Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
      6   <title>LLVM Programmer's Manual</title>
      7   <link rel="stylesheet" href="llvm.css" type="text/css">
      8 </head>
      9 <body>
     10 
     11 <h1>
     12   LLVM Programmer's Manual
     13 </h1>
     14 
     15 <ol>
     16   <li><a href="#introduction">Introduction</a></li>
     17   <li><a href="#general">General Information</a>
     18     <ul>
     19       <li><a href="#stl">The C++ Standard Template Library</a></li>
     20 <!--
     21       <li>The <tt>-time-passes</tt> option</li>
     22       <li>How to use the LLVM Makefile system</li>
     23       <li>How to write a regression test</li>
     24 
     25 --> 
     26     </ul>
     27   </li>
     28   <li><a href="#apis">Important and useful LLVM APIs</a>
     29     <ul>
     30       <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
     31 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
     32       <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
     33 and <tt>Twine</tt> classes)</a>
     34         <ul>
     35           <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
     36           <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
     37         </ul>
     38       </li>
     39       <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
     40 option</a>
     41         <ul>
     42           <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
     43 and the <tt>-debug-only</tt> option</a> </li>
     44         </ul>
     45       </li>
     46       <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
     47 option</a></li>
     48 <!--
     49       <li>The <tt>InstVisitor</tt> template
     50       <li>The general graph API
     51 --> 
     52       <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
     53     </ul>
     54   </li>
     55   <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
     56     <ul>
     57     <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
     58     <ul>
     59       <li><a href="#dss_arrayref">llvm/ADT/ArrayRef.h</a></li>
     60       <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
     61       <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
     62       <li><a href="#dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a></li>
     63       <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
     64       <li><a href="#dss_vector">&lt;vector&gt;</a></li>
     65       <li><a href="#dss_deque">&lt;deque&gt;</a></li>
     66       <li><a href="#dss_list">&lt;list&gt;</a></li>
     67       <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
     68       <li><a href="#dss_packedvector">llvm/ADT/PackedVector.h</a></li>
     69       <li><a href="#dss_other">Other Sequential Container Options</a></li>
     70     </ul></li>
     71     <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
     72     <ul>
     73       <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
     74       <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
     75       <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
     76       <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
     77       <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
     78       <li><a href="#dss_set">&lt;set&gt;</a></li>
     79       <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
     80       <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
     81       <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
     82     </ul></li>
     83     <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
     84     <ul>
     85       <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
     86       <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
     87       <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
     88       <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
     89       <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
     90       <li><a href="#dss_intervalmap">"llvm/ADT/IntervalMap.h"</a></li>
     91       <li><a href="#dss_map">&lt;map&gt;</a></li>
     92       <li><a href="#dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a></li>
     93       <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
     94     </ul></li>
     95     <li><a href="#ds_string">String-like containers</a>
     96     <!--<ul>
     97        todo
     98     </ul>--></li>
     99     <li><a href="#ds_bit">BitVector-like containers</a>
    100     <ul>
    101       <li><a href="#dss_bitvector">A dense bitvector</a></li>
    102       <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
    103       <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
    104     </ul></li>
    105   </ul>
    106   </li>
    107   <li><a href="#common">Helpful Hints for Common Operations</a>
    108     <ul>
    109       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
    110         <ul>
    111           <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
    112 in a <tt>Function</tt></a> </li>
    113           <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
    114 in a <tt>BasicBlock</tt></a> </li>
    115           <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
    116 in a <tt>Function</tt></a> </li>
    117           <li><a href="#iterate_convert">Turning an iterator into a
    118 class pointer</a> </li>
    119           <li><a href="#iterate_complex">Finding call sites: a more
    120 complex example</a> </li>
    121           <li><a href="#calls_and_invokes">Treating calls and invokes
    122 the same way</a> </li>
    123           <li><a href="#iterate_chains">Iterating over def-use &amp;
    124 use-def chains</a> </li>
    125           <li><a href="#iterate_preds">Iterating over predecessors &amp;
    126 successors of blocks</a></li>
    127         </ul>
    128       </li>
    129       <li><a href="#simplechanges">Making simple changes</a>
    130         <ul>
    131           <li><a href="#schanges_creating">Creating and inserting new
    132 		 <tt>Instruction</tt>s</a> </li>
    133           <li><a href="#schanges_deleting">Deleting 		 <tt>Instruction</tt>s</a> </li>
    134           <li><a href="#schanges_replacing">Replacing an 		 <tt>Instruction</tt>
    135 with another <tt>Value</tt></a> </li>
    136           <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>  
    137         </ul>
    138       </li>
    139       <li><a href="#create_types">How to Create Types</a></li>
    140 <!--
    141     <li>Working with the Control Flow Graph
    142     <ul>
    143       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
    144       <li>
    145       <li>
    146     </ul>
    147 --> 
    148     </ul>
    149   </li>
    150 
    151   <li><a href="#threading">Threads and LLVM</a>
    152   <ul>
    153     <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
    154         </a></li>
    155     <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
    156     <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
    157     <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
    158     <li><a href="#jitthreading">Threads and the JIT</a></li>
    159   </ul>
    160   </li>
    161 
    162   <li><a href="#advanced">Advanced Topics</a>
    163   <ul>
    164 
    165   <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> class</a></li>
    166   <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
    167   </ul></li>
    168 
    169   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
    170     <ul>
    171       <li><a href="#Type">The <tt>Type</tt> class</a> </li>
    172       <li><a href="#Module">The <tt>Module</tt> class</a></li>
    173       <li><a href="#Value">The <tt>Value</tt> class</a>
    174       <ul>
    175         <li><a href="#User">The <tt>User</tt> class</a>
    176         <ul>
    177           <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
    178           <li><a href="#Constant">The <tt>Constant</tt> class</a>
    179           <ul>
    180             <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
    181             <ul>
    182               <li><a href="#Function">The <tt>Function</tt> class</a></li>
    183               <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
    184             </ul>
    185             </li>
    186           </ul>
    187           </li>
    188         </ul>
    189         </li>
    190         <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
    191         <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
    192       </ul>
    193       </li>
    194     </ul>
    195   </li>
    196 </ol>
    197 
    198 <div class="doc_author">    
    199   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>, 
    200                 <a href="mailto:dhurjati (a] cs.uiuc.edu">Dinakar Dhurjati</a>, 
    201                 <a href="mailto:ggreif (a] gmail.com">Gabor Greif</a>, 
    202                 <a href="mailto:jstanley (a] cs.uiuc.edu">Joel Stanley</a>,
    203                 <a href="mailto:rspencer (a] x10sys.com">Reid Spencer</a> and
    204                 <a href="mailto:owen (a] apple.com">Owen Anderson</a></p>
    205 </div>
    206 
    207 <!-- *********************************************************************** -->
    208 <h2>
    209   <a name="introduction">Introduction </a>
    210 </h2>
    211 <!-- *********************************************************************** -->
    212 
    213 <div>
    214 
    215 <p>This document is meant to highlight some of the important classes and
    216 interfaces available in the LLVM source-base.  This manual is not
    217 intended to explain what LLVM is, how it works, and what LLVM code looks
    218 like.  It assumes that you know the basics of LLVM and are interested
    219 in writing transformations or otherwise analyzing or manipulating the
    220 code.</p>
    221 
    222 <p>This document should get you oriented so that you can find your
    223 way in the continuously growing source code that makes up the LLVM
    224 infrastructure. Note that this manual is not intended to serve as a
    225 replacement for reading the source code, so if you think there should be
    226 a method in one of these classes to do something, but it's not listed,
    227 check the source.  Links to the <a href="/doxygen/">doxygen</a> sources
    228 are provided to make this as easy as possible.</p>
    229 
    230 <p>The first section of this document describes general information that is
    231 useful to know when working in the LLVM infrastructure, and the second describes
    232 the Core LLVM classes.  In the future this manual will be extended with
    233 information describing how to use extension libraries, such as dominator
    234 information, CFG traversal routines, and useful utilities like the <tt><a
    235 href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
    236 
    237 </div>
    238 
    239 <!-- *********************************************************************** -->
    240 <h2>
    241   <a name="general">General Information</a>
    242 </h2>
    243 <!-- *********************************************************************** -->
    244 
    245 <div>
    246 
    247 <p>This section contains general information that is useful if you are working
    248 in the LLVM source-base, but that isn't specific to any particular API.</p>
    249 
    250 <!-- ======================================================================= -->
    251 <h3>
    252   <a name="stl">The C++ Standard Template Library</a>
    253 </h3>
    254 
    255 <div>
    256 
    257 <p>LLVM makes heavy use of the C++ Standard Template Library (STL),
    258 perhaps much more than you are used to, or have seen before.  Because of
    259 this, you might want to do a little background reading in the
    260 techniques used and capabilities of the library.  There are many good
    261 pages that discuss the STL, and several books on the subject that you
    262 can get, so it will not be discussed in this document.</p>
    263 
    264 <p>Here are some useful links:</p>
    265 
    266 <ol>
    267 
    268 <li><a href="http://www.dinkumware.com/manuals/#Standard C++ Library">Dinkumware
    269 C++ Library reference</a> - an excellent reference for the STL and other parts
    270 of the standard C++ library.</li>
    271 
    272 <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
    273 O'Reilly book in the making.  It has a decent Standard Library
    274 Reference that rivals Dinkumware's, and is unfortunately no longer free since the
    275 book has been published.</li>
    276 
    277 <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
    278 Questions</a></li>
    279 
    280 <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
    281 Contains a useful <a
    282 href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
    283 STL</a>.</li>
    284 
    285 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
    286 Page</a></li>
    287 
    288 <li><a href="http://64.78.49.204/">
    289 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
    290 the book).</a></li>
    291 
    292 </ol>
    293   
    294 <p>You are also encouraged to take a look at the <a
    295 href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
    296 to write maintainable code more than where to put your curly braces.</p>
    297 
    298 </div>
    299 
    300 <!-- ======================================================================= -->
    301 <h3>
    302   <a name="stl">Other useful references</a>
    303 </h3>
    304 
    305 <div>
    306 
    307 <ol>
    308 <li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
    309 static and shared libraries across platforms</a></li>
    310 </ol>
    311 
    312 </div>
    313 
    314 </div>
    315 
    316 <!-- *********************************************************************** -->
    317 <h2>
    318   <a name="apis">Important and useful LLVM APIs</a>
    319 </h2>
    320 <!-- *********************************************************************** -->
    321 
    322 <div>
    323 
    324 <p>Here we highlight some LLVM APIs that are generally useful and good to
    325 know about when writing transformations.</p>
    326 
    327 <!-- ======================================================================= -->
    328 <h3>
    329   <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
    330   <tt>dyn_cast&lt;&gt;</tt> templates</a>
    331 </h3>
    332 
    333 <div>
    334 
    335 <p>The LLVM source-base makes extensive use of a custom form of RTTI.
    336 These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
    337 operator, but they don't have some drawbacks (primarily stemming from
    338 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
    339 have a v-table). Because they are used so often, you must know what they
    340 do and how they work. All of these templates are defined in the <a
    341  href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
    342 file (note that you very rarely have to include this file directly).</p>
    343 
    344 <dl>
    345   <dt><tt>isa&lt;&gt;</tt>: </dt>
    346 
    347   <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
    348   "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
    349   a reference or pointer points to an instance of the specified class.  This can
    350   be very useful for constraint checking of various sorts (example below).</p>
    351   </dd>
    352 
    353   <dt><tt>cast&lt;&gt;</tt>: </dt>
    354 
    355   <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
    356   converts a pointer or reference from a base class to a derived class, causing
    357   an assertion failure if it is not really an instance of the right type.  This
    358   should be used in cases where you have some information that makes you believe
    359   that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
    360   and <tt>cast&lt;&gt;</tt> template is:</p>
    361 
    362 <div class="doc_code">
    363 <pre>
    364 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
    365   if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
    366     return true;
    367 
    368   // <i>Otherwise, it must be an instruction...</i>
    369   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
    370 }
    371 </pre>
    372 </div>
    373 
    374   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
    375   by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
    376   operator.</p>
    377 
    378   </dd>
    379 
    380   <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
    381 
    382   <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
    383   It checks to see if the operand is of the specified type, and if so, returns a
    384   pointer to it (this operator does not work with references). If the operand is
    385   not of the correct type, a null pointer is returned.  Thus, this works very
    386   much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
    387   used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
    388   operator is used in an <tt>if</tt> statement or some other flow control
    389   statement like this:</p>
    390 
    391 <div class="doc_code">
    392 <pre>
    393 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
    394   // <i>...</i>
    395 }
    396 </pre>
    397 </div>
    398    
    399   <p>This form of the <tt>if</tt> statement effectively combines together a call
    400   to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
    401   statement, which is very convenient.</p>
    402 
    403   <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
    404   <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
    405   abused.  In particular, you should not use big chained <tt>if/then/else</tt>
    406   blocks to check for lots of different variants of classes.  If you find
    407   yourself wanting to do this, it is much cleaner and more efficient to use the
    408   <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
    409 
    410   </dd>
    411 
    412   <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
    413   
    414   <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
    415   <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
    416   argument (which it then propagates).  This can sometimes be useful, allowing
    417   you to combine several null checks into one.</p></dd>
    418 
    419   <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
    420 
    421   <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
    422   <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
    423   as an argument (which it then propagates).  This can sometimes be useful,
    424   allowing you to combine several null checks into one.</p></dd>
    425 
    426 </dl>
    427 
    428 <p>These five templates can be used with any classes, whether they have a
    429 v-table or not.  To add support for these templates, you simply need to add
    430 <tt>classof</tt> static methods to the class you are interested casting
    431 to. Describing this is currently outside the scope of this document, but there
    432 are lots of examples in the LLVM source base.</p>
    433 
    434 </div>
    435 
    436 
    437 <!-- ======================================================================= -->
    438 <h3>
    439   <a name="string_apis">Passing strings (the <tt>StringRef</tt>
    440 and <tt>Twine</tt> classes)</a>
    441 </h3>
    442 
    443 <div>
    444 
    445 <p>Although LLVM generally does not do much string manipulation, we do have
    446 several important APIs which take strings.  Two important examples are the
    447 Value class -- which has names for instructions, functions, etc. -- and the
    448 StringMap class which is used extensively in LLVM and Clang.</p>
    449 
    450 <p>These are generic classes, and they need to be able to accept strings which
    451 may have embedded null characters.  Therefore, they cannot simply take
    452 a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
    453 clients to perform a heap allocation which is usually unnecessary.  Instead,
    454 many LLVM APIs use a <tt>StringRef</tt> or a <tt>const Twine&amp;</tt> for
    455 passing strings efficiently.</p>
    456 
    457 <!-- _______________________________________________________________________ -->
    458 <h4>
    459   <a name="StringRef">The <tt>StringRef</tt> class</a>
    460 </h4>
    461 
    462 <div>
    463 
    464 <p>The <tt>StringRef</tt> data type represents a reference to a constant string
    465 (a character array and a length) and supports the common operations available
    466 on <tt>std:string</tt>, but does not require heap allocation.</p>
    467 
    468 <p>It can be implicitly constructed using a C style null-terminated string,
    469 an <tt>std::string</tt>, or explicitly with a character pointer and length.
