Home | History | Annotate | Download | only in tutorial
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 
      4 <html>
      5 <head>
      6   <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
      7   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8   <meta name="author" content="Chris Lattner">
      9   <link rel="stylesheet" href="../llvm.css" type="text/css">
     10 </head>
     11 
     12 <body>
     13 
     14 <h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
     15 
     16 <ul>
     17 <li><a href="index.html">Up to Tutorial Index</a></li>
     18 <li>Chapter 4
     19   <ol>
     20     <li><a href="#intro">Chapter 4 Introduction</a></li>
     21     <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
     22     <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
     23     <li><a href="#jit">Adding a JIT Compiler</a></li>
     24     <li><a href="#code">Full Code Listing</a></li>
     25   </ol>
     26 </li>
     27 <li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control 
     28 Flow</li>
     29 </ul>
     30 
     31 <div class="doc_author">
     32   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a></p>
     33 </div>
     34 
     35 <!-- *********************************************************************** -->
     36 <h2><a name="intro">Chapter 4 Introduction</a></h2>
     37 <!-- *********************************************************************** -->
     38 
     39 <div>
     40 
     41 <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
     42 with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple
     43 language and added support for generating LLVM IR.  This chapter describes
     44 two new techniques: adding optimizer support to your language, and adding JIT
     45 compiler support.  These additions will demonstrate how to get nice, efficient code 
     46 for the Kaleidoscope language.</p>
     47 
     48 </div>
     49 
     50 <!-- *********************************************************************** -->
     51 <h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
     52 <!-- *********************************************************************** -->
     53 
     54 <div>
     55 
     56 <p>
     57 Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately,
     58 it does not produce wonderful code.  The IRBuilder, however, does give us
     59 obvious optimizations when compiling simple code:</p>
     60 
     61 <div class="doc_code">
     62 <pre>
     63 ready&gt; <b>def test(x) 1+2+x;</b>
     64 Read function definition:
     65 define double @test(double %x) {
     66 entry:
     67         %addtmp = fadd double 3.000000e+00, %x
     68         ret double %addtmp
     69 }
     70 </pre>
     71 </div>
     72 
     73 <p>This code is not a literal transcription of the AST built by parsing the 
     74 input. That would be:
     75 
     76 <div class="doc_code">
     77 <pre>
     78 ready&gt; <b>def test(x) 1+2+x;</b>
     79 Read function definition:
     80 define double @test(double %x) {
     81 entry:
     82         %addtmp = fadd double 2.000000e+00, 1.000000e+00
     83         %addtmp1 = fadd double %addtmp, %x
     84         ret double %addtmp1
     85 }
     86 </pre>
     87 </div>
     88 
     89 <p>Constant folding, as seen above, in particular, is a very common and very
     90 important optimization: so much so that many language implementors implement
     91 constant folding support in their AST representation.</p>
     92 
     93 <p>With LLVM, you don't need this support in the AST.  Since all calls to build 
     94 LLVM IR go through the LLVM IR builder, the builder itself checked to see if 
     95 there was a constant folding opportunity when you call it.  If so, it just does 
     96 the constant fold and return the constant instead of creating an instruction.
