Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      6   <title>Writing an LLVM Pass</title>
      7   <link rel="stylesheet" href="llvm.css" type="text/css">
      8 </head>
      9 <body>
     10 
     11 <h1>
     12   Writing an LLVM Pass
     13 </h1>
     14 
     15 <ol>
     16   <li><a href="#introduction">Introduction - What is a pass?</a></li>
     17   <li><a href="#quickstart">Quick Start - Writing hello world</a>
     18     <ul>
     19     <li><a href="#makefile">Setting up the build environment</a></li>
     20     <li><a href="#basiccode">Basic code required</a></li>
     21     <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
     22     </ul></li>
     23   <li><a href="#passtype">Pass classes and requirements</a>
     24      <ul>
     25      <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
     26      <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
     27         <ul>
     28         <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
     29         </ul></li>
     30      <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
     31         <ul>
     32         <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
     33                                            &amp;)</tt> method</a></li>
     34         <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
     35         <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
     36                                            &amp;)</tt> method</a></li>
     37         </ul></li>
     38      <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
     39         <ul>
     40         <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
     41                                             &amp;)</tt> method</a></li>
     42         <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
     43         <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
     44                                             &amp;)</tt> method</a></li>
     45         </ul></li>
     46      <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
     47         <ul>
     48         <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
     49                                             LPPassManager &amp;)</tt> method</a></li>
     50         <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
     51         <li><a href="#doFinalization_loop">The <tt>doFinalization()
     52                                             </tt> method</a></li>
     53         </ul></li>
     54      <li><a href="#RegionPass">The <tt>RegionPass</tt> class</a>
     55         <ul>
     56         <li><a href="#doInitialization_region">The <tt>doInitialization(Region *,
     57                                             RGPassManager &amp;)</tt> method</a></li>
     58         <li><a href="#runOnRegion">The <tt>runOnRegion</tt> method</a></li>
     59         <li><a href="#doFinalization_region">The <tt>doFinalization()
     60                                             </tt> method</a></li>
     61         </ul></li>
     62      <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
     63         <ul>
     64         <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
     65                                              &amp;)</tt> method</a></li>
     66         <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
     67                                        method</a></li>
     68         <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
     69                                          &amp;)</tt> method</a></li>
     70         </ul></li>
     71      <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
     72                                         class</a>
     73         <ul>
     74         <li><a href="#runOnMachineFunction">The
     75             <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
     76         </ul></li>
     77      </ul>
     78   <li><a href="#registration">Pass Registration</a>
     79      <ul>
     80      <li><a href="#print">The <tt>print</tt> method</a></li>
     81      </ul></li>
     82   <li><a href="#interaction">Specifying interactions between passes</a>
     83      <ul>
     84      <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt> 
     85                                      method</a></li>
     86      <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
     87      <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
     88      <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
     89      <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
     90 <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a></li>
     91      </ul></li>
     92   <li><a href="#analysisgroup">Implementing Analysis Groups</a>
     93      <ul>
     94      <li><a href="#agconcepts">Analysis Group Concepts</a></li>
     95      <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
     96      </ul></li>
     97   <li><a href="#passStatistics">Pass Statistics</a>
     98   <li><a href="#passmanager">What PassManager does</a>
     99     <ul>
    100     <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
    101     </ul></li>
    102   <li><a href="#registering">Registering dynamically loaded passes</a>
    103     <ul>
    104       <li><a href="#registering_existing">Using existing registries</a></li>
    105       <li><a href="#registering_new">Creating new registries</a></li>
    106     </ul></li>
    107   <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
    108     <ul>
    109     <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
    110     <li><a href="#debugmisc">Miscellaneous Problems</a></li>
    111     </ul></li>
    112   <li><a href="#future">Future extensions planned</a>
    113     <ul>
    114     <li><a href="#SMP">Multithreaded LLVM</a></li>
    115     </ul></li>
    116 </ol>
    117 
    118 <div class="doc_author">
    119   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a> and
    120   <a href="mailto:jlaskey (a] mac.com">Jim Laskey</a></p>
    121 </div>
    122 
    123 <!-- *********************************************************************** -->
    124 <h2>
    125   <a name="introduction">Introduction - What is a pass?</a>
    126 </h2>
    127 <!-- *********************************************************************** -->
    128 
    129 <div>
    130 
    131 <p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
    132 passes are where most of the interesting parts of the compiler exist.  Passes
    133 perform the transformations and optimizations that make up the compiler, they
    134 build the analysis results that are used by these transformations, and they are,
    135 above all, a structuring technique for compiler code.</p>
    136 
    137 <p>All LLVM passes are subclasses of the <tt><a
    138 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
    139 class, which implement functionality by overriding virtual methods inherited
    140 from <tt>Pass</tt>.  Depending on how your pass works, you should inherit from
    141 the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
    142 href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
    143 href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
    144 href="#LoopPass">LoopPass</a></tt>, or <tt><a
    145 href="#RegionPass">RegionPass</a></tt>, or <tt><a
    146 href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
    147 more information about what your pass does, and how it can be combined with
    148 other passes.  One of the main features of the LLVM Pass Framework is that it
    149 schedules passes to run in an efficient way based on the constraints that your
    150 pass meets (which are indicated by which class they derive from).</p>
    151 
    152 <p>We start by showing you how to construct a pass, everything from setting up
    153 the code, to compiling, loading, and executing it.  After the basics are down,
    154 more advanced features are discussed.</p>
    155 
    156 </div>
    157 
    158 <!-- *********************************************************************** -->
    159 <h2>
    160   <a name="quickstart">Quick Start - Writing hello world</a>
    161 </h2>
    162 <!-- *********************************************************************** -->
    163 
    164 <div>
    165 
    166 <p>Here we describe how to write the "hello world" of passes.  The "Hello" pass
    167 is designed to simply print out the name of non-external functions that exist in
    168 the program being compiled.  It does not modify the program at all, it just
    169 inspects it.  The source code and files for this pass are available in the LLVM
    170 source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
    171 
    172 <!-- ======================================================================= -->
    173 <h3>
    174   <a name="makefile">Setting up the build environment</a>
    175 </h3>
    176 
    177 <div>
    178 
    179   <p>First, configure and build LLVM.  This needs to be done directly inside the
    180   LLVM source tree rather than in a separate objects directory.
    181   Next, you need to create a new directory somewhere in the LLVM source 
    182   base.  For this example, we'll assume that you made 
    183   <tt>lib/Transforms/Hello</tt>.  Finally, you must set up a build script 
    184   (Makefile) that will compile the source code for the new pass.  To do this, 
    185   copy the following into <tt>Makefile</tt>:</p>
    186   <hr>
    187 
    188 <div class="doc_code"><pre>
    189 # Makefile for hello pass
    190 
    191 # Path to top level of LLVM hierarchy
    192 LEVEL = ../../..
    193 
    194 # Name of the library to build
    195 LIBRARYNAME = Hello
    196 
    197 # Make the shared library become a loadable module so the tools can 
    198 # dlopen/dlsym on the resulting library.
    199 LOADABLE_MODULE = 1
    200 
    201 # Include the makefile implementation stuff
    202 include $(LEVEL)/Makefile.common
    203 </pre></div>
    204 
    205 <p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
    206 directory are to be compiled and linked together into a shared object
    207 <tt>$(LEVEL)/Debug+Asserts/lib/Hello.so</tt> that can be dynamically loaded by
    208 the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.  
    209 If your operating system uses a suffix other than .so (such as windows or 
    210 Mac OS/X), the appropriate extension will be used.</p>
    211 
    212 <p>If you are used CMake to build LLVM, see
    213 <a href="CMake.html#passdev">Developing an LLVM pass with CMake</a>.</p>
    214 
    215 <p>Now that we have the build scripts set up, we just need to write the code for
    216 the pass itself.</p>
    217 
    218 </div>
    219 
    220 <!-- ======================================================================= -->
    221 <h3>
    222   <a name="basiccode">Basic code required</a>
    223 </h3>
    224 
    225 <div>
    226 
    227 <p>Now that we have a way to compile our new pass, we just have to write it.
    228 Start out with:</p>
    229 
    230 <div class="doc_code"><pre>
    231 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
    232 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
    233 <b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
    234 </pre></div>
    235 
    236 <p>Which are needed because we are writing a <tt><a
    237 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>,
    238 we are operating on <tt><a
    239 href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s,
    240 and we will be doing some printing.</p>
    241 
    242 <p>Next we have:</p>
    243 <div class="doc_code"><pre>
    244 <b>using namespace llvm;</b>
    245 </pre></div>
    246 <p>... which is required because the functions from the include files 
    247 live in the llvm namespace.