    470 For example, the <tt>StringRef</tt> find function is declared as:</p>
    471 
    472 <pre class="doc_code">
    473   iterator find(StringRef Key);
    474 </pre>
    475 
    476 <p>and clients can call it using any one of:</p>
    477 
    478 <pre class="doc_code">
    479   Map.find("foo");                 <i>// Lookup "foo"</i>
    480   Map.find(std::string("bar"));    <i>// Lookup "bar"</i>
    481   Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
    482 </pre>
    483 
    484 <p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
    485 instance, which can be used directly or converted to an <tt>std::string</tt>
    486 using the <tt>str</tt> member function.  See 
    487 "<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
    488 for more information.</p>
    489 
    490 <p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
    491 pointers to external memory it is not generally safe to store an instance of the
    492 class (unless you know that the external storage will not be freed). StringRef is
    493 small and pervasive enough in LLVM that it should always be passed by value.</p>
    494 
    495 </div>
    496 
    497 <!-- _______________________________________________________________________ -->
    498 <h4>
    499   <a name="Twine">The <tt>Twine</tt> class</a>
    500 </h4>
    501 
    502 <div>
    503 
    504 <p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
    505 strings.  For example, a common LLVM paradigm is to name one instruction based on
    506 the name of another instruction with a suffix, for example:</p>
    507 
    508 <div class="doc_code">
    509 <pre>
    510     New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
    511 </pre>
    512 </div>
    513 
    514 <p>The <tt>Twine</tt> class is effectively a
    515 lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
    516 which points to temporary (stack allocated) objects.  Twines can be implicitly
    517 constructed as the result of the plus operator applied to strings (i.e., a C
    518 strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>).  The twine delays the
    519 actual concatenation of strings until it is actually required, at which point
    520 it can be efficiently rendered directly into a character array.  This avoids
    521 unnecessary heap allocation involved in constructing the temporary results of
    522 string concatenation. See
    523 "<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
    524 for more information.</p>
    525 
    526 <p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
    527 and should almost never be stored or mentioned directly.  They are intended
    528 solely for use when defining a function which should be able to efficiently
    529 accept concatenated strings.</p>
    530 
    531 </div>
    532 
    533 </div>
    534 
    535 <!-- ======================================================================= -->
    536 <h3>
    537   <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
    538 </h3>
    539 
    540 <div>
    541 
    542 <p>Often when working on your pass you will put a bunch of debugging printouts
    543 and other code into your pass.  After you get it working, you want to remove
    544 it, but you may need it again in the future (to work out new bugs that you run
    545 across).</p>
    546 
    547 <p> Naturally, because of this, you don't want to delete the debug printouts,
    548 but you don't want them to always be noisy.  A standard compromise is to comment
    549 them out, allowing you to enable them if you need them in the future.</p>
    550 
    551 <p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
    552 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
    553 this problem.  Basically, you can put arbitrary code into the argument of the
    554 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
    555 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
    556 
    557 <div class="doc_code">
    558 <pre>
    559 DEBUG(errs() &lt;&lt; "I am here!\n");
    560 </pre>
    561 </div>
    562 
    563 <p>Then you can run your pass like this:</p>
    564 
    565 <div class="doc_code">
    566 <pre>
    567 $ opt &lt; a.bc &gt; /dev/null -mypass
    568 <i>&lt;no output&gt;</i>
    569 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
    570 I am here!
    571 </pre>
    572 </div>
    573 
    574 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
    575 to not have to create "yet another" command line option for the debug output for
    576 your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
    577 so they do not cause a performance impact at all (for the same reason, they
    578 should also not contain side-effects!).</p>
    579 
    580 <p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
    581 enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
    582 "<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
    583 program hasn't been started yet, you can always just run it with
    584 <tt>-debug</tt>.</p>
    585 
    586 <!-- _______________________________________________________________________ -->
    587 <h4>
    588   <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
    589   the <tt>-debug-only</tt> option</a>
    590 </h4>
    591 
    592 <div>
    593 
    594 <p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
    595 just turns on <b>too much</b> information (such as when working on the code
    596 generator).  If you want to enable debug information with more fine-grained
    597 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
    598 option as follows:</p>
    599 
    600 <div class="doc_code">
    601 <pre>
    602 #undef  DEBUG_TYPE
    603 DEBUG(errs() &lt;&lt; "No debug type\n");
    604 #define DEBUG_TYPE "foo"
    605 DEBUG(errs() &lt;&lt; "'foo' debug type\n");
    606 #undef  DEBUG_TYPE
    607 #define DEBUG_TYPE "bar"
    608 DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
    609 #undef  DEBUG_TYPE
    610 #define DEBUG_TYPE ""
    611 DEBUG(errs() &lt;&lt; "No debug type (2)\n");
    612 </pre>
    613 </div>
    614 
    615 <p>Then you can run your pass like this:</p>
    616 
    617 <div class="doc_code">
    618 <pre>
    619 $ opt &lt; a.bc &gt; /dev/null -mypass
    620 <i>&lt;no output&gt;</i>
    621 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
    622 No debug type
    623 'foo' debug type
    624 'bar' debug type
    625 No debug type (2)
    626 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
    627 'foo' debug type
    628 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
    629 'bar' debug type
    630 </pre>
    631 </div>
    632 
    633 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
    634 a file, to specify the debug type for the entire module (if you do this before
    635 you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
    636 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
    637 "bar", because there is no system in place to ensure that names do not
    638 conflict. If two different modules use the same string, they will all be turned
    639 on when the name is specified. This allows, for example, all debug information
    640 for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
    641 even if the source lives in multiple files.</p>
    642 
    643 <p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
    644 would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
    645 statement. It takes an additional first parameter, which is the type to use. For
    646 example, the preceding example could be written as:</p>
    647 
    648 
    649 <div class="doc_code">
    650 <pre>
    651 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
    652 DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
    653 DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
    654 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
    655 </pre>
    656 </div>
    657 
    658 </div>
    659 
    660 </div>
    661 
    662 <!-- ======================================================================= -->
    663 <h3>
    664   <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
    665   option</a>
    666 </h3>
    667 
    668 <div>
    669 
    670 <p>The "<tt><a
    671 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
    672 provides a class named <tt>Statistic</tt> that is used as a unified way to
    673 keep track of what the LLVM compiler is doing and how effective various
    674 optimizations are.  It is useful to see what optimizations are contributing to
    675 making a particular program run faster.</p>
    676 
    677 <p>Often you may run your pass on some big program, and you're interested to see
    678 how many times it makes a certain transformation.  Although you can do this with
    679 hand inspection, or some ad-hoc method, this is a real pain and not very useful
    680 for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
    681 keep track of this information, and the calculated information is presented in a
    682 uniform manner with the rest of the passes being executed.</p>
    683 
    684 <p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
    685 it are as follows:</p>
    686 
    687 <ol>
    688     <li><p>Define your statistic like this:</p>
    689 
    690 <div class="doc_code">
    691 <pre>
    692 #define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
    693 STATISTIC(NumXForms, "The # of times I did stuff");
    694 </pre>
    695 </div>
    696 
    697   <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
    698     specified by the first argument.  The pass name is taken from the DEBUG_TYPE
    699     macro, and the description is taken from the second argument.  The variable
    700     defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
    701 
    702     <li><p>Whenever you make a transformation, bump the counter:</p>
    703 
    704 <div class="doc_code">
    705 <pre>
    706 ++NumXForms;   // <i>I did stuff!</i>
    707 </pre>
    708 </div>
    709 
    710     </li>
    711   </ol>
    712 
    713   <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
    714   statistics gathered, use the '<tt>-stats</tt>' option:</p>
    715 
    716 <div class="doc_code">
    717 <pre>
    718 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
    719 <i>... statistics output ...</i>
    720 </pre>
    721 </div>
    722 
    723   <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
    724 suite, it gives a report that looks like this:</p>
    725 
    726 <div class="doc_code">
    727 <pre>
    728    7646 bitcodewriter   - Number of normal instructions
    729     725 bitcodewriter   - Number of oversized instructions
    730  129996 bitcodewriter   - Number of bitcode bytes written
    731    2817 raise           - Number of insts DCEd or constprop'd
    732    3213 raise           - Number of cast-of-self removed
    733    5046 raise           - Number of expression trees converted
    734      75 raise           - Number of other getelementptr's formed
    735     138 raise           - Number of load/store peepholes
    736      42 deadtypeelim    - Number of unused typenames removed from symtab
    737     392 funcresolve     - Number of varargs functions resolved
    738      27 globaldce       - Number of global variables removed
    739       2 adce            - Number of basic blocks removed
    740     134 cee             - Number of branches revectored
    741      49 cee             - Number of setcc instruction eliminated
    742     532 gcse            - Number of loads removed
    743    2919 gcse            - Number of instructions removed
    744      86 indvars         - Number of canonical indvars added
    745      87 indvars         - Number of aux indvars removed
    746      25 instcombine     - Number of dead inst eliminate
    747     434 instcombine     - Number of insts combined
    748     248 licm            - Number of load insts hoisted
    749    1298 licm            - Number of insts hoisted to a loop pre-header
    750       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
    751      75 mem2reg         - Number of alloca's promoted
    752    1444 cfgsimplify     - Number of blocks simplified
    753 </pre>
    754 </div>
    755 
    756 <p>Obviously, with so many optimizations, having a unified framework for this
    757 stuff is very nice.  Making your pass fit well into the framework makes it more
    758 maintainable and useful.</p>
    759 
    760 </div>
    761 
    762 <!-- ======================================================================= -->
    763 <h3>
    764   <a name="ViewGraph">Viewing graphs while debugging code</a>
    765 </h3>
    766 
    767 <div>
    768 
    769 <p>Several of the important data structures in LLVM are graphs: for example
    770 CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
    771 LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
    772 <a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
    773 DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
    774 nice to instantly visualize these graphs.</p>
    775 
    776 <p>LLVM provides several callbacks that are available in a debug build to do
    777 exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
    778 the current LLVM tool will pop up a window containing the CFG for the function
    779 where each basic block is a node in the graph, and each node contains the
    780 instructions in the block.  Similarly, there also exists 
    781 <tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
    782 <tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
    783 and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
    784 you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
    785 up a window.  Alternatively, you can sprinkle calls to these functions in your
    786 code in places you want to debug.</p>
    787 
    788 <p>Getting this to work requires a small amount of configuration.  On Unix
    789 systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
    790 toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
    791 Mac OS/X, download and install the Mac OS/X <a 
    792 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
    793 <tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
    794 it) to your path.  Once in your system and path are set up, rerun the LLVM
    795 configure script and rebuild LLVM to enable this functionality.</p>
    796 
    797 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
    798 <i>interesting</i> nodes in large complex graphs.  From gdb, if you
    799 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
    800 next <tt>call DAG.viewGraph()</tt> would highlight the node in the
    801 specified color (choices of colors can be found at <a
    802 href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
    803 complex node attributes can be provided with <tt>call
    804 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
    805 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
    806 Attributes</a>.)  If you want to restart and clear all the current graph
    807 attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
    808 
    809 <p>Note that graph visualization features are compiled out of Release builds
    810 to reduce file size.  This means that you need a Debug+Asserts or 
    811 Release+Asserts build to use these features.</p>
    812 
    813 </div>
    814 
    815 </div>
    816 
    817 <!-- *********************************************************************** -->
    818 <h2>
    819   <a name="datastructure">Picking the Right Data Structure for a Task</a>
    820 </h2>
    821 <!-- *********************************************************************** -->
    822 
    823 <div>
    824 
    825 <p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
    826  and we commonly use STL data structures.  This section describes the trade-offs
    827  you should consider when you pick one.</p>
    828 
    829 <p>
    830 The first step is a choose your own adventure: do you want a sequential
    831 container, a set-like container, or a map-like container?  The most important
    832 thing when choosing a container is the algorithmic properties of how you plan to
    833 access the container.  Based on that, you should use:</p>
    834 
    835 <ul>
    836 <li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
    837     of an value based on another value.  Map-like containers also support
    838     efficient queries for containment (whether a key is in the map).  Map-like
    839     containers generally do not support efficient reverse mapping (values to
    840     keys).  If you need that, use two maps.  Some map-like containers also
    841     support efficient iteration through the keys in sorted order.  Map-like
    842     containers are the most expensive sort, only use them if you need one of
    843     these capabilities.</li>
    844 
    845 <li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
    846     stuff into a container that automatically eliminates duplicates.  Some
    847     set-like containers support efficient iteration through the elements in
    848     sorted order.  Set-like containers are more expensive than sequential
    849     containers.
    850 </li>
    851 
    852 <li>a <a href="#ds_sequential">sequential</a> container provides
    853     the most efficient way to add elements and keeps track of the order they are
    854     added to the collection.  They permit duplicates and support efficient
    855     iteration, but do not support efficient look-up based on a key.
    856 </li>
    857 
    858 <li>a <a href="#ds_string">string</a> container is a specialized sequential
    859     container or reference structure that is used for character or byte
    860     arrays.</li>
    861 
    862 <li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
    863     perform set operations on sets of numeric id's, while automatically
    864     eliminating duplicates.  Bit containers require a maximum of 1 bit for each
    865     identifier you want to store.
    866 </li>
    867 </ul>
    868 
    869 <p>
    870 Once the proper category of container is determined, you can fine tune the
    871 memory use, constant factors, and cache behaviors of access by intelligently
    872 picking a member of the category.  Note that constant factors and cache behavior
    873 can be a big deal.  If you have a vector that usually only contains a few
    874 elements (but could contain many), for example, it's much better to use
    875 <a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
    876 .  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
    877 cost of adding the elements to the container. </p>
    878 
    879 <!-- ======================================================================= -->
    880 <h3>
    881   <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
    882 </h3>
    883 
    884 <div>
    885 There are a variety of sequential containers available for you, based on your
    886 needs.  Pick the first in this section that will do what you want.
    887 
    888 <!-- _______________________________________________________________________ -->
    889 <h4>
    890   <a name="dss_arrayref">llvm/ADT/ArrayRef.h</a>
    891 </h4>
    892 
    893 <div>
    894 <p>The llvm::ArrayRef class is the preferred class to use in an interface that
    895    accepts a sequential list of elements in memory and just reads from them.  By
    896    taking an ArrayRef, the API can be passed a fixed size array, an std::vector,
    897    an llvm::SmallVector and anything else that is contiguous in memory.
    898 </p>
    899 </div>
    900 
    901 
    902   
    903 <!-- _______________________________________________________________________ -->
    904 <h4>
    905   <a name="dss_fixedarrays">Fixed Size Arrays</a>
    906 </h4>
    907 
    908 <div>
    909 <p>Fixed size arrays are very simple and very fast.  They are good if you know
    910 exactly how many elements you have, or you have a (low) upper bound on how many
    911 you have.</p>
    912 </div>
    913 
    914 <!-- _______________________________________________________________________ -->
    915 <h4>
    916   <a name="dss_heaparrays">Heap Allocated Arrays</a>
    917 </h4>
    918 
    919 <div>
    920 <p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
    921 the number of elements is variable, if you know how many elements you will need
    922 before the array is allocated, and if the array is usually large (if not,
    923 consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
    924 allocated array is the cost of the new/delete (aka malloc/free).  Also note that
    925 if you are allocating an array of a type with a constructor, the constructor and
    926 destructors will be run for every element in the array (re-sizable vectors only
    927 construct those elements actually used).</p>
    928 </div>
    929 
    930 <!-- _______________________________________________________________________ -->
    931 <h4>
    932   <a name="dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a>
    933 </h4>
    934 
    935 
    936 <div>
    937 <p><tt>TinyPtrVector&lt;Type&gt;</tt> is a highly specialized collection class
    938 that is optimized to avoid allocation in the case when a vector has zero or one
    939 elements.  It has two major restrictions: 1) it can only hold values of pointer
    940 type, and 2) it cannot hold a null pointer.</p>
    941   
    942 <p>Since this container is highly specialized, it is rarely used.</p>
    943   
    944 </div>
    945     
    946 <div>
    947 
    948 <!-- _______________________________________________________________________ -->
    949 <h4>
    950   <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
    951 </h4>
    952 
    953 <div>
    954 <p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
    955 just like <tt>vector&lt;Type&gt;</tt>:
    956 it supports efficient iteration, lays out elements in memory order (so you can
    957 do pointer arithmetic between elements), supports efficient push_back/pop_back
    958 operations, supports efficient random access to its elements, etc.</p>
    959 
    960 <p>The advantage of SmallVector is that it allocates space for
    961 some number of elements (N) <b>in the object itself</b>.  Because of this, if
    962 the SmallVector is dynamically smaller than N, no malloc is performed.  This can
    963 be a big win in cases where the malloc/free call is far more expensive than the
    964 code that fiddles around with the elements.</p>
    965 
    966 <p>This is good for vectors that are "usually small" (e.g. the number of
    967 predecessors/successors of a block is usually less than 8).  On the other hand,
    968 this makes the size of the SmallVector itself large, so you don't want to
    969 allocate lots of them (doing so will waste a lot of space).  As such,
    970 SmallVectors are most useful when on the stack.</p>
    971 
    972 <p>SmallVector also provides a nice portable and efficient replacement for
    973 <tt>alloca</tt>.</p>
    974 
    975 </div>
    976 
    977 <!-- _______________________________________________________________________ -->
    978 <h4>
    979   <a name="dss_vector">&lt;vector&gt;</a>
    980 </h4>
    981 
    982 <div>
    983 <p>
    984 std::vector is well loved and respected.  It is useful when SmallVector isn't:
    985 when the size of the vector is often large (thus the small optimization will
    986 rarely be a benefit) or if you will be allocating many instances of the vector
    987 itself (which would waste space for elements that aren't in the container).
    988 vector is also useful when interfacing with code that expects vectors :).
