <!-- _______________________________________________________________________ -->
   4396 <h4>
   4397   <a name="i_store">'<tt>store</tt>' Instruction</a>
   4398 </h4>
   4399 
   4400 <div>
   4401 
   4402 <h5>Syntax:</h5>
   4403 <pre>
   4404   store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]                   <i>; yields {void}</i>
   4405   volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]          <i>; yields {void}</i>
   4406 </pre>
   4407 
   4408 <h5>Overview:</h5>
   4409 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
   4410 
   4411 <h5>Arguments:</h5>
   4412 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
   4413    and an address at which to store it.  The type of the
   4414    '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
   4415    the <a href="#t_firstclass">first class</a> type of the
   4416    '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
   4417    <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
   4418    order of execution of this <tt>store</tt> with other <a
   4419    href="#volatile">volatile operations</a>.</p>
   4420 
   4421 <p>The optional constant "align" argument specifies the alignment of the
   4422    operation (that is, the alignment of the memory address). A value of 0 or an
   4423    omitted "align" argument means that the operation has the preferential
   4424    alignment for the target. It is the responsibility of the code emitter to
   4425    ensure that the alignment information is correct. Overestimating the
   4426    alignment results in an undefined behavior. Underestimating the alignment may
   4427    produce less efficient code. An alignment of 1 is always safe.</p>
   4428 
   4429 <p>The optional !nontemporal metadata must reference a single metatadata
   4430    name &lt;index&gt; corresponding to a metadata node with one i32 entry of
   4431    value 1.  The existence of the !nontemporal metatadata on the
   4432    instruction tells the optimizer and code generator that this load is
   4433    not expected to be reused in the cache.  The code generator may
   4434    select special instructions to save cache bandwidth, such as the
   4435    MOVNT instruction on x86.</p>
   4436 
   4437 
   4438 <h5>Semantics:</h5>
   4439 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
   4440    location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
   4441    '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
   4442    does not exceed the minimum number of bytes needed to hold all bits of the
   4443    type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
   4444    writing a value of a type like <tt>i20</tt> with a size that is not an
   4445    integral number of bytes, it is unspecified what happens to the extra bits
   4446    that do not belong to the type, but they will typically be overwritten.</p>
   4447 
   4448 <h5>Example:</h5>
   4449 <pre>
   4450   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   4451   store i32 3, i32* %ptr                          <i>; yields {void}</i>
   4452   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   4453 </pre>
   4454 
   4455 </div>
   4456 
   4457 <!-- _______________________________________________________________________ -->
   4458 <h4>
   4459    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
   4460 </h4>
   4461 
   4462 <div>
   4463 
   4464 <h5>Syntax:</h5>
   4465 <pre>
   4466   &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   4467   &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   4468 </pre>
   4469 
   4470 <h5>Overview:</h5>
   4471 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
   4472    subelement of an <a href="#t_aggregate">aggregate</a> data structure.
   4473    It performs address calculation only and does not access memory.</p>
   4474 
   4475 <h5>Arguments:</h5>
   4476 <p>The first argument is always a pointer, and forms the basis of the
   4477    calculation. The remaining arguments are indices that indicate which of the
   4478    elements of the aggregate object are indexed. The interpretation of each
   4479    index is dependent on the type being indexed into. The first index always
   4480    indexes the pointer value given as the first argument, the second index
   4481    indexes a value of the type pointed to (not necessarily the value directly
   4482    pointed to, since the first index can be non-zero), etc. The first type
   4483    indexed into must be a pointer value, subsequent types can be arrays,
   4484    vectors, and structs. Note that subsequent types being indexed into
   4485    can never be pointers, since that would require loading the pointer before
   4486    continuing calculation.</p>
   4487 
   4488 <p>The type of each index argument depends on the type it is indexing into.
   4489    When indexing into a (optionally packed) structure, only <tt>i32</tt>
   4490    integer <b>constants</b> are allowed.  When indexing into an array, pointer
   4491    or vector, integers of any width are allowed, and they are not required to be
   4492    constant.</p>
   4493 
   4494 <p>For example, let's consider a C code fragment and how it gets compiled to
   4495    LLVM:</p>
   4496 
   4497 <pre class="doc_code">
   4498 struct RT {
   4499   char A;
   4500   int B[10][20];
   4501   char C;
   4502 };
   4503 struct ST {
   4504   int X;
   4505   double Y;
   4506   struct RT Z;
   4507 };
   4508 
   4509 int *foo(struct ST *s) {
   4510   return &amp;s[1].Z.B[5][13];
   4511 }
   4512 </pre>
   4513 
   4514 <p>The LLVM code generated by the GCC frontend is:</p>
   4515 
   4516 <pre class="doc_code">
   4517 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8  }
   4518 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
   4519 
   4520 define i32* @foo(%ST* %s) {
   4521 entry:
   4522   %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
   4523   ret i32* %reg
   4524 }
   4525 </pre>
   4526 
   4527 <h5>Semantics:</h5>
   4528 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
   4529    type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
   4530    }</tt>' type, a structure.  The second index indexes into the third element
   4531    of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
   4532    i8 }</tt>' type, another structure.  The third index indexes into the second
   4533    element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
   4534    array.  The two dimensions of the array are subscripted into, yielding an
   4535    '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a
   4536    pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
   4537 
   4538 <p>Note that it is perfectly legal to index partially through a structure,
   4539    returning a pointer to an inner element.  Because of this, the LLVM code for
   4540    the given testcase is equivalent to:</p>
   4541 
   4542 <pre>
   4543   define i32* @foo(%ST* %s) {
   4544     %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i>
   4545     %t2 = getelementptr %ST* %t1, i32 0, i32 2                <i>; yields %RT*:%t2</i>
   4546     %t3 = getelementptr %RT* %t2, i32 0, i32 1                <i>; yields [10 x [20 x i32]]*:%t3</i>
   4547     %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
   4548     %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
   4549     ret i32* %t5
   4550   }
   4551 </pre>
   4552 
   4553 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
   4554    <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
   4555    base pointer is not an <i>in bounds</i> address of an allocated object,
   4556    or if any of the addresses that would be formed by successive addition of
   4557    the offsets implied by the indices to the base address with infinitely
   4558    precise arithmetic are not an <i>in bounds</i> address of that allocated
   4559    object. The <i>in bounds</i> addresses for an allocated object are all
   4560    the addresses that point into the object, plus the address one byte past
   4561    the end.</p>
   4562 
   4563 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
   4564    the base address with silently-wrapping two's complement arithmetic, and
   4565    the result value of the <tt>getelementptr</tt> may be outside the object
   4566    pointed to by the base pointer. The result value may not necessarily be
   4567    used to access memory though, even if it happens to point into allocated
   4568    storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
   4569    section for more information.</p>
   4570 
   4571 <p>The getelementptr instruction is often confusing.  For some more insight into
   4572    how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
   4573 
   4574 <h5>Example:</h5>
   4575 <pre>
   4576     <i>; yields [12 x i8]*:aptr</i>
   4577     %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
   4578     <i>; yields i8*:vptr</i>
   4579     %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
   4580     <i>; yields i8*:eptr</i>
   4581     %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
   4582     <i>; yields i32*:iptr</i>
   4583     %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
   4584 </pre>
   4585 
   4586 </div>
   4587 
   4588 </div>
   4589 
   4590 <!-- ======================================================================= -->
   4591 <h3>
   4592   <a name="convertops">Conversion Operations</a>
   4593 </h3>
   4594 
   4595 <div>
   4596 
   4597 <p>The instructions in this category are the conversion instructions (casting)
   4598    which all take a single operand and a type. They perform various bit
   4599    conversions on the operand.</p>
   4600 
   4601 <!-- _______________________________________________________________________ -->
   4602 <h4>
   4603    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
   4604 </h4>
   4605 
   4606 <div>
   4607 
   4608 <h5>Syntax:</h5>
   4609 <pre>
   4610   &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4611 </pre>
   4612 
   4613 <h5>Overview:</h5>
   4614 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
   4615    type <tt>ty2</tt>.</p>
   4616 
   4617 <h5>Arguments:</h5>
   4618 <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
   4619    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   4620    of the same number of integers.
   4621    The bit size of the <tt>value</tt> must be larger than
   4622    the bit size of the destination type, <tt>ty2</tt>.
   4623    Equal sized types are not allowed.</p>
   4624 
   4625 <h5>Semantics:</h5>
   4626 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
   4627    in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
   4628    source size must be larger than the destination size, <tt>trunc</tt> cannot
   4629    be a <i>no-op cast</i>.  It will always truncate bits.</p>
   4630 
   4631 <h5>Example:</h5>
   4632 <pre>
   4633   %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
   4634   %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
   4635   %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
   4636   %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
   4637 </pre>
   4638 
   4639 </div>
   4640 
   4641 <!-- _______________________________________________________________________ -->
   4642 <h4>
   4643    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
   4644 </h4>
   4645 
   4646 <div>
   4647 
   4648 <h5>Syntax:</h5>
   4649 <pre>
   4650   &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4651 </pre>
   4652 
   4653 <h5>Overview:</h5>
   4654 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
   4655    <tt>ty2</tt>.</p>
   4656 
   4657 
   4658 <h5>Arguments:</h5>
   4659 <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
   4660    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   4661    of the same number of integers.
   4662    The bit size of the <tt>value</tt> must be smaller than
   4663    the bit size of the destination type,
   4664    <tt>ty2</tt>.</p>
   4665 
   4666 <h5>Semantics:</h5>
   4667 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
   4668    bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
   4669 
   4670 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
   4671 
   4672 <h5>Example:</h5>
   4673 <pre>
   4674   %X = zext i32 257 to i64              <i>; yields i64:257</i>
   4675   %Y = zext i1 true to i32              <i>; yields i32:1</i>
   4676   %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   4677 </pre>
   4678 
   4679 </div>
   4680 
   4681 <!-- _______________________________________________________________________ -->
   4682 <h4>
   4683    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
   4684 </h4>
   4685 
   4686 <div>
   4687 
   4688 <h5>Syntax:</h5>
   4689 <pre>
   4690   &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4691 </pre>
   4692 
   4693 <h5>Overview:</h5>
   4694 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
   4695 
   4696 <h5>Arguments:</h5>
   4697 <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
   4698    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   4699    of the same number of integers.