    248 </p>
    249 
    250 <p>Next we have:</p>
    251 
    252 <div class="doc_code"><pre>
    253 <b>namespace</b> {
    254 </pre></div>
    255 
    256 <p>... which starts out an anonymous namespace.  Anonymous namespaces are to C++
    257 what the "<tt>static</tt>" keyword is to C (at global scope).  It makes the
    258 things declared inside of the anonymous namespace only visible to the current
    259 file.  If you're not familiar with them, consult a decent C++ book for more
    260 information.</p>
    261 
    262 <p>Next, we declare our pass itself:</p>
    263 
    264 <div class="doc_code"><pre>
    265   <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
    266 </pre></div><p>
    267 
    268 <p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
    269 href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
    270 The different builtin pass subclasses are described in detail <a
    271 href="#passtype">later</a>, but for now, know that <a
    272 href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate a function at a
    273 time.</p>
    274 
    275 <div class="doc_code"><pre>
    276      static char ID;
    277      Hello() : FunctionPass(ID) {}
    278 </pre></div><p>
    279 
    280 <p> This declares pass identifier used by LLVM to identify pass. This allows LLVM to
    281 avoid using expensive C++ runtime information.</p>
    282 
    283 <div class="doc_code"><pre>
    284     <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
    285       errs() &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
    286       <b>return false</b>;
    287     }
    288   };  <i>// end of struct Hello</i>
    289 </pre></div>
    290 
    291 <p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
    292 which overloads an abstract virtual method inherited from <a
    293 href="#FunctionPass"><tt>FunctionPass</tt></a>.  This is where we are supposed
    294 to do our thing, so we just print out our message with the name of each
    295 function.</p>
    296 
    297 <div class="doc_code"><pre>
    298   char Hello::ID = 0;
    299 </pre></div>
    300 
    301 <p> We initialize pass ID here. LLVM uses ID's address to identify pass so 
    302 initialization value is not important.</p>
    303 
    304 <div class="doc_code"><pre>
    305   static RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
    306                         false /* Only looks at CFG */,
    307                         false /* Analysis Pass */);
    308 }  <i>// end of anonymous namespace</i>
    309 </pre></div>
    310 
    311 <p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>, 
    312 giving it a command line
    313 argument "<tt>hello</tt>", and a name "<tt>Hello World Pass</tt>".
    314 Last two arguments describe its behavior.
    315 If a pass walks CFG without modifying it then third argument is set to true. 
    316 If  a pass is an analysis pass, for example dominator tree pass, then true 
    317 is supplied as fourth argument. </p>
    318 
    319 <p>As a whole, the <tt>.cpp</tt> file looks like:</p>
    320 
    321 <div class="doc_code"><pre>
    322 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
    323 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
    324 <b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
    325 
    326 <b>using namespace llvm;</b>
    327 
    328 <b>namespace</b> {
    329   <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
    330     
    331     static char ID;
    332     Hello() : FunctionPass(ID) {}
    333 
    334     <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
    335       errs() &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
    336       <b>return false</b>;
    337     }
    338   };
    339   
    340   char Hello::ID = 0;
    341   static RegisterPass&lt;Hello&gt; X("hello", "Hello World Pass", false, false);
    342 }
    343 
    344 </pre></div>
    345 
    346 <p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
    347 command in the local directory and you should get a new file
    348 "<tt>Debug+Asserts/lib/Hello.so</tt>" under the top level directory of the LLVM
    349 source tree (not in the local directory).  Note that everything in this file is
    350 contained in an anonymous namespace: this reflects the fact that passes are self
    351 contained units that do not need external interfaces (although they can have
    352 them) to be useful.</p>
    353 
    354 </div>
    355 
    356 <!-- ======================================================================= -->
    357 <h3>
    358   <a name="running">Running a pass with <tt>opt</tt></a>
    359 </h3>
    360 
    361 <div>
    362 
    363 <p>Now that you have a brand new shiny shared object file, we can use the
    364 <tt>opt</tt> command to run an LLVM program through your pass.  Because you
    365 registered your pass with <tt>RegisterPass</tt>, you will be able to
    366 use the <tt>opt</tt> tool to access it, once loaded.</p>
    367 
    368 <p>To test it, follow the example at the end of the <a
    369 href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
    370 LLVM.  We can now run the bitcode file (<tt>hello.bc</tt>) for the program
    371 through our transformation like this (or course, any bitcode file will
    372 work):</p>
    373 
    374 <div class="doc_code"><pre>
    375 $ opt -load ../../../Debug+Asserts/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
    376 Hello: __main
    377 Hello: puts
    378 Hello: main
    379 </pre></div>
    380 
    381 <p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
    382 pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
    383 argument (which is one reason you need to <a href="#registration">register your
    384 pass</a>).  Because the hello pass does not modify the program in any
    385 interesting way, we just throw away the result of <tt>opt</tt> (sending it to
    386 <tt>/dev/null</tt>).</p>
    387 
    388 <p>To see what happened to the other string you registered, try running
    389 <tt>opt</tt> with the <tt>-help</tt> option:</p>
    390 
    391 <div class="doc_code"><pre>
    392 $ opt -load ../../../Debug+Asserts/lib/Hello.so -help
    393 OVERVIEW: llvm .bc -&gt; .bc modular optimizer
    394 
    395 USAGE: opt [options] &lt;input bitcode&gt;
    396 
    397 OPTIONS:
    398   Optimizations available:
    399 ...
    400     -funcresolve    - Resolve Functions
    401     -gcse           - Global Common Subexpression Elimination
    402     -globaldce      - Dead Global Elimination
    403     <b>-hello          - Hello World Pass</b>
    404     -indvars        - Canonicalize Induction Variables
    405     -inline         - Function Integration/Inlining
    406     -instcombine    - Combine redundant instructions
    407 ...
    408 </pre></div>
    409 
    410 <p>The pass name get added as the information string for your pass, giving some
    411 documentation to users of <tt>opt</tt>.  Now that you have a working pass, you
    412 would go ahead and make it do the cool transformations you want.  Once you get
    413 it all working and tested, it may become useful to find out how fast your pass
    414 is.  The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
    415 line option (<tt>--time-passes</tt>) that allows you to get information about
    416 the execution time of your pass along with the other passes you queue up.  For
    417 example:</p>
    418 
    419 <div class="doc_code"><pre>
    420 $ opt -load ../../../Debug+Asserts/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
    421 Hello: __main
    422 Hello: puts
    423 Hello: main
    424 ===============================================================================
    425                       ... Pass execution timing report ...