    989 </p>
    990 
    991 <p>One worthwhile note about std::vector: avoid code like this:</p>
    992 
    993 <div class="doc_code">
    994 <pre>
    995 for ( ... ) {
    996    std::vector&lt;foo&gt; V;
    997    use V;
    998 }
    999 </pre>
   1000 </div>
   1001 
   1002 <p>Instead, write this as:</p>
   1003 
   1004 <div class="doc_code">
   1005 <pre>
   1006 std::vector&lt;foo&gt; V;
   1007 for ( ... ) {
   1008    use V;
   1009    V.clear();
   1010 }
   1011 </pre>
   1012 </div>
   1013 
   1014 <p>Doing so will save (at least) one heap allocation and free per iteration of
   1015 the loop.</p>
   1016 
   1017 </div>
   1018 
   1019 <!-- _______________________________________________________________________ -->
   1020 <h4>
   1021   <a name="dss_deque">&lt;deque&gt;</a>
   1022 </h4>
   1023 
   1024 <div>
   1025 <p>std::deque is, in some senses, a generalized version of std::vector.  Like
   1026 std::vector, it provides constant time random access and other similar
   1027 properties, but it also provides efficient access to the front of the list.  It
   1028 does not guarantee continuity of elements within memory.</p>
   1029 
   1030 <p>In exchange for this extra flexibility, std::deque has significantly higher
   1031 constant factor costs than std::vector.  If possible, use std::vector or
   1032 something cheaper.</p>
   1033 </div>
   1034 
   1035 <!-- _______________________________________________________________________ -->
   1036 <h4>
   1037   <a name="dss_list">&lt;list&gt;</a>
   1038 </h4>
   1039 
   1040 <div>
   1041 <p>std::list is an extremely inefficient class that is rarely useful.
   1042 It performs a heap allocation for every element inserted into it, thus having an
   1043 extremely high constant factor, particularly for small data types.  std::list
   1044 also only supports bidirectional iteration, not random access iteration.</p>
   1045 
   1046 <p>In exchange for this high cost, std::list supports efficient access to both
   1047 ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
   1048 addition, the iterator invalidation characteristics of std::list are stronger
   1049 than that of a vector class: inserting or removing an element into the list does
   1050 not invalidate iterator or pointers to other elements in the list.</p>
   1051 </div>
   1052 
   1053 <!-- _______________________________________________________________________ -->
   1054 <h4>
   1055   <a name="dss_ilist">llvm/ADT/ilist.h</a>
   1056 </h4>
   1057 
   1058 <div>
   1059 <p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
   1060 intrusive, because it requires the element to store and provide access to the
   1061 prev/next pointers for the list.</p>
   1062 
   1063 <p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
   1064 requires an <tt>ilist_traits</tt> implementation for the element type, but it
   1065 provides some novel characteristics.  In particular, it can efficiently store
   1066 polymorphic objects, the traits class is informed when an element is inserted or
   1067 removed from the list, and <tt>ilist</tt>s are guaranteed to support a
   1068 constant-time splice operation.</p>
   1069 
   1070 <p>These properties are exactly what we want for things like
   1071 <tt>Instruction</tt>s and basic blocks, which is why these are implemented with
   1072 <tt>ilist</tt>s.</p>
   1073 
   1074 Related classes of interest are explained in the following subsections:
   1075     <ul>
   1076       <li><a href="#dss_ilist_traits">ilist_traits</a></li>
   1077       <li><a href="#dss_iplist">iplist</a></li>
   1078       <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
   1079       <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
   1080     </ul>
   1081 </div>
   1082 
   1083 <!-- _______________________________________________________________________ -->
   1084 <h4>
   1085   <a name="dss_packedvector">llvm/ADT/PackedVector.h</a>
   1086 </h4>
   1087 
   1088 <div>
   1089 <p>
   1090 Useful for storing a vector of values using only a few number of bits for each
   1091 value. Apart from the standard operations of a vector-like container, it can
   1092 also perform an 'or' set operation. 
   1093 </p>
   1094 
   1095 <p>For example:</p>
   1096 
   1097 <div class="doc_code">
   1098 <pre>
   1099 enum State {
   1100     None = 0x0,
   1101     FirstCondition = 0x1,
   1102     SecondCondition = 0x2,
   1103     Both = 0x3
   1104 };
   1105 
   1106 State get() {
   1107     PackedVector&lt;State, 2&gt; Vec1;
   1108     Vec1.push_back(FirstCondition);
   1109 
   1110     PackedVector&lt;State, 2&gt; Vec2;
   1111     Vec2.push_back(SecondCondition);
   1112 
   1113     Vec1 |= Vec2;
   1114     return Vec1[0]; // returns 'Both'.
   1115 }
   1116 </pre>
   1117 </div>
   1118 
   1119 </div>
   1120 
   1121 <!-- _______________________________________________________________________ -->
   1122 <h4>
   1123   <a name="dss_ilist_traits">ilist_traits</a>
   1124 </h4>
   1125 
   1126 <div>
   1127 <p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
   1128 mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
   1129 publicly derive from this traits class.</p>
   1130 </div>
   1131 
   1132 <!-- _______________________________________________________________________ -->
   1133 <h4>
   1134   <a name="dss_iplist">iplist</a>
   1135 </h4>
   1136 
   1137 <div>
   1138 <p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
   1139 supports a slightly narrower interface. Notably, inserters from
   1140 <tt>T&amp;</tt> are absent.</p>
   1141 
   1142 <p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
   1143 used for a wide variety of customizations.</p>
   1144 </div>
   1145 
   1146 <!-- _______________________________________________________________________ -->
   1147 <h4>
   1148   <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
   1149 </h4>
   1150 
   1151 <div>
   1152 <p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
   1153 that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
   1154 in the default manner.</p>
   1155 
   1156 <p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
   1157 <tt>T</tt>, usually <tt>T</tt> publicly derives from
   1158 <tt>ilist_node&lt;T&gt;</tt>.</p>
   1159 </div>
   1160 
   1161 <!-- _______________________________________________________________________ -->
   1162 <h4>
   1163   <a name="dss_ilist_sentinel">Sentinels</a>
   1164 </h4>
   1165 
   1166 <div>
   1167 <p><tt>ilist</tt>s have another specialty that must be considered. To be a good
   1168 citizen in the C++ ecosystem, it needs to support the standard container
   1169 operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
   1170 <tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
   1171 case of non-empty <tt>ilist</tt>s.</p>
   1172 
   1173 <p>The only sensible solution to this problem is to allocate a so-called
   1174 <i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
   1175 iterator, providing the back-link to the last element. However conforming to the
   1176 C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
   1177 also must not be dereferenced.</p>
   1178 
   1179 <p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
   1180 how to allocate and store the sentinel. The corresponding policy is dictated
   1181 by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
   1182 whenever the need for a sentinel arises.</p>
   1183 
   1184 <p>While the default policy is sufficient in most cases, it may break down when
   1185 <tt>T</tt> does not provide a default constructor. Also, in the case of many
   1186 instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
   1187 is wasted. To alleviate the situation with numerous and voluminous
   1188 <tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
   1189 sentinels</i>.</p>
   1190 
   1191 <p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
   1192 which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
   1193 arithmetic is used to obtain the sentinel, which is relative to the
   1194 <tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
   1195 extra pointer, which serves as the back-link of the sentinel. This is the only
   1196 field in the ghostly sentinel which can be legally accessed.</p>
   1197 </div>
   1198 
   1199 <!-- _______________________________________________________________________ -->
   1200 <h4>
   1201   <a name="dss_other">Other Sequential Container options</a>
   1202 </h4>
   1203 
   1204 <div>
   1205 <p>Other STL containers are available, such as std::string.</p>
   1206 
   1207 <p>There are also various STL adapter classes such as std::queue,
   1208 std::priority_queue, std::stack, etc.  These provide simplified access to an
   1209 underlying container but don't affect the cost of the container itself.</p>
   1210 
   1211 </div>
   1212 
   1213 </div>
   1214 
   1215 <!-- ======================================================================= -->
   1216 <h3>
   1217   <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
   1218 </h3>
   1219 
   1220 <div>
   1221 
   1222 <p>Set-like containers are useful when you need to canonicalize multiple values
   1223 into a single representation.  There are several different choices for how to do
   1224 this, providing various trade-offs.</p>
   1225 
   1226 <!-- _______________________________________________________________________ -->
   1227 <h4>
   1228   <a name="dss_sortedvectorset">A sorted 'vector'</a>
   1229 </h4>
   1230 
   1231 <div>
   1232 
   1233 <p>If you intend to insert a lot of elements, then do a lot of queries, a
   1234 great approach is to use a vector (or other sequential container) with
   1235 std::sort+std::unique to remove duplicates.  This approach works really well if
   1236 your usage pattern has these two distinct phases (insert then query), and can be
   1237 coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
   1238 </p>
   1239 
   1240 <p>
   1241 This combination provides the several nice properties: the result data is
   1242 contiguous in memory (good for cache locality), has few allocations, is easy to
   1243 address (iterators in the final vector are just indices or pointers), and can be
   1244 efficiently queried with a standard binary or radix search.</p>
   1245 
   1246 </div>
   1247 
   1248 <!-- _______________________________________________________________________ -->
   1249 <h4>
   1250   <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
   1251 </h4>
   1252 
   1253 <div>
   1254 
   1255 <p>If you have a set-like data structure that is usually small and whose elements
   1256 are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
   1257 has space for N elements in place (thus, if the set is dynamically smaller than
   1258 N, no malloc traffic is required) and accesses them with a simple linear search.
   1259 When the set grows beyond 'N' elements, it allocates a more expensive representation that
   1260 guarantees efficient access (for most types, it falls back to std::set, but for
   1261 pointers it uses something far better, <a
   1262 href="#dss_smallptrset">SmallPtrSet</a>).</p>
   1263 
   1264 <p>The magic of this class is that it handles small sets extremely efficiently,
   1265 but gracefully handles extremely large sets without loss of efficiency.  The
   1266 drawback is that the interface is quite small: it supports insertion, queries
   1267 and erasing, but does not support iteration.</p>
   1268 
   1269 </div>
   1270 
   1271 <!-- _______________________________________________________________________ -->
   1272 <h4>
   1273   <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
   1274 </h4>
   1275 
   1276 <div>
   1277 
   1278 <p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is 
   1279 transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators.  If
   1280 more than 'N' insertions are performed, a single quadratically
   1281 probed hash table is allocated and grows as needed, providing extremely
   1282 efficient access (constant time insertion/deleting/queries with low constant
   1283 factors) and is very stingy with malloc traffic.</p>
   1284 
   1285 <p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
   1286 whenever an insertion occurs.  Also, the values visited by the iterators are not
   1287 visited in sorted order.</p>
   1288 
   1289 </div>
   1290 
   1291 <!-- _______________________________________________________________________ -->
   1292 <h4>
   1293   <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
   1294 </h4>
   1295 
   1296 <div>
   1297 
   1298 <p>
   1299 DenseSet is a simple quadratically probed hash table.  It excels at supporting
   1300 small values: it uses a single allocation to hold all of the pairs that
   1301 are currently inserted in the set.  DenseSet is a great way to unique small
   1302 values that are not simple pointers (use <a 
   1303 href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
   1304 the same requirements for the value type that <a 
   1305 href="#dss_densemap">DenseMap</a> has.
   1306 </p>
   1307 
   1308 </div>
   1309 
   1310 <!-- _______________________________________________________________________ -->
   1311 <h4>
   1312   <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
   1313 </h4>
   1314 
   1315 <div>
   1316 
   1317 <p>
   1318 FoldingSet is an aggregate class that is really good at uniquing
   1319 expensive-to-create or polymorphic objects.  It is a combination of a chained
   1320 hash table with intrusive links (uniqued objects are required to inherit from
   1321 FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
   1322 its ID process.</p>
   1323 
   1324 <p>Consider a case where you want to implement a "getOrCreateFoo" method for
   1325 a complex object (for example, a node in the code generator).  The client has a
   1326 description of *what* it wants to generate (it knows the opcode and all the
   1327 operands), but we don't want to 'new' a node, then try inserting it into a set
   1328 only to find out it already exists, at which point we would have to delete it
   1329 and return the node that already exists.
   1330 </p>
   1331 
   1332 <p>To support this style of client, FoldingSet perform a query with a
   1333 FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
   1334 element that we want to query for.  The query either returns the element
   1335 matching the ID or it returns an opaque ID that indicates where insertion should
   1336 take place.  Construction of the ID usually does not require heap traffic.</p>
   1337 
   1338 <p>Because FoldingSet uses intrusive links, it can support polymorphic objects
   1339 in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
   1340 Because the elements are individually allocated, pointers to the elements are
   1341 stable: inserting or removing elements does not invalidate any pointers to other
   1342 elements.
   1343 </p>
   1344 
   1345 </div>
   1346 
   1347 <!-- _______________________________________________________________________ -->
   1348 <h4>
   1349   <a name="dss_set">&lt;set&gt;</a>
   1350 </h4>
   1351 
   1352 <div>
   1353 
   1354 <p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
   1355 many things but great at nothing.  std::set allocates memory for each element
   1356 inserted (thus it is very malloc intensive) and typically stores three pointers
   1357 per element in the set (thus adding a large amount of per-element space
   1358 overhead).  It offers guaranteed log(n) performance, which is not particularly
   1359 fast from a complexity standpoint (particularly if the elements of the set are
   1360 expensive to compare, like strings), and has extremely high constant factors for
   1361 lookup, insertion and removal.</p>
   1362 
   1363 <p>The advantages of std::set are that its iterators are stable (deleting or
   1364 inserting an element from the set does not affect iterators or pointers to other
   1365 elements) and that iteration over the set is guaranteed to be in sorted order.
   1366 If the elements in the set are large, then the relative overhead of the pointers
   1367 and malloc traffic is not a big deal, but if the elements of the set are small,
   1368 std::set is almost never a good choice.</p>
   1369 
   1370 </div>
   1371 
   1372 <!-- _______________________________________________________________________ -->
   1373 <h4>
   1374   <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
   1375 </h4>
   1376 
   1377 <div>
   1378 <p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
   1379 a set-like container along with a <a href="#ds_sequential">Sequential 
   1380 Container</a>.  The important property
   1381 that this provides is efficient insertion with uniquing (duplicate elements are
   1382 ignored) with iteration support.  It implements this by inserting elements into
   1383 both a set-like container and the sequential container, using the set-like
   1384 container for uniquing and the sequential container for iteration.
   1385 </p>
   1386 
   1387 <p>The difference between SetVector and other sets is that the order of
   1388 iteration is guaranteed to match the order of insertion into the SetVector.
   1389 This property is really important for things like sets of pointers.  Because
   1390 pointer values are non-deterministic (e.g. vary across runs of the program on
   1391 different machines), iterating over the pointers in the set will
   1392 not be in a well-defined order.</p>
   1393 
   1394 <p>
   1395 The drawback of SetVector is that it requires twice as much space as a normal
   1396 set and has the sum of constant factors from the set-like container and the 
   1397 sequential container that it uses.  Use it *only* if you need to iterate over 
   1398 the elements in a deterministic order.  SetVector is also expensive to delete
   1399 elements out of (linear time), unless you use it's "pop_back" method, which is
   1400 faster.
   1401 </p>
   1402 
   1403 <p>SetVector is an adapter class that defaults to using std::vector and std::set
   1404 for the underlying containers, so it is quite expensive.  However,
   1405 <tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
   1406 defaults to using a SmallVector and SmallSet of a specified size.  If you use
   1407 this, and if your sets are dynamically smaller than N, you will save a lot of 
   1408 heap traffic.</p>
   1409 
   1410 </div>
   1411 
   1412 <!-- _______________________________________________________________________ -->
   1413 <h4>
   1414   <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
   1415 </h4>
   1416 
   1417 <div>
   1418 
   1419 <p>
   1420 UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
   1421 retains a unique ID for each element inserted into the set.  It internally
   1422 contains a map and a vector, and it assigns a unique ID for each value inserted
   1423 into the set.</p>
   1424 
   1425 <p>UniqueVector is very expensive: its cost is the sum of the cost of
   1426 maintaining both the map and vector, it has high complexity, high constant
   1427 factors, and produces a lot of malloc traffic.  It should be avoided.</p>
   1428 
   1429 </div>
   1430 
   1431 
   1432 <!-- _______________________________________________________________________ -->
   1433 <h4>
   1434   <a name="dss_otherset">Other Set-Like Container Options</a>
   1435 </h4>
   1436 
   1437 <div>
   1438 
   1439 <p>
   1440 The STL provides several other options, such as std::multiset and the various 
   1441 "hash_set" like containers (whether from C++ TR1 or from the SGI library). We
   1442 never use hash_set and unordered_set because they are generally very expensive 
   1443 (each insertion requires a malloc) and very non-portable.
