Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5  <title>LLVM Link Time Optimization: Design and Implementation</title>
      6   <link rel="stylesheet" href="llvm.css" type="text/css">
      7 </head>
      8 
      9 <h1>
     10   LLVM Link Time Optimization: Design and Implementation
     11 </h1>
     12 
     13 <ul>
     14   <li><a href="#desc">Description</a></li>
     15   <li><a href="#design">Design Philosophy</a>
     16   <ul>
     17     <li><a href="#example1">Example of link time optimization</a></li>
     18     <li><a href="#alternative_approaches">Alternative Approaches</a></li>
     19   </ul></li>
     20   <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
     21   <ul>
     22     <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>
     23     <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
     24     <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
     25     <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
     26   </ul></li>
     27   <li><a href="#lto">libLTO</a>
     28   <ul>
     29     <li><a href="#lto_module_t">lto_module_t</a></li>
     30     <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
     31   </ul>
     32 </ul>
     33 
     34 <div class="doc_author">
     35 <p>Written by Devang Patel and Nick Kledzik</p>
     36 </div>
     37 
     38 <!-- *********************************************************************** -->
     39 <h2>
     40 <a name="desc">Description</a>
     41 </h2>
     42 <!-- *********************************************************************** -->
     43 
     44 <div>
     45 <p>
     46 LLVM features powerful intermodular optimizations which can be used at link 
     47 time.  Link Time Optimization (LTO) is another name for intermodular optimization 
     48 when performed during the link stage. This document describes the interface 
     49 and design between the LTO optimizer and the linker.</p>
     50 </div>
     51 
     52 <!-- *********************************************************************** -->
     53 <h2>
     54 <a name="design">Design Philosophy</a>
     55 </h2>
     56 <!-- *********************************************************************** -->
     57 
     58 <div>
     59 <p>
     60 The LLVM Link Time Optimizer provides complete transparency, while doing 
     61 intermodular optimization, in the compiler tool chain. Its main goal is to let 
     62 the developer take advantage of intermodular optimizations without making any 
     63 significant changes to the developer's makefiles or build system. This is 
     64 achieved through tight integration with the linker. In this model, the linker 
     65 treates LLVM bitcode files like native object files and allows mixing and 
     66 matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
     67 object, to handle LLVM bitcode files. This tight integration between 
     68 the linker and LLVM optimizer helps to do optimizations that are not possible 
     69 in other models. The linker input allows the optimizer to avoid relying on 
     70 conservative escape analysis.
     71 </p>
     72 
     73 <!-- ======================================================================= -->
     74 <h3>
     75   <a name="example1">Example of link time optimization</a>
     76 </h3>
     77 
     78 <div>
     79   <p>The following example illustrates the advantages of LTO's integrated
     80   approach and clean interface. This example requires a system linker which
     81   supports LTO through the interface described in this document.  Here,
     82   llvm-gcc transparently invokes system linker. </p>
     83   <ul>
     84     <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
     85     <li> Input source file <tt>main.c</tt> is compiled into native object code.
     86   </ul>
     87 <pre class="doc_code">
     88 --- a.h ---
     89 extern int foo1(void);
     90 extern void foo2(void);
     91 extern void foo4(void);
     92 --- a.c ---
     93 #include "a.h"
     94 
     95 static signed int i = 0;
     96 
     97 void foo2(void) {
     98  i = -1;
     99 }
    100 
    101 static int foo3() {
    102 foo4();
    103 return 10;
    104 }
    105 
    106 int foo1(void) {
    107 int data = 0;
    108 
    109 if (i &lt; 0) { data = foo3(); }
    110 
    111 data = data + 42;
    112 return data;
    113 }
    114 
    115 --- main.c ---
    116 #include &lt;stdio.h&gt;
    117 #include "a.h"
    118 
    119 void foo4(void) {
    120  printf ("Hi\n");
    121 }
    122 
    123 int main() {
    124  return foo1();
    125 }
    126 
    127 --- command lines ---
    128 $ llvm-gcc --emit-llvm -c a.c -o a.o  # &lt;-- a.o is LLVM bitcode file
    129 $ llvm-gcc -c main.c -o main.o # &lt;-- main.o is native object file
    130 $ llvm-gcc a.o main.o -o main # &lt;-- standard link command without any modifications
    131 </pre>
    132   <p>In this example, the linker recognizes that <tt>foo2()</tt> is an 
    133   externally visible symbol defined in LLVM bitcode file. The linker completes 
    134   its usual symbol resolution 
    135   pass and finds that <tt>foo2()</tt> is not used anywhere. This information 
    136   is used by the LLVM optimizer and it removes <tt>foo2()</tt>. As soon as 
    137   <tt>foo2()</tt> is removed, the optimizer recognizes that condition 
    138   <tt>i &lt; 0</tt> is always false, which means <tt>foo3()</tt> is never 
    139   used. Hence, the optimizer removes <tt>foo3()</tt>, also.  And this in turn, 
    140   enables linker to remove <tt>foo4()</tt>.  This example illustrates the 
    141   advantage of tight integration with the linker. Here, the optimizer can not 
    142   remove <tt>foo3()</tt> without the linker's input.