   4700    The bit size of the <tt>value</tt> must be smaller than
   4701    the bit size of the destination type,
   4702    <tt>ty2</tt>.</p>
   4703 
   4704 <h5>Semantics:</h5>
   4705 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
   4706    bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
   4707    of the type <tt>ty2</tt>.</p>
   4708 
   4709 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
   4710 
   4711 <h5>Example:</h5>
   4712 <pre>
   4713   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
   4714   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
   4715   %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   4716 </pre>
   4717 
   4718 </div>
   4719 
   4720 <!-- _______________________________________________________________________ -->
   4721 <h4>
   4722    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
   4723 </h4>
   4724 
   4725 <div>
   4726 
   4727 <h5>Syntax:</h5>
   4728 <pre>
   4729   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4730 </pre>
   4731 
   4732 <h5>Overview:</h5>
   4733 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
   4734    <tt>ty2</tt>.</p>
   4735 
   4736 <h5>Arguments:</h5>
   4737 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
   4738    point</a> value to cast and a <a href="#t_floating">floating point</a> type
   4739    to cast it to. The size of <tt>value</tt> must be larger than the size of
   4740    <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
   4741    <i>no-op cast</i>.</p>
   4742 
   4743 <h5>Semantics:</h5>
   4744 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
   4745    <a href="#t_floating">floating point</a> type to a smaller
   4746    <a href="#t_floating">floating point</a> type.  If the value cannot fit
   4747    within the destination type, <tt>ty2</tt>, then the results are
   4748    undefined.</p>
   4749 
   4750 <h5>Example:</h5>
   4751 <pre>
   4752   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
   4753   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
   4754 </pre>
   4755 
   4756 </div>
   4757 
   4758 <!-- _______________________________________________________________________ -->
   4759 <h4>
   4760    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
   4761 </h4>
   4762 
   4763 <div>
   4764 
   4765 <h5>Syntax:</h5>
   4766 <pre>
   4767   &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4768 </pre>
   4769 
   4770 <h5>Overview:</h5>
   4771 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
   4772    floating point value.</p>
   4773 
   4774 <h5>Arguments:</h5>
   4775 <p>The '<tt>fpext</tt>' instruction takes a
   4776    <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
   4777    a <a href="#t_floating">floating point</a> type to cast it to. The source
   4778    type must be smaller than the destination type.</p>
   4779 
   4780 <h5>Semantics:</h5>
   4781 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
   4782    <a href="#t_floating">floating point</a> type to a larger
   4783    <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
   4784    used to make a <i>no-op cast</i> because it always changes bits. Use
   4785    <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
   4786 
   4787 <h5>Example:</h5>
   4788 <pre>
   4789   %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
   4790   %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
   4791 </pre>
   4792 
   4793 </div>
   4794 
   4795 <!-- _______________________________________________________________________ -->
   4796 <h4>
   4797    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
   4798 </h4>
   4799 
   4800 <div>
   4801 
   4802 <h5>Syntax:</h5>
   4803 <pre>
   4804   &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4805 </pre>
   4806 
   4807 <h5>Overview:</h5>
   4808 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
   4809    unsigned integer equivalent of type <tt>ty2</tt>.</p>
   4810 
   4811 <h5>Arguments:</h5>
   4812 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
   4813    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   4814    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   4815    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   4816    vector integer type with the same number of elements as <tt>ty</tt></p>
   4817 
   4818 <h5>Semantics:</h5>
   4819 <p>The '<tt>fptoui</tt>' instruction converts its
   4820    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   4821    towards zero) unsigned integer value. If the value cannot fit
   4822    in <tt>ty2</tt>, the results are undefined.</p>
   4823 
   4824 <h5>Example:</h5>
   4825 <pre>
   4826   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
   4827   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
   4828   %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
   4829 </pre>
   4830 
   4831 </div>
   4832 
   4833 <!-- _______________________________________________________________________ -->
   4834 <h4>
   4835    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
   4836 </h4>
   4837 
   4838 <div>
   4839 
   4840 <h5>Syntax:</h5>
   4841 <pre>
   4842   &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4843 </pre>
   4844 
   4845 <h5>Overview:</h5>
   4846 <p>The '<tt>fptosi</tt>' instruction converts
   4847    <a href="#t_floating">floating point</a> <tt>value</tt> to
   4848    type <tt>ty2</tt>.</p>
   4849 
   4850 <h5>Arguments:</h5>
   4851 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
   4852    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   4853    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   4854    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   4855    vector integer type with the same number of elements as <tt>ty</tt></p>
   4856 
   4857 <h5>Semantics:</h5>
   4858 <p>The '<tt>fptosi</tt>' instruction converts its
   4859    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   4860    towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
   4861    the results are undefined.</p>
   4862 
   4863 <h5>Example:</h5>
   4864 <pre>
   4865   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
   4866   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
   4867   %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
   4868 </pre>
   4869 
   4870 </div>
   4871 
   4872 <!-- _______________________________________________________________________ -->
   4873 <h4>
   4874    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
   4875 </h4>
   4876 
   4877 <div>
   4878 
   4879 <h5>Syntax:</h5>
   4880 <pre>
   4881   &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4882 </pre>
   4883 
   4884 <h5>Overview:</h5>
   4885 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
   4886    integer and converts that value to the <tt>ty2</tt> type.</p>
   4887 
   4888 <h5>Arguments:</h5>
   4889 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
   4890    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   4891    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   4892    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   4893    floating point type with the same number of elements as <tt>ty</tt></p>
   4894 
   4895 <h5>Semantics:</h5>
   4896 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
   4897    integer quantity and converts it to the corresponding floating point
   4898    value. If the value cannot fit in the floating point value, the results are
   4899    undefined.</p>
   4900 
   4901 <h5>Example:</h5>
   4902 <pre>
   4903   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
   4904   %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
   4905 </pre>
   4906 
   4907 </div>
   4908 
   4909 <!-- _______________________________________________________________________ -->
   4910 <h4>
   4911    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
   4912 </h4>
   4913 
   4914 <div>
   4915 
   4916 <h5>Syntax:</h5>
   4917 <pre>
   4918   &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4919 </pre>
   4920 
   4921 <h5>Overview:</h5>
   4922 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
   4923    and converts that value to the <tt>ty2</tt> type.</p>
   4924 
   4925 <h5>Arguments:</h5>
   4926 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
   4927    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   4928    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   4929    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   4930    floating point type with the same number of elements as <tt>ty</tt></p>
   4931 
   4932 <h5>Semantics:</h5>
   4933 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
   4934    quantity and converts it to the corresponding floating point value. If the
   4935    value cannot fit in the floating point value, the results are undefined.</p>
   4936 
   4937 <h5>Example:</h5>
   4938 <pre>
   4939   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
   4940   %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
   4941 </pre>
   4942 
   4943 </div>
   4944 
   4945 <!-- _______________________________________________________________________ -->
   4946 <h4>
   4947    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
   4948 </h4>
   4949 
   4950 <div>
   4951 
   4952 <h5>Syntax:</h5>
   4953 <pre>
   4954   &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4955 </pre>
   4956 
   4957 <h5>Overview:</h5>
   4958 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
   4959    the integer type <tt>ty2</tt>.</p>
   4960 
   4961 <h5>Arguments:</h5>
   4962 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
   4963    must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
   4964    <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
   4965 
   4966 <h5>Semantics:</h5>
   4967 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
   4968    <tt>ty2</tt> by interpreting the pointer value as an integer and either
   4969    truncating or zero extending that value to the size of the integer type. If
   4970    <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
   4971    <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
   4972    are the same size, then nothing is done (<i>no-op cast</i>) other than a type
   4973    change.</p>
   4974 
   4975 <h5>Example:</h5>
   4976 <pre>
   4977   %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>
   4978   %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>
   4979 </pre>
   4980 
   4981 </div>
   4982 
   4983 <!-- _______________________________________________________________________ -->
   4984 <h4>
   4985    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
   4986 </h4>
   4987 
   4988 <div>
   4989 
   4990 <h5>Syntax:</h5>
   4991 <pre>
   4992   &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   4993 </pre>
   4994 
   4995 <h5>Overview:</h5>
   4996 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
   4997    pointer type, <tt>ty2</tt>.</p>
   4998 
   4999 <h5>Arguments:</h5>
   5000 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
   5001    value to cast, and a type to cast it to, which must be a
   5002    <a href="#t_pointer">pointer</a> type.</p>
   5003 
   5004 <h5>Semantics:</h5>
   5005 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
   5006    <tt>ty2</tt> by applying either a zero extension or a truncation depending on
   5007    the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
   5008    size of a pointer then a truncation is done. If <tt>value</tt> is smaller
   5009    than the size of a pointer then a zero extension is done. If they are the
   5010    same size, nothing is done (<i>no-op cast</i>).</p>
   5011 
   5012 <h5>Example:</h5>
   5013 <pre>
   5014   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
   5015   %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
   5016   %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
   5017 </pre>
   5018 
   5019 </div>
   5020 
   5021 <!-- _______________________________________________________________________ -->
   5022 <h4>
   5023    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
   5024 </h4>
   5025 
   5026 <div>
   5027 
   5028 <h5>Syntax:</h5>
   5029 <pre>
   5030   &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5031 </pre>
   5032 
   5033 <h5>Overview:</h5>
   5034 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5035    <tt>ty2</tt> without changing any bits.</p>
   5036 
   5037 <h5>Arguments:</h5>
   5038 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
   5039    non-aggregate first class value, and a type to cast it to, which must also be
   5040    a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
   5041    of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
   5042    identical. If the source type is a pointer, the destination type must also be
   5043    a pointer.  This instruction supports bitwise conversion of vectors to
   5044    integers and to vectors of other types (as long as they have the same
   5045    size).</p>
   5046 
   5047 <h5>Semantics:</h5>
   5048 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5049    <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
   5050    this conversion.  The conversion is done as if the <tt>value</tt> had been
   5051    stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
   5052    be converted to other pointer types with this instruction. To convert
   5053    pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
   5054    <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
   5055 
   5056 <h5>Example:</h5>
   5057 <pre>
   5058   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
   5059   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
   5060   %Z = bitcast &lt;2 x int&gt; %V to i64;      <i>; yields i64: %V</i>
   5061 </pre>
   5062 
   5063 </div>
   5064 
   5065 </div>
   5066 
   5067 <!-- ======================================================================= -->
   5068 <h3>
   5069   <a name="otherops">Other Operations</a>
   5070 </h3>
   5071 
   5072 <div>
   5073 
   5074 <p>The instructions in this category are the "miscellaneous" instructions, which
   5075    defy better classification.</p>
   5076 
   5077 <!-- _______________________________________________________________________ -->
   5078 <h4>
   5079   <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
   5080 </h4>
   5081 
   5082 <div>
   5083 
   5084 <h5>Syntax:</h5>
   5085 <pre>
   5086   &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   5087 </pre>
   5088 
   5089 <h5>Overview:</h5>
   5090 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
   5091    boolean values based on comparison of its two integer, integer vector, or
   5092    pointer operands.</p>
   5093 
   5094 <h5>Arguments:</h5>
   5095 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
   5096    the condition code indicating the kind of comparison to perform. It is not a
   5097    value, just a keyword. The possible condition code are:</p>
   5098 
   5099 <ol>
   5100   <li><tt>eq</tt>: equal</li>
   5101   <li><tt>ne</tt>: not equal </li>
   5102   <li><tt>ugt</tt>: unsigned greater than</li>
   5103   <li><tt>uge</tt>: unsigned greater or equal</li>
   5104   <li><tt>ult</tt>: unsigned less than</li>
   5105   <li><tt>ule</tt>: unsigned less or equal</li>
   5106   <li><tt>sgt</tt>: signed greater than</li>
   5107   <li><tt>sge</tt>: signed greater or equal</li>
   5108   <li><tt>slt</tt>: signed less than</li>
   5109   <li><tt>sle</tt>: signed less or equal</li>
   5110 </ol>
   5111 
   5112 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
   5113    <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
   5114    typed.  They must also be identical types.</p>
   5115 
   5116 <h5>Semantics:</h5>
   5117 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
   5118    condition code given as <tt>cond</tt>. The comparison performed always yields
   5119    either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
   5120    result, as follows:</p>
   5121 
   5122 <ol>
   5123   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
   5124       <tt>false</tt> otherwise. No sign interpretation is necessary or
   5125       performed.</li>
   5126 
   5127   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
   5128       <tt>false</tt> otherwise. No sign interpretation is necessary or
   5129       performed.</li>
   5130 
   5131   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
   5132       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5133 
   5134   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
   5135       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   5136       to <tt>op2</tt>.</li>
   5137 
   5138   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
   5139       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5140 
   5141   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
   5142       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5143 
   5144   <li><tt>sgt</tt>: interprets the operands as signed values and yields
   5145       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5146 
   5147   <li><tt>sge</tt>: interprets the operands as signed values and yields
   5148       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   5149       to <tt>op2</tt>.</li>
   5150 
   5151   <li><tt>slt</tt>: interprets the operands as signed values and yields
   5152       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5153 
   5154   <li><tt>sle</tt>: interprets the operands as signed values and yields
   5155       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5156 </ol>
   5157 
   5158 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
   5159    values are compared as if they were integers.</p>
   5160 
   5161 <p>If the operands are integer vectors, then they are compared element by
   5162    element. The result is an <tt>i1</tt> vector with the same number of elements
   5163    as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
   5164 
   5165 <h5>Example:</h5>
   5166 <pre>
   5167   &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
   5168   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
   5169   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
   5170   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
   5171   &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
   5172   &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
   5173 </pre>
   5174 
   5175 <p>Note that the code generator does not yet support vector types with
   5176    the <tt>icmp</tt> instruction.</p>
   5177 
   5178 </div>
   5179 
   5180 <!-- _______________________________________________________________________ -->
   5181 <h4>
   5182   <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
   5183 </h4>
   5184 
   5185 <div>
   5186 
   5187 <h5>Syntax:</h5>
   5188 <pre>
   5189   &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   5190 </pre>
   5191 
   5192 <h5>Overview:</h5>
   5193 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
   5194    values based on comparison of its operands.</p>
   5195 
   5196 <p>If the operands are floating point scalars, then the result type is a boolean
   5197 (<a href="#t_integer"><tt>i1</tt></a>).</p>
   5198 
   5199 <p>If the operands are floating point vectors, then the result type is a vector
   5200    of boolean with the same number of elements as the operands being
   5201    compared.</p>
   5202 
   5203 <h5>Arguments:</h5>
   5204 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
   5205    the condition code indicating the kind of comparison to perform. It is not a
   5206    value, just a keyword. The possible condition code are:</p>
   5207 
   5208 <ol>
   5209   <li><tt>false</tt>: no comparison, always returns false</li>
   5210   <li><tt>oeq</tt>: ordered and equal</li>
   5211   <li><tt>ogt</tt>: ordered and greater than </li>
   5212   <li><tt>oge</tt>: ordered and greater than or equal</li>
   5213   <li><tt>olt</tt>: ordered and less than </li>
   5214   <li><tt>ole</tt>: ordered and less than or equal</li>
   5215   <li><tt>one</tt>: ordered and not equal</li>
   5216   <li><tt>ord</tt>: ordered (no nans)</li>
   5217   <li><tt>ueq</tt>: unordered or equal</li>
   5218   <li><tt>ugt</tt>: unordered or greater than </li>
   5219   <li><tt>uge</tt>: unordered or greater than or equal</li>
   5220   <li><tt>ult</tt>: unordered or less than </li>
   5221   <li><tt>ule</tt>: unordered or less than or equal</li>
   5222   <li><tt>une</tt>: unordered or not equal</li>
   5223   <li><tt>uno</tt>: unordered (either nans)</li>
   5224   <li><tt>true</tt>: no comparison, always returns true</li>
   5225 </ol>
   5226 
   5227 <p><i>Ordered</i> means that neither operand is a QNAN while
   5228    <i>unordered</i> means that either operand may be a QNAN.</p>
   5229 
   5230 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
   5231    a <a href="#t_floating">floating point</a> type or
   5232    a <a href="#t_vector">vector</a> of floating point type.  They must have
   5233    identical types.</p>
   5234 
   5235 <h5>Semantics:</h5>
   5236 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
   5237    according to the condition code given as <tt>cond</tt>.  If the operands are
   5238    vectors, then the vectors are compared element by element.  Each comparison
   5239    performed always yields an <a href="#t_integer">i1</a> result, as
   5240    follows:</p>
   5241 
   5242 <ol>
   5243   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
   5244 
   5245   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5246       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   5247 
   5248   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5249       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5250 
   5251   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5252       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   5253 
   5254   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5255       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5256 
   5257   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5258       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5259 
   5260   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5261       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   5262 
   5263   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
   5264 
   5265   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5266       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   5267 
   5268   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5269       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5270 
   5271   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5272       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   5273 
   5274   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5275       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5276 
   5277   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5278       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5279 
   5280   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5281       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   5282 
   5283   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
   5284 
   5285   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
   5286 </ol>
   5287 
   5288 <h5>Example:</h5>
   5289 <pre>
   5290   &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
   5291   &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
   5292   &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
   5293   &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
   5294 </pre>
   5295 
   5296 <p>Note that the code generator does not yet support vector types with
   5297    the <tt>fcmp</tt> instruction.</p>
   5298 
   5299 </div>
   5300 
   5301 <!-- _______________________________________________________________________ -->
   5302 <h4>
   5303   <a name="i_phi">'<tt>phi</tt>' Instruction</a>
   5304 </h4>
   5305 
   5306 <div>
   5307 
   5308 <h5>Syntax:</h5>
   5309 <pre>
   5310   &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
   5311 </pre>
   5312 
   5313 <h5>Overview:</h5>
   5314 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
   5315    SSA graph representing the function.</p>
   5316 
   5317 <h5>Arguments:</h5>
   5318 <p>The type of the incoming values is specified with the first type field. After
   5319    this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
   5320    one pair for each predecessor basic block of the current block.  Only values
   5321    of <a href="#t_firstclass">first class</a> type may be used as the value
   5322    arguments to the PHI node.  Only labels may be used as the label
   5323    arguments.</p>
   5324 
   5325 <p>There must be no non-phi instructions between the start of a basic block and
   5326    the PHI instructions: i.e. PHI instructions must be first in a basic
   5327    block.</p>
   5328 
   5329 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
   5330    occur on the edge from the corresponding predecessor block to the current
   5331    block (but after any definition of an '<tt>invoke</tt>' instruction's return