   1444 </p>
   1445 
   1446 <p>std::multiset is useful if you're not interested in elimination of
   1447 duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
   1448 don't delete duplicate entries) or some other approach is almost always
   1449 better.</p>
   1450 
   1451 </div>
   1452 
   1453 </div>
   1454 
   1455 <!-- ======================================================================= -->
   1456 <h3>
   1457   <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
   1458 </h3>
   1459 
   1460 <div>
   1461 Map-like containers are useful when you want to associate data to a key.  As
   1462 usual, there are a lot of different ways to do this. :)
   1463 
   1464 <!-- _______________________________________________________________________ -->
   1465 <h4>
   1466   <a name="dss_sortedvectormap">A sorted 'vector'</a>
   1467 </h4>
   1468 
   1469 <div>
   1470 
   1471 <p>
   1472 If your usage pattern follows a strict insert-then-query approach, you can
   1473 trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
   1474 for set-like containers</a>.  The only difference is that your query function
   1475 (which uses std::lower_bound to get efficient log(n) lookup) should only compare
   1476 the key, not both the key and value.  This yields the same advantages as sorted
   1477 vectors for sets.
   1478 </p>
   1479 </div>
   1480 
   1481 <!-- _______________________________________________________________________ -->
   1482 <h4>
   1483   <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
   1484 </h4>
   1485 
   1486 <div>
   1487 
   1488 <p>
   1489 Strings are commonly used as keys in maps, and they are difficult to support
   1490 efficiently: they are variable length, inefficient to hash and compare when
   1491 long, expensive to copy, etc.  StringMap is a specialized container designed to
   1492 cope with these issues.  It supports mapping an arbitrary range of bytes to an
   1493 arbitrary other object.</p>
   1494 
   1495 <p>The StringMap implementation uses a quadratically-probed hash table, where
   1496 the buckets store a pointer to the heap allocated entries (and some other
   1497 stuff).  The entries in the map must be heap allocated because the strings are
   1498 variable length.  The string data (key) and the element object (value) are
   1499 stored in the same allocation with the string data immediately after the element
   1500 object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
   1501 to the key string for a value.</p>
   1502 
   1503 <p>The StringMap is very fast for several reasons: quadratic probing is very
   1504 cache efficient for lookups, the hash value of strings in buckets is not
   1505 recomputed when looking up an element, StringMap rarely has to touch the
   1506 memory for unrelated objects when looking up a value (even when hash collisions
   1507 happen), hash table growth does not recompute the hash values for strings
   1508 already in the table, and each pair in the map is store in a single allocation
   1509 (the string data is stored in the same allocation as the Value of a pair).</p>
   1510 
   1511 <p>StringMap also provides query methods that take byte ranges, so it only ever
   1512 copies a string if a value is inserted into the table.</p>
   1513 </div>
   1514 
   1515 <!-- _______________________________________________________________________ -->
   1516 <h4>
   1517   <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
   1518 </h4>
   1519 
   1520 <div>
   1521 <p>
   1522 IndexedMap is a specialized container for mapping small dense integers (or
   1523 values that can be mapped to small dense integers) to some other type.  It is
   1524 internally implemented as a vector with a mapping function that maps the keys to
   1525 the dense integer range.
   1526 </p>
   1527 
   1528 <p>
   1529 This is useful for cases like virtual registers in the LLVM code generator: they
   1530 have a dense mapping that is offset by a compile-time constant (the first
   1531 virtual register ID).</p>
   1532 
   1533 </div>
   1534 
   1535 <!-- _______________________________________________________________________ -->
   1536 <h4>
   1537   <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
   1538 </h4>
   1539 
   1540 <div>
   1541 
   1542 <p>
   1543 DenseMap is a simple quadratically probed hash table.  It excels at supporting
   1544 small keys and values: it uses a single allocation to hold all of the pairs that
   1545 are currently inserted in the map.  DenseMap is a great way to map pointers to
   1546 pointers, or map other small types to each other.
   1547 </p>
   1548 
   1549 <p>
   1550 There are several aspects of DenseMap that you should be aware of, however.  The
   1551 iterators in a densemap are invalidated whenever an insertion occurs, unlike
   1552 map.  Also, because DenseMap allocates space for a large number of key/value
   1553 pairs (it starts with 64 by default), it will waste a lot of space if your keys
   1554 or values are large.  Finally, you must implement a partial specialization of
   1555 DenseMapInfo for the key that you want, if it isn't already supported.  This
   1556 is required to tell DenseMap about two special marker values (which can never be
   1557 inserted into the map) that it needs internally.</p>
   1558 
   1559 </div>
   1560 
   1561 <!-- _______________________________________________________________________ -->
   1562 <h4>
   1563   <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
   1564 </h4>
   1565 
   1566 <div>
   1567 
   1568 <p>
   1569 ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
   1570 Value*s (or subclasses) to another type.  When a Value is deleted or RAUW'ed,
   1571 ValueMap will update itself so the new version of the key is mapped to the same
   1572 value, just as if the key were a WeakVH.  You can configure exactly how this
   1573 happens, and what else happens on these two events, by passing
   1574 a <code>Config</code> parameter to the ValueMap template.</p>
   1575 
   1576 </div>
   1577 
   1578 <!-- _______________________________________________________________________ -->
   1579 <h4>
   1580   <a name="dss_intervalmap">"llvm/ADT/IntervalMap.h"</a>
   1581 </h4>
   1582 
   1583 <div>
   1584 
   1585 <p> IntervalMap is a compact map for small keys and values. It maps key
   1586 intervals instead of single keys, and it will automatically coalesce adjacent
   1587 intervals. When then map only contains a few intervals, they are stored in the
   1588 map object itself to avoid allocations.</p>
   1589 
   1590 <p> The IntervalMap iterators are quite big, so they should not be passed around
   1591 as STL iterators. The heavyweight iterators allow a smaller data structure.</p>
   1592 
   1593 </div>
   1594 
   1595 <!-- _______________________________________________________________________ -->
   1596 <h4>
   1597   <a name="dss_map">&lt;map&gt;</a>
   1598 </h4>
   1599 
   1600 <div>
   1601 
   1602 <p>
   1603 std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
   1604 a single allocation per pair inserted into the map, it offers log(n) lookup with
   1605 an extremely large constant factor, imposes a space penalty of 3 pointers per
   1606 pair in the map, etc.</p>
   1607 
   1608 <p>std::map is most useful when your keys or values are very large, if you need
   1609 to iterate over the collection in sorted order, or if you need stable iterators
   1610 into the map (i.e. they don't get invalidated if an insertion or deletion of
   1611 another element takes place).</p>
   1612 
   1613 </div>
   1614 
   1615 <!-- _______________________________________________________________________ -->
   1616 <h4>
   1617   <a name="dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a>
   1618 </h4>
   1619 
   1620 <div>
   1621 
   1622 <p>IntEqClasses provides a compact representation of equivalence classes of
   1623 small integers. Initially, each integer in the range 0..n-1 has its own
   1624 equivalence class. Classes can be joined by passing two class representatives to
   1625 the join(a, b) method. Two integers are in the same class when findLeader()
   1626 returns the same representative.</p>
   1627 
   1628 <p>Once all equivalence classes are formed, the map can be compressed so each
   1629 integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
   1630 is the total number of equivalence classes. The map must be uncompressed before
   1631 it can be edited again.</p>
   1632 
   1633 </div>
   1634 
   1635 <!-- _______________________________________________________________________ -->
   1636 <h4>
   1637   <a name="dss_othermap">Other Map-Like Container Options</a>
   1638 </h4>
   1639 
   1640 <div>
   1641 
   1642 <p>
   1643 The STL provides several other options, such as std::multimap and the various 
   1644 "hash_map" like containers (whether from C++ TR1 or from the SGI library). We
   1645 never use hash_set and unordered_set because they are generally very expensive 
   1646 (each insertion requires a malloc) and very non-portable.</p>
   1647 
   1648 <p>std::multimap is useful if you want to map a key to multiple values, but has
   1649 all the drawbacks of std::map.  A sorted vector or some other approach is almost
   1650 always better.</p>
   1651 
   1652 </div>
   1653 
   1654 </div>
   1655 
   1656 <!-- ======================================================================= -->
   1657 <h3>
   1658   <a name="ds_string">String-like containers</a>
   1659 </h3>
   1660 
   1661 <div>
   1662 
   1663 <p>
   1664 TODO: const char* vs stringref vs smallstring vs std::string.  Describe twine,
   1665 xref to #string_apis.
   1666 </p>
   1667 
   1668 </div>
   1669 
   1670 <!-- ======================================================================= -->
   1671 <h3>
   1672   <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
   1673 </h3>
   1674 
   1675 <div>
   1676 <p>Unlike the other containers, there are only two bit storage containers, and 
   1677 choosing when to use each is relatively straightforward.</p>
   1678 
   1679 <p>One additional option is 
   1680 <tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
   1681 implementation in many common compilers (e.g. commonly available versions of 
   1682 GCC) is extremely inefficient and 2) the C++ standards committee is likely to
   1683 deprecate this container and/or change it significantly somehow.  In any case,
   1684 please don't use it.</p>
   1685 
   1686 <!-- _______________________________________________________________________ -->
   1687 <h4>
   1688   <a name="dss_bitvector">BitVector</a>
   1689 </h4>
   1690 
   1691 <div>
   1692 <p> The BitVector container provides a dynamic size set of bits for manipulation.
   1693 It supports individual bit setting/testing, as well as set operations.  The set
   1694 operations take time O(size of bitvector), but operations are performed one word
   1695 at a time, instead of one bit at a time.  This makes the BitVector very fast for
   1696 set operations compared to other containers.  Use the BitVector when you expect
   1697 the number of set bits to be high (IE a dense set).
   1698 </p>
   1699 </div>
   1700 
   1701 <!-- _______________________________________________________________________ -->
   1702 <h4>
   1703   <a name="dss_smallbitvector">SmallBitVector</a>
   1704 </h4>
   1705 
   1706 <div>
   1707 <p> The SmallBitVector container provides the same interface as BitVector, but
   1708 it is optimized for the case where only a small number of bits, less than
   1709 25 or so, are needed. It also transparently supports larger bit counts, but
   1710 slightly less efficiently than a plain BitVector, so SmallBitVector should
   1711 only be used when larger counts are rare.
   1712 </p>
   1713 
   1714 <p>
   1715 At this time, SmallBitVector does not support set operations (and, or, xor),
   1716 and its operator[] does not provide an assignable lvalue.
   1717 </p>
   1718 </div>
   1719 
   1720 <!-- _______________________________________________________________________ -->
   1721 <h4>
   1722   <a name="dss_sparsebitvector">SparseBitVector</a>
   1723 </h4>
   1724 
   1725 <div>
   1726 <p> The SparseBitVector container is much like BitVector, with one major
   1727 difference: Only the bits that are set, are stored.  This makes the
   1728 SparseBitVector much more space efficient than BitVector when the set is sparse,
   1729 as well as making set operations O(number of set bits) instead of O(size of
   1730 universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
   1731 (either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
   1732 </p>
   1733 </div>
   1734 
   1735 </div>
   1736 
   1737 </div>
   1738 
   1739 <!-- *********************************************************************** -->
   1740 <h2>
   1741   <a name="common">Helpful Hints for Common Operations</a>
   1742 </h2>
   1743 <!-- *********************************************************************** -->
   1744 
   1745 <div>
   1746 
   1747 <p>This section describes how to perform some very simple transformations of
   1748 LLVM code.  This is meant to give examples of common idioms used, showing the
   1749 practical side of LLVM transformations.  <p> Because this is a "how-to" section,
   1750 you should also read about the main classes that you will be working with.  The
   1751 <a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
   1752 and descriptions of the main classes that you should know about.</p>
   1753 
   1754 <!-- NOTE: this section should be heavy on example code -->
   1755 <!-- ======================================================================= -->
   1756 <h3>
   1757   <a name="inspection">Basic Inspection and Traversal Routines</a>
   1758 </h3>
   1759 
   1760 <div>
   1761 
   1762 <p>The LLVM compiler infrastructure have many different data structures that may
   1763 be traversed.  Following the example of the C++ standard template library, the
   1764 techniques used to traverse these various data structures are all basically the
   1765 same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
   1766 method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
   1767 function returns an iterator pointing to one past the last valid element of the
   1768 sequence, and there is some <tt>XXXiterator</tt> data type that is common
   1769 between the two operations.</p>
   1770 
   1771 <p>Because the pattern for iteration is common across many different aspects of
   1772 the program representation, the standard template library algorithms may be used
   1773 on them, and it is easier to remember how to iterate. First we show a few common
   1774 examples of the data structures that need to be traversed.  Other data
   1775 structures are traversed in very similar ways.</p>
   1776 
   1777 <!-- _______________________________________________________________________ -->
   1778 <h4>
   1779   <a name="iterate_function">Iterating over the </a><a
   1780   href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
   1781   href="#Function"><tt>Function</tt></a>
   1782 </h4>
   1783 
   1784 <div>
   1785 
   1786 <p>It's quite common to have a <tt>Function</tt> instance that you'd like to
   1787 transform in some way; in particular, you'd like to manipulate its
   1788 <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
   1789 the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
   1790 an example that prints the name of a <tt>BasicBlock</tt> and the number of
   1791 <tt>Instruction</tt>s it contains:</p>
   1792 
   1793 <div class="doc_code">
   1794 <pre>
   1795 // <i>func is a pointer to a Function instance</i>
   1796 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
   1797   // <i>Print out the name of the basic block if it has one, and then the</i>
   1798   // <i>number of instructions that it contains</i>
   1799   errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
   1800              &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
   1801 </pre>
   1802 </div>
   1803 
   1804 <p>Note that i can be used as if it were a pointer for the purposes of
   1805 invoking member functions of the <tt>Instruction</tt> class.  This is
   1806 because the indirection operator is overloaded for the iterator
   1807 classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
   1808 exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
   1809 
   1810 </div>
   1811 
   1812 <!-- _______________________________________________________________________ -->
   1813 <h4>
   1814   <a name="iterate_basicblock">Iterating over the </a><a
   1815   href="#Instruction"><tt>Instruction</tt></a>s in a <a
   1816   href="#BasicBlock"><tt>BasicBlock</tt></a>
   1817 </h4>
   1818 
   1819 <div>
   1820 
   1821 <p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
   1822 easy to iterate over the individual instructions that make up
   1823 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
   1824 a <tt>BasicBlock</tt>:</p>
   1825 
   1826 <div class="doc_code">
   1827 <pre>
   1828 // <i>blk is a pointer to a BasicBlock instance</i>
   1829 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
   1830    // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
   1831    // <i>is overloaded for Instruction&amp;</i>
   1832    errs() &lt;&lt; *i &lt;&lt; "\n";
   1833 </pre>
   1834 </div>
   1835 
   1836 <p>However, this isn't really the best way to print out the contents of a
   1837 <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
   1838 anything you'll care about, you could have just invoked the print routine on the
   1839 basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
   1840 
   1841 </div>
   1842 
   1843 <!-- _______________________________________________________________________ -->
   1844 <h4>
   1845   <a name="iterate_institer">Iterating over the </a><a
   1846   href="#Instruction"><tt>Instruction</tt></a>s in a <a
   1847   href="#Function"><tt>Function</tt></a>
   1848 </h4>
   1849 
   1850 <div>
   1851 
   1852 <p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
   1853 <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
   1854 <tt>InstIterator</tt> should be used instead. You'll need to include <a
   1855 href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
   1856 and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
   1857 small example that shows how to dump all instructions in a function to the standard error stream:<p>
   1858 
   1859 <div class="doc_code">
   1860 <pre>
   1861 #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
   1862 
   1863 // <i>F is a pointer to a Function instance</i>
   1864 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   1865   errs() &lt;&lt; *I &lt;&lt; "\n";
   1866 </pre>
   1867 </div>
   1868 
   1869 <p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
   1870 work list with its initial contents.  For example, if you wanted to
   1871 initialize a work list to contain all instructions in a <tt>Function</tt>
   1872 F, all you would need to do is something like:</p>
   1873 
   1874 <div class="doc_code">
   1875 <pre>
   1876 std::set&lt;Instruction*&gt; worklist;
   1877 // or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
   1878 
   1879 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   1880    worklist.insert(&amp;*I);
   1881 </pre>
   1882 </div>
   1883 
   1884 <p>The STL set <tt>worklist</tt> would now contain all instructions in the
   1885 <tt>Function</tt> pointed to by F.</p>
   1886 
   1887 </div>
   1888 
   1889 <!-- _______________________________________________________________________ -->
   1890 <h4>
   1891   <a name="iterate_convert">Turning an iterator into a class pointer (and
   1892   vice-versa)</a>
   1893 </h4>
   1894 
   1895 <div>
   1896 
   1897 <p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
   1898 instance when all you've got at hand is an iterator.  Well, extracting
   1899 a reference or a pointer from an iterator is very straight-forward.