    143   </p>
    144 </div>
    145 
    146 <!-- ======================================================================= -->
    147 <h3>
    148   <a name="alternative_approaches">Alternative Approaches</a>
    149 </h3>
    150 
    151 <div>
    152   <dl>
    153     <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
    154     <dd>In this model the link time optimizer is not able to take advantage of 
    155     information collected during the linker's normal symbol resolution phase. 
    156     In the above example, the optimizer can not remove <tt>foo2()</tt> without 
    157     the linker's input because it is externally visible. This in turn prohibits
    158     the optimizer from removing <tt>foo3()</tt>.</dd>
    159     <dt><b>Use separate tool to collect symbol information from all object
    160     files.</b></dt>
    161     <dd>In this model, a new, separate, tool or library replicates the linker's
    162     capability to collect information for link time optimization. Not only is
    163     this code duplication difficult to justify, but it also has several other 
    164     disadvantages.  For example, the linking semantics and the features 
    165     provided by the linker on various platform are not unique. This means, 
    166     this new tool needs to support all such features and platforms in one 
    167     super tool or a separate tool per platform is required. This increases 
    168     maintenance cost for link time optimizer significantly, which is not 
    169     necessary. This approach also requires staying synchronized with linker 
    170     developements on various platforms, which is not the main focus of the link 
    171     time optimizer. Finally, this approach increases end user's build time due 
    172     to the duplication of work done by this separate tool and the linker itself.
    173     </dd>
    174   </dl>
    175 </div>
    176 
    177 </div>
    178 
    179 <!-- *********************************************************************** -->
    180 <h2>
    181   <a name="multiphase">Multi-phase communication between libLTO and linker</a>
    182 </h2>
    183 
    184 <div>
    185   <p>The linker collects information about symbol defininitions and uses in 
    186   various link objects which is more accurate than any information collected 
    187   by other tools during typical build cycles.  The linker collects this 
    188   information by looking at the definitions and uses of symbols in native .o 
    189   files and using symbol visibility information. The linker also uses 
    190   user-supplied information, such as a list of exported symbols. LLVM 
    191   optimizer collects control flow information, data flow information and knows 
    192   much more about program structure from the optimizer's point of view. 
    193   Our goal is to take advantage of tight integration between the linker and 
    194   the optimizer by sharing this information during various linking phases.
    195 </p>
    196 
    197 <!-- ======================================================================= -->
    198 <h3>
    199   <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
    200 </h3>
    201 
    202 <div>
    203   <p>The linker first reads all object files in natural order and collects 
    204   symbol information. This includes native object files as well as LLVM bitcode 
    205   files.  To minimize the cost to the linker in the case that all .o files
    206   are native object files, the linker only calls <tt>lto_module_create()</tt> 
    207   when a supplied object file is found to not be a native object file.  If
    208   <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file, 
    209   the linker
    210   then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
    211   <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and 
    212   referenced.
    213   This information is added to the linker's global symbol table.
    214 </p>
    215   <p>The lto* functions are all implemented in a shared object libLTO.  This
    216   allows the LLVM LTO code to be updated independently of the linker tool.
    217   On platforms that support it, the shared object is lazily loaded. 
    218 </p>
    219 </div>
    220 
    221 <!-- ======================================================================= -->
    222 <h3>
    223   <a name="phase2">Phase 2 : Symbol Resolution</a>
    224 </h3>
    225 
    226 <div>
    227   <p>In this stage, the linker resolves symbols using global symbol table. 
    228   It may report undefined symbol errors, read archive members, replace 
    229   weak symbols, etc.  The linker is able to do this seamlessly even though it 
    230   does not know the exact content of input LLVM bitcode files.  If dead code 
    231   stripping is enabled then the linker collects the list of live symbols.
    232   </p>
    233 </div>
    234 
    235 <!-- ======================================================================= -->
    236 <h3>
    237   <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
    238 </h3>
    239 <div>
    240   <p>After symbol resolution, the linker tells the LTO shared object which
    241   symbols are needed by native object files.  In the example above, the linker 
    242   reports that only <tt>foo1()</tt> is used by native object files using 
    243   <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes
    244   the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
    245   which returns a native object file creating by merging the LLVM bitcode files 
    246   and applying various optimization passes.  