    426 ===============================================================================
    427   Total Execution Time: 0.02 seconds (0.0479059 wall clock)
    428 
    429    ---User Time---   --System Time--   --User+System--   ---Wall Time---  --- Pass Name ---
    430    0.0100 (100.0%)   0.0000 (  0.0%)   0.0100 ( 50.0%)   0.0402 ( 84.0%)  Bitcode Writer
    431    0.0000 (  0.0%)   0.0100 (100.0%)   0.0100 ( 50.0%)   0.0031 (  6.4%)  Dominator Set Construction
    432    0.0000 (  0.0%)   0.0000 (  0.0%)   0.0000 (  0.0%)   0.0013 (  2.7%)  Module Verifier
    433  <b>  0.0000 (  0.0%)   0.0000 (  0.0%)   0.0000 (  0.0%)   0.0033 (  6.9%)  Hello World Pass</b>
    434    0.0100 (100.0%)   0.0100 (100.0%)   0.0200 (100.0%)   0.0479 (100.0%)  TOTAL
    435 </pre></div>
    436 
    437 <p>As you can see, our implementation above is pretty fast :).  The additional
    438 passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
    439 that the LLVM emitted by your pass is still valid and well formed LLVM, which
    440 hasn't been broken somehow.</p>
    441 
    442 <p>Now that you have seen the basics of the mechanics behind passes, we can talk
    443 about some more details of how they work and how to use them.</p>
    444 
    445 </div>
    446 
    447 </div>
    448 
    449 <!-- *********************************************************************** -->
    450 <h2>
    451   <a name="passtype">Pass classes and requirements</a>
    452 </h2>
    453 <!-- *********************************************************************** -->
    454 
    455 <div>
    456 
    457 <p>One of the first things that you should do when designing a new pass is to
    458 decide what class you should subclass for your pass.  The <a
    459 href="#basiccode">Hello World</a> example uses the <tt><a
    460 href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
    461 did not discuss why or when this should occur.  Here we talk about the classes
    462 available, from the most general to the most specific.</p>
    463 
    464 <p>When choosing a superclass for your Pass, you should choose the <b>most
    465 specific</b> class possible, while still being able to meet the requirements
    466 listed.  This gives the LLVM Pass Infrastructure information necessary to
    467 optimize how passes are run, so that the resultant compiler isn't unnecessarily
    468 slow.</p>
    469 
    470 <!-- ======================================================================= -->
    471 <h3>
    472   <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
    473 </h3>
    474 
    475 <div>
    476 
    477 <p>The most plain and boring type of pass is the "<tt><a
    478 href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
    479 class.  This pass type is used for passes that do not have to be run, do not
    480 change state, and never need to be updated.  This is not a normal type of
    481 transformation or analysis, but can provide information about the current
    482 compiler configuration.</p>
    483 
    484 <p>Although this pass class is very infrequently used, it is important for
    485 providing information about the current target machine being compiled for, and
    486 other static information that can affect the various transformations.</p>
    487 
    488 <p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
    489 invalidated, and are never "run".</p>
    490 
    491 </div>
    492 
    493 <!-- ======================================================================= -->
    494 <h3>
    495   <a name="ModulePass">The <tt>ModulePass</tt> class</a>
    496 </h3>
    497 
    498 <div>
    499 
    500 <p>The "<tt><a
    501 href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
    502 class is the most general of all superclasses that you can use.  Deriving from
    503 <tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
    504 referring to function bodies in no predictable order, or adding and removing
    505 functions.  Because nothing is known about the behavior of <tt>ModulePass</tt>
    506 subclasses, no optimization can be done for their execution.</p>
    507 
    508 <p>A module pass can use function level passes (e.g. dominators) using
    509 the getAnalysis interface
    510 <tt>getAnalysis&lt;DominatorTree&gt;(llvm::Function *)</tt> to provide the
    511 function to retrieve analysis result for, if the function pass does not require
    512 any module or immutable passes. Note that this can only be done for functions for which the
    513 analysis ran, e.g. in the case of dominators you should only ask for the
    514 DominatorTree for function definitions, not declarations.</p>
    515 
    516 <p>To write a correct <tt>ModulePass</tt> subclass, derive from
    517 <tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
    518 following signature:</p>
    519 
    520 <!-- _______________________________________________________________________ -->
    521 <h4>
    522   <a name="runOnModule">The <tt>runOnModule</tt> method</a>
    523 </h4>
    524 
    525 <div>
    526 
    527 <div class="doc_code"><pre>
    528   <b>virtual bool</b> runOnModule(Module &amp;M) = 0;
    529 </pre></div>
    530 
    531 <p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
    532 It should return true if the module was modified by the transformation and
    533 false otherwise.</p>
    534 
    535 </div>
    536 
    537 </div>
    538 
    539 <!-- ======================================================================= -->
    540 <h3>
    541   <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
    542 </h3>
    543 
    544 <div>
    545 
    546 <p>The "<tt><a
    547 href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
    548 is used by passes that need to traverse the program bottom-up on the call graph
    549 (callees before callers).  Deriving from CallGraphSCCPass provides some
    550 mechanics for building and traversing the CallGraph, but also allows the system
    551 to optimize execution of CallGraphSCCPass's.  If your pass meets the
    552 requirements outlined below, and doesn't meet the requirements of a <tt><a
    553 href="#FunctionPass">FunctionPass</a></tt> or <tt><a
    554 href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
    555 <tt>CallGraphSCCPass</tt>.</p>
    556 
    557 <p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
    558 
    559 <p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
    560 
    561 <ol>
    562 
    563 <li>... <em>not allowed</em> to inspect or modify any <tt>Function</tt>s other
    564 than those in the current SCC and the direct callers and direct callees of the
    565 SCC.</li>
    566 
    567 <li>... <em>required</em> to preserve the current CallGraph object, updating it
    568 to reflect any changes made to the program.</li>
    569 
    570 <li>... <em>not allowed</em> to add or remove SCC's from the current Module,
    571 though they may change the contents of an SCC.</li>
    572 
    573 <li>... <em>allowed</em> to add or remove global variables from the current
    574 Module.</li>
    575 
    576 <li>... <em>allowed</em> to maintain state across invocations of
    577     <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
    578 </ol>
    579 
    580 <p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
    581 because it has to handle SCCs with more than one node in it.  All of the virtual
    582 methods described below should return true if they modified the program, or
    583 false if they didn't.</p>
    584 
    585 <!-- _______________________________________________________________________ -->
    586 <h4>
    587   <a name="doInitialization_scc">
    588     The <tt>doInitialization(CallGraph &amp;)</tt> method
    589   </a>
    590 </h4>
    591 
    592 <div>
    593 
    594 <div class="doc_code"><pre>
    595   <b>virtual bool</b> doInitialization(CallGraph &amp;CG);
    596 </pre></div>
    597 
    598 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
    599 <tt>CallGraphSCCPass</tt>'s are not allowed to do.  They can add and remove
    600 functions, get pointers to functions, etc.  The <tt>doInitialization</tt> method
    601 is designed to do simple initialization type of stuff that does not depend on
    602 the SCCs being processed.  The <tt>doInitialization</tt> method call is not
    603 scheduled to overlap with any other pass executions (thus it should be very
    604 fast).</p>
    605 
    606 </div>
    607 
    608 <!-- _______________________________________________________________________ -->
    609 <h4>
    610   <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
    611 </h4>
    612 
    613 <div>
    614 
    615 <div class="doc_code"><pre>
    616   <b>virtual bool</b> runOnSCC(CallGraphSCC &amp;SCC) = 0;
    617 </pre></div>
    618 
    619 <p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
    620 should return true if the module was modified by the transformation, false
    621 otherwise.</p>
    622 
    623 </div>
    624 
    625 <!-- _______________________________________________________________________ -->
    626 <h4>
    627   <a name="doFinalization_scc">
    628     The <tt>doFinalization(CallGraph &amp;)</tt> method
    629   </a>
    630 </h4>
    631 
    632 <div>
    633 
    634 <div class="doc_code"><pre>
    635   <b>virtual bool</b> doFinalization(CallGraph &amp;CG);
    636 </pre></div>
    637 
    638 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    639 called when the pass framework has finished calling <a
    640 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
    641 program being compiled.</p>
    642 
    643 </div>
    644 
    645 </div>
    646 
    647 <!-- ======================================================================= -->
    648 <h3>
    649   <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
    650 </h3>
    651 
    652 <div>
    653 
    654 <p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
    655 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
    656 subclasses do have a predictable, local behavior that can be expected by the
    657 system.  All <tt>FunctionPass</tt> execute on each function in the program
    658 independent of all of the other functions in the program.
    659 <tt>FunctionPass</tt>'s do not require that they are executed in a particular
    660 order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
    661 
    662 <p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
    663 
    664 <ol>
    665 <li>Modify a Function other than the one currently being processed.</li>
    666 <li>Add or remove Function's from the current Module.</li>
    667 <li>Add or remove global variables from the current Module.</li>
    668 <li>Maintain state across invocations of
    669     <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
    670 </ol>
    671 
    672 <p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
    673 href="#basiccode">Hello World</a> pass for example).  <tt>FunctionPass</tt>'s
    674 may overload three virtual methods to do their work.  All of these methods
    675 should return true if they modified the program, or false if they didn't.</p>
    676 
    677 <!-- _______________________________________________________________________ -->
    678 <h4>
    679   <a name="doInitialization_mod">
    680     The <tt>doInitialization(Module &amp;)</tt> method
    681   </a>
    682 </h4>
    683 
    684 <div>
    685 
    686 <div class="doc_code"><pre>
    687   <b>virtual bool</b> doInitialization(Module &amp;M);
    688 </pre></div>
    689 
    690 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
    691 <tt>FunctionPass</tt>'s are not allowed to do.  They can add and remove
    692 functions, get pointers to functions, etc.  The <tt>doInitialization</tt> method
    693 is designed to do simple initialization type of stuff that does not depend on
    694 the functions being processed.  The <tt>doInitialization</tt> method call is not
    695 scheduled to overlap with any other pass executions (thus it should be very
    696 fast).</p>
    697 
    698 <p>A good example of how this method should be used is the <a
    699 href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
    700 pass.  This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
    701 platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls.  It
    702 uses the <tt>doInitialization</tt> method to get a reference to the malloc and
    703 free functions that it needs, adding prototypes to the module if necessary.</p>
    704 
    705 </div>
    706 
    707 <!-- _______________________________________________________________________ -->
    708 <h4>
    709   <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
    710 </h4>
    711 
    712 <div>
    713 
    714 <div class="doc_code"><pre>
    715   <b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
    716 </pre></div><p>
    717 
    718 <p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
    719 the transformation or analysis work of your pass.  As usual, a true value should
    720 be returned if the function is modified.</p>
    721 
    722 </div>
    723 
    724 <!-- _______________________________________________________________________ -->
    725 <h4>
    726   <a name="doFinalization_mod">
    727     The <tt>doFinalization(Module &amp;)</tt> method
    728   </a>
    729 </h4>
    730 
    731 <div>
    732 
    733 <div class="doc_code"><pre>
    734   <b>virtual bool</b> doFinalization(Module &amp;M);
    735 </pre></div>
    736 
    737 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    738 called when the pass framework has finished calling <a
    739 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
    740 program being compiled.</p>
    741 
    742 </div>
    743 
    744 </div>
    745 
    746 <!-- ======================================================================= -->
    747 <h3>
    748   <a name="LoopPass">The <tt>LoopPass</tt> class </a>
    749 </h3>
    750 
    751 <div>
    752 
    753 <p> All <tt>LoopPass</tt> execute on each loop in the function independent of
    754 all of the other loops in the function. <tt>LoopPass</tt> processes loops in
    755 loop nest order such that outer most loop is processed last. </p>
    756 
    757 <p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
    758 <tt>LPPassManager</tt> interface. Implementing a loop pass is usually
    759 straightforward. <tt>LoopPass</tt>'s may overload three virtual methods to
    760 do their work. All these methods should return true if they modified the 
    761 program, or false if they didn't. </p>
    762 
    763 <!-- _______________________________________________________________________ -->
    764 <h4>
    765   <a name="doInitialization_loop">
    766     The <tt>doInitialization(Loop *,LPPassManager &amp;)</tt> method
    767   </a>
    768 </h4>
    769 
    770 <div>
    771 
    772 <div class="doc_code"><pre>
    773   <b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
    774 </pre></div>
    775 
    776 <p>The <tt>doInitialization</tt> method is designed to do simple initialization 
    777 type of stuff that does not depend on the functions being processed.  The 
    778 <tt>doInitialization</tt> method call is not scheduled to overlap with any 
    779 other pass executions (thus it should be very fast). LPPassManager 
    780 interface should be used to access Function or Module level analysis
    781 information.</p>
    782 
    783 </div>
    784 
    785 
    786 <!-- _______________________________________________________________________ -->
    787 <h4>
    788   <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
    789 </h4>
    790 
    791 <div>
    792 
    793 <div class="doc_code"><pre>
    794   <b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
    795 </pre></div><p>
    796 
    797 <p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
    798 the transformation or analysis work of your pass.  As usual, a true value should
    799 be returned if the function is modified. <tt>LPPassManager</tt> interface
    800 should be used to update loop nest.</p>
    801 
    802 </div>
    803 
    804 <!-- _______________________________________________________________________ -->
    805 <h4>
    806   <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
    807 </h4>
    808 
    809 <div>
    810 
    811 <div class="doc_code"><pre>
    812   <b>virtual bool</b> doFinalization();
    813 </pre></div>
    814 
    815 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    816 called when the pass framework has finished calling <a
    817 href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
    818 program being compiled. </p>
    819 
    820 </div>
    821 
    822 </div>
    823 
    824 <!-- ======================================================================= -->
    825 <h3>
    826   <a name="RegionPass">The <tt>RegionPass</tt> class </a>
    827 </h3>
    828 
    829 <div>
    830 
    831 <p> <tt>RegionPass</tt> is similar to <a href="#LoopPass"><tt>LoopPass</tt></a>,
    832 but executes on each single entry single exit region in the function.