   1900 Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
   1901 is a <tt>BasicBlock::const_iterator</tt>:</p>
   1902 
   1903 <div class="doc_code">
   1904 <pre>
   1905 Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
   1906 Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
   1907 const Instruction&amp; inst = *j;
   1908 </pre>
   1909 </div>
   1910 
   1911 <p>However, the iterators you'll be working with in the LLVM framework are
   1912 special: they will automatically convert to a ptr-to-instance type whenever they
   1913 need to.  Instead of dereferencing the iterator and then taking the address of
   1914 the result, you can simply assign the iterator to the proper pointer type and
   1915 you get the dereference and address-of operation as a result of the assignment
   1916 (behind the scenes, this is a result of overloading casting mechanisms).  Thus
   1917 the last line of the last example,</p>
   1918 
   1919 <div class="doc_code">
   1920 <pre>
   1921 Instruction *pinst = &amp;*i;
   1922 </pre>
   1923 </div>
   1924 
   1925 <p>is semantically equivalent to</p>
   1926 
   1927 <div class="doc_code">
   1928 <pre>
   1929 Instruction *pinst = i;
   1930 </pre>
   1931 </div>
   1932 
   1933 <p>It's also possible to turn a class pointer into the corresponding iterator,
   1934 and this is a constant time operation (very efficient).  The following code
   1935 snippet illustrates use of the conversion constructors provided by LLVM
   1936 iterators.  By using these, you can explicitly grab the iterator of something
   1937 without actually obtaining it via iteration over some structure:</p>
   1938 
   1939 <div class="doc_code">
   1940 <pre>
   1941 void printNextInstruction(Instruction* inst) {
   1942   BasicBlock::iterator it(inst);
   1943   ++it; // <i>After this line, it refers to the instruction after *inst</i>
   1944   if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
   1945 }
   1946 </pre>
   1947 </div>
   1948 
   1949 <p>Unfortunately, these implicit conversions come at a cost; they prevent
   1950 these iterators from conforming to standard iterator conventions, and thus
   1951 from being usable with standard algorithms and containers. For example, they
   1952 prevent the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
   1953 from compiling:</p>
   1954 
   1955 <div class="doc_code">
   1956 <pre>
   1957   llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
   1958 </pre>
   1959 </div>
   1960 
   1961 <p>Because of this, these implicit conversions may be removed some day,
   1962 and <tt>operator*</tt> changed to return a pointer instead of a reference.</p>
   1963 
   1964 </div>
   1965 
   1966 <!--_______________________________________________________________________-->
   1967 <h4>
   1968   <a name="iterate_complex">Finding call sites: a slightly more complex
   1969   example</a>
   1970 </h4>
   1971 
   1972 <div>
   1973 
   1974 <p>Say that you're writing a FunctionPass and would like to count all the
   1975 locations in the entire module (that is, across every <tt>Function</tt>) where a
   1976 certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
   1977 learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
   1978 much more straight-forward manner, but this example will allow us to explore how
   1979 you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
   1980 is what we want to do:</p>
   1981 
   1982 <div class="doc_code">
   1983 <pre>
   1984 initialize callCounter to zero
   1985 for each Function f in the Module
   1986   for each BasicBlock b in f
   1987     for each Instruction i in b
   1988       if (i is a CallInst and calls the given function)
   1989         increment callCounter
   1990 </pre>
   1991 </div>
   1992 
   1993 <p>And the actual code is (remember, because we're writing a
   1994 <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
   1995 override the <tt>runOnFunction</tt> method):</p>
   1996 
   1997 <div class="doc_code">
   1998 <pre>
   1999 Function* targetFunc = ...;
   2000 
   2001 class OurFunctionPass : public FunctionPass {
   2002   public:
   2003     OurFunctionPass(): callCounter(0) { }
   2004 
   2005     virtual runOnFunction(Function&amp; F) {
   2006       for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
   2007         for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
   2008           if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
   2009  href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
   2010             // <i>We know we've encountered a call instruction, so we</i>
   2011             // <i>need to determine if it's a call to the</i>
   2012             // <i>function pointed to by m_func or not.</i>
   2013             if (callInst-&gt;getCalledFunction() == targetFunc)
   2014               ++callCounter;
   2015           }
   2016         }
   2017       }
   2018     }
   2019 
   2020   private:
   2021     unsigned callCounter;
   2022 };
   2023 </pre>
   2024 </div>
   2025 
   2026 </div>
   2027 
   2028 <!--_______________________________________________________________________-->
   2029 <h4>
   2030   <a name="calls_and_invokes">Treating calls and invokes the same way</a>
   2031 </h4>
   2032 
   2033 <div>
   2034 
   2035 <p>You may have noticed that the previous example was a bit oversimplified in
   2036 that it did not deal with call sites generated by 'invoke' instructions. In
   2037 this, and in other situations, you may find that you want to treat
   2038 <tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
   2039 most-specific common base class is <tt>Instruction</tt>, which includes lots of
   2040 less closely-related things. For these cases, LLVM provides a handy wrapper
   2041 class called <a
   2042 href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
   2043 It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
   2044 methods that provide functionality common to <tt>CallInst</tt>s and
   2045 <tt>InvokeInst</tt>s.</p>
   2046 
   2047 <p>This class has "value semantics": it should be passed by value, not by
   2048 reference and it should not be dynamically allocated or deallocated using
   2049 <tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
   2050 assignable and constructable, with costs equivalents to that of a bare pointer.
   2051 If you look at its definition, it has only a single pointer member.</p>
   2052 
   2053 </div>
   2054 
   2055 <!--_______________________________________________________________________-->
   2056 <h4>
   2057   <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
   2058 </h4>
   2059 
   2060 <div>
   2061 
   2062 <p>Frequently, we might have an instance of the <a
   2063 href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
   2064 determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
   2065 <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
   2066 For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
   2067 particular function <tt>foo</tt>. Finding all of the instructions that
   2068 <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
   2069 of <tt>F</tt>:</p>
   2070 
   2071 <div class="doc_code">
   2072 <pre>
   2073 Function *F = ...;
   2074 
   2075 for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
   2076   if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
   2077     errs() &lt;&lt; "F is used in instruction:\n";
   2078     errs() &lt;&lt; *Inst &lt;&lt; "\n";
   2079   }
   2080 </pre>
   2081 </div>
   2082 
   2083 <p>Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
   2084 operation. Instead of performing <tt>*i</tt> above several times, consider
   2085 doing it only once in the loop body and reusing its result.</p>
   2086 
   2087 <p>Alternatively, it's common to have an instance of the <a
   2088 href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
   2089 <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
   2090 <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
   2091 <tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
   2092 all of the values that a particular instruction uses (that is, the operands of
   2093 the particular <tt>Instruction</tt>):</p>
   2094 
   2095 <div class="doc_code">
   2096 <pre>
   2097 Instruction *pi = ...;
   2098 
   2099 for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
   2100   Value *v = *i;
   2101   // <i>...</i>
   2102 }
   2103 </pre>
   2104 </div>
   2105 
   2106 <p>Declaring objects as <tt>const</tt> is an important tool of enforcing
   2107 mutation free algorithms (such as analyses, etc.). For this purpose above
   2108 iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
   2109 and <tt>Value::const_op_iterator</tt>.  They automatically arise when
   2110 calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
   2111 <tt>const User*</tt>s respectively.  Upon dereferencing, they return
   2112 <tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.</p>
   2113 
   2114 </div>
   2115 
   2116 <!--_______________________________________________________________________-->
   2117 <h4>
   2118   <a name="iterate_preds">Iterating over predecessors &amp;
   2119 successors of blocks</a>
   2120 </h4>
   2121 
   2122 <div>
   2123 
   2124 <p>Iterating over the predecessors and successors of a block is quite easy
   2125 with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
   2126 this to iterate over all predecessors of BB:</p>
   2127 
   2128 <div class="doc_code">
   2129 <pre>
   2130 #include "llvm/Support/CFG.h"
   2131 BasicBlock *BB = ...;
   2132 
   2133 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2134   BasicBlock *Pred = *PI;
   2135   // <i>...</i>
   2136 }
   2137 </pre>
   2138 </div>
   2139 
   2140 <p>Similarly, to iterate over successors use
   2141 succ_iterator/succ_begin/succ_end.</p>
   2142 
   2143 </div>
   2144 
   2145 </div>
   2146 
   2147 <!-- ======================================================================= -->
   2148 <h3>
   2149   <a name="simplechanges">Making simple changes</a>
   2150 </h3>
   2151 
   2152 <div>
   2153 
   2154 <p>There are some primitive transformation operations present in the LLVM
   2155 infrastructure that are worth knowing about.  When performing
   2156 transformations, it's fairly common to manipulate the contents of basic
   2157 blocks. This section describes some of the common methods for doing so
   2158 and gives example code.</p>
   2159 
   2160 <!--_______________________________________________________________________-->
   2161 <h4>
   2162   <a name="schanges_creating">Creating and inserting new
   2163   <tt>Instruction</tt>s</a>
   2164 </h4>
   2165 
   2166 <div>
   2167 
   2168 <p><i>Instantiating Instructions</i></p>
   2169 
   2170 <p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
   2171 constructor for the kind of instruction to instantiate and provide the necessary
   2172 parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
   2173 (const-ptr-to) <tt>Type</tt>. Thus:</p> 
   2174 
   2175 <div class="doc_code">
   2176 <pre>
   2177 AllocaInst* ai = new AllocaInst(Type::Int32Ty);
   2178 </pre>
   2179 </div>
   2180 
   2181 <p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
   2182 one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
   2183 subclass is likely to have varying default parameters which change the semantics
   2184 of the instruction, so refer to the <a
   2185 href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
   2186 Instruction</a> that you're interested in instantiating.</p>
   2187 
   2188 <p><i>Naming values</i></p>
   2189 
   2190 <p>It is very useful to name the values of instructions when you're able to, as
   2191 this facilitates the debugging of your transformations.  If you end up looking
   2192 at generated LLVM machine code, you definitely want to have logical names
   2193 associated with the results of instructions!  By supplying a value for the
   2194 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
   2195 associate a logical name with the result of the instruction's execution at
   2196 run time.  For example, say that I'm writing a transformation that dynamically
   2197 allocates space for an integer on the stack, and that integer is going to be
   2198 used as some kind of index by some other code.  To accomplish this, I place an
   2199 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
   2200 <tt>Function</tt>, and I'm intending to use it within the same
   2201 <tt>Function</tt>. I might do:</p>
   2202 
   2203 <div class="doc_code">
   2204 <pre>
   2205 AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
   2206 </pre>
   2207 </div>
   2208 
   2209 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
   2210 execution value, which is a pointer to an integer on the run time stack.</p>
   2211 
   2212 <p><i>Inserting instructions</i></p>
   2213 
   2214 <p>There are essentially two ways to insert an <tt>Instruction</tt>
   2215 into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
   2216 
   2217 <ul>
   2218   <li>Insertion into an explicit instruction list
   2219 
   2220     <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
   2221     <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
   2222     before <tt>*pi</tt>, we do the following: </p>
   2223 
   2224 <div class="doc_code">
   2225 <pre>
   2226 BasicBlock *pb = ...;
   2227 Instruction *pi = ...;
   2228 Instruction *newInst = new Instruction(...);
   2229 
   2230 pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
   2231 </pre>
   2232 </div>
   2233 
   2234     <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
   2235     the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
   2236     classes provide constructors which take a pointer to a
   2237     <tt>BasicBlock</tt> to be appended to. For example code that
   2238     looked like: </p>
   2239 
   2240 <div class="doc_code">
   2241 <pre>
   2242 BasicBlock *pb = ...;
   2243 Instruction *newInst = new Instruction(...);
   2244 
   2245 pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
   2246 </pre>
   2247 </div>
   2248 
   2249     <p>becomes: </p>
   2250 
   2251 <div class="doc_code">
   2252 <pre>
   2253 BasicBlock *pb = ...;
   2254 Instruction *newInst = new Instruction(..., pb);
   2255 </pre>
   2256 </div>
   2257 
   2258     <p>which is much cleaner, especially if you are creating
   2259     long instruction streams.</p></li>
   2260 
   2261   <li>Insertion into an implicit instruction list
   2262 
   2263     <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
   2264     are implicitly associated with an existing instruction list: the instruction
   2265     list of the enclosing basic block. Thus, we could have accomplished the same
   2266     thing as the above code without being given a <tt>BasicBlock</tt> by doing:
   2267     </p>
   2268 
   2269 <div class="doc_code">
   2270 <pre>
   2271 Instruction *pi = ...;
   2272 Instruction *newInst = new Instruction(...);
   2273 
   2274 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
   2275 </pre>
   2276 </div>
   2277 
   2278     <p>In fact, this sequence of steps occurs so frequently that the
   2279     <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
   2280     constructors which take (as a default parameter) a pointer to an
   2281     <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
   2282     precede.  That is, <tt>Instruction</tt> constructors are capable of
   2283     inserting the newly-created instance into the <tt>BasicBlock</tt> of a
   2284     provided instruction, immediately before that instruction.  Using an
   2285     <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
   2286     parameter, the above code becomes:</p>
   2287 
   2288 <div class="doc_code">
   2289 <pre>
   2290 Instruction* pi = ...;
   2291 Instruction* newInst = new Instruction(..., pi);
   2292 </pre>
   2293 </div>
   2294 
   2295     <p>which is much cleaner, especially if you're creating a lot of
   2296     instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
   2297 </ul>
   2298 
   2299 </div>
   2300 
   2301 <!--_______________________________________________________________________-->
   2302 <h4>
   2303   <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
   2304 </h4>
   2305 
   2306 <div>
   2307 
   2308 <p>Deleting an instruction from an existing sequence of instructions that form a
   2309 <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward: just
   2310 call the instruction's eraseFromParent() method.  For example:</p>
   2311 
   2312 <div class="doc_code">
   2313 <pre>
   2314 <a href="#Instruction">Instruction</a> *I = .. ;
   2315 I-&gt;eraseFromParent();
   2316 </pre>
   2317 </div>
   2318 
   2319 <p>This unlinks the instruction from its containing basic block and deletes 
   2320 it.  If you'd just like to unlink the instruction from its containing basic
   2321 block but not delete it, you can use the <tt>removeFromParent()</tt> method.</p>
   2322 
   2323 </div>
   2324 
   2325 <!--_______________________________________________________________________-->
   2326 <h4>
   2327   <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
   2328   <tt>Value</tt></a>
   2329 </h4>
   2330 
   2331 <div>
   2332 
   2333 <p><i>Replacing individual instructions</i></p>
   2334 
   2335 <p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
   2336 permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
   2337 and <tt>ReplaceInstWithInst</tt>.</p>
   2338 
   2339 <h5><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h5>
   2340 
   2341 <ul>
   2342   <li><tt>ReplaceInstWithValue</tt>
   2343 
   2344     <p>This function replaces all uses of a given instruction with a value,
   2345     and then removes the original instruction. The following example
   2346     illustrates the replacement of the result of a particular
   2347     <tt>AllocaInst</tt> that allocates memory for a single integer with a null
   2348     pointer to an integer.</p>
   2349 
   2350 <div class="doc_code">
   2351 <pre>
   2352 AllocaInst* instToReplace = ...;
   2353 BasicBlock::iterator ii(instToReplace);
   2354 
   2355 ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
   2356                      Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
   2357 </pre></div></li>
   2358 
   2359   <li><tt>ReplaceInstWithInst</tt> 
   2360 
   2361     <p>This function replaces a particular instruction with another
   2362     instruction, inserting the new instruction into the basic block at the
   2363     location where the old instruction was, and replacing any uses of the old
   2364     instruction with the new instruction. The following example illustrates
   2365     the replacement of one <tt>AllocaInst</tt> with another.</p>
   2366 
   2367 <div class="doc_code">
   2368 <pre>
   2369 AllocaInst* instToReplace = ...;
   2370 BasicBlock::iterator ii(instToReplace);
   2371 
   2372 ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
   2373                     new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
   2374 </pre></div></li>
   2375 </ul>
   2376 
   2377 <p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
   2378 
   2379 <p>You can use <tt>Value::replaceAllUsesWith</tt> and
   2380 <tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
   2381 doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
   2382 and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
   2383 information.</p>
   2384 
   2385 <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
   2386 include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
   2387 ReplaceInstWithValue, ReplaceInstWithInst -->
   2388 
   2389 </div>
   2390 
   2391 <!--_______________________________________________________________________-->
   2392 <h4>
   2393   <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
   2394 </h4>
   2395 
   2396 <div>
   2397 
   2398 <p>Deleting a global variable from a module is just as easy as deleting an 
   2399 Instruction. First, you must have a pointer to the global variable that you wish
   2400  to delete.  You use this pointer to erase it from its parent, the module.