     97 
     98 <p>Well, that was easy :).  In practice, we recommend always using
     99 <tt>IRBuilder</tt> when generating code like this.  It has no
    100 "syntactic overhead" for its use (you don't have to uglify your compiler with
    101 constant checks everywhere) and it can dramatically reduce the amount of
    102 LLVM IR that is generated in some cases (particular for languages with a macro
    103 preprocessor or that use a lot of constants).</p>
    104 
    105 <p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact
    106 that it does all of its analysis inline with the code as it is built.  If you
    107 take a slightly more complex example:</p>
    108 
    109 <div class="doc_code">
    110 <pre>
    111 ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
    112 ready> Read function definition:
    113 define double @test(double %x) {
    114 entry:
    115         %addtmp = fadd double 3.000000e+00, %x
    116         %addtmp1 = fadd double %x, 3.000000e+00
    117         %multmp = fmul double %addtmp, %addtmp1
    118         ret double %multmp
    119 }
    120 </pre>
    121 </div>
    122 
    123 <p>In this case, the LHS and RHS of the multiplication are the same value.  We'd
    124 really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
    125 of computing "<tt>x+3</tt>" twice.</p>
    126 
    127 <p>Unfortunately, no amount of local analysis will be able to detect and correct
    128 this.  This requires two transformations: reassociation of expressions (to 
    129 make the add's lexically identical) and Common Subexpression Elimination (CSE)
    130 to  delete the redundant add instruction.  Fortunately, LLVM provides a broad
    131 range of optimizations that you can use, in the form of "passes".</p>
    132 
    133 </div>
    134 
    135 <!-- *********************************************************************** -->
    136 <h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
    137 <!-- *********************************************************************** -->
    138 
    139 <div>
    140 
    141 <p>LLVM provides many optimization passes, which do many different sorts of
    142 things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold
    143 to the mistaken notion that one set of optimizations is right for all languages
    144 and for all situations.  LLVM allows a compiler implementor to make complete
    145 decisions about what optimizations to use, in which order, and in what
    146 situation.</p>
    147 
    148 <p>As a concrete example, LLVM supports both "whole module" passes, which look
    149 across as large of body of code as they can (often a whole file, but if run 
    150 at link time, this can be a substantial portion of the whole program).  It also
    151 supports and includes "per-function" passes which just operate on a single
    152 function at a time, without looking at other functions.  For more information
    153 on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
    154 to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM 
    155 Passes</a>.</p>
    156 
    157 <p>For Kaleidoscope, we are currently generating functions on the fly, one at
    158 a time, as the user types them in.  We aren't shooting for the ultimate
    159 optimization experience in this setting, but we also want to catch the easy and
    160 quick stuff where possible.  As such, we will choose to run a few per-function
    161 optimizations as the user types the function in.  If we wanted to make a "static
    162 Kaleidoscope compiler", we would use exactly the code we have now, except that
    163 we would defer running the optimizer until the entire file has been parsed.</p>
    164 
    165 <p>In order to get per-function optimizations going, we need to set up a
    166 <a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and
    167 organize the LLVM optimizations that we want to run.  Once we have that, we can
    168 add a set of optimizations to run.  The code looks like this:</p>
    169 
    170 <div class="doc_code">
    171 <pre>
    172   FunctionPassManager OurFPM(TheModule);
    173 
    174   // Set up the optimizer pipeline.  Start with registering info about how the
    175   // target lays out data structures.
    176   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
    177   // Provide basic AliasAnalysis support for GVN.
    178   OurFPM.add(createBasicAliasAnalysisPass());
    179   // Do simple "peephole" optimizations and bit-twiddling optzns.
    180   OurFPM.add(createInstructionCombiningPass());
    181   // Reassociate expressions.
    182   OurFPM.add(createReassociatePass());
    183   // Eliminate Common SubExpressions.
    184   OurFPM.add(createGVNPass());
    185   // Simplify the control flow graph (deleting unreachable blocks, etc).
    186   OurFPM.add(createCFGSimplificationPass());
    187 
    188   OurFPM.doInitialization();
    189 
    190   // Set the global so the code gen can use this.
    191   TheFPM = &amp;OurFPM;
    192 
    193   // Run the main "interpreter loop" now.
    194   MainLoop();
    195 </pre>
    196 </div>
    197 
    198 <p>This code defines a <tt>FunctionPassManager</tt>, "<tt>OurFPM</tt>".  It
    199 requires a pointer to the <tt>Module</tt> to construct itself.  Once it is set
    200 up, we use a series of "add" calls to add a bunch of LLVM passes.  The first
    201 pass is basically boilerplate, it adds a pass so that later optimizations know
    202 how the data structures in the program are laid out.  The
    203 "<tt>TheExecutionEngine</tt>" variable is related to the JIT, which we will get
    204 to in the next section.</p>
    205 
    206 <p>In this case, we choose to add 4 optimization passes.  The passes we chose
    207 here are a pretty standard set of "cleanup" optimizations that are useful for
    208 a wide variety of code.  I won't delve into what they do but, believe me,
    209 they are a good starting place :).</p>
    210 
    211 <p>Once the PassManager is set up, we need to make use of it.  We do this by
    212 running it after our newly created function is constructed (in 
    213 <tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p>
    214 
    215 <div class="doc_code">
    216 <pre>
    217   if (Value *RetVal = Body->Codegen()) {
    218     // Finish off the function.