    247 </p>
    248 </div>
    249 
    250 <!-- ======================================================================= -->
    251 <h3>
    252   <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
    253 </h3>
    254 
    255 <div>
    256   <p>In this phase, the linker reads optimized a native object file and 
    257   updates the internal global symbol table to reflect any changes. The linker 
    258   also collects information about any changes in use of external symbols by 
    259   LLVM bitcode files. In the example above, the linker notes that 
    260   <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then 
    261   the linker refreshes the live symbol information appropriately and performs 
    262   dead code stripping.</p>
    263   <p>After this phase, the linker continues linking as if it never saw LLVM 
    264   bitcode files.</p>
    265 </div>
    266 
    267 </div>
    268 
    269 <!-- *********************************************************************** -->
    270 <h2>
    271 <a name="lto">libLTO</a>
    272 </h2>
    273 
    274 <div>
    275   <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and 
    276   is intended for use by a linker. <tt>libLTO</tt> provides an abstract C 
    277   interface to use the LLVM interprocedural optimizer without exposing details 
    278   of LLVM's internals. The intention is to keep the interface as stable as 
    279   possible even when the LLVM optimizer continues to evolve. It should even
    280   be possible for a completely different compilation technology to provide
    281   a different libLTO that works with their object files and the standard
    282   linker tool.</p>
    283 
    284 <!-- ======================================================================= -->
    285 <h3>
    286   <a name="lto_module_t">lto_module_t</a>
    287 </h3>
    288 
    289 <div>
    290 
    291 <p>A non-native object file is handled via an <tt>lto_module_t</tt>.  
    292 The following functions allow the linker to check if a file (on disk
    293 or in a memory buffer) is a file which libLTO can process:</p>
    294 
    295 <pre class="doc_code">
    296 lto_module_is_object_file(const char*)
    297 lto_module_is_object_file_for_target(const char*, const char*)
    298 lto_module_is_object_file_in_memory(const void*, size_t)
    299 lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
    300 </pre>
    301 
    302 <p>If the object file can be processed by libLTO, the linker creates a
    303 <tt>lto_module_t</tt> by using one of</p>
    304 
    305 <pre class="doc_code">
    306 lto_module_create(const char*)
    307 lto_module_create_from_memory(const void*, size_t)
    308 </pre>
    309 
    310 <p>and when done, the handle is released via</p>
    311 
    312 <pre class="doc_code">
    313 lto_module_dispose(lto_module_t)
    314 </pre>
    315 
    316 <p>The linker can introspect the non-native object file by getting the number of
    317 symbols and getting the name and attributes of each symbol via:</p>
    318 
    319 <pre class="doc_code">
    320 lto_module_get_num_symbols(lto_module_t)
    321 lto_module_get_symbol_name(lto_module_t, unsigned int)
    322 lto_module_get_symbol_attribute(lto_module_t, unsigned int)
    323 </pre>
    324 
    325 <p>The attributes of a symbol include the alignment, visibility, and kind.</p>
    326 </div>
    327 
    328 <!-- ======================================================================= -->
    329 <h3>
    330   <a name="lto_code_gen_t">lto_code_gen_t</a>
    331 </h3>
    332 
    333 <div>
    334 
    335 <p>Once the linker has loaded each non-native object files into an
    336 <tt>lto_module_t</tt>, it can request libLTO to process them all and
    337 generate a native object file.  This is done in a couple of steps.
    338 First, a code generator is created with:</p>
    339 
    340 <pre class="doc_code">lto_codegen_create()</pre>
    341 
    342 <p>Then, each non-native object file is added to the code generator with:</p>
    343 
    344 <pre class="doc_code">
    345 lto_codegen_add_module(lto_code_gen_t, lto_module_t)
    346 </pre>
    347 
    348 <p>The linker then has the option of setting some codegen options.  Whether or
    349 not to generate DWARF debug info is set with:</p>
    350   
    351 <pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
    352 
    353 <p>Which kind of position independence is set with:</p>
    354 
    355 <pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
    356   
    357 <p>And each symbol that is referenced by a native object file or otherwise must
    358 not be optimized away is set with:</p>
    359 
    360 <pre class="doc_code">
    361 lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
    362 </pre>
    363 
    364 <p>After all these settings are done, the linker requests that a native object
    365 file be created from the modules with the settings using:</p>
    366 
    367 <pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
    368 
    369 <p>which returns a pointer to a buffer containing the generated native
    370 object file.  The linker then parses that and links it with the rest 
    371 of the native object files.</p>
    372 
    373 </div>
    374 
    375 </div>
    376 
    377 <!-- *********************************************************************** -->
    378 
    379 <hr>
    380 <address>
    381   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
    382   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
    383   <a href="http://validator.w3.org/check/referer"><img
    384   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
    385 
    386   Devang Patel and Nick Kledzik<br>
    387   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
    388   Last modified: $Date$
    389 </address>
    390 
    391 </body>
    392 </html>
    393 
    394