    833 <tt>RegionPass</tt> processes regions in nested order such that the outer most
    834 region is processed last.  </p>
    835 
    836 <p> <tt>RegionPass</tt> subclasses are allowed to update the region tree by using
    837 the <tt>RGPassManager</tt> interface. You may overload three virtual methods of
    838 <tt>RegionPass</tt> to implement your own region pass. All these
    839 methods should return true if they modified the program, or false if they didn not.
    840 </p>
    841 
    842 <!-- _______________________________________________________________________ -->
    843 <h4>
    844   <a name="doInitialization_region">
    845     The <tt>doInitialization(Region *, RGPassManager &amp;)</tt> method
    846   </a>
    847 </h4>
    848 
    849 <div>
    850 
    851 <div class="doc_code"><pre>
    852   <b>virtual bool</b> doInitialization(Region *, RGPassManager &amp;RGM);
    853 </pre></div>
    854 
    855 <p>The <tt>doInitialization</tt> method is designed to do simple initialization
    856 type of stuff that does not depend on the functions being processed.  The
    857 <tt>doInitialization</tt> method call is not scheduled to overlap with any
    858 other pass executions (thus it should be very fast). RPPassManager
    859 interface should be used to access Function or Module level analysis
    860 information.</p>
    861 
    862 </div>
    863 
    864 
    865 <!-- _______________________________________________________________________ -->
    866 <h4>
    867   <a name="runOnRegion">The <tt>runOnRegion</tt> method</a>
    868 </h4>
    869 
    870 <div>
    871 
    872 <div class="doc_code"><pre>
    873   <b>virtual bool</b> runOnRegion(Region *, RGPassManager &amp;RGM) = 0;
    874 </pre></div><p>
    875 
    876 <p>The <tt>runOnRegion</tt> method must be implemented by your subclass to do
    877 the transformation or analysis work of your pass.  As usual, a true value should
    878 be returned if the region is modified. <tt>RGPassManager</tt> interface
    879 should be used to update region tree.</p>
    880 
    881 </div>
    882 
    883 <!-- _______________________________________________________________________ -->
    884 <h4>
    885   <a name="doFinalization_region">The <tt>doFinalization()</tt> method</a>
    886 </h4>
    887 
    888 <div>
    889 
    890 <div class="doc_code"><pre>
    891   <b>virtual bool</b> doFinalization();
    892 </pre></div>
    893 
    894 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    895 called when the pass framework has finished calling <a
    896 href="#runOnRegion"><tt>runOnRegion</tt></a> for every region in the
    897 program being compiled. </p>
    898 
    899 </div>
    900 
    901 </div>
    902 
    903 <!-- ======================================================================= -->
    904 <h3>
    905   <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
    906 </h3>
    907 
    908 <div>
    909 
    910 <p><tt>BasicBlockPass</tt>'s are just like <a
    911 href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
    912 their scope of inspection and modification to a single basic block at a time.
    913 As such, they are <b>not</b> allowed to do any of the following:</p>
    914 
    915 <ol>
    916 <li>Modify or inspect any basic blocks outside of the current one</li>
    917 <li>Maintain state across invocations of
    918     <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
    919 <li>Modify the control flow graph (by altering terminator instructions)</li>
    920 <li>Any of the things forbidden for
    921     <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
    922 </ol>
    923 
    924 <p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
    925 optimizations.  They may override the same <a
    926 href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
    927 href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
    928 href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
    929 
    930 <!-- _______________________________________________________________________ -->
    931 <h4>
    932   <a name="doInitialization_fn">
    933     The <tt>doInitialization(Function &amp;)</tt> method
    934   </a>
    935 </h4>
    936 
    937 <div>
    938 
    939 <div class="doc_code"><pre>
    940   <b>virtual bool</b> doInitialization(Function &amp;F);
    941 </pre></div>
    942 
    943 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
    944 <tt>BasicBlockPass</tt>'s are not allowed to do, but that
    945 <tt>FunctionPass</tt>'s can.  The <tt>doInitialization</tt> method is designed
    946 to do simple initialization that does not depend on the
    947 BasicBlocks being processed.  The <tt>doInitialization</tt> method call is not
    948 scheduled to overlap with any other pass executions (thus it should be very
    949 fast).</p>
    950 
    951 </div>
    952 
    953 <!-- _______________________________________________________________________ -->
    954 <h4>
    955   <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
    956 </h4>
    957 
    958 <div>
    959 
    960 <div class="doc_code"><pre>
    961   <b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
    962 </pre></div>
    963 
    964 <p>Override this function to do the work of the <tt>BasicBlockPass</tt>.  This
    965 function is not allowed to inspect or modify basic blocks other than the
    966 parameter, and are not allowed to modify the CFG.  A true value must be returned
    967 if the basic block is modified.</p>
    968 
    969 </div>
    970 
    971 <!-- _______________________________________________________________________ -->
    972 <h4>
    973   <a name="doFinalization_fn">
    974     The <tt>doFinalization(Function &amp;)</tt> method
    975   </a>
    976 </h4>
    977 
    978 <div>
    979 
    980 <div class="doc_code"><pre>
    981   <b>virtual bool</b> doFinalization(Function &amp;F);
    982 </pre></div>
    983 
    984 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    985 called when the pass framework has finished calling <a
    986 href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
    987 program being compiled.  This can be used to perform per-function
    988 finalization.</p>
    989 
    990 </div>
    991 
    992 </div>
    993 
    994 <!-- ======================================================================= -->
    995 <h3>
    996   <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
    997 </h3>
    998 
    999 <div>
   1000 
   1001 <p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
   1002 executes on the machine-dependent representation of each LLVM function in the
   1003 program.</p>
   1004 
   1005 <p>Code generator passes are registered and initialized specially by
   1006 <tt>TargetMachine::addPassesToEmitFile</tt> and similar routines, so they
   1007 cannot generally be run from the <tt>opt</tt> or <tt>bugpoint</tt>
   1008 commands.</p>
   1009 
   1010 <p>A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
   1011 the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
   1012 <tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
   1013 <tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
   1014 
   1015 <ol>
   1016 <li>Modify or create any LLVM IR Instructions, BasicBlocks, Arguments,
   1017     Functions, GlobalVariables, GlobalAliases, or Modules.</li>
   1018 <li>Modify a MachineFunction other than the one currently being processed.</li>
   1019 <li>Maintain state across invocations of <a
   1020 href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
   1021 data)</li>
   1022 </ol>
   1023 
   1024 <!-- _______________________________________________________________________ -->
   1025 <h4>
   1026   <a name="runOnMachineFunction">
   1027     The <tt>runOnMachineFunction(MachineFunction &amp;MF)</tt> method
   1028   </a>
   1029 </h4>
   1030 
   1031 <div>
   1032 
   1033 <div class="doc_code"><pre>
   1034   <b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
   1035 </pre></div>
   1036 
   1037 <p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
   1038 <tt>MachineFunctionPass</tt>; that is, you should override this method to do the
   1039 work of your <tt>MachineFunctionPass</tt>.</p>
   1040 
   1041 <p>The <tt>runOnMachineFunction</tt> method is called on every
   1042 <tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
   1043 <tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
   1044 representation of the function. If you want to get at the LLVM <tt>Function</tt>
   1045 for the <tt>MachineFunction</tt> you're working on, use
   1046 <tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
   1047 remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
   1048 <tt>MachineFunctionPass</tt>.</p>
   1049 
   1050 </div>
   1051 
   1052 </div>
   1053 
   1054 </div>
   1055 
   1056 <!-- *********************************************************************** -->
   1057 <h2>
   1058   <a name="registration">Pass registration</a>
   1059 </h2>
   1060 <!-- *********************************************************************** -->
   1061 
   1062 <div>
   1063 
   1064 <p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