    219     Builder.CreateRet(RetVal);
    220 
    221     // Validate the generated code, checking for consistency.
    222     verifyFunction(*TheFunction);
    223 
    224     <b>// Optimize the function.
    225     TheFPM-&gt;run(*TheFunction);</b>
    226     
    227     return TheFunction;
    228   }
    229 </pre>
    230 </div>
    231 
    232 <p>As you can see, this is pretty straightforward.  The 
    233 <tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place,
    234 improving (hopefully) its body.  With this in place, we can try our test above
    235 again:</p>
    236 
    237 <div class="doc_code">
    238 <pre>
    239 ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
    240 ready> Read function definition:
    241 define double @test(double %x) {
    242 entry:
    243         %addtmp = fadd double %x, 3.000000e+00
    244         %multmp = fmul double %addtmp, %addtmp
    245         ret double %multmp
    246 }
    247 </pre>
    248 </div>
    249 
    250 <p>As expected, we now get our nicely optimized code, saving a floating point
    251 add instruction from every execution of this function.</p>
    252 
    253 <p>LLVM provides a wide variety of optimizations that can be used in certain
    254 circumstances.  Some <a href="../Passes.html">documentation about the various 
    255 passes</a> is available, but it isn't very complete.  Another good source of
    256 ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
    257 <tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to 
    258 experiment with passes from the command line, so you can see if they do
    259 anything.</p>
    260 
    261 <p>Now that we have reasonable code coming out of our front-end, lets talk about
    262 executing it!</p>
    263 
    264 </div>
    265 
    266 <!-- *********************************************************************** -->
    267 <h2><a name="jit">Adding a JIT Compiler</a></h2>
    268 <!-- *********************************************************************** -->
    269 
    270 <div>
    271 
    272 <p>Code that is available in LLVM IR can have a wide variety of tools 
    273 applied to it.  For example, you can run optimizations on it (as we did above),
    274 you can dump it out in textual or binary forms, you can compile the code to an
    275 assembly file (.s) for some target, or you can JIT compile it.  The nice thing
    276 about the LLVM IR representation is that it is the "common currency" between
    277 many different parts of the compiler.
    278 </p>
    279 
    280 <p>In this section, we'll add JIT compiler support to our interpreter.  The
    281 basic idea that we want for Kaleidoscope is to have the user enter function
    282 bodies as they do now, but immediately evaluate the top-level expressions they
    283 type in.  For example, if they type in "1 + 2;", we should evaluate and print
    284 out 3.  If they define a function, they should be able to call it from the 
    285 command line.</p>
    286 
    287 <p>In order to do this, we first declare and initialize the JIT.  This is done
    288 by adding a global variable and a call in <tt>main</tt>:</p>
    289 
    290 <div class="doc_code">
    291 <pre>
    292 <b>static ExecutionEngine *TheExecutionEngine;</b>
    293 ...
    294 int main() {
    295   ..
    296   <b>// Create the JIT.  This takes ownership of the module.
    297   TheExecutionEngine = EngineBuilder(TheModule).create();</b>
    298   ..
    299 }
    300 </pre>
    301 </div>
    302 
    303 <p>This creates an abstract "Execution Engine" which can be either a JIT
    304 compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler
    305 for you if one is available for your platform, otherwise it will fall back to
    306 the interpreter.</p>
    307 
    308 <p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used.
    309 There are a variety of APIs that are useful, but the simplest one is the
    310 "<tt>getPointerToFunction(F)</tt>" method.  This method JIT compiles the
    311 specified LLVM Function and returns a function pointer to the generated machine
    312 code.  In our case, this means that we can change the code that parses a
    313 top-level expression to look like this:</p>
    314 
    315 <div class="doc_code">
    316 <pre>
    317 static void HandleTopLevelExpression() {
    318   // Evaluate a top-level expression into an anonymous function.
    319   if (FunctionAST *F = ParseTopLevelExpr()) {
    320     if (Function *LF = F-&gt;Codegen()) {
    321       LF->dump();  // Dump the function for exposition purposes.
    322     
    323       <b>// JIT the function, returning a function pointer.
    324       void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
    325       
    326       // Cast it to the right type (takes no arguments, returns a double) so we
    327       // can call it as a native function.