   2401  For example:</p>
   2402 
   2403 <div class="doc_code">
   2404 <pre>
   2405 <a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
   2406 
   2407 GV-&gt;eraseFromParent();
   2408 </pre>
   2409 </div>
   2410 
   2411 </div>
   2412 
   2413 </div>
   2414 
   2415 <!-- ======================================================================= -->
   2416 <h3>
   2417   <a name="create_types">How to Create Types</a>
   2418 </h3>
   2419 
   2420 <div>
   2421 
   2422 <p>In generating IR, you may need some complex types.  If you know these types
   2423 statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
   2424 in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them.  <tt>TypeBuilder</tt>
   2425 has two forms depending on whether you're building types for cross-compilation
   2426 or native library use.  <tt>TypeBuilder&lt;T, true&gt;</tt> requires
   2427 that <tt>T</tt> be independent of the host environment, meaning that it's built
   2428 out of types from
   2429 the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
   2430 namespace and pointers, functions, arrays, etc. built of
   2431 those.  <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
   2432 whose size may depend on the host compiler.  For example,</p>
   2433 
   2434 <div class="doc_code">
   2435 <pre>
   2436 FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
   2437 </pre>
   2438 </div>
   2439 
   2440 <p>is easier to read and write than the equivalent</p>
   2441 
   2442 <div class="doc_code">
   2443 <pre>
   2444 std::vector&lt;const Type*&gt; params;
   2445 params.push_back(PointerType::getUnqual(Type::Int32Ty));
   2446 FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
   2447 </pre>
   2448 </div>
   2449 
   2450 <p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
   2451 comment</a> for more details.</p>
   2452 
   2453 </div>
   2454 
   2455 </div>
   2456 
   2457 <!-- *********************************************************************** -->
   2458 <h2>
   2459   <a name="threading">Threads and LLVM</a>
   2460 </h2>
   2461 <!-- *********************************************************************** -->
   2462 
   2463 <div>
   2464 <p>
   2465 This section describes the interaction of the LLVM APIs with multithreading,
   2466 both on the part of client applications, and in the JIT, in the hosted
   2467 application.
   2468 </p>
   2469 
   2470 <p>
   2471 Note that LLVM's support for multithreading is still relatively young.  Up 
   2472 through version 2.5, the execution of threaded hosted applications was
   2473 supported, but not threaded client access to the APIs.  While this use case is
   2474 now supported, clients <em>must</em> adhere to the guidelines specified below to
   2475 ensure proper operation in multithreaded mode.
   2476 </p>
   2477 
   2478 <p>
   2479 Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
   2480 intrinsics in order to support threaded operation.  If you need a
   2481 multhreading-capable LLVM on a platform without a suitably modern system
   2482 compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and 
   2483 using the resultant compiler to build a copy of LLVM with multithreading
   2484 support.
   2485 </p>
   2486 
   2487 <!-- ======================================================================= -->
   2488 <h3>
   2489   <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
   2490 </h3>
   2491 
   2492 <div>
   2493 
   2494 <p>
   2495 In order to properly protect its internal data structures while avoiding 
   2496 excessive locking overhead in the single-threaded case, the LLVM must intialize
   2497 certain data structures necessary to provide guards around its internals.  To do
   2498 so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
   2499 making any concurrent LLVM API calls.  To subsequently tear down these
   2500 structures, use the <tt>llvm_stop_multithreaded()</tt> call.  You can also use
   2501 the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
   2502 mode.
   2503 </p>
   2504 
   2505 <p>
   2506 Note that both of these calls must be made <em>in isolation</em>.  That is to
   2507 say that no other LLVM API calls may be executing at any time during the 
   2508 execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
   2509 </tt>.  It's is the client's responsibility to enforce this isolation.
   2510 </p>
   2511 
   2512 <p>
   2513 The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
   2514 failure of the initialization.  Failure typically indicates that your copy of
   2515 LLVM was built without multithreading support, typically because GCC atomic
   2516 intrinsics were not found in your system compiler.  In this case, the LLVM API
   2517 will not be safe for concurrent calls.  However, it <em>will</em> be safe for
   2518 hosting threaded applications in the JIT, though <a href="#jitthreading">care
   2519 must be taken</a> to ensure that side exits and the like do not accidentally
   2520 result in concurrent LLVM API calls.
   2521 </p>
   2522 </div>
   2523 
   2524 <!-- ======================================================================= -->
   2525 <h3>
   2526   <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
   2527 </h3>
   2528 
   2529 <div>
   2530 <p>
   2531 When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
   2532 to deallocate memory used for internal structures.  This will also invoke 
   2533 <tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
   2534 As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
   2535 <tt>llvm_stop_multithreaded()</tt>.
   2536 </p>
   2537 
   2538 <p>
   2539 Note that, if you use scope-based shutdown, you can use the
   2540 <tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
   2541 destructor.
   2542 </div>
   2543 
   2544 <!-- ======================================================================= -->
   2545 <h3>
   2546   <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
   2547 </h3>
   2548 
   2549 <div>
   2550 <p>
   2551 <tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
   2552 initialization of static resources, such as the global type tables.  Before the
   2553 invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy 
   2554 initialization scheme.  Once <tt>llvm_start_multithreaded()</tt> returns,
   2555 however, it uses double-checked locking to implement thread-safe lazy
   2556 initialization.
   2557 </p>
   2558 
   2559 <p>
   2560 Note that, because no other threads are allowed to issue LLVM API calls before
   2561 <tt>llvm_start_multithreaded()</tt> returns, it is possible to have 
   2562 <tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
   2563 </p>
   2564 
   2565 <p>
   2566 The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt> 
   2567 APIs provide access to the global lock used to implement the double-checked
   2568 locking for lazy initialization.  These should only be used internally to LLVM,
   2569 and only if you know what you're doing!
   2570 </p>
   2571 </div>
   2572 
   2573 <!-- ======================================================================= -->
   2574 <h3>
   2575   <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
   2576 </h3>
   2577 
   2578 <div>
   2579 <p>
   2580 <tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
   2581 to operate multiple, isolated instances of LLVM concurrently within the same
   2582 address space.  For instance, in a hypothetical compile-server, the compilation
   2583 of an individual translation unit is conceptually independent from all the 
   2584 others, and it would be desirable to be able to compile incoming translation 
   2585 units concurrently on independent server threads.  Fortunately, 
   2586 <tt>LLVMContext</tt> exists to enable just this kind of scenario!
   2587 </p>
   2588 
   2589 <p>
   2590 Conceptually, <tt>LLVMContext</tt> provides isolation.  Every LLVM entity 
   2591 (<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
   2592 in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>.  Entities in 
   2593 different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
   2594 different contexts cannot be linked together, <tt>Function</tt>s cannot be added
   2595 to <tt>Module</tt>s in different contexts, etc.  What this means is that is is
   2596 safe to compile on multiple threads simultaneously, as long as no two threads
   2597 operate on entities within the same context.
   2598 </p>
   2599 
   2600 <p>
   2601 In practice, very few places in the API require the explicit specification of a
   2602 <tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
   2603 Because every <tt>Type</tt> carries a reference to its owning context, most
   2604 other entities can determine what context they belong to by looking at their
   2605 own <tt>Type</tt>.  If you are adding new entities to LLVM IR, please try to
   2606 maintain this interface design.
   2607 </p>
   2608 
   2609 <p>
   2610 For clients that do <em>not</em> require the benefits of isolation, LLVM 
   2611 provides a convenience API <tt>getGlobalContext()</tt>.  This returns a global,
   2612 lazily initialized <tt>LLVMContext</tt> that may be used in situations where
   2613 isolation is not a concern.
   2614 </p>
   2615 </div>
   2616 
   2617 <!-- ======================================================================= -->
   2618 <h3>
   2619   <a name="jitthreading">Threads and the JIT</a>
   2620 </h3>
   2621 
   2622 <div>
   2623 <p>
   2624 LLVM's "eager" JIT compiler is safe to use in threaded programs.  Multiple
   2625 threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
   2626 <tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
   2627 run code output by the JIT concurrently.  The user must still ensure that only
   2628 one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
   2629 might be modifying it.  One way to do that is to always hold the JIT lock while
   2630 accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
   2631 <tt>CallbackVH</tt>s).  Another way is to only
   2632 call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
   2633 </p>
   2634 
   2635 <p>When the JIT is configured to compile lazily (using
   2636 <tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
   2637 <a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
   2638 updating call sites after a function is lazily-jitted.  It's still possible to
   2639 use the lazy JIT in a threaded program if you ensure that only one thread at a
   2640 time can call any particular lazy stub and that the JIT lock guards any IR
   2641 access, but we suggest using only the eager JIT in threaded programs.
   2642 </p>
   2643 </div>
   2644 
   2645 </div>
   2646 
   2647 <!-- *********************************************************************** -->
   2648 <h2>
   2649   <a name="advanced">Advanced Topics</a>
   2650 </h2>
   2651 <!-- *********************************************************************** -->
   2652 
   2653 <div>
   2654 <p>
   2655 This section describes some of the advanced or obscure API's that most clients
   2656 do not need to be aware of.  These API's tend manage the inner workings of the
   2657 LLVM system, and only need to be accessed in unusual circumstances.
   2658 </p>
   2659 
   2660   
   2661 <!-- ======================================================================= -->
   2662 <h3>
   2663   <a name="SymbolTable">The <tt>ValueSymbolTable</tt> class</a>
   2664 </h3>
   2665 
   2666 <div>
   2667 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
   2668 ValueSymbolTable</a></tt> class provides a symbol table that the <a
   2669 href="#Function"><tt>Function</tt></a> and <a href="#Module">
   2670 <tt>Module</tt></a> classes use for naming value definitions. The symbol table
   2671 can provide a name for any <a href="#Value"><tt>Value</tt></a>. 
   2672 </p>
   2673 
   2674 <p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
   2675 by most clients.  It should only be used when iteration over the symbol table 
   2676 names themselves are required, which is very special purpose.  Note that not 
   2677 all LLVM
   2678 <tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
   2679 an empty name) do not exist in the symbol table.
   2680 </p>
   2681 
   2682 <p>Symbol tables support iteration over the values in the symbol
   2683 table with <tt>begin/end/iterator</tt> and supports querying to see if a
   2684 specific name is in the symbol table (with <tt>lookup</tt>).  The
   2685 <tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
   2686 simply call <tt>setName</tt> on a value, which will autoinsert it into the
   2687 appropriate symbol table.</p>
   2688 
   2689 </div>
   2690 
   2691 
   2692 
   2693 <!-- ======================================================================= -->
   2694 <h3>
   2695   <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
   2696 </h3>
   2697 
   2698 <div>
   2699 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
   2700 User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
   2701 towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
   2702 Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
   2703 Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
   2704 addition and removal.</p>
   2705 
   2706 <!-- ______________________________________________________________________ -->
   2707 <h4>
   2708   <a name="Use2User">
   2709     Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects
   2710   </a>
   2711 </h4>
   2712 
   2713 <div>
   2714 <p>
   2715 A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
   2716 or refer to them out-of-line by means of a pointer. A mixed variant
   2717 (some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
   2718 that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
   2719 </p>
   2720 
   2721 <p>
   2722 We have 2 different layouts in the <tt>User</tt> (sub)classes:
   2723 <ul>
   2724 <li><p>Layout a)
   2725 The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
   2726 object and there are a fixed number of them.</p>
   2727 
   2728 <li><p>Layout b)
   2729 The <tt>Use</tt> object(s) are referenced by a pointer to an
   2730 array from the <tt>User</tt> object and there may be a variable
   2731 number of them.</p>
   2732 </ul>
   2733 <p>
   2734 As of v2.4 each layout still possesses a direct pointer to the
   2735 start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
   2736 we stick to this redundancy for the sake of simplicity.
   2737 The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
   2738 has. (Theoretically this information can also be calculated
   2739 given the scheme presented below.)</p>
   2740 <p>
   2741 Special forms of allocation operators (<tt>operator new</tt>)
   2742 enforce the following memory layouts:</p>
   2743 
   2744 <ul>
   2745 <li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
   2746 
   2747 <pre>
   2748 ...---.---.---.---.-------...
   2749   | P | P | P | P | User
   2750 '''---'---'---'---'-------'''
   2751 </pre>
   2752 
   2753 <li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
   2754 <pre>
   2755 .-------...
   2756 | User
   2757 '-------'''
   2758     |
   2759     v
   2760     .---.---.---.---...
   2761     | P | P | P | P |
   2762     '---'---'---'---'''
   2763 </pre>
   2764 </ul>
   2765 <i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
   2766     is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
   2767 
   2768 </div>
   2769 
   2770 <!-- ______________________________________________________________________ -->
   2771 <h4>
   2772   <a name="Waymarking">The waymarking algorithm</a>
   2773 </h4>
   2774 
   2775 <div>
   2776 <p>
   2777 Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
   2778 their <tt>User</tt> objects, there must be a fast and exact method to
   2779 recover it. This is accomplished by the following scheme:</p>
   2780 
   2781 A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
   2782 start of the <tt>User</tt> object:
   2783 <ul>
   2784 <li><tt>00</tt> &mdash;&gt; binary digit 0</li>
   2785 <li><tt>01</tt> &mdash;&gt; binary digit 1</li>
   2786 <li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
   2787 <li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
   2788 </ul>
   2789 <p>
   2790 Given a <tt>Use*</tt>, all we have to do is to walk till we get
   2791 a stop and we either have a <tt>User</tt> immediately behind or
   2792 we have to walk to the next stop picking up digits
   2793 and calculating the offset:</p>
   2794 <pre>
   2795 .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
   2796 | 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
   2797 '---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
   2798     |+15                |+10            |+6         |+3     |+1
   2799     |                   |               |           |       |__>
   2800     |                   |               |           |__________>
   2801     |                   |               |______________________>
   2802     |                   |______________________________________>
   2803     |__________________________________________________________>
   2804 </pre>
   2805 <p>
   2806 Only the significant number of bits need to be stored between the
   2807 stops, so that the <i>worst case is 20 memory accesses</i> when there are
   2808 1000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
   2809 
   2810 </div>
   2811 
   2812 <!-- ______________________________________________________________________ -->
   2813 <h4>
   2814   <a name="ReferenceImpl">Reference implementation</a>
   2815 </h4>
   2816 
   2817 <div>
   2818 <p>
   2819 The following literate Haskell fragment demonstrates the concept:</p>
   2820 
   2821 <div class="doc_code">
   2822 <pre>
   2823 > import Test.QuickCheck
   2824 > 
   2825 > digits :: Int -> [Char] -> [Char]
   2826 > digits 0 acc = '0' : acc
   2827 > digits 1 acc = '1' : acc
   2828 > digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
   2829 > 
   2830 > dist :: Int -> [Char] -> [Char]
   2831 > dist 0 [] = ['S']
   2832 > dist 0 acc = acc
   2833 > dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
   2834 > dist n acc = dist (n - 1) $ dist 1 acc
   2835 > 
   2836 > takeLast n ss = reverse $ take n $ reverse ss
   2837 > 
   2838 > test = takeLast 40 $ dist 20 []
   2839 > 
   2840 </pre>
   2841 </div>
   2842 <p>
   2843 Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
   2844 <p>
   2845 The reverse algorithm computes the length of the string just by examining
   2846 a certain prefix:</p>
   2847 
   2848 <div class="doc_code">
   2849 <pre>
   2850 > pref :: [Char] -> Int
   2851 > pref "S" = 1
   2852 > pref ('s':'1':rest) = decode 2 1 rest
   2853 > pref (_:rest) = 1 + pref rest
   2854 > 
   2855 > decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
   2856 > decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
   2857 > decode walk acc _ = walk + acc
   2858 > 
   2859 </pre>
   2860 </div>
   2861 <p>
   2862 Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
   2863 <p>
   2864 We can <i>quickCheck</i> this with following property:</p>
   2865 
   2866 <div class="doc_code">
   2867 <pre>
   2868 > testcase = dist 2000 []
   2869 > testcaseLength = length testcase
   2870 > 
   2871 > identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
   2872 >     where arr = takeLast n testcase
   2873 > 
   2874 </pre>
   2875 </div>
   2876 <p>
   2877 As expected &lt;quickCheck identityProp&gt; gives:</p>
   2878 
   2879 <pre>
   2880 *Main> quickCheck identityProp
   2881 OK, passed 100 tests.
   2882 </pre>
   2883 <p>
   2884 Let's be a bit more exhaustive:</p>
   2885 
   2886 <div class="doc_code">
   2887 <pre>
   2888 > 
   2889 > deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
   2890 > 
   2891 </pre>
   2892 </div>
   2893 <p>
   2894 And here is the result of &lt;deepCheck identityProp&gt;:</p>
   2895 
   2896 <pre>
   2897 *Main> deepCheck identityProp
   2898 OK, passed 500 tests.
   2899 </pre>
   2900 
   2901 </div>
   2902 
   2903 <!-- ______________________________________________________________________ -->
   2904 <h4>
   2905   <a name="Tagging">Tagging considerations</a>
   2906 </h4>
   2907 
   2908 <div>
   2909 
   2910 <p>
   2911 To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
   2912 never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
   2913 new <tt>Use**</tt> on every modification. Accordingly getters must strip the
   2914 tag bits.</p>
   2915 <p>
   2916 For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
   2917 Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
   2918 that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
   2919 the LSBit set. (Portability is relying on the fact that all known compilers place the
   2920 <tt>vptr</tt> in the first word of the instances.)</p>
   2921 
   2922 </div>
   2923 
   2924 </div>
   2925 
   2926 </div>
   2927 
   2928 <!-- *********************************************************************** -->
   2929 <h2>
   2930   <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
   2931 </h2>
   2932 <!-- *********************************************************************** -->
   2933 
   2934 <div>
   2935 <p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
   2936 <br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
   2937 
   2938 <p>The Core LLVM classes are the primary means of representing the program
   2939 being inspected or transformed.  The core LLVM classes are defined in
   2940 header files in the <tt>include/llvm/</tt> directory, and implemented in
   2941 the <tt>lib/VMCore</tt> directory.</p>
   2942 
   2943 <!-- ======================================================================= -->
   2944 <h3>
   2945   <a name="Type">The <tt>Type</tt> class and Derived Types</a>
   2946 </h3>
   2947 
   2948 <div>
   2949 
   2950   <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
   2951   a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
   2952   through its subclasses. Certain primitive types (<tt>VoidType</tt>,
   2953   <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
   2954   subclasses. They are hidden because they offer no useful functionality beyond
   2955   what the <tt>Type</tt> class offers except to distinguish themselves from 
   2956   other subclasses of <tt>Type</tt>.</p>
   2957   <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
   2958   named, but this is not a requirement. There exists exactly 
   2959   one instance of a given shape at any one time.  This allows type equality to
   2960   be performed with address equality of the Type Instance. That is, given two 
   2961   <tt>Type*</tt> values, the types are identical if the pointers are identical.