   5332    value on the same edge).</p>
   5333 
   5334 <h5>Semantics:</h5>
   5335 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
   5336    specified by the pair corresponding to the predecessor basic block that
   5337    executed just prior to the current block.</p>
   5338 
   5339 <h5>Example:</h5>
   5340 <pre>
   5341 Loop:       ; Infinite loop that counts from 0 on up...
   5342   %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
   5343   %nextindvar = add i32 %indvar, 1
   5344   br label %Loop
   5345 </pre>
   5346 
   5347 </div>
   5348 
   5349 <!-- _______________________________________________________________________ -->
   5350 <h4>
   5351    <a name="i_select">'<tt>select</tt>' Instruction</a>
   5352 </h4>
   5353 
   5354 <div>
   5355 
   5356 <h5>Syntax:</h5>
   5357 <pre>
   5358   &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
   5359 
   5360   <i>selty</i> is either i1 or {&lt;N x i1&gt;}
   5361 </pre>
   5362 
   5363 <h5>Overview:</h5>
   5364 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
   5365    condition, without branching.</p>
   5366 
   5367 
   5368 <h5>Arguments:</h5>
   5369 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
   5370    values indicating the condition, and two values of the
   5371    same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
   5372    vectors and the condition is a scalar, then entire vectors are selected, not
   5373    individual elements.</p>
   5374 
   5375 <h5>Semantics:</h5>
   5376 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
   5377    first value argument; otherwise, it returns the second value argument.</p>
   5378 
   5379 <p>If the condition is a vector of i1, then the value arguments must be vectors
   5380    of the same size, and the selection is done element by element.</p>
   5381 
   5382 <h5>Example:</h5>
   5383 <pre>
   5384   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
   5385 </pre>
   5386 
   5387 <p>Note that the code generator does not yet support conditions
   5388    with vector type.</p>
   5389 
   5390 </div>
   5391 
   5392 <!-- _______________________________________________________________________ -->
   5393 <h4>
   5394   <a name="i_call">'<tt>call</tt>' Instruction</a>
   5395 </h4>
   5396 
   5397 <div>
   5398 
   5399 <h5>Syntax:</h5>
   5400 <pre>
   5401   &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   5402 </pre>
   5403 
   5404 <h5>Overview:</h5>
   5405 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
   5406 
   5407 <h5>Arguments:</h5>
   5408 <p>This instruction requires several arguments:</p>
   5409 
   5410 <ol>
   5411   <li>The optional "tail" marker indicates that the callee function does not
   5412       access any allocas or varargs in the caller.  Note that calls may be
   5413       marked "tail" even if they do not occur before
   5414       a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
   5415       present, the function call is eligible for tail call optimization,
   5416       but <a href="CodeGenerator.html#tailcallopt">might not in fact be
   5417       optimized into a jump</a>.  The code generator may optimize calls marked
   5418       "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
   5419       sibling call optimization</a> when the caller and callee have
   5420       matching signatures, or 2) forced tail call optimization when the
   5421       following extra requirements are met:
   5422       <ul>
   5423         <li>Caller and callee both have the calling
   5424             convention <tt>fastcc</tt>.</li>
   5425         <li>The call is in tail position (ret immediately follows call and ret
   5426             uses value of call or is void).</li>
   5427         <li>Option <tt>-tailcallopt</tt> is enabled,
   5428             or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
   5429         <li><a href="CodeGenerator.html#tailcallopt">Platform specific
   5430             constraints are met.</a></li>
   5431       </ul>
   5432   </li>
   5433 
   5434   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   5435       convention</a> the call should use.  If none is specified, the call
   5436       defaults to using C calling conventions.  The calling convention of the
   5437       call must match the calling convention of the target function, or else the
   5438       behavior is undefined.</li>
   5439 
   5440   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   5441       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   5442       '<tt>inreg</tt>' attributes are valid here.</li>
   5443 
   5444   <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
   5445       type of the return value.  Functions that return no value are marked
   5446       <tt><a href="#t_void">void</a></tt>.</li>
   5447 
   5448   <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
   5449       being invoked.  The argument types must match the types implied by this
   5450       signature.  This type can be omitted if the function is not varargs and if
   5451       the function type does not return a pointer to a function.</li>
   5452 
   5453   <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
   5454       be invoked. In most cases, this is a direct function invocation, but
   5455       indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
   5456       to function value.</li>
   5457 
   5458   <li>'<tt>function args</tt>': argument list whose types match the function
   5459       signature argument types and parameter attributes. All arguments must be
   5460       of <a href="#t_firstclass">first class</a> type. If the function
   5461       signature indicates the function accepts a variable number of arguments,
   5462       the extra arguments can be specified.</li>
   5463 
   5464   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   5465       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   5466       '<tt>readnone</tt>' attributes are valid here.</li>
   5467 </ol>
   5468 
   5469 <h5>Semantics:</h5>
   5470 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
   5471    a specified function, with its incoming arguments bound to the specified
   5472    values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
   5473    function, control flow continues with the instruction after the function
   5474    call, and the return value of the function is bound to the result
   5475    argument.</p>
   5476 
   5477 <h5>Example:</h5>
   5478 <pre>
   5479   %retval = call i32 @test(i32 %argc)
   5480   call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
   5481   %X = tail call i32 @foo()                                    <i>; yields i32</i>
   5482   %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
   5483   call void %foo(i8 97 signext)
   5484 
   5485   %struct.A = type { i32, i8 }
   5486   %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
   5487   %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
   5488   %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
   5489   %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
   5490   %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
   5491 </pre>
   5492 
   5493 <p>llvm treats calls to some functions with names and arguments that match the
   5494 standard C99 library as being the C99 library functions, and may perform
   5495 optimizations or generate code for them under that assumption.  This is
   5496 something we'd like to change in the future to provide better support for
   5497 freestanding environments and non-C-based languages.</p>
   5498 
   5499 </div>
   5500 
   5501 <!-- _______________________________________________________________________ -->
   5502 <h4>
   5503   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
   5504 </h4>
   5505 
   5506 <div>
   5507 
   5508 <h5>Syntax:</h5>
   5509 <pre>
   5510   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
   5511 </pre>
   5512 
   5513 <h5>Overview:</h5>
   5514 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
   5515    the "variable argument" area of a function call.  It is used to implement the
   5516    <tt>va_arg</tt> macro in C.</p>
   5517 
   5518 <h5>Arguments:</h5>
   5519 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
   5520    argument. It returns a value of the specified argument type and increments
   5521    the <tt>va_list</tt> to point to the next argument.  The actual type
   5522    of <tt>va_list</tt> is target specific.</p>
   5523 
   5524 <h5>Semantics:</h5>
   5525 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
   5526    from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
   5527    to the next argument.  For more information, see the variable argument
   5528    handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
   5529 
   5530 <p>It is legal for this instruction to be called in a function which does not
   5531    take a variable number of arguments, for example, the <tt>vfprintf</tt>
   5532    function.</p>
   5533 
   5534 <p><tt>va_arg</tt> is an LLVM instruction instead of
   5535    an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
   5536    argument.</p>
   5537 
   5538 <h5>Example:</h5>
   5539 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
   5540 
   5541 <p>Note that the code generator does not yet fully support va_arg on many
   5542    targets. Also, it does not currently support va_arg with aggregate types on
   5543    any target.</p>
   5544 
   5545 </div>
   5546 
   5547 </div>
   5548 
   5549 </div>
   5550 
   5551 <!-- *********************************************************************** -->
   5552 <h2><a name="intrinsics">Intrinsic Functions</a></h2>
   5553 <!-- *********************************************************************** -->
   5554 
   5555 <div>
   5556 
   5557 <p>LLVM supports the notion of an "intrinsic function".  These functions have
   5558    well known names and semantics and are required to follow certain
   5559    restrictions.  Overall, these intrinsics represent an extension mechanism for
   5560    the LLVM language that does not require changing all of the transformations
   5561    in LLVM when adding to the language (or the bitcode reader/writer, the
   5562    parser, etc...).</p>
   5563 
   5564 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
   5565    prefix is reserved in LLVM for intrinsic names; thus, function names may not
   5566    begin with this prefix.  Intrinsic functions must always be external
   5567    functions: you cannot define the body of intrinsic functions.  Intrinsic
   5568    functions may only be used in call or invoke instructions: it is illegal to
   5569    take the address of an intrinsic function.  Additionally, because intrinsic
   5570    functions are part of the LLVM language, it is required if any are added that
   5571    they be documented here.</p>
   5572 
   5573 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
   5574    family of functions that perform the same operation but on different data
   5575    types. Because LLVM can represent over 8 million different integer types,
   5576    overloading is used commonly to allow an intrinsic function to operate on any
   5577    integer type. One or more of the argument types or the result type can be
   5578    overloaded to accept any integer type. Argument types may also be defined as
   5579    exactly matching a previous argument's type or the result type. This allows
   5580    an intrinsic function which accepts multiple arguments, but needs all of them
   5581    to be of the same type, to only be overloaded with respect to a single
   5582    argument or the result.</p>
   5583 
   5584 <p>Overloaded intrinsics will have the names of its overloaded argument types
   5585    encoded into its function name, each preceded by a period. Only those types
   5586    which are overloaded result in a name suffix. Arguments whose type is matched
   5587    against another type do not. For example, the <tt>llvm.ctpop</tt> function
   5588    can take an integer of any width and returns an integer of exactly the same
   5589    integer width. This leads to a family of functions such as
   5590    <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
   5591    %val)</tt>.  Only one type, the return type, is overloaded, and only one type
   5592    suffix is required. Because the argument's type is matched against the return
   5593    type, it does not require its own name suffix.</p>
   5594 
   5595 <p>To learn how to add an intrinsic function, please see the
   5596    <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
   5597 
   5598 <!-- ======================================================================= -->
   5599 <h3>
   5600   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
   5601 </h3>
   5602 
   5603 <div>
   5604 
   5605 <p>Variable argument support is defined in LLVM with
   5606    the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
   5607    intrinsic functions.  These functions are related to the similarly named
   5608    macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
   5609 
   5610 <p>All of these functions operate on arguments that use a target-specific value
   5611    type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
   5612    not define what this type is, so all transformations should be prepared to
   5613    handle these functions regardless of the type used.</p>
   5614 
   5615 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
   5616    instruction and the variable argument handling intrinsic functions are
   5617    used.</p>
   5618 
   5619 <pre class="doc_code">
   5620 define i32 @test(i32 %X, ...) {
   5621   ; Initialize variable argument processing
   5622   %ap = alloca i8*
   5623   %ap2 = bitcast i8** %ap to i8*
   5624   call void @llvm.va_start(i8* %ap2)
   5625 
   5626   ; Read a single integer argument
   5627   %tmp = va_arg i8** %ap, i32
   5628 
   5629   ; Demonstrate usage of llvm.va_copy and llvm.va_end
   5630   %aq = alloca i8*
   5631   %aq2 = bitcast i8** %aq to i8*
   5632   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
   5633   call void @llvm.va_end(i8* %aq2)
   5634 
   5635   ; Stop processing of arguments.