   1065 pass registration works, and discussed some of the reasons that it is used and
   1066 what it does.  Here we discuss how and why passes are registered.</p>
   1067 
   1068 <p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
   1069 template.  The template parameter is the name of the pass that is to be used on
   1070 the command line to specify that the pass should be added to a program (for
   1071 example, with <tt>opt</tt> or <tt>bugpoint</tt>).  The first argument is the
   1072 name of the pass, which is to be used for the <tt>-help</tt> output of
   1073 programs, as
   1074 well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
   1075 
   1076 <p>If you want your pass to be easily dumpable, you should 
   1077 implement the virtual <tt>print</tt> method:</p>
   1078 
   1079 <!-- _______________________________________________________________________ -->
   1080 <h4>
   1081   <a name="print">The <tt>print</tt> method</a>
   1082 </h4>
   1083 
   1084 <div>
   1085 
   1086 <div class="doc_code"><pre>
   1087   <b>virtual void</b> print(std::ostream &amp;O, <b>const</b> Module *M) <b>const</b>;
   1088 </pre></div>
   1089 
   1090 <p>The <tt>print</tt> method must be implemented by "analyses" in order to print
   1091 a human readable version of the analysis results.  This is useful for debugging
   1092 an analysis itself, as well as for other people to figure out how an analysis
   1093 works.  Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
   1094 
   1095 <p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
   1096 and the <tt>Module</tt> parameter gives a pointer to the top level module of the
   1097 program that has been analyzed.  Note however that this pointer may be null in
   1098 certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
   1099 debugger), so it should only be used to enhance debug output, it should not be
   1100 depended on.</p>
   1101 
   1102 </div>
   1103 
   1104 </div>
   1105 
   1106 <!-- *********************************************************************** -->
   1107 <h2>
   1108   <a name="interaction">Specifying interactions between passes</a>
   1109 </h2>
   1110 <!-- *********************************************************************** -->
   1111 
   1112 <div>
   1113 
   1114 <p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
   1115 that passes interact with each other correctly.  Because <tt>PassManager</tt>
   1116 tries to <a href="#passmanager">optimize the execution of passes</a> it must
   1117 know how the passes interact with each other and what dependencies exist between
   1118 the various passes.  To track this, each pass can declare the set of passes that
   1119 are required to be executed before the current pass, and the passes which are
   1120 invalidated by the current pass.</p>
   1121 
   1122 <p>Typically this functionality is used to require that analysis results are
   1123 computed before your pass is run.  Running arbitrary transformation passes can
   1124 invalidate the computed analysis results, which is what the invalidation set
   1125 specifies.  If a pass does not implement the <tt><a
   1126 href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
   1127 having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
   1128 
   1129 <!-- _______________________________________________________________________ -->
   1130 <h4>
   1131   <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
   1132 </h4>
   1133 
   1134 <div>
   1135 
   1136 <div class="doc_code"><pre>
   1137   <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
   1138 </pre></div>
   1139 
   1140 <p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
   1141 invalidated sets may be specified for your transformation.  The implementation
   1142 should fill in the <tt><a
   1143 href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
   1144 object with information about which passes are required and not invalidated.  To
   1145 do this, a pass may call any of the following methods on the AnalysisUsage
   1146 object:</p>
   1147 </div>
   1148 
   1149 <!-- _______________________________________________________________________ -->
   1150 <h4>
   1151   <a name="AU::addRequired">
   1152     The <tt>AnalysisUsage::addRequired&lt;&gt;</tt>
   1153     and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods
   1154   </a>
   1155 </h4>
   1156 
   1157 <div>
   1158 <p>
   1159 If your pass requires a previous pass to be executed (an analysis for example),
   1160 it can use one of these methods to arrange for it to be run before your pass.
   1161 LLVM has many different types of analyses and passes that can be required,
   1162 spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
   1163 Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
   1164 be no critical edges in the CFG when your pass has been run.
   1165 </p>
   1166 
   1167 <p>
   1168 Some analyses chain to other analyses to do their job.  For example, an <a
   1169 href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
   1170 href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes.  In
   1171 cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
   1172 used instead of the <tt>addRequired</tt> method.  This informs the PassManager
   1173 that the transitively required pass should be alive as long as the requiring
   1174 pass is.
   1175 </p>
   1176 </div>
   1177 
   1178 <!-- _______________________________________________________________________ -->
   1179 <h4>
   1180   <a name="AU::addPreserved">
   1181     The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method
   1182   </a>
   1183 </h4>
   1184 
   1185 <div>
   1186 <p>
   1187 One of the jobs of the PassManager is to optimize how and when analyses are run.
   1188 In particular, it attempts to avoid recomputing data unless it needs to.  For
   1189 this reason, passes are allowed to declare that they preserve (i.e., they don't
   1190 invalidate) an existing analysis if it's available.  For example, a simple
   1191 constant folding pass would not modify the CFG, so it can't possibly affect the
   1192 results of dominator analysis.  By default, all passes are assumed to invalidate
   1193 all others.
   1194 </p>
   1195 
   1196 <p>
   1197 The <tt>AnalysisUsage</tt> class provides several methods which are useful in
   1198 certain circumstances that are related to <tt>addPreserved</tt>.  In particular,
   1199 the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
   1200 not modify the LLVM program at all (which is true for analyses), and the
   1201 <tt>setPreservesCFG</tt> method can be used by transformations that change
   1202 instructions in the program but do not modify the CFG or terminator instructions
   1203 (note that this property is implicitly set for <a
   1204 href="#BasicBlockPass">BasicBlockPass</a>'s).
   1205 </p>
   1206 
   1207 <p>
   1208 <tt>addPreserved</tt> is particularly useful for transformations like
   1209 <tt>BreakCriticalEdges</tt>.  This pass knows how to update a small set of loop
   1210 and dominator related analyses if they exist, so it can preserve them, despite
   1211 the fact that it hacks on the CFG.
   1212 </p>
   1213 </div>
   1214 
   1215 <!-- _______________________________________________________________________ -->
   1216 <h4>
   1217   <a name="AU::examples">
   1218     Example implementations of <tt>getAnalysisUsage</tt>
   1219   </a>
   1220 </h4>
   1221 
   1222 <div>
   1223 
   1224 <div class="doc_code"><pre>
   1225   <i>// This example modifies the program, but does not modify the CFG</i>
   1226   <b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
   1227     AU.setPreservesCFG();
   1228     AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
   1229   }
   1230 </pre></div>
   1231 
   1232 </div>
   1233 
   1234 <!-- _______________________________________________________________________ -->
   1235 <h4>
   1236   <a name="getAnalysis">
   1237     The <tt>getAnalysis&lt;&gt;</tt> and
   1238     <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods
   1239   </a>
   1240 </h4>
   1241 
   1242 <div>
   1243 
   1244 <p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
   1245 your class, providing you with access to the passes that you declared that you
   1246 required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
   1247 method.  It takes a single template argument that specifies which pass class you
   1248 want, and returns a reference to that pass.  For example:</p>
   1249 
   1250 <div class="doc_code"><pre>
   1251    bool LICM::runOnFunction(Function &amp;F) {
   1252      LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
   1253      ...
   1254    }
   1255 </pre></div>
   1256 
   1257 <p>This method call returns a reference to the pass desired.  You may get a
   1258 runtime assertion failure if you attempt to get an analysis that you did not
   1259 declare as required in your <a
   1260 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation.  This
   1261 method can be called by your <tt>run*</tt> method implementation, or by any
   1262 other local method invoked by your <tt>run*</tt> method.