    328       double (*FP)() = (double (*)())(intptr_t)FPtr;
    329       fprintf(stderr, "Evaluated to %f\n", FP());</b>
    330     }
    331 </pre>
    332 </div>
    333 
    334 <p>Recall that we compile top-level expressions into a self-contained LLVM
    335 function that takes no arguments and returns the computed double.  Because the 
    336 LLVM JIT compiler matches the native platform ABI, this means that you can just
    337 cast the result pointer to a function pointer of that type and call it directly.
    338 This means, there is no difference between JIT compiled code and native machine
    339 code that is statically linked into your application.</p>
    340 
    341 <p>With just these two changes, lets see how Kaleidoscope works now!</p>
    342 
    343 <div class="doc_code">
    344 <pre>
    345 ready&gt; <b>4+5;</b>
    346 define double @""() {
    347 entry:
    348         ret double 9.000000e+00
    349 }
    350 
    351 <em>Evaluated to 9.000000</em>
    352 </pre>
    353 </div>
    354 
    355 <p>Well this looks like it is basically working.  The dump of the function
    356 shows the "no argument function that always returns double" that we synthesize
    357 for each top-level expression that is typed in.  This demonstrates very basic
    358 functionality, but can we do more?</p>
    359 
    360 <div class="doc_code">
    361 <pre>
    362 ready&gt; <b>def testfunc(x y) x + y*2; </b> 
    363 Read function definition:
    364 define double @testfunc(double %x, double %y) {
    365 entry:
    366         %multmp = fmul double %y, 2.000000e+00
    367         %addtmp = fadd double %multmp, %x
    368         ret double %addtmp
    369 }
    370 
    371 ready&gt; <b>testfunc(4, 10);</b>
    372 define double @""() {
    373 entry:
    374         %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
    375         ret double %calltmp
    376 }
    377 
    378 <em>Evaluated to 24.000000</em>
    379 </pre>
    380 </div>
    381 
    382 <p>This illustrates that we can now call user code, but there is something a bit
    383 subtle going on here.  Note that we only invoke the JIT on the anonymous
    384 functions that <em>call testfunc</em>, but we never invoked it
    385 on <em>testfunc</em> itself.  What actually happened here is that the JIT
    386 scanned for all non-JIT'd functions transitively called from the anonymous
    387 function and compiled all of them before returning
    388 from <tt>getPointerToFunction()</tt>.</p>
    389 
    390 <p>The JIT provides a number of other more advanced interfaces for things like
    391 freeing allocated machine code, rejit'ing functions to update them, etc.
    392 However, even with this simple code, we get some surprisingly powerful
    393 capabilities - check this out (I removed the dump of the anonymous functions,
    394 you should get the idea by now :) :</p>
    395 
    396 <div class="doc_code">
    397 <pre>
    398 ready&gt; <b>extern sin(x);</b>
    399 Read extern: 
    400 declare double @sin(double)
    401 
    402 ready&gt; <b>extern cos(x);</b>
    403 Read extern: 
    404 declare double @cos(double)
    405 
    406 ready&gt; <b>sin(1.0);</b>
    407 <em>Evaluated to 0.841471</em>
    408 
    409 ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
    410 Read function definition:
    411 define double @foo(double %x) {
    412 entry:
    413         %calltmp = call double @sin(double %x)
    414         %multmp = fmul double %calltmp, %calltmp
    415         %calltmp2 = call double @cos(double %x)
    416         %multmp4 = fmul double %calltmp2, %calltmp2
    417         %addtmp = fadd double %multmp, %multmp4
    418         ret double %addtmp
    419 }
    420 
    421 ready&gt; <b>foo(4.0);</b>
    422 <em>Evaluated to 1.000000</em>
    423 </pre>
    424 </div>
    425 
    426 <p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly
    427 simple: in this
    428 example, the JIT started execution of a function and got to a function call.  It
    429 realized that the function was not yet JIT compiled and invoked the standard set
    430 of routines to resolve the function.  In this case, there is no body defined
    431 for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the
    432 Kaleidoscope process itself.
    433 Since "<tt>sin</tt>" is defined within the JIT's address space, it simply
    434 patches up calls in the module to call the libm version of <tt>sin</tt>
    435 directly.</p>
    436 
    437 <p>The LLVM JIT provides a number of interfaces (look in the 
    438 <tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get
    439 resolved.  It allows you to establish explicit mappings between IR objects and
    440 addresses (useful for LLVM global variables that you want to map to static
    441 tables, for example), allows you to dynamically decide on the fly based on the
    442 function name, and even allows you to have the JIT compile functions lazily the
    443 first time they're called.</p>
    444 
    445 <p>One interesting application of this is that we can now extend the language
    446 by writing arbitrary C++ code to implement operations.  For example, if we add:
    447 </p>
    448 
    449 <div class="doc_code">
    450 <pre>
    451 /// putchard - putchar that takes a double and returns 0.