   2962   </p>
   2963 
   2964 <!-- _______________________________________________________________________ -->
   2965 <h4>
   2966   <a name="m_Type">Important Public Methods</a>
   2967 </h4>
   2968 
   2969 <div>
   2970 
   2971 <ul>
   2972   <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
   2973 
   2974   <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
   2975   floating point types.</li>
   2976 
   2977   <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
   2978   that don't have a size are abstract types, labels and void.</li>
   2979 
   2980 </ul>
   2981 </div>
   2982 
   2983 <!-- _______________________________________________________________________ -->
   2984 <h4>
   2985   <a name="derivedtypes">Important Derived Types</a>
   2986 </h4>
   2987 <div>
   2988 <dl>
   2989   <dt><tt>IntegerType</tt></dt>
   2990   <dd>Subclass of DerivedType that represents integer types of any bit width. 
   2991   Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
   2992   <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
   2993   <ul>
   2994     <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
   2995     type of a specific bit width.</li>
   2996     <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
   2997     type.</li>
   2998   </ul>
   2999   </dd>
   3000   <dt><tt>SequentialType</tt></dt>
   3001   <dd>This is subclassed by ArrayType, PointerType and VectorType.
   3002     <ul>
   3003       <li><tt>const Type * getElementType() const</tt>: Returns the type of each
   3004       of the elements in the sequential type. </li>
   3005     </ul>
   3006   </dd>
   3007   <dt><tt>ArrayType</tt></dt>
   3008   <dd>This is a subclass of SequentialType and defines the interface for array 
   3009   types.
   3010     <ul>
   3011       <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
   3012       elements in the array. </li>
   3013     </ul>
   3014   </dd>
   3015   <dt><tt>PointerType</tt></dt>
   3016   <dd>Subclass of SequentialType for pointer types.</dd>
   3017   <dt><tt>VectorType</tt></dt>
   3018   <dd>Subclass of SequentialType for vector types. A 
   3019   vector type is similar to an ArrayType but is distinguished because it is 
   3020   a first class type whereas ArrayType is not. Vector types are used for 
   3021   vector operations and are usually small vectors of of an integer or floating 
   3022   point type.</dd>
   3023   <dt><tt>StructType</tt></dt>
   3024   <dd>Subclass of DerivedTypes for struct types.</dd>
   3025   <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
   3026   <dd>Subclass of DerivedTypes for function types.
   3027     <ul>
   3028       <li><tt>bool isVarArg() const</tt>: Returns true if it's a vararg
   3029       function</li>
   3030       <li><tt> const Type * getReturnType() const</tt>: Returns the
   3031       return type of the function.</li>
   3032       <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
   3033       the type of the ith parameter.</li>
   3034       <li><tt> const unsigned getNumParams() const</tt>: Returns the
   3035       number of formal parameters.</li>
   3036     </ul>
   3037   </dd>
   3038 </dl>
   3039 </div>
   3040 
   3041 </div>
   3042 
   3043 <!-- ======================================================================= -->
   3044 <h3>
   3045   <a name="Module">The <tt>Module</tt> class</a>
   3046 </h3>
   3047 
   3048 <div>
   3049 
   3050 <p><tt>#include "<a
   3051 href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
   3052 <a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
   3053 
   3054 <p>The <tt>Module</tt> class represents the top level structure present in LLVM
   3055 programs.  An LLVM module is effectively either a translation unit of the
   3056 original program or a combination of several translation units merged by the
   3057 linker.  The <tt>Module</tt> class keeps track of a list of <a
   3058 href="#Function"><tt>Function</tt></a>s, a list of <a
   3059 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
   3060 href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
   3061 helpful member functions that try to make common operations easy.</p>
   3062 
   3063 <!-- _______________________________________________________________________ -->
   3064 <h4>
   3065   <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
   3066 </h4>
   3067 
   3068 <div>
   3069 
   3070 <ul>
   3071   <li><tt>Module::Module(std::string name = "")</tt></li>
   3072 </ul>
   3073 
   3074 <p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
   3075 provide a name for it (probably based on the name of the translation unit).</p>
   3076 
   3077 <ul>
   3078   <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
   3079     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
   3080 
   3081     <tt>begin()</tt>, <tt>end()</tt>
   3082     <tt>size()</tt>, <tt>empty()</tt>
   3083 
   3084     <p>These are forwarding methods that make it easy to access the contents of
   3085     a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
   3086     list.</p></li>
   3087 
   3088   <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
   3089 
   3090     <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
   3091     necessary to use when you need to update the list or perform a complex
   3092     action that doesn't have a forwarding method.</p>
   3093 
   3094     <p><!--  Global Variable --></p></li> 
   3095 </ul>
   3096 
   3097 <hr>
   3098 
   3099 <ul>
   3100   <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
   3101 
   3102     <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
   3103 
   3104     <tt>global_begin()</tt>, <tt>global_end()</tt>
   3105     <tt>global_size()</tt>, <tt>global_empty()</tt>
   3106 
   3107     <p> These are forwarding methods that make it easy to access the contents of
   3108     a <tt>Module</tt> object's <a
   3109     href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
   3110 
   3111   <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
   3112 
   3113     <p>Returns the list of <a
   3114     href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
   3115     use when you need to update the list or perform a complex action that
   3116     doesn't have a forwarding method.</p>
   3117 
   3118     <p><!--  Symbol table stuff --> </p></li>
   3119 </ul>
   3120 
   3121 <hr>
   3122 
   3123 <ul>
   3124   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
   3125 
   3126     <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
   3127     for this <tt>Module</tt>.</p>
   3128 
   3129     <p><!--  Convenience methods --></p></li>
   3130 </ul>
   3131 
   3132 <hr>
   3133 
   3134 <ul>
   3135   <li><tt><a href="#Function">Function</a> *getFunction(const std::string
   3136   &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
   3137 
   3138     <p>Look up the specified function in the <tt>Module</tt> <a
   3139     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
   3140     <tt>null</tt>.</p></li>
   3141 
   3142   <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
   3143   std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
   3144 
   3145     <p>Look up the specified function in the <tt>Module</tt> <a
   3146     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
   3147     external declaration for the function and return it.</p></li>
   3148 
   3149   <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
   3150 
   3151     <p>If there is at least one entry in the <a
   3152     href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
   3153     href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
   3154     string.</p></li>
   3155 
   3156   <li><tt>bool addTypeName(const std::string &amp;Name, const <a
   3157   href="#Type">Type</a> *Ty)</tt>
   3158 
   3159     <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
   3160     mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
   3161     name, true is returned and the <a
   3162     href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
   3163 </ul>
   3164 
   3165 </div>
   3166 
   3167 </div>
   3168 
   3169 <!-- ======================================================================= -->
   3170 <h3>
   3171   <a name="Value">The <tt>Value</tt> class</a>
   3172 </h3>
   3173 
   3174 <div>
   3175 
   3176 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
   3177 <br> 
   3178 doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
   3179 
   3180 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
   3181 base.  It represents a typed value that may be used (among other things) as an
   3182 operand to an instruction.  There are many different types of <tt>Value</tt>s,
   3183 such as <a href="#Constant"><tt>Constant</tt></a>s,<a
   3184 href="#Argument"><tt>Argument</tt></a>s. Even <a
   3185 href="#Instruction"><tt>Instruction</tt></a>s and <a
   3186 href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
   3187 
   3188 <p>A particular <tt>Value</tt> may be used many times in the LLVM representation
   3189 for a program.  For example, an incoming argument to a function (represented
   3190 with an instance of the <a href="#Argument">Argument</a> class) is "used" by
   3191 every instruction in the function that references the argument.  To keep track
   3192 of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
   3193 href="#User"><tt>User</tt></a>s that is using it (the <a
   3194 href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
   3195 graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
   3196 def-use information in the program, and is accessible through the <tt>use_</tt>*
   3197 methods, shown below.</p>
   3198 
   3199 <p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
   3200 and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
   3201 method. In addition, all LLVM values can be named.  The "name" of the
   3202 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
   3203 
   3204 <div class="doc_code">
   3205 <pre>
   3206 %<b>foo</b> = add i32 1, 2
   3207 </pre>
   3208 </div>
   3209 
   3210 <p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
   3211 that the name of any value may be missing (an empty string), so names should
   3212 <b>ONLY</b> be used for debugging (making the source code easier to read,
   3213 debugging printouts), they should not be used to keep track of values or map
   3214 between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
   3215 <tt>Value</tt> itself instead.</p>
   3216 
   3217 <p>One important aspect of LLVM is that there is no distinction between an SSA
   3218 variable and the operation that produces it.  Because of this, any reference to
   3219 the value produced by an instruction (or the value available as an incoming
   3220 argument, for example) is represented as a direct pointer to the instance of
   3221 the class that
   3222 represents this value.  Although this may take some getting used to, it
   3223 simplifies the representation and makes it easier to manipulate.</p>
   3224 
   3225 <!-- _______________________________________________________________________ -->
   3226 <h4>
   3227   <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
   3228 </h4>
   3229 
   3230 <div>
   3231 
   3232 <ul>
   3233   <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
   3234 use-list<br>
   3235     <tt>Value::const_use_iterator</tt> - Typedef for const_iterator over
   3236 the use-list<br>
   3237     <tt>unsigned use_size()</tt> - Returns the number of users of the
   3238 value.<br>
   3239     <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
   3240     <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
   3241 the use-list.<br>
   3242     <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
   3243 use-list.<br>
   3244     <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
   3245 element in the list.
   3246     <p> These methods are the interface to access the def-use
   3247 information in LLVM.  As with all other iterators in LLVM, the naming
   3248 conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
   3249   </li>
   3250   <li><tt><a href="#Type">Type</a> *getType() const</tt>
   3251     <p>This method returns the Type of the Value.</p>
   3252   </li>
   3253   <li><tt>bool hasName() const</tt><br>
   3254     <tt>std::string getName() const</tt><br>
   3255     <tt>void setName(const std::string &amp;Name)</tt>
   3256     <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
   3257 be aware of the <a href="#nameWarning">precaution above</a>.</p>
   3258   </li>
   3259   <li><tt>void replaceAllUsesWith(Value *V)</tt>
   3260 
   3261     <p>This method traverses the use list of a <tt>Value</tt> changing all <a
   3262     href="#User"><tt>User</tt>s</a> of the current value to refer to
   3263     "<tt>V</tt>" instead.  For example, if you detect that an instruction always
   3264     produces a constant value (for example through constant folding), you can
   3265     replace all uses of the instruction with the constant like this:</p>
   3266 
   3267 <div class="doc_code">
   3268 <pre>
   3269 Inst-&gt;replaceAllUsesWith(ConstVal);
   3270 </pre>
   3271 </div>
   3272 
   3273 </ul>
   3274 
   3275 </div>
   3276 
   3277 </div>
   3278 
   3279 <!-- ======================================================================= -->
   3280 <h3>
   3281   <a name="User">The <tt>User</tt> class</a>
   3282 </h3>
   3283 
   3284 <div>
   3285   
   3286 <p>
   3287 <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
   3288 doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
   3289 Superclass: <a href="#Value"><tt>Value</tt></a></p>
   3290 
   3291 <p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
   3292 refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
   3293 that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
   3294 referring to.  The <tt>User</tt> class itself is a subclass of
   3295 <tt>Value</tt>.</p>
   3296 
   3297 <p>The operands of a <tt>User</tt> point directly to the LLVM <a
   3298 href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
   3299 Single Assignment (SSA) form, there can only be one definition referred to,
   3300 allowing this direct connection.  This connection provides the use-def
   3301 information in LLVM.</p>
   3302 
   3303 <!-- _______________________________________________________________________ -->
   3304 <h4>
   3305   <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
   3306 </h4>
   3307 
   3308 <div>
   3309 
   3310 <p>The <tt>User</tt> class exposes the operand list in two ways: through
   3311 an index access interface and through an iterator based interface.</p>
   3312 
   3313 <ul>
   3314   <li><tt>Value *getOperand(unsigned i)</tt><br>
   3315     <tt>unsigned getNumOperands()</tt>
   3316     <p> These two methods expose the operands of the <tt>User</tt> in a
   3317 convenient form for direct access.</p></li>
   3318 
   3319   <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
   3320 list<br>
   3321     <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
   3322 the operand list.<br>
   3323     <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
   3324 operand list.
   3325     <p> Together, these methods make up the iterator based interface to
   3326 the operands of a <tt>User</tt>.</p></li>
   3327 </ul>
   3328 
   3329 </div>    
   3330 
   3331 </div>
   3332 
   3333 <!-- ======================================================================= -->
   3334 <h3>
   3335   <a name="Instruction">The <tt>Instruction</tt> class</a>
   3336 </h3>
   3337 
   3338 <div>
   3339 
   3340 <p><tt>#include "</tt><tt><a
   3341 href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
   3342 doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
   3343 Superclasses: <a href="#User"><tt>User</tt></a>, <a
   3344 href="#Value"><tt>Value</tt></a></p>
   3345 
   3346 <p>The <tt>Instruction</tt> class is the common base class for all LLVM
   3347 instructions.  It provides only a few methods, but is a very commonly used
   3348 class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
   3349 opcode (instruction type) and the parent <a
   3350 href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
   3351 into.  To represent a specific type of instruction, one of many subclasses of
   3352 <tt>Instruction</tt> are used.</p>
   3353 
   3354 <p> Because the <tt>Instruction</tt> class subclasses the <a
   3355 href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
   3356 way as for other <a href="#User"><tt>User</tt></a>s (with the
   3357 <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
   3358 <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
   3359 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
   3360 file contains some meta-data about the various different types of instructions
   3361 in LLVM.  It describes the enum values that are used as opcodes (for example
   3362 <tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
   3363 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
   3364 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
   3365 href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
   3366 this file confuses doxygen, so these enum values don't show up correctly in the
   3367 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
   3368 
   3369 <!-- _______________________________________________________________________ -->
   3370 <h4>
   3371   <a name="s_Instruction">
   3372     Important Subclasses of the <tt>Instruction</tt> class
   3373   </a>
   3374 </h4>
   3375 <div>
   3376   <ul>
   3377     <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
   3378     <p>This subclasses represents all two operand instructions whose operands
   3379     must be the same type, except for the comparison instructions.</p></li>
   3380     <li><tt><a name="CastInst">CastInst</a></tt>
   3381     <p>This subclass is the parent of the 12 casting instructions. It provides
   3382     common operations on cast instructions.</p>
   3383     <li><tt><a name="CmpInst">CmpInst</a></tt>
   3384     <p>This subclass respresents the two comparison instructions, 
   3385     <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
   3386     <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
   3387     <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
   3388     <p>This subclass is the parent of all terminator instructions (those which
   3389     can terminate a block).</p>
   3390   </ul>
   3391   </div>
   3392 
   3393 <!-- _______________________________________________________________________ -->
   3394 <h4>
   3395   <a name="m_Instruction">
   3396     Important Public Members of the <tt>Instruction</tt> class
   3397   </a>
   3398 </h4>
   3399 
   3400 <div>
   3401 
   3402 <ul>
   3403   <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
   3404     <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
   3405 this  <tt>Instruction</tt> is embedded into.</p></li>
   3406   <li><tt>bool mayWriteToMemory()</tt>
   3407     <p>Returns true if the instruction writes to memory, i.e. it is a
   3408       <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
   3409   <li><tt>unsigned getOpcode()</tt>
   3410     <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
   3411   <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
   3412     <p>Returns another instance of the specified instruction, identical
   3413 in all ways to the original except that the instruction has no parent
   3414 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
   3415 and it has no name</p></li>
   3416 </ul>
   3417 
   3418 </div>
   3419 
   3420 </div>
   3421 
   3422 <!-- ======================================================================= -->
   3423 <h3>
   3424   <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
   3425 </h3>
   3426 
   3427 <div>
   3428 
   3429 <p>Constant represents a base class for different types of constants. It
   3430 is subclassed by ConstantInt, ConstantArray, etc. for representing 
   3431 the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
   3432 a subclass, which represents the address of a global variable or function.