   1263 
   1264 A module level pass can use function level analysis info using this interface.
   1265 For example:</p>
   1266 
   1267 <div class="doc_code"><pre>
   1268    bool ModuleLevelPass::runOnModule(Module &amp;M) {
   1269      ...
   1270      DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
   1271      ...
   1272    }
   1273 </pre></div>
   1274 
   1275 <p>In above example, runOnFunction for DominatorTree is called by pass manager
   1276 before returning a reference to the desired pass.</p>
   1277 
   1278 <p>
   1279 If your pass is capable of updating analyses if they exist (e.g.,
   1280 <tt>BreakCriticalEdges</tt>, as described above), you can use the
   1281 <tt>getAnalysisIfAvailable</tt> method, which returns a pointer to the analysis
   1282 if it is active.  For example:</p>
   1283 
   1284 <div class="doc_code"><pre>
   1285   ...
   1286   if (DominatorSet *DS = getAnalysisIfAvailable&lt;DominatorSet&gt;()) {
   1287     <i>// A DominatorSet is active.  This code will update it.</i>
   1288   }
   1289   ...
   1290 </pre></div>
   1291 
   1292 </div>
   1293 
   1294 </div>
   1295 
   1296 <!-- *********************************************************************** -->
   1297 <h2>
   1298   <a name="analysisgroup">Implementing Analysis Groups</a>
   1299 </h2>
   1300 <!-- *********************************************************************** -->
   1301 
   1302 <div>
   1303 
   1304 <p>Now that we understand the basics of how passes are defined, how they are
   1305 used, and how they are required from other passes, it's time to get a little bit
   1306 fancier.  All of the pass relationships that we have seen so far are very
   1307 simple: one pass depends on one other specific pass to be run before it can run.
   1308 For many applications, this is great, for others, more flexibility is
   1309 required.</p>
   1310 
   1311 <p>In particular, some analyses are defined such that there is a single simple
   1312 interface to the analysis results, but multiple ways of calculating them.
   1313 Consider alias analysis for example.  The most trivial alias analysis returns
   1314 "may alias" for any alias query.  The most sophisticated analysis a
   1315 flow-sensitive, context-sensitive interprocedural analysis that can take a
   1316 significant amount of time to execute (and obviously, there is a lot of room
   1317 between these two extremes for other implementations).  To cleanly support
   1318 situations like this, the LLVM Pass Infrastructure supports the notion of
   1319 Analysis Groups.</p>
   1320 
   1321 <!-- _______________________________________________________________________ -->
   1322 <h4>
   1323   <a name="agconcepts">Analysis Group Concepts</a>
   1324 </h4>
   1325 
   1326 <div>
   1327 
   1328 <p>An Analysis Group is a single simple interface that may be implemented by
   1329 multiple different passes.  Analysis Groups can be given human readable names
   1330 just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
   1331 class.  An analysis group may have one or more implementations, one of which is
   1332 the "default" implementation.</p>
   1333 
   1334 <p>Analysis groups are used by client passes just like other passes are: the
   1335 <tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
   1336 In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
   1337 scans the available passes to see if any implementations of the analysis group
   1338 are available.  If none is available, the default implementation is created for
   1339 the pass to use.  All standard rules for <A href="#interaction">interaction
   1340 between passes</a> still apply.</p>
   1341 
   1342 <p>Although <a href="#registration">Pass Registration</a> is optional for normal
   1343 passes, all analysis group implementations must be registered, and must use the
   1344 <A href="#registerag"><tt>INITIALIZE_AG_PASS</tt></a> template to join the
   1345 implementation pool.  Also, a default implementation of the interface
   1346 <b>must</b> be registered with <A
   1347 href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
   1348 
   1349 <p>As a concrete example of an Analysis Group in action, consider the <a
   1350 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
   1351 analysis group.  The default implementation of the alias analysis interface (the
   1352 <tt><a
   1353 href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
   1354 pass) just does a few simple checks that don't require significant analysis to
   1355 compute (such as: two different globals can never alias each other, etc).
   1356 Passes that use the <tt><a
   1357 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
   1358 interface (for example the <tt><a
   1359 href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
   1360 not care which implementation of alias analysis is actually provided, they just
   1361 use the designated interface.</p>
   1362 
   1363 <p>From the user's perspective, commands work just like normal.  Issuing the
   1364 command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
   1365 instantiated and added to the pass sequence.  Issuing the command '<tt>opt
   1366 -somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
   1367 <tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
   1368 hypothetical example) instead.</p>
   1369 
   1370 </div>
   1371 
   1372 <!-- _______________________________________________________________________ -->
   1373 <h4>
   1374   <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
   1375 </h4>
   1376 
   1377 <div>
   1378 
   1379 <p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
   1380 group itself, while the <tt>INITIALIZE_AG_PASS</tt> is used to add pass
   1381 implementations to the analysis group.  First,
   1382 an analysis group should be registered, with a human readable name
   1383 provided for it.
   1384 Unlike registration of passes, there is no command line argument to be specified
   1385 for the Analysis Group Interface itself, because it is "abstract":</p>
   1386 
   1387 <div class="doc_code"><pre>
   1388   <b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
   1389 </pre></div>
   1390 
   1391 <p>Once the analysis is registered, passes can declare that they are valid
   1392 implementations of the interface by using the following code:</p>
   1393 
   1394 <div class="doc_code"><pre>
   1395 <b>namespace</b> {
   1396   //<i> Declare that we implement the AliasAnalysis interface</i>
   1397   INITIALIZE_AG_PASS(FancyAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>somefancyaa</i>",
   1398                      "<i>A more complex alias analysis implementation</i>",
   1399                      false, // <i>Is CFG Only?</i>
   1400                      true,  // <i>Is Analysis?</i>
   1401                      false, // <i>Is default Analysis Group implementation?</i>
   1402                     );
   1403 }
   1404 </pre></div>
   1405 
   1406 <p>This just shows a class <tt>FancyAA</tt> that 
   1407 uses the <tt>INITIALIZE_AG_PASS</tt> macro both to register and
   1408 to "join" the <tt><a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
   1409 analysis group.  Every implementation of an analysis group should join using
   1410 this macro.</p>
   1411 
   1412 <div class="doc_code"><pre>
   1413 <b>namespace</b> {
   1414   //<i> Declare that we implement the AliasAnalysis interface</i>
   1415   INITIALIZE_AG_PASS(BasicAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>basicaa</i>",
   1416                      "<i>Basic Alias Analysis (default AA impl)</i>",
   1417                      false, // <i>Is CFG Only?</i>
   1418                      true,  // <i>Is Analysis?</i>
   1419                      true, // <i>Is default Analysis Group implementation?</i>
   1420                     );
   1421 }
   1422 </pre></div>
   1423 
   1424 <p>Here we show how the default implementation is specified (using the final
   1425 argument to the <tt>INITIALIZE_AG_PASS</tt> template).  There must be exactly
   1426 one default implementation available at all times for an Analysis Group to be
   1427 used.  Only default implementation can derive from <tt>ImmutablePass</tt>. 
   1428 Here we declare that the
   1429  <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
   1430 pass is the default implementation for the interface.</p>
   1431 
   1432 </div>
   1433 
   1434 </div>
   1435 
   1436 <!-- *********************************************************************** -->
   1437 <h2>
   1438   <a name="passStatistics">Pass Statistics</a>
   1439 </h2>
   1440 <!-- *********************************************************************** -->
   1441 
   1442 <div>
   1443 <p>The <a
   1444 href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
   1445 class is designed to be an easy way to expose various success
   1446 metrics from passes.  These statistics are printed at the end of a
   1447 run, when the -stats command line option is enabled on the command
   1448 line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details. 
   1449 
   1450 </div>
   1451 
   1452 
   1453 <!-- *********************************************************************** -->
   1454 <h2>
   1455   <a name="passmanager">What PassManager does</a>
   1456 </h2>
   1457 <!-- *********************************************************************** -->
   1458 
   1459 <div>
   1460 
   1461 <p>The <a
   1462 href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
   1463 <a
   1464 href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
   1465 takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
   1466 are set up correctly, and then schedules passes to run efficiently.  All of the
   1467 LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
   1468 passes.</p>
   1469 
   1470 <p>The <tt>PassManager</tt> does two main things to try to reduce the execution
   1471 time of a series of passes:</p>
   1472 
   1473 <ol>
   1474 <li><b>Share analysis results</b> - The PassManager attempts to avoid
   1475 recomputing analysis results as much as possible.  This means keeping track of
   1476 which analyses are available already, which analyses get invalidated, and which
   1477 analyses are needed to be run for a pass.  An important part of work is that the
   1478 <tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
   1479 it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
   1480 results as soon as they are no longer needed.</li>
   1481 
   1482 <li><b>Pipeline the execution of passes on the program</b> - The
   1483 <tt>PassManager</tt> attempts to get better cache and memory usage behavior out
   1484 of a series of passes by pipelining the passes together.  This means that, given
   1485 a series of consecutive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
   1486 will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
   1487 the first function, then all of the <a
   1488 href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
   1489 etc... until the entire program has been run through the passes.