    452 extern "C" 
    453 double putchard(double X) {
    454   putchar((char)X);
    455   return 0;
    456 }
    457 </pre>
    458 </div>
    459 
    460 <p>Now we can produce simple output to the console by using things like:
    461 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
    462 the console (120 is the ASCII code for 'x').  Similar code could be used to 
    463 implement file I/O, console input, and many other capabilities in
    464 Kaleidoscope.</p>
    465 
    466 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
    467 this point, we can compile a non-Turing-complete programming language, optimize
    468 and JIT compile it in a user-driven way.  Next up we'll look into <a 
    469 href="LangImpl5.html">extending the language with control flow constructs</a>,
    470 tackling some interesting LLVM IR issues along the way.</p>
    471 
    472 </div>
    473 
    474 <!-- *********************************************************************** -->
    475 <h2><a name="code">Full Code Listing</a></h2>
    476 <!-- *********************************************************************** -->
    477 
    478 <div>
    479 
    480 <p>
    481 Here is the complete code listing for our running example, enhanced with the
    482 LLVM JIT and optimizer.  To build this example, use:
    483 </p>
    484 
    485 <div class="doc_code">
    486 <pre>
    487    # Compile
    488    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
    489    # Run
    490    ./toy
    491 </pre>
    492 </div>
    493 
    494 <p>
    495 If you are compiling this on Linux, make sure to add the "-rdynamic" option 
    496 as well.  This makes sure that the external functions are resolved properly 
    497 at runtime.</p>
    498 
    499 <p>Here is the code:</p>
    500 
    501 <div class="doc_code">
    502 <pre>
    503 #include "llvm/DerivedTypes.h"
    504 #include "llvm/ExecutionEngine/ExecutionEngine.h"
    505 #include "llvm/ExecutionEngine/JIT.h"
    506 #include "llvm/LLVMContext.h"
    507 #include "llvm/Module.h"
    508 #include "llvm/PassManager.h"
    509 #include "llvm/Analysis/Verifier.h"
    510 #include "llvm/Analysis/Passes.h"
    511 #include "llvm/Target/TargetData.h"
    512 #include "llvm/Target/TargetSelect.h"
    513 #include "llvm/Transforms/Scalar.h"
    514 #include "llvm/Support/IRBuilder.h"
    515 #include &lt;cstdio&gt;
    516 #include &lt;string&gt;
    517 #include &lt;map&gt;
    518 #include &lt;vector&gt;
    519 using namespace llvm;
    520 
    521 //===----------------------------------------------------------------------===//
    522 // Lexer
    523 //===----------------------------------------------------------------------===//
    524 
    525 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
    526 // of these for known things.
    527 enum Token {
    528   tok_eof = -1,
    529 
    530   // commands
    531   tok_def = -2, tok_extern = -3,
    532 
    533   // primary
    534   tok_identifier = -4, tok_number = -5
    535 };
    536 
    537 static std::string IdentifierStr;  // Filled in if tok_identifier
    538 static double NumVal;              // Filled in if tok_number
    539 
    540 /// gettok - Return the next token from standard input.
    541 static int gettok() {
    542   static int LastChar = ' ';
    543 
    544   // Skip any whitespace.
    545   while (isspace(LastChar))
    546     LastChar = getchar();
    547 
    548   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    549     IdentifierStr = LastChar;
    550     while (isalnum((LastChar = getchar())))
    551       IdentifierStr += LastChar;
    552 
    553     if (IdentifierStr == "def") return tok_def;
    554     if (IdentifierStr == "extern") return tok_extern;
    555     return tok_identifier;
    556   }
    557 
    558   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    559     std::string NumStr;
    560     do {
    561       NumStr += LastChar;
    562       LastChar = getchar();
    563     } while (isdigit(LastChar) || LastChar == '.');
    564 
    565     NumVal = strtod(NumStr.c_str(), 0);
    566     return tok_number;
    567   }
    568 
    569   if (LastChar == '#') {
    570     // Comment until end of line.