   5636   call void @llvm.va_end(i8* %ap2)
   5637   ret i32 %tmp
   5638 }
   5639 
   5640 declare void @llvm.va_start(i8*)
   5641 declare void @llvm.va_copy(i8*, i8*)
   5642 declare void @llvm.va_end(i8*)
   5643 </pre>
   5644 
   5645 <!-- _______________________________________________________________________ -->
   5646 <h4>
   5647   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
   5648 </h4>
   5649 
   5650 
   5651 <div>
   5652 
   5653 <h5>Syntax:</h5>
   5654 <pre>
   5655   declare void %llvm.va_start(i8* &lt;arglist&gt;)
   5656 </pre>
   5657 
   5658 <h5>Overview:</h5>
   5659 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
   5660    for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
   5661 
   5662 <h5>Arguments:</h5>
   5663 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
   5664 
   5665 <h5>Semantics:</h5>
   5666 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
   5667    macro available in C.  In a target-dependent way, it initializes
   5668    the <tt>va_list</tt> element to which the argument points, so that the next
   5669    call to <tt>va_arg</tt> will produce the first variable argument passed to
   5670    the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
   5671    need to know the last argument of the function as the compiler can figure
   5672    that out.</p>
   5673 
   5674 </div>
   5675 
   5676 <!-- _______________________________________________________________________ -->
   5677 <h4>
   5678  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
   5679 </h4>
   5680 
   5681 <div>
   5682 
   5683 <h5>Syntax:</h5>
   5684 <pre>
   5685   declare void @llvm.va_end(i8* &lt;arglist&gt;)
   5686 </pre>
   5687 
   5688 <h5>Overview:</h5>
   5689 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
   5690    which has been initialized previously
   5691    with <tt><a href="#int_va_start">llvm.va_start</a></tt>
   5692    or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
   5693 
   5694 <h5>Arguments:</h5>
   5695 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
   5696 
   5697 <h5>Semantics:</h5>
   5698 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
   5699    macro available in C.  In a target-dependent way, it destroys
   5700    the <tt>va_list</tt> element to which the argument points.  Calls
   5701    to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
   5702    and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
   5703    with calls to <tt>llvm.va_end</tt>.</p>
   5704 
   5705 </div>
   5706 
   5707 <!-- _______________________________________________________________________ -->
   5708 <h4>
   5709   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
   5710 </h4>
   5711 
   5712 <div>
   5713 
   5714 <h5>Syntax:</h5>
   5715 <pre>
   5716   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
   5717 </pre>
   5718 
   5719 <h5>Overview:</h5>
   5720 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
   5721    from the source argument list to the destination argument list.</p>
   5722 
   5723 <h5>Arguments:</h5>
   5724 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
   5725    The second argument is a pointer to a <tt>va_list</tt> element to copy
   5726    from.</p>
   5727 
   5728 <h5>Semantics:</h5>
   5729 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
   5730    macro available in C.  In a target-dependent way, it copies the
   5731    source <tt>va_list</tt> element into the destination <tt>va_list</tt>
   5732    element.  This intrinsic is necessary because
   5733    the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
   5734    arbitrarily complex and require, for example, memory allocation.</p>
   5735 
   5736 </div>
   5737 
   5738 </div>
   5739 
   5740 <!-- ======================================================================= -->
   5741 <h3>
   5742   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
   5743 </h3>
   5744 
   5745 <div>
   5746 
   5747 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
   5748 Collection</a> (GC) requires the implementation and generation of these
   5749 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
   5750 roots on the stack</a>, as well as garbage collector implementations that
   5751 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
   5752 barriers.  Front-ends for type-safe garbage collected languages should generate
   5753 these intrinsics to make use of the LLVM garbage collectors.  For more details,
   5754 see <a href="GarbageCollection.html">Accurate Garbage Collection with
   5755 LLVM</a>.</p>
   5756 
   5757 <p>The garbage collection intrinsics only operate on objects in the generic
   5758    address space (address space zero).</p>
   5759 
   5760 <!-- _______________________________________________________________________ -->
   5761 <h4>
   5762   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
   5763 </h4>
   5764 
   5765 <div>
   5766 
   5767 <h5>Syntax:</h5>
   5768 <pre>
   5769   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
   5770 </pre>
   5771 
   5772 <h5>Overview:</h5>
   5773 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
   5774    the code generator, and allows some metadata to be associated with it.</p>
   5775 
   5776 <h5>Arguments:</h5>
   5777 <p>The first argument specifies the address of a stack object that contains the
   5778    root pointer.  The second pointer (which must be either a constant or a
   5779    global value address) contains the meta-data to be associated with the
   5780    root.</p>
   5781 
   5782 <h5>Semantics:</h5>
   5783 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
   5784    location.  At compile-time, the code generator generates information to allow
   5785    the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
   5786    intrinsic may only be used in a function which <a href="#gc">specifies a GC
   5787    algorithm</a>.</p>
   5788 
   5789 </div>
   5790 
   5791 <!-- _______________________________________________________________________ -->
   5792 <h4>
   5793   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
   5794 </h4>
   5795 
   5796 <div>
   5797 
   5798 <h5>Syntax:</h5>
   5799 <pre>
   5800   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
   5801 </pre>
   5802 
   5803 <h5>Overview:</h5>
   5804 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
   5805    locations, allowing garbage collector implementations that require read
   5806    barriers.</p>
   5807 
   5808 <h5>Arguments:</h5>
   5809 <p>The second argument is the address to read from, which should be an address
   5810    allocated from the garbage collector.  The first object is a pointer to the
   5811    start of the referenced object, if needed by the language runtime (otherwise
   5812    null).</p>
   5813 
   5814 <h5>Semantics:</h5>
   5815 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
   5816    instruction, but may be replaced with substantially more complex code by the
   5817    garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
   5818    may only be used in a function which <a href="#gc">specifies a GC
   5819    algorithm</a>.</p>
   5820 
   5821 </div>
   5822 
   5823 <!-- _______________________________________________________________________ -->
   5824 <h4>
   5825   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
   5826 </h4>
   5827 
   5828 <div>
   5829 
   5830 <h5>Syntax:</h5>
   5831 <pre>
   5832   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
   5833 </pre>
   5834 
   5835 <h5>Overview:</h5>
   5836 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
   5837    locations, allowing garbage collector implementations that require write
   5838    barriers (such as generational or reference counting collectors).</p>
   5839 
   5840 <h5>Arguments:</h5>
   5841 <p>The first argument is the reference to store, the second is the start of the
   5842    object to store it to, and the third is the address of the field of Obj to
   5843    store to.  If the runtime does not require a pointer to the object, Obj may
   5844    be null.</p>
   5845 
   5846 <h5>Semantics:</h5>
   5847 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
   5848    instruction, but may be replaced with substantially more complex code by the
   5849    garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
   5850    may only be used in a function which <a href="#gc">specifies a GC
   5851    algorithm</a>.</p>
   5852 
   5853 </div>
   5854 
   5855 </div>
   5856 
   5857 <!-- ======================================================================= -->
   5858 <h3>
   5859   <a name="int_codegen">Code Generator Intrinsics</a>
   5860 </h3>
   5861 
   5862 <div>
   5863 
   5864 <p>These intrinsics are provided by LLVM to expose special features that may
   5865    only be implemented with code generator support.</p>
   5866 
   5867 <!-- _______________________________________________________________________ -->
   5868 <h4>
   5869   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
   5870 </h4>
   5871 
   5872 <div>
   5873 
   5874 <h5>Syntax:</h5>
   5875 <pre>
   5876   declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
   5877 </pre>
   5878 
   5879 <h5>Overview:</h5>
   5880 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
   5881    target-specific value indicating the return address of the current function
   5882    or one of its callers.</p>
   5883 
   5884 <h5>Arguments:</h5>
   5885 <p>The argument to this intrinsic indicates which function to return the address
   5886    for.  Zero indicates the calling function, one indicates its caller, etc.
   5887    The argument is <b>required</b> to be a constant integer value.</p>
   5888 
   5889 <h5>Semantics:</h5>
   5890 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
   5891    indicating the return address of the specified call frame, or zero if it
   5892    cannot be identified.  The value returned by this intrinsic is likely to be
   5893    incorrect or 0 for arguments other than zero, so it should only be used for
   5894    debugging purposes.</p>
   5895 
   5896 <p>Note that calling this intrinsic does not prevent function inlining or other
   5897    aggressive transformations, so the value returned may not be that of the
   5898    obvious source-language caller.</p>
   5899 
   5900 </div>
   5901 
   5902 <!-- _______________________________________________________________________ -->
   5903 <h4>
   5904   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
   5905 </h4>
   5906 
   5907 <div>
   5908 
   5909 <h5>Syntax:</h5>
   5910 <pre>
   5911   declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
   5912 </pre>
   5913 
   5914 <h5>Overview:</h5>
   5915 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
   5916    target-specific frame pointer value for the specified stack frame.</p>
   5917 
   5918 <h5>Arguments:</h5>
   5919 <p>The argument to this intrinsic indicates which function to return the frame
   5920    pointer for.  Zero indicates the calling function, one indicates its caller,
   5921    etc.  The argument is <b>required</b> to be a constant integer value.</p>
   5922 
   5923 <h5>Semantics:</h5>
   5924 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
   5925    indicating the frame address of the specified call frame, or zero if it
   5926    cannot be identified.  The value returned by this intrinsic is likely to be
   5927    incorrect or 0 for arguments other than zero, so it should only be used for
   5928    debugging purposes.</p>
   5929 
   5930 <p>Note that calling this intrinsic does not prevent function inlining or other
   5931    aggressive transformations, so the value returned may not be that of the
   5932    obvious source-language caller.</p>
   5933 
   5934 </div>
   5935 
   5936 <!-- _______________________________________________________________________ -->
   5937 <h4>
   5938   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
   5939 </h4>
   5940 
   5941 <div>
   5942 
   5943 <h5>Syntax:</h5>
   5944 <pre>
   5945   declare i8* @llvm.stacksave()
   5946 </pre>
   5947 
   5948 <h5>Overview:</h5>
   5949 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
   5950    of the function stack, for use
   5951    with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
   5952    useful for implementing language features like scoped automatic variable
   5953    sized arrays in C99.</p>
   5954 
   5955 <h5>Semantics:</h5>
   5956 <p>This intrinsic returns a opaque pointer value that can be passed
   5957    to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
   5958    an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
   5959    from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
   5960    to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
   5961    In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
   5962    stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
   5963 
   5964 </div>
   5965 
   5966 <!-- _______________________________________________________________________ -->
   5967 <h4>
   5968   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
   5969 </h4>
   5970 
   5971 <div>
   5972 
   5973 <h5>Syntax:</h5>
   5974 <pre>
   5975   declare void @llvm.stackrestore(i8* %ptr)
   5976 </pre>
   5977 
   5978 <h5>Overview:</h5>
   5979 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
   5980    the function stack to the state it was in when the
   5981    corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
   5982    executed.  This is useful for implementing language features like scoped
   5983    automatic variable sized arrays in C99.</p>
   5984 
   5985 <h5>Semantics:</h5>
   5986 <p>See the description
   5987    for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
   5988 
   5989 </div>
   5990 
   5991 <!-- _______________________________________________________________________ -->
   5992 <h4>
   5993   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
   5994 </h4>
   5995 
   5996 <div>
   5997 
   5998 <h5>Syntax:</h5>
   5999 <pre>
   6000   declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
   6001 </pre>
   6002 
   6003 <h5>Overview:</h5>
   6004 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
   6005    insert a prefetch instruction if supported; otherwise, it is a noop.
   6006    Prefetches have no effect on the behavior of the program but can change its
   6007    performance characteristics.</p>
   6008 
   6009 <h5>Arguments:</h5>
   6010 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
   6011    specifier determining if the fetch should be for a read (0) or write (1),
   6012    and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
   6013    locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
   6014    specifies whether the prefetch is performed on the data (1) or instruction (0)
   6015    cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
   6016    must be constant integers.</p>
   6017 
   6018 <h5>Semantics:</h5>
   6019 <p>This intrinsic does not modify the behavior of the program.  In particular,
   6020    prefetches cannot trap and do not produce a value.  On targets that support
   6021    this intrinsic, the prefetch can provide hints to the processor cache for
   6022    better performance.</p>
   6023 
   6024 </div>
   6025 
   6026 <!-- _______________________________________________________________________ -->
   6027 <h4>
   6028   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
   6029 </h4>
   6030 
   6031 <div>
   6032 
   6033 <h5>Syntax:</h5>
   6034 <pre>
   6035   declare void @llvm.pcmarker(i32 &lt;id&gt;)
   6036 </pre>
   6037 
   6038 <h5>Overview:</h5>
   6039 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
   6040    Counter (PC) in a region of code to simulators and other tools.  The method
   6041    is target specific, but it is expected that the marker will use exported
   6042    symbols to transmit the PC of the marker.  The marker makes no guarantees
   6043    that it will remain with any specific instruction after optimizations.  It is
   6044    possible that the presence of a marker will inhibit optimizations.  The
   6045    intended use is to be inserted after optimizations to allow correlations of
   6046    simulation runs.</p>
   6047 
   6048 <h5>Arguments:</h5>
   6049 <p><tt>id</tt> is a numerical id identifying the marker.</p>
   6050 
   6051 <h5>Semantics:</h5>
   6052 <p>This intrinsic does not modify the behavior of the program.  Backends that do
   6053    not support this intrinsic may ignore it.</p>
   6054 
   6055 </div>
   6056 
   6057 <!-- _______________________________________________________________________ -->
   6058 <h4>
   6059   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
   6060 </h4>
   6061 
   6062 <div>
   6063 
   6064 <h5>Syntax:</h5>
   6065 <pre>
   6066   declare i64 @llvm.readcyclecounter()
   6067 </pre>
   6068 
   6069 <h5>Overview:</h5>
   6070 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
   6071    counter register (or similar low latency, high accuracy clocks) on those
   6072    targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
   6073    should map to RPCC.  As the backing counters overflow quickly (on the order
   6074    of 9 seconds on alpha), this should only be used for small timings.</p>
   6075 
   6076 <h5>Semantics:</h5>
   6077 <p>When directly supported, reading the cycle counter should not modify any
   6078    memory.  Implementations are allowed to either return a application specific
   6079    value or a system wide value.  On backends without support, this is lowered
   6080    to a constant 0.</p>
   6081 
   6082 </div>
   6083 
   6084 </div>
   6085 
   6086 <!-- ======================================================================= -->
   6087 <h3>
   6088   <a name="int_libc">Standard C Library Intrinsics</a>
   6089 </h3>
   6090 
   6091 <div>
   6092 
   6093 <p>LLVM provides intrinsics for a few important standard C library functions.
   6094    These intrinsics allow source-language front-ends to pass information about
   6095    the alignment of the pointer arguments to the code generator, providing
   6096    opportunity for more efficient code generation.</p>
   6097 
   6098 <!-- _______________________________________________________________________ -->
   6099 <h4>
   6100   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
   6101 </h4>
   6102 
   6103 <div>
   6104 
   6105 <h5>Syntax:</h5>
   6106 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
   6107    integer bit width and for different address spaces. Not all targets support
   6108    all bit widths however.</p>
   6109 
   6110 <pre>
   6111   declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6112                                           i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6113   declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6114                                           i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6115 </pre>
   6116 
   6117 <h5>Overview:</h5>
   6118 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   6119    source location to the destination location.</p>
   6120 
   6121 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
   6122    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   6123    and the pointers can be in specified address spaces.</p>
   6124 
   6125 <h5>Arguments:</h5>
   6126 
   6127 <p>The first argument is a pointer to the destination, the second is a pointer
   6128    to the source.  The third argument is an integer argument specifying the
   6129    number of bytes to copy, the fourth argument is the alignment of the
   6130    source and destination locations, and the fifth is a boolean indicating a
   6131    volatile access.</p>
   6132 
   6133 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6134    then the caller guarantees that both the source and destination pointers are
   6135    aligned to that boundary.</p>
   6136 
   6137 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6138    <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
   6139    The detailed access behavior is not very cleanly specified and it is unwise
   6140    to depend on it.</p>
   6141 
   6142 <h5>Semantics:</h5>
   6143 
   6144 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   6145    source location to the destination location, which are not allowed to
   6146    overlap.  It copies "len" bytes of memory over.  If the argument is known to
   6147    be aligned to some boundary, this can be specified as the fourth argument,
   6148    otherwise it should be set to 0 or 1.</p>
   6149 
   6150 </div>
   6151 
   6152 <!-- _______________________________________________________________________ -->
   6153 <h4>
   6154   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
   6155 </h4>
   6156 
   6157 <div>
   6158 
   6159 <h5>Syntax:</h5>
   6160 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
   6161    width and for different address space. Not all targets support all bit
   6162    widths however.</p>
   6163 
   6164 <pre>
   6165   declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6166                                            i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6167   declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6168                                            i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6169 </pre>
   6170 
   6171 <h5>Overview:</h5>
   6172 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
   6173    source location to the destination location. It is similar to the
   6174    '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
   6175    overlap.</p>
   6176 
   6177 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
   6178    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   6179    and the pointers can be in specified address spaces.</p>
   6180 
   6181 <h5>Arguments:</h5>
   6182 
   6183 <p>The first argument is a pointer to the destination, the second is a pointer
   6184    to the source.  The third argument is an integer argument specifying the
   6185    number of bytes to copy, the fourth argument is the alignment of the
   6186    source and destination locations, and the fifth is a boolean indicating a
   6187    volatile access.</p>
   6188 
   6189 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6190    then the caller guarantees that the source and destination pointers are
   6191    aligned to that boundary.</p>
   6192 
   6193 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6194    <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
   6195    The detailed access behavior is not very cleanly specified and it is unwise
   6196    to depend on it.</p>
   6197 
   6198 <h5>Semantics:</h5>
   6199 
   6200 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
   6201    source location to the destination location, which may overlap.  It copies
   6202    "len" bytes of memory over.  If the argument is known to be aligned to some
   6203    boundary, this can be specified as the fourth argument, otherwise it should
   6204    be set to 0 or 1.</p>
   6205 
   6206 </div>
   6207 
   6208 <!-- _______________________________________________________________________ -->
   6209 <h4>
   6210   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
   6211 </h4>
   6212 
   6213 <div>
   6214 
   6215 <h5>Syntax:</h5>
   6216 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
   6217    width and for different address spaces. However, not all targets support all
   6218    bit widths.</p>
   6219 
   6220 <pre>
   6221   declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   6222                                      i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6223   declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   6224                                      i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6225 </pre>
   6226 
   6227 <h5>Overview:</h5>
   6228 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
   6229    particular byte value.</p>
   6230 
   6231 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
   6232    intrinsic does not return a value and takes extra alignment/volatile
   6233    arguments.  Also, the destination can be in an arbitrary address space.</p>
   6234 
   6235 <h5>Arguments:</h5>
   6236 <p>The first argument is a pointer to the destination to fill, the second is the
   6237    byte value with which to fill it, the third argument is an integer argument
   6238    specifying the number of bytes to fill, and the fourth argument is the known
   6239    alignment of the destination location.</p>
   6240 
   6241 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6242    then the caller guarantees that the destination pointer is aligned to that
   6243    boundary.</p>
   6244 
   6245 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6246    <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
   6247    The detailed access behavior is not very cleanly specified and it is unwise
   6248    to depend on it.</p>
   6249 
   6250 <h5>Semantics:</h5>
   6251 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
   6252    at the destination location.  If the argument is known to be aligned to some
   6253    boundary, this can be specified as the fourth argument, otherwise it should
   6254    be set to 0 or 1.</p>
   6255 
   6256 </div>
   6257 
   6258 <!-- _______________________________________________________________________ -->
   6259 <h4>
   6260   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
   6261 </h4>
   6262 
   6263 <div>
   6264 
   6265 <h5>Syntax:</h5>
   6266 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
   6267    floating point or vector of floating point type. Not all targets support all
   6268    types however.</p>
   6269 
   6270 <pre>
   6271   declare float     @llvm.sqrt.f32(float %Val)
   6272   declare double    @llvm.sqrt.f64(double %Val)
   6273   declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
   6274   declare fp128     @llvm.sqrt.f128(fp128 %Val)
   6275   declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
   6276 </pre>
   6277 
   6278 <h5>Overview:</h5>
   6279 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
   6280    returning the same value as the libm '<tt>sqrt</tt>' functions would.