   1490 
   1491 <p>This improves the cache behavior of the compiler, because it is only touching
   1492 the LLVM program representation for a single function at a time, instead of
   1493 traversing the entire program.  It reduces the memory consumption of compiler,
   1494 because, for example, only one <a
   1495 href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
   1496 needs to be calculated at a time.  This also makes it possible to implement
   1497 some <a
   1498 href="#SMP">interesting enhancements</a> in the future.</p></li>
   1499 
   1500 </ol>
   1501 
   1502 <p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
   1503 much information it has about the behaviors of the passes it is scheduling.  For
   1504 example, the "preserved" set is intentionally conservative in the face of an
   1505 unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
   1506 Not implementing when it should be implemented will have the effect of not
   1507 allowing any analysis results to live across the execution of your pass.</p>
   1508 
   1509 <p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
   1510 options that is useful for debugging pass execution, seeing how things work, and
   1511 diagnosing when you should be preserving more analyses than you currently are
   1512 (To get information about all of the variants of the <tt>--debug-pass</tt>
   1513 option, just type '<tt>opt -help-hidden</tt>').</p>
   1514 
   1515 <p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
   1516 how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
   1517 Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
   1518 
   1519 <div class="doc_code"><pre>
   1520 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
   1521 Module Pass Manager
   1522   Function Pass Manager
   1523     Dominator Set Construction
   1524     Immediate Dominators Construction
   1525     Global Common Subexpression Elimination
   1526 --  Immediate Dominators Construction
   1527 --  Global Common Subexpression Elimination
   1528     Natural Loop Construction
   1529     Loop Invariant Code Motion
   1530 --  Natural Loop Construction
   1531 --  Loop Invariant Code Motion
   1532     Module Verifier
   1533 --  Dominator Set Construction
   1534 --  Module Verifier
   1535   Bitcode Writer
   1536 --Bitcode Writer
   1537 </pre></div>
   1538 
   1539 <p>This output shows us when passes are constructed and when the analysis
   1540 results are known to be dead (prefixed with '<tt>--</tt>').  Here we see that
   1541 GCSE uses dominator and immediate dominator information to do its job.  The LICM
   1542 pass uses natural loop information, which uses dominator sets, but not immediate
   1543 dominators.  Because immediate dominators are no longer useful after the GCSE
   1544 pass, it is immediately destroyed.  The dominator sets are then reused to
   1545 compute natural loop information, which is then used by the LICM pass.</p>
   1546 
   1547 <p>After the LICM pass, the module verifier runs (which is automatically added
   1548 by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
   1549 resultant LLVM code is well formed.  After it finishes, the dominator set
   1550 information is destroyed, after being computed once, and shared by three
   1551 passes.</p>
   1552 
   1553 <p>Lets see how this changes when we run the <a href="#basiccode">Hello
   1554 World</a> pass in between the two passes:</p>
   1555 
   1556 <div class="doc_code"><pre>
   1557 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
   1558 Module Pass Manager
   1559   Function Pass Manager
   1560     Dominator Set Construction
   1561     Immediate Dominators Construction
   1562     Global Common Subexpression Elimination
   1563 <b>--  Dominator Set Construction</b>
   1564 --  Immediate Dominators Construction
   1565 --  Global Common Subexpression Elimination
   1566 <b>    Hello World Pass
   1567 --  Hello World Pass
   1568     Dominator Set Construction</b>
   1569     Natural Loop Construction
   1570     Loop Invariant Code Motion
   1571 --  Natural Loop Construction
   1572 --  Loop Invariant Code Motion
   1573     Module Verifier
   1574 --  Dominator Set Construction
   1575 --  Module Verifier
   1576   Bitcode Writer
   1577 --Bitcode Writer
   1578 Hello: __main
   1579 Hello: puts
   1580 Hello: main
   1581 </pre></div>
   1582 
   1583 <p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
   1584 Dominator Set pass, even though it doesn't modify the code at all!  To fix this,
   1585 we need to add the following <a
   1586 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
   1587 
   1588 <div class="doc_code"><pre>
   1589     <i>// We don't modify the program, so we preserve all analyses</i>
   1590     <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
   1591       AU.setPreservesAll();
   1592     }
   1593 </pre></div>
   1594 
   1595 <p>Now when we run our pass, we get this output:</p>
   1596 
   1597 <div class="doc_code"><pre>
   1598 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
   1599 Pass Arguments:  -gcse -hello -licm
   1600 Module Pass Manager
   1601   Function Pass Manager
   1602     Dominator Set Construction
   1603     Immediate Dominators Construction
   1604     Global Common Subexpression Elimination
   1605 --  Immediate Dominators Construction
   1606 --  Global Common Subexpression Elimination
   1607     Hello World Pass
   1608 --  Hello World Pass
   1609     Natural Loop Construction
   1610     Loop Invariant Code Motion
   1611 --  Loop Invariant Code Motion
   1612 --  Natural Loop Construction
   1613     Module Verifier
   1614 --  Dominator Set Construction
   1615 --  Module Verifier
   1616   Bitcode Writer
   1617 --Bitcode Writer
   1618 Hello: __main
   1619 Hello: puts
   1620 Hello: main
   1621 </pre></div>
   1622 
   1623 <p>Which shows that we don't accidentally invalidate dominator information
   1624 anymore, and therefore do not have to compute it twice.</p>
   1625 
   1626 <!-- _______________________________________________________________________ -->
   1627 <h4>
   1628   <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
   1629 </h4>
   1630 
   1631 <div>
   1632 
   1633 <div class="doc_code"><pre>
   1634   <b>virtual void</b> releaseMemory();
   1635 </pre></div>
   1636 
   1637 <p>The <tt>PassManager</tt> automatically determines when to compute analysis
   1638 results, and how long to keep them around for.  Because the lifetime of the pass
   1639 object itself is effectively the entire duration of the compilation process, we
   1640 need some way to free analysis results when they are no longer useful.  The
   1641 <tt>releaseMemory</tt> virtual method is the way to do this.</p>
   1642 
   1643 <p>If you are writing an analysis or any other pass that retains a significant
   1644 amount of state (for use by another pass which "requires" your pass and uses the
   1645 <a href="#getAnalysis">getAnalysis</a> method) you should implement
   1646 <tt>releaseMemory</tt> to, well, release the memory allocated to maintain this
   1647 internal state.  This method is called after the <tt>run*</tt> method for the
   1648 class, before the next call of <tt>run*</tt> in your pass.</p>
   1649 
   1650 </div>
   1651 
   1652 </div>
   1653 
   1654 <!-- *********************************************************************** -->
   1655 <h2>
   1656   <a name="registering">Registering dynamically loaded passes</a>
   1657 </h2>
   1658 <!-- *********************************************************************** -->
   1659 
   1660 <div>
   1661 
   1662 <p><i>Size matters</i> when constructing production quality tools using llvm, 
   1663 both for the purposes of distribution, and for regulating the resident code size
   1664 when running on the target system. Therefore, it becomes desirable to
   1665 selectively use some passes, while omitting others and maintain the flexibility
   1666 to change configurations later on. You want to be able to do all this, and,
   1667 provide feedback to the user. This is where pass registration comes into
   1668 play.</p>
   1669 
   1670 <p>The fundamental mechanisms for pass registration are the
   1671 <tt>MachinePassRegistry</tt> class and subclasses of
   1672 <tt>MachinePassRegistryNode</tt>.</p>
   1673 
   1674 <p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
   1675 <tt>MachinePassRegistryNode</tt> objects.  This instance maintains the list and
   1676 communicates additions and deletions to the command line interface.</p>
   1677 
   1678 <p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
   1679 information provided about a particular pass.  This information includes the
   1680 command line name, the command help string and the address of the function used
   1681 to create an instance of the pass.  A global static constructor of one of these
   1682 instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
   1683 the static destructor <i>unregisters</i>. Thus a pass that is statically linked
   1684 in the tool will be registered at start up. A dynamically loaded pass will
   1685 register on load and unregister at unload.</p>
   1686 
   1687 <!-- _______________________________________________________________________ -->
   1688 <h3>
   1689   <a name="registering_existing">Using existing registries</a>
   1690 </h3>
   1691 
   1692 <div>
   1693 
   1694 <p>There are predefined registries to track instruction scheduling
   1695 (<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
   1696 machine passes.  Here we will describe how to <i>register</i> a register
   1697 allocator machine pass.</p>
   1698 
   1699 <p>Implement your register allocator machine pass.  In your register allocator
   1700 .cpp file add the following include;</p>
   1701 
   1702 <div class="doc_code"><pre>
   1703   #include "llvm/CodeGen/RegAllocRegistry.h"
   1704 </pre></div>
   1705 
   1706 <p>Also in your register allocator .cpp file, define a creator function in the
   1707 form; </p>
   1708 
   1709 <div class="doc_code"><pre>
   1710   FunctionPass *createMyRegisterAllocator() {
   1711     return new MyRegisterAllocator();
   1712   }
   1713 </pre></div>
   1714 
   1715 <p>Note that the signature of this function should match the type of
   1716 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.  In the same file add the
   1717 "installing" declaration, in the form;</p>
   1718 
   1719 <div class="doc_code"><pre>
   1720   static RegisterRegAlloc myRegAlloc("myregalloc",
   1721     "  my register allocator help string",
   1722     createMyRegisterAllocator);
   1723 </pre></div>
   1724 
   1725 <p>Note the two spaces prior to the help string produces a tidy result on the
   1726 -help query.</p>
   1727 
   1728 <div class="doc_code"><pre>
   1729 $ llc -help
   1730   ...