    571     do LastChar = getchar();
    572     while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
    573     
    574     if (LastChar != EOF)
    575       return gettok();
    576   }
    577   
    578   // Check for end of file.  Don't eat the EOF.
    579   if (LastChar == EOF)
    580     return tok_eof;
    581 
    582   // Otherwise, just return the character as its ascii value.
    583   int ThisChar = LastChar;
    584   LastChar = getchar();
    585   return ThisChar;
    586 }
    587 
    588 //===----------------------------------------------------------------------===//
    589 // Abstract Syntax Tree (aka Parse Tree)
    590 //===----------------------------------------------------------------------===//
    591 
    592 /// ExprAST - Base class for all expression nodes.
    593 class ExprAST {
    594 public:
    595   virtual ~ExprAST() {}
    596   virtual Value *Codegen() = 0;
    597 };
    598 
    599 /// NumberExprAST - Expression class for numeric literals like "1.0".
    600 class NumberExprAST : public ExprAST {
    601   double Val;
    602 public:
    603   NumberExprAST(double val) : Val(val) {}
    604   virtual Value *Codegen();
    605 };
    606 
    607 /// VariableExprAST - Expression class for referencing a variable, like "a".
    608 class VariableExprAST : public ExprAST {
    609   std::string Name;
    610 public:
    611   VariableExprAST(const std::string &amp;name) : Name(name) {}
    612   virtual Value *Codegen();
    613 };
    614 
    615 /// BinaryExprAST - Expression class for a binary operator.
    616 class BinaryExprAST : public ExprAST {
    617   char Op;
    618   ExprAST *LHS, *RHS;
    619 public:
    620   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
    621     : Op(op), LHS(lhs), RHS(rhs) {}
    622   virtual Value *Codegen();
    623 };
    624 
    625 /// CallExprAST - Expression class for function calls.
    626 class CallExprAST : public ExprAST {
    627   std::string Callee;
    628   std::vector&lt;ExprAST*&gt; Args;
    629 public:
    630   CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
    631     : Callee(callee), Args(args) {}
    632   virtual Value *Codegen();
    633 };
    634 
    635 /// PrototypeAST - This class represents the "prototype" for a function,
    636 /// which captures its name, and its argument names (thus implicitly the number
    637 /// of arguments the function takes).
    638 class PrototypeAST {
    639   std::string Name;
    640   std::vector&lt;std::string&gt; Args;
    641 public:
    642   PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
    643     : Name(name), Args(args) {}
    644   
    645   Function *Codegen();
    646 };
    647 
    648 /// FunctionAST - This class represents a function definition itself.
    649 class FunctionAST {
    650   PrototypeAST *Proto;
    651   ExprAST *Body;
    652 public:
    653   FunctionAST(PrototypeAST *proto, ExprAST *body)
    654     : Proto(proto), Body(body) {}
    655   
    656   Function *Codegen();
    657 };
    658 
    659 //===----------------------------------------------------------------------===//
    660 // Parser
    661 //===----------------------------------------------------------------------===//
    662 
    663 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    664 /// token the parser is looking at.  getNextToken reads another token from the
    665 /// lexer and updates CurTok with its results.
    666 static int CurTok;
    667 static int getNextToken() {
    668   return CurTok = gettok();
    669 }
    670 
    671 /// BinopPrecedence - This holds the precedence for each binary operator that is
    672 /// defined.
    673 static std::map&lt;char, int&gt; BinopPrecedence;
    674 
    675 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    676 static int GetTokPrecedence() {
    677   if (!isascii(CurTok))
    678     return -1;
    679   
    680   // Make sure it's a declared binop.
    681   int TokPrec = BinopPrecedence[CurTok];
    682   if (TokPrec &lt;= 0) return -1;
    683   return TokPrec;
    684 }
    685 
    686 /// Error* - These are little helper functions for error handling.