   6281    Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
   6282    behavior for negative numbers other than -0.0 (which allows for better
   6283    optimization, because there is no need to worry about errno being
   6284    set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
   6285 
   6286 <h5>Arguments:</h5>
   6287 <p>The argument and return value are floating point numbers of the same
   6288    type.</p>
   6289 
   6290 <h5>Semantics:</h5>
   6291 <p>This function returns the sqrt of the specified operand if it is a
   6292    nonnegative floating point number.</p>
   6293 
   6294 </div>
   6295 
   6296 <!-- _______________________________________________________________________ -->
   6297 <h4>
   6298   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
   6299 </h4>
   6300 
   6301 <div>
   6302 
   6303 <h5>Syntax:</h5>
   6304 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
   6305    floating point or vector of floating point type. Not all targets support all
   6306    types however.</p>
   6307 
   6308 <pre>
   6309   declare float     @llvm.powi.f32(float  %Val, i32 %power)
   6310   declare double    @llvm.powi.f64(double %Val, i32 %power)
   6311   declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
   6312   declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
   6313   declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
   6314 </pre>
   6315 
   6316 <h5>Overview:</h5>
   6317 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
   6318    specified (positive or negative) power.  The order of evaluation of
   6319    multiplications is not defined.  When a vector of floating point type is
   6320    used, the second argument remains a scalar integer value.</p>
   6321 
   6322 <h5>Arguments:</h5>
   6323 <p>The second argument is an integer power, and the first is a value to raise to
   6324    that power.</p>
   6325 
   6326 <h5>Semantics:</h5>
   6327 <p>This function returns the first value raised to the second power with an
   6328    unspecified sequence of rounding operations.</p>
   6329 
   6330 </div>
   6331 
   6332 <!-- _______________________________________________________________________ -->
   6333 <h4>
   6334   <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
   6335 </h4>
   6336 
   6337 <div>
   6338 
   6339 <h5>Syntax:</h5>
   6340 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
   6341    floating point or vector of floating point type. Not all targets support all
   6342    types however.</p>
   6343 
   6344 <pre>
   6345   declare float     @llvm.sin.f32(float  %Val)
   6346   declare double    @llvm.sin.f64(double %Val)
   6347   declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
   6348   declare fp128     @llvm.sin.f128(fp128 %Val)
   6349   declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
   6350 </pre>
   6351 
   6352 <h5>Overview:</h5>
   6353 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
   6354 
   6355 <h5>Arguments:</h5>
   6356 <p>The argument and return value are floating point numbers of the same
   6357    type.</p>
   6358 
   6359 <h5>Semantics:</h5>
   6360 <p>This function returns the sine of the specified operand, returning the same
   6361    values as the libm <tt>sin</tt> functions would, and handles error conditions
   6362    in the same way.</p>
   6363 
   6364 </div>
   6365 
   6366 <!-- _______________________________________________________________________ -->
   6367 <h4>
   6368   <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
   6369 </h4>
   6370 
   6371 <div>
   6372 
   6373 <h5>Syntax:</h5>
   6374 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
   6375    floating point or vector of floating point type. Not all targets support all
   6376    types however.</p>
   6377 
   6378 <pre>
   6379   declare float     @llvm.cos.f32(float  %Val)
   6380   declare double    @llvm.cos.f64(double %Val)
   6381   declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
   6382   declare fp128     @llvm.cos.f128(fp128 %Val)
   6383   declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
   6384 </pre>
   6385 
   6386 <h5>Overview:</h5>
   6387 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
   6388 
   6389 <h5>Arguments:</h5>
   6390 <p>The argument and return value are floating point numbers of the same
   6391    type.</p>
   6392 
   6393 <h5>Semantics:</h5>
   6394 <p>This function returns the cosine of the specified operand, returning the same
   6395    values as the libm <tt>cos</tt> functions would, and handles error conditions
   6396    in the same way.</p>
   6397 
   6398 </div>
   6399 
   6400 <!-- _______________________________________________________________________ -->
   6401 <h4>
   6402   <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
   6403 </h4>
   6404 
   6405 <div>
   6406 
   6407 <h5>Syntax:</h5>
   6408 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
   6409    floating point or vector of floating point type. Not all targets support all
   6410    types however.</p>
   6411 
   6412 <pre>
   6413   declare float     @llvm.pow.f32(float  %Val, float %Power)
   6414   declare double    @llvm.pow.f64(double %Val, double %Power)
   6415   declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
   6416   declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
   6417   declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
   6418 </pre>
   6419 
   6420 <h5>Overview:</h5>
   6421 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
   6422    specified (positive or negative) power.</p>
   6423 
   6424 <h5>Arguments:</h5>
   6425 <p>The second argument is a floating point power, and the first is a value to
   6426    raise to that power.</p>
   6427 
   6428 <h5>Semantics:</h5>
   6429 <p>This function returns the first value raised to the second power, returning
   6430    the same values as the libm <tt>pow</tt> functions would, and handles error
   6431    conditions in the same way.</p>
   6432 
   6433 </div>
   6434 
   6435 </div>
   6436 
   6437 <!-- _______________________________________________________________________ -->
   6438 <h4>
   6439   <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
   6440 </h4>
   6441 
   6442 <div>
   6443 
   6444 <h5>Syntax:</h5>
   6445 <p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
   6446    floating point or vector of floating point type. Not all targets support all
   6447    types however.</p>
   6448 
   6449 <pre>
   6450   declare float     @llvm.exp.f32(float  %Val)
   6451   declare double    @llvm.exp.f64(double %Val)
   6452   declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
   6453   declare fp128     @llvm.exp.f128(fp128 %Val)
   6454   declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
   6455 </pre>
   6456 
   6457 <h5>Overview:</h5>
   6458 <p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
   6459 
   6460 <h5>Arguments:</h5>
   6461 <p>The argument and return value are floating point numbers of the same
   6462    type.</p>
   6463 
   6464 <h5>Semantics:</h5>
   6465 <p>This function returns the same values as the libm <tt>exp</tt> functions
   6466    would, and handles error conditions in the same way.</p>
   6467 
   6468 </div>
   6469 
   6470 <!-- _______________________________________________________________________ -->
   6471 <h4>
   6472   <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
   6473 </h4>
   6474 
   6475 <div>
   6476 
   6477 <h5>Syntax:</h5>
   6478 <p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
   6479    floating point or vector of floating point type. Not all targets support all
   6480    types however.</p>
   6481 
   6482 <pre>
   6483   declare float     @llvm.log.f32(float  %Val)
   6484   declare double    @llvm.log.f64(double %Val)
   6485   declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
   6486   declare fp128     @llvm.log.f128(fp128 %Val)
   6487   declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
   6488 </pre>
   6489 
   6490 <h5>Overview:</h5>
   6491 <p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
   6492 
   6493 <h5>Arguments:</h5>
   6494 <p>The argument and return value are floating point numbers of the same
   6495    type.</p>
   6496 
   6497 <h5>Semantics:</h5>
   6498 <p>This function returns the same values as the libm <tt>log</tt> functions
   6499    would, and handles error conditions in the same way.</p>
   6500 
   6501 <h4>
   6502   <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
   6503 </h4>
   6504 
   6505 <div>
   6506 
   6507 <h5>Syntax:</h5>
   6508 <p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
   6509    floating point or vector of floating point type. Not all targets support all
   6510    types however.</p>
   6511 
   6512 <pre>
   6513   declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
   6514   declare double    @llvm.fma.f64(double %a, double %b, double %c)
   6515   declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
   6516   declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
   6517   declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
   6518 </pre>
   6519 
   6520 <h5>Overview:</h5>
   6521 <p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
   6522    operation.</p>
   6523 
   6524 <h5>Arguments:</h5>
   6525 <p>The argument and return value are floating point numbers of the same
   6526    type.</p>
   6527 
   6528 <h5>Semantics:</h5>
   6529 <p>This function returns the same values as the libm <tt>fma</tt> functions
   6530    would.</p>
   6531 
   6532 </div>
   6533 
   6534 <!-- ======================================================================= -->
   6535 <h3>
   6536   <a name="int_manip">Bit Manipulation Intrinsics</a>
   6537 </h3>
   6538 
   6539 <div>
   6540 
   6541 <p>LLVM provides intrinsics for a few important bit manipulation operations.
   6542    These allow efficient code generation for some algorithms.</p>
   6543 
   6544 <!-- _______________________________________________________________________ -->
   6545 <h4>
   6546   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
   6547 </h4>
   6548 
   6549 <div>
   6550 
   6551 <h5>Syntax:</h5>
   6552 <p>This is an overloaded intrinsic function. You can use bswap on any integer
   6553    type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
   6554 
   6555 <pre>
   6556   declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
   6557   declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
   6558   declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
   6559 </pre>
   6560 
   6561 <h5>Overview:</h5>
   6562 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
   6563    values with an even number of bytes (positive multiple of 16 bits).  These
   6564    are useful for performing operations on data that is not in the target's
   6565    native byte order.</p>
   6566 
   6567 <h5>Semantics:</h5>
   6568 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
   6569    and low byte of the input i16 swapped.  Similarly,
   6570    the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
   6571    bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
   6572    2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
   6573    The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
   6574    extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
   6575    more, respectively).</p>
   6576 
   6577 </div>
   6578 
   6579 <!-- _______________________________________________________________________ -->
   6580 <h4>
   6581   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
   6582 </h4>
   6583 
   6584 <div>
   6585 
   6586 <h5>Syntax:</h5>
   6587 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
   6588    width, or on any vector with integer elements. Not all targets support all
   6589   bit widths or vector types, however.</p>
   6590 
   6591 <pre>
   6592   declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
   6593   declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
   6594   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
   6595   declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
   6596   declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
   6597   declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
   6598 </pre>
   6599 
   6600 <h5>Overview:</h5>
   6601 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
   6602    in a value.</p>
   6603 
   6604 <h5>Arguments:</h5>
   6605 <p>The only argument is the value to be counted.  The argument may be of any
   6606    integer type, or a vector with integer elements.
   6607    The return type must match the argument type.</p>
   6608 
   6609 <h5>Semantics:</h5>
   6610 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
   6611    element of a vector.</p>
   6612 
   6613 </div>
   6614 
   6615 <!-- _______________________________________________________________________ -->
   6616 <h4>
   6617   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
   6618 </h4>
   6619 
   6620 <div>
   6621 
   6622 <h5>Syntax:</h5>
   6623 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
   6624    integer bit width, or any vector whose elements are integers. Not all
   6625    targets support all bit widths or vector types, however.</p>
   6626 
   6627 <pre>
   6628   declare i8 @llvm.ctlz.i8 (i8  &lt;src&gt;)
   6629   declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
   6630   declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
   6631   declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
   6632   declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
   6633   declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
   6634 </pre>
   6635 
   6636 <h5>Overview:</h5>
   6637 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
   6638    leading zeros in a variable.</p>
   6639 
   6640 <h5>Arguments:</h5>
   6641 <p>The only argument is the value to be counted.  The argument may be of any
   6642    integer type, or any vector type with integer element type.
   6643    The return type must match the argument type.</p>
   6644 
   6645 <h5>Semantics:</h5>
   6646 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
   6647    zeros in a variable, or within each element of the vector if the operation
   6648    is of vector type.  If the src == 0 then the result is the size in bits of
   6649    the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
   6650 
   6651 </div>
   6652 
   6653 <!-- _______________________________________________________________________ -->
   6654 <h4>
   6655   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
   6656 </h4>
   6657 
   6658 <div>
   6659 
   6660 <h5>Syntax:</h5>
   6661 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
   6662    integer bit width, or any vector of integer elements. Not all targets
   6663    support all bit widths or vector types, however.</p>
   6664 
   6665 <pre>
   6666   declare i8 @llvm.cttz.i8 (i8  &lt;src&gt;)
   6667   declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
   6668   declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
   6669   declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
   6670   declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
   6671   declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
   6672 </pre>
   6673 
   6674 <h5>Overview:</h5>
   6675 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
   6676    trailing zeros.</p>
   6677 
   6678 <h5>Arguments:</h5>
   6679 <p>The only argument is the value to be counted.  The argument may be of any
   6680    integer type, or a vectory with integer element type..  The return type
   6681    must match the argument type.</p>
   6682 
   6683 <h5>Semantics:</h5>
   6684 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
   6685    zeros in a variable, or within each element of a vector.