   3433 </p>
   3434 
   3435 <!-- _______________________________________________________________________ -->
   3436 <h4>Important Subclasses of Constant</h4>
   3437 <div>
   3438 <ul>
   3439   <li>ConstantInt : This subclass of Constant represents an integer constant of
   3440   any width.
   3441     <ul>
   3442       <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
   3443       value of this constant, an APInt value.</li>
   3444       <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
   3445       value to an int64_t via sign extension. If the value (not the bit width)
   3446       of the APInt is too large to fit in an int64_t, an assertion will result.
   3447       For this reason, use of this method is discouraged.</li>
   3448       <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
   3449       value to a uint64_t via zero extension. IF the value (not the bit width)
   3450       of the APInt is too large to fit in a uint64_t, an assertion will result.
   3451       For this reason, use of this method is discouraged.</li>
   3452       <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
   3453       ConstantInt object that represents the value provided by <tt>Val</tt>.
   3454       The type is implied as the IntegerType that corresponds to the bit width
   3455       of <tt>Val</tt>.</li>
   3456       <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
   3457       Returns the ConstantInt object that represents the value provided by 
   3458       <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
   3459     </ul>
   3460   </li>
   3461   <li>ConstantFP : This class represents a floating point constant.
   3462     <ul>
   3463       <li><tt>double getValue() const</tt>: Returns the underlying value of 
   3464       this constant. </li>
   3465     </ul>
   3466   </li>
   3467   <li>ConstantArray : This represents a constant array.
   3468     <ul>
   3469       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
   3470       a vector of component constants that makeup this array. </li>
   3471     </ul>
   3472   </li>
   3473   <li>ConstantStruct : This represents a constant struct.
   3474     <ul>
   3475       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
   3476       a vector of component constants that makeup this array. </li>
   3477     </ul>
   3478   </li>
   3479   <li>GlobalValue : This represents either a global variable or a function. In 
   3480   either case, the value is a constant fixed address (after linking). 
   3481   </li>
   3482 </ul>
   3483 </div>
   3484 
   3485 </div>
   3486 
   3487 <!-- ======================================================================= -->
   3488 <h3>
   3489   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
   3490 </h3>
   3491 
   3492 <div>
   3493 
   3494 <p><tt>#include "<a
   3495 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
   3496 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
   3497 Class</a><br>
   3498 Superclasses: <a href="#Constant"><tt>Constant</tt></a>, 
   3499 <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
   3500 
   3501 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
   3502 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
   3503 visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
   3504 Because they are visible at global scope, they are also subject to linking with
   3505 other globals defined in different translation units.  To control the linking
   3506 process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
   3507 <tt>GlobalValue</tt>s know whether they have internal or external linkage, as
   3508 defined by the <tt>LinkageTypes</tt> enumeration.</p>
   3509 
   3510 <p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
   3511 <tt>static</tt> in C), it is not visible to code outside the current translation
   3512 unit, and does not participate in linking.  If it has external linkage, it is
   3513 visible to external code, and does participate in linking.  In addition to
   3514 linkage information, <tt>GlobalValue</tt>s keep track of which <a
   3515 href="#Module"><tt>Module</tt></a> they are currently part of.</p>
   3516 
   3517 <p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
   3518 by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
   3519 global is always a pointer to its contents. It is important to remember this
   3520 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
   3521 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
   3522 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
   3523 i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
   3524 the address of the first element of this array and the value of the
   3525 <tt>GlobalVariable</tt> are the same, they have different types. The
   3526 <tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
   3527 is <tt>i32.</tt> Because of this, accessing a global value requires you to
   3528 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
   3529 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
   3530 Language Reference Manual</a>.</p>
   3531 
   3532 <!-- _______________________________________________________________________ -->
   3533 <h4>
   3534   <a name="m_GlobalValue">
   3535     Important Public Members of the <tt>GlobalValue</tt> class
   3536   </a>
   3537 </h4>
   3538 
   3539 <div>
   3540 
   3541 <ul>
   3542   <li><tt>bool hasInternalLinkage() const</tt><br>
   3543     <tt>bool hasExternalLinkage() const</tt><br>
   3544     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
   3545     <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
   3546     <p> </p>
   3547   </li>
   3548   <li><tt><a href="#Module">Module</a> *getParent()</tt>
   3549     <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
   3550 GlobalValue is currently embedded into.</p></li>
   3551 </ul>
   3552 
   3553 </div>
   3554 
   3555 </div>
   3556 
   3557 <!-- ======================================================================= -->
   3558 <h3>
   3559   <a name="Function">The <tt>Function</tt> class</a>
   3560 </h3>
   3561 
   3562 <div>
   3563 
   3564 <p><tt>#include "<a
   3565 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
   3566 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
   3567 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
   3568 <a href="#Constant"><tt>Constant</tt></a>, 
   3569 <a href="#User"><tt>User</tt></a>, 
   3570 <a href="#Value"><tt>Value</tt></a></p>
   3571 
   3572 <p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
   3573 actually one of the more complex classes in the LLVM hierarchy because it must
   3574 keep track of a large amount of data.  The <tt>Function</tt> class keeps track
   3575 of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal 
   3576 <a href="#Argument"><tt>Argument</tt></a>s, and a 
   3577 <a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
   3578 
   3579 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
   3580 commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
   3581 ordering of the blocks in the function, which indicate how the code will be
   3582 laid out by the backend.  Additionally, the first <a
   3583 href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
   3584 <tt>Function</tt>.  It is not legal in LLVM to explicitly branch to this initial
   3585 block.  There are no implicit exit nodes, and in fact there may be multiple exit
   3586 nodes from a single <tt>Function</tt>.  If the <a
   3587 href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
   3588 the <tt>Function</tt> is actually a function declaration: the actual body of the
   3589 function hasn't been linked in yet.</p>
   3590 
   3591 <p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
   3592 <tt>Function</tt> class also keeps track of the list of formal <a
   3593 href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
   3594 container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
   3595 nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
   3596 the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
   3597 
   3598 <p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
   3599 LLVM feature that is only used when you have to look up a value by name.  Aside
   3600 from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
   3601 internally to make sure that there are not conflicts between the names of <a
   3602 href="#Instruction"><tt>Instruction</tt></a>s, <a
   3603 href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
   3604 href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
   3605 
   3606 <p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
   3607 and therefore also a <a href="#Constant">Constant</a>. The value of the function
   3608 is its address (after linking) which is guaranteed to be constant.</p>
   3609 
   3610 <!-- _______________________________________________________________________ -->
   3611 <h4>
   3612   <a name="m_Function">
   3613     Important Public Members of the <tt>Function</tt> class
   3614   </a>
   3615 </h4>
   3616 
   3617 <div>
   3618 
   3619 <ul>
   3620   <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
   3621   *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
   3622 
   3623     <p>Constructor used when you need to create new <tt>Function</tt>s to add
   3624     the the program.  The constructor must specify the type of the function to
   3625     create and what type of linkage the function should have. The <a 
   3626     href="#FunctionType"><tt>FunctionType</tt></a> argument
   3627     specifies the formal arguments and return value for the function. The same
   3628     <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
   3629     create multiple functions. The <tt>Parent</tt> argument specifies the Module
   3630     in which the function is defined. If this argument is provided, the function
   3631     will automatically be inserted into that module's list of
   3632     functions.</p></li>
   3633 
   3634   <li><tt>bool isDeclaration()</tt>
   3635 
   3636     <p>Return whether or not the <tt>Function</tt> has a body defined.  If the
   3637     function is "external", it does not have a body, and thus must be resolved
   3638     by linking with a function defined in a different translation unit.</p></li>
   3639 
   3640   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
   3641     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
   3642 
   3643     <tt>begin()</tt>, <tt>end()</tt>
   3644     <tt>size()</tt>, <tt>empty()</tt>
   3645 
   3646     <p>These are forwarding methods that make it easy to access the contents of
   3647     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
   3648     list.</p></li>
   3649 
   3650   <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
   3651 
   3652     <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
   3653     is necessary to use when you need to update the list or perform a complex
   3654     action that doesn't have a forwarding method.</p></li>
   3655 
   3656   <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
   3657 iterator<br>
   3658     <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
   3659 
   3660     <tt>arg_begin()</tt>, <tt>arg_end()</tt>
   3661     <tt>arg_size()</tt>, <tt>arg_empty()</tt>
   3662 
   3663     <p>These are forwarding methods that make it easy to access the contents of
   3664     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
   3665     list.</p></li>
   3666 
   3667   <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
   3668 
   3669     <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
   3670     necessary to use when you need to update the list or perform a complex
   3671     action that doesn't have a forwarding method.</p></li>
   3672 
   3673   <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
   3674 
   3675     <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
   3676     function.  Because the entry block for the function is always the first
   3677     block, this returns the first block of the <tt>Function</tt>.</p></li>
   3678 
   3679   <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
   3680     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
   3681 
   3682     <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
   3683     <tt>Function</tt> and returns the return type of the function, or the <a
   3684     href="#FunctionType"><tt>FunctionType</tt></a> of the actual
   3685     function.</p></li>
   3686 
   3687   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
   3688 
   3689     <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
   3690     for this <tt>Function</tt>.</p></li>
   3691 </ul>
   3692 
   3693 </div>
   3694 
   3695 </div>
   3696 
   3697 <!-- ======================================================================= -->
   3698 <h3>
   3699   <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
   3700 </h3>
   3701 
   3702 <div>
   3703 
   3704 <p><tt>#include "<a
   3705 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
   3706 <br>
   3707 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
   3708  Class</a><br>
   3709 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
   3710 <a href="#Constant"><tt>Constant</tt></a>,
   3711 <a href="#User"><tt>User</tt></a>,
   3712 <a href="#Value"><tt>Value</tt></a></p>
   3713 
   3714 <p>Global variables are represented with the (surprise surprise)
   3715 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
   3716 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
   3717 always referenced by their address (global values must live in memory, so their
   3718 "name" refers to their constant address). See 
   3719 <a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
   3720 variables may have an initial value (which must be a 
   3721 <a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
   3722 they may be marked as "constant" themselves (indicating that their contents 
   3723 never change at runtime).</p>
   3724 
   3725 <!-- _______________________________________________________________________ -->
   3726 <h4>
   3727   <a name="m_GlobalVariable">
   3728     Important Public Members of the <tt>GlobalVariable</tt> class
   3729   </a>
   3730 </h4>
   3731 
   3732 <div>
   3733 
   3734 <ul>
   3735   <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
   3736   isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
   3737   *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
   3738 
   3739     <p>Create a new global variable of the specified type. If
   3740     <tt>isConstant</tt> is true then the global variable will be marked as
   3741     unchanging for the program. The Linkage parameter specifies the type of
   3742     linkage (internal, external, weak, linkonce, appending) for the variable.
   3743     If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
   3744     LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
   3745     global variable will have internal linkage.  AppendingLinkage concatenates
   3746     together all instances (in different translation units) of the variable
   3747     into a single variable but is only applicable to arrays.  &nbsp;See
   3748     the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
   3749     further details on linkage types. Optionally an initializer, a name, and the
   3750     module to put the variable into may be specified for the global variable as
   3751     well.</p></li>
   3752 
   3753   <li><tt>bool isConstant() const</tt>
   3754 
   3755     <p>Returns true if this is a global variable that is known not to
   3756     be modified at runtime.</p></li>
   3757 
   3758   <li><tt>bool hasInitializer()</tt>
   3759 
   3760     <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
   3761 
   3762   <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
   3763 
   3764     <p>Returns the initial value for a <tt>GlobalVariable</tt>.  It is not legal
   3765     to call this method if there is no initializer.</p></li>
   3766 </ul>
   3767 
   3768 </div>
   3769 
   3770 </div>
   3771 
   3772 <!-- ======================================================================= -->
   3773 <h3>
   3774   <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
   3775 </h3>
   3776 
   3777 <div>
   3778 
   3779 <p><tt>#include "<a
   3780 href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
   3781 doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
   3782 Class</a><br>
   3783 Superclass: <a href="#Value"><tt>Value</tt></a></p>
   3784 
   3785 <p>This class represents a single entry single exit section of the code,
   3786 commonly known as a basic block by the compiler community.  The
   3787 <tt>BasicBlock</tt> class maintains a list of <a
   3788 href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
   3789 Matching the language definition, the last element of this list of instructions
   3790 is always a terminator instruction (a subclass of the <a
   3791 href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
   3792 
   3793 <p>In addition to tracking the list of instructions that make up the block, the
   3794 <tt>BasicBlock</tt> class also keeps track of the <a
   3795 href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
   3796 
   3797 <p>Note that <tt>BasicBlock</tt>s themselves are <a
   3798 href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
   3799 like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
   3800 <tt>label</tt>.</p>
   3801 
   3802 <!-- _______________________________________________________________________ -->
   3803 <h4>
   3804   <a name="m_BasicBlock">
   3805     Important Public Members of the <tt>BasicBlock</tt> class
   3806   </a>
   3807 </h4>
   3808 
   3809 <div>
   3810 <ul>
   3811 
   3812 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
   3813  href="#Function">Function</a> *Parent = 0)</tt>
   3814 
   3815 <p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
   3816 insertion into a function.  The constructor optionally takes a name for the new
   3817 block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
   3818 the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
   3819 automatically inserted at the end of the specified <a
   3820 href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
   3821 manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
   3822 
   3823 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
   3824 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
   3825 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
   3826 <tt>size()</tt>, <tt>empty()</tt>
   3827 STL-style functions for accessing the instruction list.
   3828 
   3829 <p>These methods and typedefs are forwarding functions that have the same
   3830 semantics as the standard library methods of the same names.  These methods
   3831 expose the underlying instruction list of a basic block in a way that is easy to
   3832 manipulate.  To get the full complement of container operations (including
   3833 operations to update the list), you must use the <tt>getInstList()</tt>
   3834 method.</p></li>
   3835 
   3836 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
   3837 
   3838 <p>This method is used to get access to the underlying container that actually
   3839 holds the Instructions.  This method must be used when there isn't a forwarding
   3840 function in the <tt>BasicBlock</tt> class for the operation that you would like
   3841 to perform.  Because there are no forwarding functions for "updating"
   3842 operations, you need to use this if you want to update the contents of a
   3843 <tt>BasicBlock</tt>.</p></li>
   3844 
   3845 <li><tt><a href="#Function">Function</a> *getParent()</tt>
   3846 
   3847 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
   3848 embedded into, or a null pointer if it is homeless.</p></li>
   3849 
   3850 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
   3851 
   3852 <p> Returns a pointer to the terminator instruction that appears at the end of
   3853 the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
   3854 instruction in the block is not a terminator, then a null pointer is
   3855 returned.</p></li>
   3856 
   3857 </ul>
   3858 
   3859 </div>
   3860 
   3861 </div>
   3862 
   3863 <!-- ======================================================================= -->
   3864 <h3>
   3865   <a name="Argument">The <tt>Argument</tt> class</a>
   3866 </h3>
   3867 
   3868 <div>
   3869 
   3870 <p>This subclass of Value defines the interface for incoming formal
   3871 arguments to a function. A Function maintains a list of its formal
   3872 arguments. An argument has a pointer to the parent Function.</p>
   3873 
   3874 </div>
   3875 
   3876 </div>
   3877 
   3878 <!-- *********************************************************************** -->
   3879 <hr>
   3880 <address>
   3881   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   3882   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   3883   <a href="http://validator.w3.org/check/referer"><img
   3884   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
   3885 
   3886   <a href="mailto:dhurjati (a] cs.uiuc.edu">Dinakar Dhurjati</a> and
   3887   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   3888   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   3889   Last modified: $Date$
   3890 </address>
   3891 
   3892 </body>
   3893 </html>
   3894