    687 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    688 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    689 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    690 
    691 static ExprAST *ParseExpression();
    692 
    693 /// identifierexpr
    694 ///   ::= identifier
    695 ///   ::= identifier '(' expression* ')'
    696 static ExprAST *ParseIdentifierExpr() {
    697   std::string IdName = IdentifierStr;
    698   
    699   getNextToken();  // eat identifier.
    700   
    701   if (CurTok != '(') // Simple variable ref.
    702     return new VariableExprAST(IdName);
    703   
    704   // Call.
    705   getNextToken();  // eat (
    706   std::vector&lt;ExprAST*&gt; Args;
    707   if (CurTok != ')') {
    708     while (1) {
    709       ExprAST *Arg = ParseExpression();
    710       if (!Arg) return 0;
    711       Args.push_back(Arg);
    712 
    713       if (CurTok == ')') break;
    714 
    715       if (CurTok != ',')
    716         return Error("Expected ')' or ',' in argument list");
    717       getNextToken();
    718     }
    719   }
    720 
    721   // Eat the ')'.
    722   getNextToken();
    723   
    724   return new CallExprAST(IdName, Args);
    725 }
    726 
    727 /// numberexpr ::= number
    728 static ExprAST *ParseNumberExpr() {
    729   ExprAST *Result = new NumberExprAST(NumVal);
    730   getNextToken(); // consume the number
    731   return Result;
    732 }
    733 
    734 /// parenexpr ::= '(' expression ')'
    735 static ExprAST *ParseParenExpr() {
    736   getNextToken();  // eat (.
    737   ExprAST *V = ParseExpression();
    738   if (!V) return 0;
    739   
    740   if (CurTok != ')')
    741     return Error("expected ')'");
    742   getNextToken();  // eat ).
    743   return V;
    744 }
    745 
    746 /// primary
    747 ///   ::= identifierexpr
    748 ///   ::= numberexpr
    749 ///   ::= parenexpr
    750 static ExprAST *ParsePrimary() {
    751   switch (CurTok) {
    752   default: return Error("unknown token when expecting an expression");
    753   case tok_identifier: return ParseIdentifierExpr();
    754   case tok_number:     return ParseNumberExpr();
    755   case '(':            return ParseParenExpr();
    756   }
    757 }
    758 
    759 /// binoprhs
    760 ///   ::= ('+' primary)*
    761 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    762   // If this is a binop, find its precedence.
    763   while (1) {
    764     int TokPrec = GetTokPrecedence();
    765     
    766     // If this is a binop that binds at least as tightly as the current binop,
    767     // consume it, otherwise we are done.
    768     if (TokPrec &lt; ExprPrec)
    769       return LHS;
    770     
    771     // Okay, we know this is a binop.
    772     int BinOp = CurTok;
    773     getNextToken();  // eat binop
    774     
    775     // Parse the primary expression after the binary operator.
    776     ExprAST *RHS = ParsePrimary();
    777     if (!RHS) return 0;
    778     
    779     // If BinOp binds less tightly with RHS than the operator after RHS, let
    780     // the pending operator take RHS as its LHS.
    781     int NextPrec = GetTokPrecedence();
    782     if (TokPrec &lt; NextPrec) {
    783       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    784       if (RHS == 0) return 0;
    785     }
    786     
    787     // Merge LHS/RHS.
    788     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    789   }
    790 }
    791 
    792 /// expression
    793 ///   ::= primary binoprhs
    794 ///
    795 static ExprAST *ParseExpression() {
    796   ExprAST *LHS = ParsePrimary();
    797   if (!LHS) return 0;
    798   
    799   return ParseBinOpRHS(0, LHS);
    800 }
    801 
    802 /// prototype
    803 ///   ::= id '(' id* ')'
    804 static PrototypeAST *ParsePrototype() {
    805   if (CurTok != tok_identifier)
    806     return ErrorP("Expected function name in prototype");
    807 
    808   std::string FnName = IdentifierStr;
    809   getNextToken();
    810   
    811   if (CurTok != '(')
    812     return ErrorP("Expected '(' in prototype");
    813   
    814   std::vector&lt;std::string&gt; ArgNames;
    815   while (getNextToken() == tok_identifier)
    816     ArgNames.push_back(IdentifierStr);
    817   if (CurTok != ')')
    818     return ErrorP("Expected ')' in prototype");
    819   
    820   // success.