   6686    If the src == 0 then the result is the size in bits of
   6687    the type of src.  For example, <tt>llvm.cttz(2) = 1</tt>.</p>
   6688 
   6689 </div>
   6690 
   6691 </div>
   6692 
   6693 <!-- ======================================================================= -->
   6694 <h3>
   6695   <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
   6696 </h3>
   6697 
   6698 <div>
   6699 
   6700 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
   6701 
   6702 <!-- _______________________________________________________________________ -->
   6703 <h4>
   6704   <a name="int_sadd_overflow">
   6705     '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
   6706   </a>
   6707 </h4>
   6708 
   6709 <div>
   6710 
   6711 <h5>Syntax:</h5>
   6712 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
   6713    on any integer bit width.</p>
   6714 
   6715 <pre>
   6716   declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
   6717   declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   6718   declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
   6719 </pre>
   6720 
   6721 <h5>Overview:</h5>
   6722 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   6723    a signed addition of the two arguments, and indicate whether an overflow
   6724    occurred during the signed summation.</p>
   6725 
   6726 <h5>Arguments:</h5>
   6727 <p>The arguments (%a and %b) and the first element of the result structure may
   6728    be of integer types of any bit width, but they must have the same bit
   6729    width. The second element of the result structure must be of
   6730    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   6731    undergo signed addition.</p>
   6732 
   6733 <h5>Semantics:</h5>
   6734 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   6735    a signed addition of the two variables. They return a structure &mdash; the
   6736    first element of which is the signed summation, and the second element of
   6737    which is a bit specifying if the signed summation resulted in an
   6738    overflow.</p>
   6739 
   6740 <h5>Examples:</h5>
   6741 <pre>
   6742   %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   6743   %sum = extractvalue {i32, i1} %res, 0
   6744   %obit = extractvalue {i32, i1} %res, 1
   6745   br i1 %obit, label %overflow, label %normal
   6746 </pre>
   6747 
   6748 </div>
   6749 
   6750 <!-- _______________________________________________________________________ -->
   6751 <h4>
   6752   <a name="int_uadd_overflow">
   6753     '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
   6754   </a>
   6755 </h4>
   6756 
   6757 <div>
   6758 
   6759 <h5>Syntax:</h5>
   6760 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
   6761    on any integer bit width.</p>
   6762 
   6763 <pre>
   6764   declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
   6765   declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   6766   declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
   6767 </pre>
   6768 
   6769 <h5>Overview:</h5>
   6770 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   6771    an unsigned addition of the two arguments, and indicate whether a carry
   6772    occurred during the unsigned summation.</p>
   6773 
   6774 <h5>Arguments:</h5>
   6775 <p>The arguments (%a and %b) and the first element of the result structure may
   6776    be of integer types of any bit width, but they must have the same bit
   6777    width. The second element of the result structure must be of
   6778    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   6779    undergo unsigned addition.</p>
   6780 
   6781 <h5>Semantics:</h5>
   6782 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   6783    an unsigned addition of the two arguments. They return a structure &mdash;
   6784    the first element of which is the sum, and the second element of which is a
   6785    bit specifying if the unsigned summation resulted in a carry.</p>
   6786 
   6787 <h5>Examples:</h5>
   6788 <pre>
   6789   %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   6790   %sum = extractvalue {i32, i1} %res, 0
   6791   %obit = extractvalue {i32, i1} %res, 1
   6792   br i1 %obit, label %carry, label %normal
   6793 </pre>
   6794 
   6795 </div>
   6796 
   6797 <!-- _______________________________________________________________________ -->
   6798 <h4>
   6799   <a name="int_ssub_overflow">
   6800     '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
   6801   </a>
   6802 </h4>
   6803 
   6804 <div>
   6805 
   6806 <h5>Syntax:</h5>
   6807 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
   6808    on any integer bit width.</p>
   6809 
   6810 <pre>
   6811   declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
   6812   declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   6813   declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
   6814 </pre>
   6815 
   6816 <h5>Overview:</h5>
   6817 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   6818    a signed subtraction of the two arguments, and indicate whether an overflow
   6819    occurred during the signed subtraction.</p>
   6820 
   6821 <h5>Arguments:</h5>
   6822 <p>The arguments (%a and %b) and the first element of the result structure may
   6823    be of integer types of any bit width, but they must have the same bit
   6824    width. The second element of the result structure must be of
   6825    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   6826    undergo signed subtraction.</p>
   6827 
   6828 <h5>Semantics:</h5>
   6829 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   6830    a signed subtraction of the two arguments. They return a structure &mdash;
   6831    the first element of which is the subtraction, and the second element of
   6832    which is a bit specifying if the signed subtraction resulted in an
   6833    overflow.</p>
   6834 
   6835 <h5>Examples:</h5>
   6836 <pre>
   6837   %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   6838   %sum = extractvalue {i32, i1} %res, 0
   6839   %obit = extractvalue {i32, i1} %res, 1
   6840   br i1 %obit, label %overflow, label %normal
   6841 </pre>
   6842 
   6843 </div>
   6844 
   6845 <!-- _______________________________________________________________________ -->
   6846 <h4>
   6847   <a name="int_usub_overflow">
   6848     '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
   6849   </a>
   6850 </h4>
   6851 
   6852 <div>
   6853 
   6854 <h5>Syntax:</h5>
   6855 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
   6856    on any integer bit width.</p>
   6857 
   6858 <pre>
   6859   declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
   6860   declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   6861   declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
   6862 </pre>
   6863 
   6864 <h5>Overview:</h5>
   6865 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   6866    an unsigned subtraction of the two arguments, and indicate whether an
   6867    overflow occurred during the unsigned subtraction.</p>
   6868 
   6869 <h5>Arguments:</h5>
   6870 <p>The arguments (%a and %b) and the first element of the result structure may
   6871    be of integer types of any bit width, but they must have the same bit
   6872    width. The second element of the result structure must be of
   6873    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   6874    undergo unsigned subtraction.</p>
   6875 
   6876 <h5>Semantics:</h5>
   6877 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   6878    an unsigned subtraction of the two arguments. They return a structure &mdash;
   6879    the first element of which is the subtraction, and the second element of
   6880    which is a bit specifying if the unsigned subtraction resulted in an
   6881    overflow.</p>
   6882 
   6883 <h5>Examples:</h5>
   6884 <pre>
   6885   %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   6886   %sum = extractvalue {i32, i1} %res, 0
   6887   %obit = extractvalue {i32, i1} %res, 1
   6888   br i1 %obit, label %overflow, label %normal
   6889 </pre>
   6890 
   6891 </div>
   6892 
   6893 <!-- _______________________________________________________________________ -->
   6894 <h4>
   6895   <a name="int_smul_overflow">
   6896     '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
   6897   </a>
   6898 </h4>
   6899 
   6900 <div>
   6901 
   6902 <h5>Syntax:</h5>
   6903 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
   6904    on any integer bit width.</p>
   6905 
   6906 <pre>
   6907   declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
   6908   declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   6909   declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
   6910 </pre>
   6911 
   6912 <h5>Overview:</h5>
   6913 
   6914 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   6915    a signed multiplication of the two arguments, and indicate whether an
   6916    overflow occurred during the signed multiplication.</p>
   6917 
   6918 <h5>Arguments:</h5>
   6919 <p>The arguments (%a and %b) and the first element of the result structure may
   6920    be of integer types of any bit width, but they must have the same bit
   6921    width. The second element of the result structure must be of
   6922    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   6923    undergo signed multiplication.</p>
   6924 
   6925 <h5>Semantics:</h5>
   6926 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   6927    a signed multiplication of the two arguments. They return a structure &mdash;
   6928    the first element of which is the multiplication, and the second element of
   6929    which is a bit specifying if the signed multiplication resulted in an
   6930    overflow.</p>
   6931 
   6932 <h5>Examples:</h5>
   6933 <pre>
   6934   %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   6935   %sum = extractvalue {i32, i1} %res, 0
   6936   %obit = extractvalue {i32, i1} %res, 1
   6937   br i1 %obit, label %overflow, label %normal
   6938 </pre>
   6939 
   6940 </div>
   6941 
   6942 <!-- _______________________________________________________________________ -->
   6943 <h4>
   6944   <a name="int_umul_overflow">
   6945     '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
   6946   </a>
   6947 </h4>
   6948 
   6949 <div>
   6950 
   6951 <h5>Syntax:</h5>
   6952 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
   6953    on any integer bit width.</p>
   6954 
   6955 <pre>
   6956   declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
   6957   declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   6958   declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
   6959 </pre>
   6960 
   6961 <h5>Overview:</h5>
   6962 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   6963    a unsigned multiplication of the two arguments, and indicate whether an
   6964    overflow occurred during the unsigned multiplication.</p>
   6965 
   6966 <h5>Arguments:</h5>
   6967 <p>The arguments (%a and %b) and the first element of the result structure may
   6968    be of integer types of any bit width, but they must have the same bit
   6969    width. The second element of the result structure must be of
   6970    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   6971    undergo unsigned multiplication.</p>
   6972 
   6973 <h5>Semantics:</h5>
   6974 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   6975    an unsigned multiplication of the two arguments. They return a structure
   6976    &mdash; the first element of which is the multiplication, and the second
   6977    element of which is a bit specifying if the unsigned multiplication resulted
   6978    in an overflow.</p>
   6979 
   6980 <h5>Examples:</h5>
   6981 <pre>
   6982   %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   6983   %sum = extractvalue {i32, i1} %res, 0
   6984   %obit = extractvalue {i32, i1} %res, 1
   6985   br i1 %obit, label %overflow, label %normal
   6986 </pre>
   6987 
   6988 </div>
   6989 
   6990 </div>
   6991 
   6992 <!-- ======================================================================= -->
   6993 <h3>
   6994   <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
   6995 </h3>
   6996 
   6997 <div>
   6998 
   6999 <p>Half precision floating point is a storage-only format. This means that it is
   7000    a dense encoding (in memory) but does not support computation in the
   7001    format.</p>
   7002    
   7003 <p>This means that code must first load the half-precision floating point
   7004    value as an i16, then convert it to float with <a
   7005    href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
   7006    Computation can then be performed on the float value (including extending to
   7007    double etc).  To store the value back to memory, it is first converted to
   7008    float if needed, then converted to i16 with
   7009    <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
   7010    storing as an i16 value.</p>
   7011 
   7012 <!-- _______________________________________________________________________ -->
   7013 <h4>
   7014   <a name="int_convert_to_fp16">
   7015     '<tt>llvm.convert.to.fp16</tt>' Intrinsic
   7016   </a>
   7017 </h4>
   7018 
   7019 <div>
   7020 
   7021 <h5>Syntax:</h5>
   7022 <pre>
   7023   declare i16 @llvm.convert.to.fp16(f32 %a)
   7024 </pre>
   7025 
   7026 <h5>Overview:</h5>
   7027 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   7028    a conversion from single precision floating point format to half precision
   7029    floating point format.</p>
   7030 
   7031 <h5>Arguments:</h5>
   7032 <p>The intrinsic function contains single argument - the value to be
   7033    converted.</p>
   7034 
   7035 <h5>Semantics:</h5>
   7036 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   7037    a conversion from single precision floating point format to half precision
   7038    floating point format. The return value is an <tt>i16</tt> which
   7039    contains the converted number.</p>
   7040 
   7041 <h5>Examples:</h5>
   7042 <pre>
   7043   %res = call i16 @llvm.convert.to.fp16(f32 %a)
   7044   store i16 %res, i16* @x, align 2
   7045 </pre>
   7046 
   7047 </div>
   7048 
   7049 <!-- _______________________________________________________________________ -->
   7050 <h4>
   7051   <a name="int_convert_from_fp16">
   7052     '<tt>llvm.convert.from.fp16</tt>' Intrinsic
   7053   </a>
   7054 </h4>
   7055 
   7056 <div>
   7057 
   7058 <h5>Syntax:</h5>
   7059 <pre>
   7060   declare f32 @llvm.convert.from.fp16(i16 %a)
   7061 </pre>
   7062 
   7063 <h5>Overview:</h5>
   7064 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
   7065    a conversion from half precision floating point format to single precision
   7066    floating point format.</p>
   7067 
   7068 <h5>Arguments:</h5>
   7069 <p>The intrinsic function contains single argument - the value to be
   7070    converted.</p>
   7071 
   7072 <h5>Semantics:</h5>
   7073 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
   7074    conversion from half single precision floating point format to single
   7075    precision floating point format. The input half-float value is represented by
   7076    an <tt>i16</tt> value.</p>
   7077 
   7078 <h5>Examples:</h5>
   7079 <pre>
   7080   %a = load i16* @x, align 2
   7081   %res = call f32 @llvm.convert.from.fp16(i16 %a)
   7082 </pre>
   7083 
   7084 </div>
   7085 
   7086 </div>
   7087 
   7088 <!-- ======================================================================= -->
   7089 <h3>
   7090   <a name="int_debugger">Debugger Intrinsics</a>
   7091 </h3>
   7092 
   7093 <div>
   7094 
   7095 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
   7096    prefix), are described in
   7097    the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
   7098    Level Debugging</a> document.</p>
   7099 
   7100 </div>
   7101 
   7102 <!-- ======================================================================= -->
   7103 <h3>
   7104   <a name="int_eh">Exception Handling Intrinsics</a>
   7105 </h3>
   7106 
   7107 <div>
   7108 
   7109 <p>The LLVM exception handling intrinsics (which all start with
   7110    <tt>llvm.eh.</tt> prefix), are described in
   7111    the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
   7112    Handling</a> document.</p>
   7113 
   7114 </div>
   7115 
   7116 <!-- ======================================================================= -->
   7117 <h3>
   7118   <a name="int_trampoline">Trampoline Intrinsic</a>
   7119 </h3>
   7120 
   7121 <div>
   7122 
   7123 <p>This intrinsic makes it possible to excise one parameter, marked with
   7124    the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
   7125    The result is a callable
   7126    function pointer lacking the nest parameter - the caller does not need to
   7127    provide a value for it.  Instead, the value to use is stored in advance in a
   7128    "trampoline", a block of memory usually allocated on the stack, which also
   7129    contains code to splice the nest value into the argument list.  This is used
   7130    to implement the GCC nested function address extension.</p>
   7131 
   7132 <p>For example, if the function is
   7133    <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
   7134    pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
   7135    follows:</p>
   7136 
   7137 <pre class="doc_code">
   7138   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   7139   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
   7140   %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
   7141   %fp = bitcast i8* %p to i32 (i32, i32)*
   7142 </pre>
   7143 
   7144 <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
   7145    to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
   7146 
   7147 <!-- _______________________________________________________________________ -->
   7148 <h4>
   7149   <a name="int_it">
   7150     '<tt>llvm.init.trampoline</tt>' Intrinsic
   7151   </a>
   7152 </h4>
   7153 
   7154 <div>
   7155 
   7156 <h5>Syntax:</h5>
   7157 <pre>
   7158   declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
   7159 </pre>
   7160 
   7161 <h5>Overview:</h5>
   7162 <p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
   7163    function pointer suitable for executing it.</p>
   7164 
   7165 <h5>Arguments:</h5>
   7166 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
   7167    pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
   7168    sufficiently aligned block of memory; this memory is written to by the
   7169    intrinsic.  Note that the size and the alignment are target-specific - LLVM
   7170    currently provides no portable way of determining them, so a front-end that
   7171    generates this intrinsic needs to have some target-specific knowledge.