   1731   -regalloc                    - Register allocator to use (default=linearscan)
   1732     =linearscan                -   linear scan register allocator
   1733     =local                     -   local register allocator
   1734     =simple                    -   simple register allocator
   1735     =myregalloc                -   my register allocator help string
   1736   ...
   1737 </pre></div>
   1738 
   1739 <p>And that's it.  The user is now free to use <tt>-regalloc=myregalloc</tt> as
   1740 an option.  Registering instruction schedulers is similar except use the
   1741 <tt>RegisterScheduler</tt> class.  Note that the
   1742 <tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
   1743 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
   1744 
   1745 <p>To force the load/linking of your register allocator into the llc/lli tools,
   1746 add your creator function's global declaration to "Passes.h" and add a "pseudo"
   1747 call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
   1748 
   1749 </div>
   1750 
   1751 
   1752 <!-- _______________________________________________________________________ -->
   1753 <h3>
   1754   <a name="registering_new">Creating new registries</a>
   1755 </h3>
   1756 
   1757 <div>
   1758 
   1759 <p>The easiest way to get started is to clone one of the existing registries; we
   1760 recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>.  The key things to modify
   1761 are the class name and the <tt>FunctionPassCtor</tt> type.</p>
   1762 
   1763 <p>Then you need to declare the registry.  Example: if your pass registry is
   1764 <tt>RegisterMyPasses</tt> then define;</p>
   1765 
   1766 <div class="doc_code"><pre>
   1767 MachinePassRegistry RegisterMyPasses::Registry;
   1768 </pre></div>
   1769 
   1770 <p>And finally, declare the command line option for your passes.  Example:</p> 
   1771 
   1772 <div class="doc_code"><pre>
   1773   cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
   1774           RegisterPassParser&lt;RegisterMyPasses&gt; &gt;
   1775   MyPassOpt("mypass",
   1776             cl::init(&amp;createDefaultMyPass),
   1777             cl::desc("my pass option help")); 
   1778 </pre></div>
   1779 
   1780 <p>Here the command option is "mypass", with createDefaultMyPass as the default
   1781 creator.</p>
   1782 
   1783 </div>
   1784 
   1785 </div>
   1786 
   1787 <!-- *********************************************************************** -->
   1788 <h2>
   1789   <a name="debughints">Using GDB with dynamically loaded passes</a>
   1790 </h2>
   1791 <!-- *********************************************************************** -->
   1792 
   1793 <div>
   1794 
   1795 <p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
   1796 should be.  First of all, you can't set a breakpoint in a shared object that has
   1797 not been loaded yet, and second of all there are problems with inlined functions
   1798 in shared objects.  Here are some suggestions to debugging your pass with
   1799 GDB.</p>
   1800 
   1801 <p>For sake of discussion, I'm going to assume that you are debugging a
   1802 transformation invoked by <tt>opt</tt>, although nothing described here depends
   1803 on that.</p>
   1804 
   1805 <!-- _______________________________________________________________________ -->
   1806 <h4>
   1807   <a name="breakpoint">Setting a breakpoint in your pass</a>
   1808 </h4>
   1809 
   1810 <div>
   1811 
   1812 <p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
   1813 
   1814 <div class="doc_code"><pre>
   1815 $ <b>gdb opt</b>
   1816 GNU gdb 5.0
   1817 Copyright 2000 Free Software Foundation, Inc.
   1818 GDB is free software, covered by the GNU General Public License, and you are
   1819 welcome to change it and/or distribute copies of it under certain conditions.
   1820 Type "show copying" to see the conditions.
   1821 There is absolutely no warranty for GDB.  Type "show warranty" for details.
   1822 This GDB was configured as "sparc-sun-solaris2.6"...
   1823 (gdb)
   1824 </pre></div>
   1825 
   1826 <p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
   1827 time to load.  Be patient.  Since we cannot set a breakpoint in our pass yet
   1828 (the shared object isn't loaded until runtime), we must execute the process, and
   1829 have it stop before it invokes our pass, but after it has loaded the shared
   1830 object.  The most foolproof way of doing this is to set a breakpoint in
   1831 <tt>PassManager::run</tt> and then run the process with the arguments you
   1832 want:</p>
   1833 
   1834 <div class="doc_code"><pre>
   1835 (gdb) <b>break llvm::PassManager::run</b>
   1836 Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
   1837 (gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]</b>
   1838 Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
   1839 Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
   1840 70      bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
   1841 (gdb)
   1842 </pre></div>
   1843 
   1844 <p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
   1845 now free to set breakpoints in your pass so that you can trace through execution
   1846 or do other standard debugging stuff.</p>
   1847 
   1848 </div>
   1849 
   1850 <!-- _______________________________________________________________________ -->
   1851 <h4>
   1852   <a name="debugmisc">Miscellaneous Problems</a>
   1853 </h4>
   1854 
   1855 <div>
   1856 
   1857 <p>Once you have the basics down, there are a couple of problems that GDB has,
   1858 some with solutions, some without.</p>
   1859 
   1860 <ul>
   1861 <li>Inline functions have bogus stack information.  In general, GDB does a
   1862 pretty good job getting stack traces and stepping through inline functions.
   1863 When a pass is dynamically loaded however, it somehow completely loses this
   1864 capability.  The only solution I know of is to de-inline a function (move it
   1865 from the body of a class to a .cpp file).</li>
   1866 
   1867 <li>Restarting the program breaks breakpoints.  After following the information
   1868 above, you have succeeded in getting some breakpoints planted in your pass.  Nex
   1869 thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
   1870 and you start getting errors about breakpoints being unsettable.  The only way I
   1871 have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
   1872 already set in your pass, run the program, and re-set the breakpoints once
   1873 execution stops in <tt>PassManager::run</tt>.</li>
   1874 
   1875 </ul>
   1876 
   1877 <p>Hopefully these tips will help with common case debugging situations.  If
   1878 you'd like to contribute some tips of your own, just contact <a
   1879 href="mailto:sabre (a] nondot.org">Chris</a>.</p>
   1880 
   1881 </div>
   1882 
   1883 </div>
   1884 
   1885 <!-- *********************************************************************** -->
   1886 <h2>
   1887   <a name="future">Future extensions planned</a>
   1888 </h2>
   1889 <!-- *********************************************************************** -->
   1890 
   1891 <div>
   1892 
   1893 <p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
   1894 some nifty stuff, there are things we'd like to add in the future.  Here is
   1895 where we are going:</p>
   1896 
   1897 <!-- _______________________________________________________________________ -->
   1898 <h4>
   1899   <a name="SMP">Multithreaded LLVM</a>
   1900 </h4>
   1901 
   1902 <div>
   1903 
   1904 <p>Multiple CPU machines are becoming more common and compilation can never be
   1905 fast enough: obviously we should allow for a multithreaded compiler.  Because of
   1906 the semantics defined for passes above (specifically they cannot maintain state
   1907 across invocations of their <tt>run*</tt> methods), a nice clean way to
   1908 implement a multithreaded compiler would be for the <tt>PassManager</tt> class
   1909 to create multiple instances of each pass object, and allow the separate
   1910 instances to be hacking on different parts of the program at the same time.</p>
   1911 
   1912 <p>This implementation would prevent each of the passes from having to implement
   1913 multithreaded constructs, requiring only the LLVM core to have locking in a few
   1914 places (for global resources).  Although this is a simple extension, we simply
   1915 haven't had time (or multiprocessor machines, thus a reason) to implement this.
   1916 Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
   1917 
   1918 </div>
   1919 
   1920 </div>
   1921 
   1922 <!-- *********************************************************************** -->
   1923 <hr>
   1924 <address>
   1925   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1926   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   1927   <a href="http://validator.w3.org/check/referer"><img
   1928   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   1929 
   1930   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1931   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1932   Last modified: $Date$
   1933 </address>
   1934 
   1935 </body>
   1936 </html>
   1937