   7172    The <tt>func</tt> argument must hold a function bitcast to
   7173    an <tt>i8*</tt>.</p>
   7174 
   7175 <h5>Semantics:</h5>
   7176 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
   7177    dependent code, turning it into a function.  A pointer to this function is
   7178    returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
   7179    function pointer type</a> before being called.  The new function's signature
   7180    is the same as that of <tt>func</tt> with any arguments marked with
   7181    the <tt>nest</tt> attribute removed.  At most one such <tt>nest</tt> argument
   7182    is allowed, and it must be of pointer type.  Calling the new function is
   7183    equivalent to calling <tt>func</tt> with the same argument list, but
   7184    with <tt>nval</tt> used for the missing <tt>nest</tt> argument.  If, after
   7185    calling <tt>llvm.init.trampoline</tt>, the memory pointed to
   7186    by <tt>tramp</tt> is modified, then the effect of any later call to the
   7187    returned function pointer is undefined.</p>
   7188 
   7189 </div>
   7190 
   7191 </div>
   7192 
   7193 <!-- ======================================================================= -->
   7194 <h3>
   7195   <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
   7196 </h3>
   7197 
   7198 <div>
   7199 
   7200 <p>These intrinsic functions expand the "universal IR" of LLVM to represent
   7201    hardware constructs for atomic operations and memory synchronization.  This
   7202    provides an interface to the hardware, not an interface to the programmer. It
   7203    is aimed at a low enough level to allow any programming models or APIs
   7204    (Application Programming Interfaces) which need atomic behaviors to map
   7205    cleanly onto it. It is also modeled primarily on hardware behavior. Just as
   7206    hardware provides a "universal IR" for source languages, it also provides a
   7207    starting point for developing a "universal" atomic operation and
   7208    synchronization IR.</p>
   7209 
   7210 <p>These do <em>not</em> form an API such as high-level threading libraries,
   7211    software transaction memory systems, atomic primitives, and intrinsic
   7212    functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
   7213    application libraries.  The hardware interface provided by LLVM should allow
   7214    a clean implementation of all of these APIs and parallel programming models.
   7215    No one model or paradigm should be selected above others unless the hardware
   7216    itself ubiquitously does so.</p>
   7217 
   7218 <!-- _______________________________________________________________________ -->
   7219 <h4>
   7220   <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
   7221 </h4>
   7222 
   7223 <div>
   7224 <h5>Syntax:</h5>
   7225 <pre>
   7226   declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
   7227 </pre>
   7228 
   7229 <h5>Overview:</h5>
   7230 <p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
   7231    specific pairs of memory access types.</p>
   7232 
   7233 <h5>Arguments:</h5>
   7234 <p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
   7235    The first four arguments enables a specific barrier as listed below.  The
   7236    fifth argument specifies that the barrier applies to io or device or uncached
   7237    memory.</p>
   7238 
   7239 <ul>
   7240   <li><tt>ll</tt>: load-load barrier</li>
   7241   <li><tt>ls</tt>: load-store barrier</li>
   7242   <li><tt>sl</tt>: store-load barrier</li>
   7243   <li><tt>ss</tt>: store-store barrier</li>
   7244   <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
   7245 </ul>
   7246 
   7247 <h5>Semantics:</h5>
   7248 <p>This intrinsic causes the system to enforce some ordering constraints upon
   7249    the loads and stores of the program. This barrier does not
   7250    indicate <em>when</em> any events will occur, it only enforces
   7251    an <em>order</em> in which they occur. For any of the specified pairs of load
   7252    and store operations (f.ex.  load-load, or store-load), all of the first
   7253    operations preceding the barrier will complete before any of the second
   7254    operations succeeding the barrier begin. Specifically the semantics for each
   7255    pairing is as follows:</p>
   7256 
   7257 <ul>
   7258   <li><tt>ll</tt>: All loads before the barrier must complete before any load
   7259       after the barrier begins.</li>
   7260   <li><tt>ls</tt>: All loads before the barrier must complete before any
   7261       store after the barrier begins.</li>
   7262   <li><tt>ss</tt>: All stores before the barrier must complete before any
   7263       store after the barrier begins.</li>
   7264   <li><tt>sl</tt>: All stores before the barrier must complete before any
   7265       load after the barrier begins.</li>
   7266 </ul>
   7267 
   7268 <p>These semantics are applied with a logical "and" behavior when more than one
   7269    is enabled in a single memory barrier intrinsic.</p>
   7270 
   7271 <p>Backends may implement stronger barriers than those requested when they do
   7272    not support as fine grained a barrier as requested.  Some architectures do
   7273    not need all types of barriers and on such architectures, these become
   7274    noops.</p>
   7275 
   7276 <h5>Example:</h5>
   7277 <pre>
   7278 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7279 %ptr      = bitcast i8* %mallocP to i32*
   7280             store i32 4, %ptr
   7281 
   7282 %result1  = load i32* %ptr      <i>; yields {i32}:result1 = 4</i>
   7283             call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
   7284                                 <i>; guarantee the above finishes</i>
   7285             store i32 8, %ptr   <i>; before this begins</i>
   7286 </pre>
   7287 
   7288 </div>
   7289 
   7290 <!-- _______________________________________________________________________ -->
   7291 <h4>
   7292   <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
   7293 </h4>
   7294 
   7295 <div>
   7296 
   7297 <h5>Syntax:</h5>
   7298 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
   7299    any integer bit width and for different address spaces. Not all targets
   7300    support all bit widths however.</p>
   7301 
   7302 <pre>
   7303   declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
   7304   declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
   7305   declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
   7306   declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
   7307 </pre>
   7308 
   7309 <h5>Overview:</h5>
   7310 <p>This loads a value in memory and compares it to a given value. If they are
   7311    equal, it stores a new value into the memory.</p>
   7312 
   7313 <h5>Arguments:</h5>
   7314 <p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
   7315    as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
   7316    same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
   7317    this integer type. While any bit width integer may be used, targets may only
   7318    lower representations they support in hardware.</p>
   7319 
   7320 <h5>Semantics:</h5>
   7321 <p>This entire intrinsic must be executed atomically. It first loads the value
   7322    in memory pointed to by <tt>ptr</tt> and compares it with the
   7323    value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
   7324    memory. The loaded value is yielded in all cases. This provides the
   7325    equivalent of an atomic compare-and-swap operation within the SSA
   7326    framework.</p>
   7327 
   7328 <h5>Examples:</h5>
   7329 <pre>
   7330 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7331 %ptr      = bitcast i8* %mallocP to i32*
   7332             store i32 4, %ptr
   7333 
   7334 %val1     = add i32 4, 4
   7335 %result1  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
   7336                                           <i>; yields {i32}:result1 = 4</i>
   7337 %stored1  = icmp eq i32 %result1, 4       <i>; yields {i1}:stored1 = true</i>
   7338 %memval1  = load i32* %ptr                <i>; yields {i32}:memval1 = 8</i>
   7339 
   7340 %val2     = add i32 1, 1
   7341 %result2  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
   7342                                           <i>; yields {i32}:result2 = 8</i>
   7343 %stored2  = icmp eq i32 %result2, 5       <i>; yields {i1}:stored2 = false</i>
   7344 
   7345 %memval2  = load i32* %ptr                <i>; yields {i32}:memval2 = 8</i>
   7346 </pre>
   7347 
   7348 </div>
   7349 
   7350 <!-- _______________________________________________________________________ -->
   7351 <h4>
   7352   <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
   7353 </h4>
   7354 
   7355 <div>
   7356 <h5>Syntax:</h5>
   7357 
   7358 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
   7359    integer bit width. Not all targets support all bit widths however.</p>
   7360 
   7361 <pre>
   7362   declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
   7363   declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
   7364   declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
   7365   declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
   7366 </pre>
   7367 
   7368 <h5>Overview:</h5>
   7369 <p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
   7370    the value from memory. It then stores the value in <tt>val</tt> in the memory
   7371    at <tt>ptr</tt>.</p>
   7372 
   7373 <h5>Arguments:</h5>
   7374 <p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
   7375   the <tt>val</tt> argument and the result must be integers of the same bit
   7376   width.  The first argument, <tt>ptr</tt>, must be a pointer to a value of this
   7377   integer type. The targets may only lower integer representations they
   7378   support.</p>
   7379 
   7380 <h5>Semantics:</h5>
   7381 <p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
   7382    stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
   7383    equivalent of an atomic swap operation within the SSA framework.</p>
   7384 
   7385 <h5>Examples:</h5>
   7386 <pre>
   7387 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7388 %ptr      = bitcast i8* %mallocP to i32*
   7389             store i32 4, %ptr
   7390 
   7391 %val1     = add i32 4, 4
   7392 %result1  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
   7393                                         <i>; yields {i32}:result1 = 4</i>
   7394 %stored1  = icmp eq i32 %result1, 4     <i>; yields {i1}:stored1 = true</i>
   7395 %memval1  = load i32* %ptr              <i>; yields {i32}:memval1 = 8</i>
   7396 
   7397 %val2     = add i32 1, 1
   7398 %result2  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
   7399                                         <i>; yields {i32}:result2 = 8</i>
   7400 
   7401 %stored2  = icmp eq i32 %result2, 8     <i>; yields {i1}:stored2 = true</i>
   7402 %memval2  = load i32* %ptr              <i>; yields {i32}:memval2 = 2</i>
   7403 </pre>
   7404 
   7405 </div>
   7406 
   7407 <!-- _______________________________________________________________________ -->
   7408 <h4>
   7409   <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
   7410 </h4>
   7411 
   7412 <div>
   7413 
   7414 <h5>Syntax:</h5>
   7415 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
   7416    any integer bit width. Not all targets support all bit widths however.</p>
   7417 
   7418 <pre>
   7419   declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7420   declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7421   declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7422   declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7423 </pre>
   7424 
   7425 <h5>Overview:</h5>
   7426 <p>This intrinsic adds <tt>delta</tt> to the value stored in memory
   7427    at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
   7428 
   7429 <h5>Arguments:</h5>
   7430 <p>The intrinsic takes two arguments, the first a pointer to an integer value
   7431    and the second an integer value. The result is also an integer value. These
   7432    integer types can have any bit width, but they must all have the same bit
   7433    width. The targets may only lower integer representations they support.</p>
   7434 
   7435 <h5>Semantics:</h5>
   7436 <p>This intrinsic does a series of operations atomically. It first loads the
   7437    value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
   7438    to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
   7439 
   7440 <h5>Examples:</h5>
   7441 <pre>
   7442 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7443 %ptr      = bitcast i8* %mallocP to i32*
   7444             store i32 4, %ptr
   7445 %result1  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
   7446                                 <i>; yields {i32}:result1 = 4</i>
   7447 %result2  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
   7448                                 <i>; yields {i32}:result2 = 8</i>
   7449 %result3  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
   7450                                 <i>; yields {i32}:result3 = 10</i>
   7451 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 15</i>
   7452 </pre>
   7453 
   7454 </div>
   7455 
   7456 <!-- _______________________________________________________________________ -->
   7457 <h4>
   7458   <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
   7459 </h4>
   7460 
   7461 <div>
   7462 
   7463 <h5>Syntax:</h5>
   7464 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
   7465    any integer bit width and for different address spaces. Not all targets
   7466    support all bit widths however.</p>
   7467 
   7468 <pre>
   7469   declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7470   declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7471   declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7472   declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7473 </pre>
   7474 
   7475 <h5>Overview:</h5>
   7476 <p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
   7477    <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
   7478 
   7479 <h5>Arguments:</h5>
   7480 <p>The intrinsic takes two arguments, the first a pointer to an integer value
   7481    and the second an integer value. The result is also an integer value. These
   7482    integer types can have any bit width, but they must all have the same bit
   7483    width. The targets may only lower integer representations they support.</p>
   7484 
   7485 <h5>Semantics:</h5>
   7486 <p>This intrinsic does a series of operations atomically. It first loads the
   7487    value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
   7488    result to <tt>ptr</tt>. It yields the original value stored
   7489    at <tt>ptr</tt>.</p>
   7490 
   7491 <h5>Examples:</h5>
   7492 <pre>
   7493 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7494 %ptr      = bitcast i8* %mallocP to i32*
   7495             store i32 8, %ptr
   7496 %result1  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
   7497                                 <i>; yields {i32}:result1 = 8</i>
   7498 %result2  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
   7499                                 <i>; yields {i32}:result2 = 4</i>
   7500 %result3  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
   7501                                 <i>; yields {i32}:result3 = 2</i>
   7502 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = -3</i>
   7503 </pre>
   7504 
   7505 </div>
   7506 
   7507 <!-- _______________________________________________________________________ -->
   7508 <h4>
   7509   <a name="int_atomic_load_and">
   7510     '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
   7511   </a>
   7512   <br>
   7513   <a name="int_atomic_load_nand">
   7514     '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
   7515   </a>
   7516   <br>
   7517   <a name="int_atomic_load_or">
   7518     '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
   7519   </a>
   7520   <br>
   7521   <a name="int_atomic_load_xor">
   7522     '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
   7523   </a>
   7524 </h4>
   7525 
   7526 <div>
   7527 
   7528 <h5>Syntax:</h5>
   7529 <p>These are overloaded intrinsics. You can
   7530   use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
   7531   <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
   7532   bit width and for different address spaces. Not all targets support all bit
   7533   widths however.</p>
   7534 
   7535 <pre>
   7536   declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7537   declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7538   declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7539   declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7540 </pre>
   7541 
   7542 <pre>
   7543   declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7544   declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7545   declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7546   declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7547 </pre>
   7548 
   7549 <pre>
   7550   declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7551   declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7552   declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7553   declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7554 </pre>
   7555 
   7556 <pre>
   7557   declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7558   declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7559   declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7560   declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7561 </pre>
   7562 
   7563 <h5>Overview:</h5>
   7564 <p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
   7565    the value stored in memory at <tt>ptr</tt>. It yields the original value
   7566    at <tt>ptr</tt>.</p>
   7567 
   7568 <h5>Arguments:</h5>
   7569 <p>These intrinsics take two arguments, the first a pointer to an integer value
   7570    and the second an integer value. The result is also an integer value. These
   7571    integer types can have any bit width, but they must all have the same bit
   7572    width. The targets may only lower integer representations they support.</p>
   7573 
   7574 <h5>Semantics:</h5>
   7575 <p>These intrinsics does a series of operations atomically. They first load the
   7576    value stored at <tt>ptr</tt>. They then do the bitwise
   7577    operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
   7578    original value stored at <tt>ptr</tt>.</p>
   7579 
   7580 <h5>Examples:</h5>
   7581 <pre>
   7582 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7583 %ptr      = bitcast i8* %mallocP to i32*
   7584             store i32 0x0F0F, %ptr
   7585 %result0  = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
   7586                                 <i>; yields {i32}:result0 = 0x0F0F</i>
   7587 %result1  = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
   7588                                 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
   7589 %result2  = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
   7590                                 <i>; yields {i32}:result2 = 0xF0</i>
   7591 %result3  = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
   7592                                 <i>; yields {i32}:result3 = FF</i>
   7593 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = F0</i>
   7594 </pre>
   7595 
   7596 </div>
   7597 
   7598 <!-- _______________________________________________________________________ -->
   7599 <h4>
   7600   <a name="int_atomic_load_max">
   7601     '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
   7602   </a>
   7603   <br>
   7604   <a name="int_atomic_load_min">
   7605     '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
   7606   </a>
   7607   <br>
   7608   <a name="int_atomic_load_umax">
   7609     '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
   7610   </a>
   7611   <br>
   7612   <a name="int_atomic_load_umin">
   7613     '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
   7614   </a>
   7615 </h4>
   7616 
   7617 <div>
   7618 
   7619 <h5>Syntax:</h5>
   7620 <p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
   7621    <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
   7622    <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
   7623    address spaces. Not all targets support all bit widths however.</p>
   7624 
   7625 <pre>
   7626   declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7627   declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7628   declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7629   declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7630 </pre>
   7631 
   7632 <pre>
   7633   declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7634   declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7635   declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7636   declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7637 </pre>
   7638 
   7639 <pre>
   7640   declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7641   declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7642   declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7643   declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7644 </pre>
   7645 
   7646 <pre>
   7647   declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   7648   declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   7649   declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   7650   declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   7651 </pre>
   7652 
   7653 <h5>Overview:</h5>
   7654 <p>These intrinsics takes the signed or unsigned minimum or maximum of
   7655    <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
   7656    original value at <tt>ptr</tt>.</p>
   7657 
   7658 <h5>Arguments:</h5>
   7659 <p>These intrinsics take two arguments, the first a pointer to an integer value
   7660    and the second an integer value. The result is also an integer value. These
   7661    integer types can have any bit width, but they must all have the same bit
   7662    width. The targets may only lower integer representations they support.</p>
   7663 
   7664 <h5>Semantics:</h5>
   7665 <p>These intrinsics does a series of operations atomically. They first load the
   7666    value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
   7667    max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
   7668    yield the original value stored at <tt>ptr</tt>.</p>
   7669 
   7670 <h5>Examples:</h5>
   7671 <pre>
   7672 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7673 %ptr      = bitcast i8* %mallocP to i32*
   7674             store i32 7, %ptr
   7675 %result0  = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
   7676                                 <i>; yields {i32}:result0 = 7</i>
   7677 %result1  = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
   7678                                 <i>; yields {i32}:result1 = -2</i>
   7679 %result2  = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
   7680                                 <i>; yields {i32}:result2 = 8</i>
   7681 %result3  = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
   7682                                 <i>; yields {i32}:result3 = 8</i>
   7683 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 30</i>
   7684 </pre>
   7685 
   7686 </div>
   7687 
   7688 </div>
   7689 
   7690 <!-- ======================================================================= -->
   7691 <h3>
   7692   <a name="int_memorymarkers">Memory Use Markers</a>
   7693 </h3>
   7694 
   7695 <div>
   7696 
   7697 <p>This class of intrinsics exists to information about the lifetime of memory
   7698    objects and ranges where variables are immutable.</p>
   7699 
   7700 <!-- _______________________________________________________________________ -->
   7701 <h4>
   7702   <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
   7703 </h4>
   7704 
   7705 <div>
   7706 
   7707 <h5>Syntax:</h5>
   7708 <pre>
   7709   declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   7710 </pre>
   7711 
   7712 <h5>Overview:</h5>
   7713 <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
   7714    object's lifetime.</p>
   7715 
   7716 <h5>Arguments:</h5>
   7717 <p>The first argument is a constant integer representing the size of the
   7718    object, or -1 if it is variable sized.  The second argument is a pointer to
   7719    the object.</p>
   7720 
   7721 <h5>Semantics:</h5>
   7722 <p>This intrinsic indicates that before this point in the code, the value of the
   7723    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   7724    never be used and has an undefined value.  A load from the pointer that
   7725    precedes this intrinsic can be replaced with
   7726    <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
   7727 
   7728 </div>
   7729 
   7730 <!-- _______________________________________________________________________ -->
   7731 <h4>
   7732   <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
   7733 </h4>
   7734 
   7735 <div>
   7736 
   7737 <h5>Syntax:</h5>
   7738 <pre>
   7739   declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   7740 </pre>
   7741 
   7742 <h5>Overview:</h5>
   7743 <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
   7744    object's lifetime.</p>
   7745 
   7746 <h5>Arguments:</h5>
   7747 <p>The first argument is a constant integer representing the size of the
   7748    object, or -1 if it is variable sized.  The second argument is a pointer to
   7749    the object.</p>
   7750 
   7751 <h5>Semantics:</h5>
   7752 <p>This intrinsic indicates that after this point in the code, the value of the
   7753    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   7754    never be used and has an undefined value.  Any stores into the memory object
   7755    following this intrinsic may be removed as dead.
   7756 
   7757 </div>
   7758 
   7759 <!-- _______________________________________________________________________ -->
   7760 <h4>
   7761   <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
   7762 </h4>
   7763 
   7764 <div>
   7765 
   7766 <h5>Syntax:</h5>
   7767 <pre>
   7768   declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   7769 </pre>
   7770 
   7771 <h5>Overview:</h5>
   7772 <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
   7773    a memory object will not change.</p>
   7774 
   7775 <h5>Arguments:</h5>
   7776 <p>The first argument is a constant integer representing the size of the
   7777    object, or -1 if it is variable sized.  The second argument is a pointer to
   7778    the object.</p>
   7779 
   7780 <h5>Semantics:</h5>
   7781 <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
   7782    the return value, the referenced memory location is constant and
   7783    unchanging.</p>
   7784 
   7785 </div>
   7786 
   7787 <!-- _______________________________________________________________________ -->
   7788 <h4>
   7789   <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
   7790 </h4>
   7791 
   7792 <div>
   7793 
   7794 <h5>Syntax:</h5>
   7795 <pre>
   7796   declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   7797 </pre>
   7798 
   7799 <h5>Overview:</h5>
   7800 <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
   7801    a memory object are mutable.</p>
   7802 
   7803 <h5>Arguments:</h5>
   7804 <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
   7805    The second argument is a constant integer representing the size of the
   7806    object, or -1 if it is variable sized and the third argument is a pointer
   7807    to the object.</p>
   7808 
   7809 <h5>Semantics:</h5>
   7810 <p>This intrinsic indicates that the memory is mutable again.</p>
   7811 
   7812 </div>
   7813 
   7814 </div>
   7815 
   7816 <!-- ======================================================================= -->
   7817 <h3>
   7818   <a name="int_general">General Intrinsics</a>
   7819 </h3>
   7820 
   7821 <div>
   7822 
   7823 <p>This class of intrinsics is designed to be generic and has no specific
   7824    purpose.</p>
   7825 
   7826 <!-- _______________________________________________________________________ -->
   7827 <h4>
   7828   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
   7829 </h4>
   7830 
   7831 <div>
   7832 
   7833 <h5>Syntax:</h5>
   7834 <pre>
   7835   declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7836 </pre>
   7837 
   7838 <h5>Overview:</h5>
   7839 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
   7840 
   7841 <h5>Arguments:</h5>
   7842 <p>The first argument is a pointer to a value, the second is a pointer to a
   7843    global string, the third is a pointer to a global string which is the source
   7844    file name, and the last argument is the line number.</p>
   7845 
   7846 <h5>Semantics:</h5>
   7847 <p>This intrinsic allows annotation of local variables with arbitrary strings.
   7848    This can be useful for special purpose optimizations that want to look for
   7849    these annotations.  These have no other defined use, they are ignored by code
   7850    generation and optimization.</p>
   7851 
   7852 </div>
   7853 
   7854 <!-- _______________________________________________________________________ -->
   7855 <h4>
   7856   <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
   7857 </h4>
   7858 
   7859 <div>
   7860 
   7861 <h5>Syntax:</h5>
   7862 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
   7863    any integer bit width.</p>
   7864 
   7865 <pre>
   7866   declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7867   declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7868   declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7869   declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7870   declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7871 </pre>
   7872 
   7873 <h5>Overview:</h5>
   7874 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
   7875 
   7876 <h5>Arguments:</h5>
   7877 <p>The first argument is an integer value (result of some expression), the
   7878    second is a pointer to a global string, the third is a pointer to a global
   7879    string which is the source file name, and the last argument is the line
   7880    number.  It returns the value of the first argument.</p>
   7881 
   7882 <h5>Semantics:</h5>
   7883 <p>This intrinsic allows annotations to be put on arbitrary expressions with
   7884    arbitrary strings.  This can be useful for special purpose optimizations that
   7885    want to look for these annotations.  These have no other defined use, they
   7886    are ignored by code generation and optimization.</p>
   7887 
   7888 </div>
   7889 
   7890 <!-- _______________________________________________________________________ -->
   7891 <h4>
   7892   <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
   7893 </h4>
   7894 
   7895 <div>
   7896 
   7897 <h5>Syntax:</h5>
   7898 <pre>
   7899   declare void @llvm.trap()
   7900 </pre>
   7901 
   7902 <h5>Overview:</h5>
   7903 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
   7904 
   7905 <h5>Arguments:</h5>
   7906 <p>None.</p>
   7907 
   7908 <h5>Semantics:</h5>
   7909 <p>This intrinsics is lowered to the target dependent trap instruction. If the
   7910    target does not have a trap instruction, this intrinsic will be lowered to
   7911    the call of the <tt>abort()</tt> function.</p>
   7912 
   7913 </div>
   7914 
   7915 <!-- _______________________________________________________________________ -->
   7916 <h4>
   7917   <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
   7918 </h4>
   7919 
   7920 <div>
   7921 
   7922 <h5>Syntax:</h5>
   7923 <pre>
   7924   declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
   7925 </pre>
   7926 
   7927 <h5>Overview:</h5>
   7928 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
   7929    stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
   7930    ensure that it is placed on the stack before local variables.</p>
   7931 
   7932 <h5>Arguments:</h5>
   7933 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
   7934    arguments. The first argument is the value loaded from the stack
   7935    guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
   7936    that has enough space to hold the value of the guard.</p>
   7937 
   7938 <h5>Semantics:</h5>
   7939 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
   7940    the <tt>AllocaInst</tt> stack slot to be before local variables on the
   7941    stack. This is to ensure that if a local variable on the stack is
   7942    overwritten, it will destroy the value of the guard. When the function exits,
   7943    the guard on the stack is checked against the original guard. If they are
   7944    different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
   7945    function.</p>
   7946 
   7947 </div>
   7948 
   7949 <!-- _______________________________________________________________________ -->
   7950 <h4>
   7951   <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
   7952 </h4>
   7953 
   7954 <div>
   7955 
   7956 <h5>Syntax:</h5>
   7957 <pre>
   7958   declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
   7959   declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
   7960 </pre>
   7961 
   7962 <h5>Overview:</h5>
   7963 <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
   7964    the optimizers to determine at compile time whether a) an operation (like
   7965    memcpy) will overflow a buffer that corresponds to an object, or b) that a
   7966    runtime check for overflow isn't necessary. An object in this context means
   7967    an allocation of a specific class, structure, array, or other object.</p>
   7968 
   7969 <h5>Arguments:</h5>
   7970 <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
   7971    argument is a pointer to or into the <tt>object</tt>. The second argument
   7972    is a boolean 0 or 1. This argument determines whether you want the 
   7973    maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
   7974    1, variables are not allowed.</p>
   7975    
   7976 <h5>Semantics:</h5>
   7977 <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
   7978    representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
   7979    depending on the <tt>type</tt> argument, if the size cannot be determined at
   7980    compile time.</p>
   7981 
   7982 </div>
   7983 
   7984 </div>
   7985 
   7986 </div>
   7987 
   7988 <!-- *********************************************************************** -->
   7989 <hr>
   7990 <address>
   7991   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   7992   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   7993   <a href="http://validator.w3.org/check/referer"><img
   7994   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   7995 
   7996   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   7997   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   7998   Last modified: $Date$
   7999 </address>
   8000 
   8001 </body>
   8002 </html>
   8003