    821   getNextToken();  // eat ')'.
    822   
    823   return new PrototypeAST(FnName, ArgNames);
    824 }
    825 
    826 /// definition ::= 'def' prototype expression
    827 static FunctionAST *ParseDefinition() {
    828   getNextToken();  // eat def.
    829   PrototypeAST *Proto = ParsePrototype();
    830   if (Proto == 0) return 0;
    831 
    832   if (ExprAST *E = ParseExpression())
    833     return new FunctionAST(Proto, E);
    834   return 0;
    835 }
    836 
    837 /// toplevelexpr ::= expression
    838 static FunctionAST *ParseTopLevelExpr() {
    839   if (ExprAST *E = ParseExpression()) {
    840     // Make an anonymous proto.
    841     PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
    842     return new FunctionAST(Proto, E);
    843   }
    844   return 0;
    845 }
    846 
    847 /// external ::= 'extern' prototype
    848 static PrototypeAST *ParseExtern() {
    849   getNextToken();  // eat extern.
    850   return ParsePrototype();
    851 }
    852 
    853 //===----------------------------------------------------------------------===//
    854 // Code Generation
    855 //===----------------------------------------------------------------------===//
    856 
    857 static Module *TheModule;
    858 static IRBuilder&lt;&gt; Builder(getGlobalContext());
    859 static std::map&lt;std::string, Value*&gt; NamedValues;
    860 static FunctionPassManager *TheFPM;
    861 
    862 Value *ErrorV(const char *Str) { Error(Str); return 0; }
    863 
    864 Value *NumberExprAST::Codegen() {
    865   return ConstantFP::get(getGlobalContext(), APFloat(Val));
    866 }
    867 
    868 Value *VariableExprAST::Codegen() {
    869   // Look this variable up in the function.
    870   Value *V = NamedValues[Name];
    871   return V ? V : ErrorV("Unknown variable name");
    872 }
    873 
    874 Value *BinaryExprAST::Codegen() {
    875   Value *L = LHS-&gt;Codegen();
    876   Value *R = RHS-&gt;Codegen();
    877   if (L == 0 || R == 0) return 0;
    878   
    879   switch (Op) {
    880   case '+': return Builder.CreateFAdd(L, R, "addtmp");
    881   case '-': return Builder.CreateFSub(L, R, "subtmp");
    882   case '*': return Builder.CreateFMul(L, R, "multmp");
    883   case '&lt;':
    884     L = Builder.CreateFCmpULT(L, R, "cmptmp");
    885     // Convert bool 0/1 to double 0.0 or 1.0
    886     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
    887                                 "booltmp");
    888   default: return ErrorV("invalid binary operator");
    889   }
    890 }
    891 
    892 Value *CallExprAST::Codegen() {
    893   // Look up the name in the global module table.
    894   Function *CalleeF = TheModule-&gt;getFunction(Callee);
    895   if (CalleeF == 0)
    896     return ErrorV("Unknown function referenced");
    897   
    898   // If argument mismatch error.
    899   if (CalleeF-&gt;arg_size() != Args.size())
    900     return ErrorV("Incorrect # arguments passed");
    901 
    902   std::vector&lt;Value*&gt; ArgsV;
    903   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    904     ArgsV.push_back(Args[i]-&gt;Codegen());
    905     if (ArgsV.back() == 0) return 0;
    906   }
    907   
    908   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
    909 }
    910 
    911 Function *PrototypeAST::Codegen() {
    912   // Make the function type:  double(double,double) etc.
    913   std::vector&lt;const Type*&gt; Doubles(Args.size(),
    914                                    Type::getDoubleTy(getGlobalContext()));
    915   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
    916                                        Doubles, false);
    917   
    918   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
    919   
    920   // If F conflicted, there was already something named 'Name'.  If it has a
    921   // body, don't allow redefinition or reextern.
    922   if (F-&gt;getName() != Name) {
    923     // Delete the one we just made and get the existing one.
    924     F-&gt;eraseFromParent();
    925     F = TheModule-&gt;getFunction(Name);
    926     
    927     // If F already has a body, reject this.
    928     if (!F-&gt;empty()) {
    929       ErrorF("redefinition of function");
    930       return 0;
    931     }
    932     
    933     // If F took a different number of args, reject.
    934     if (F-&gt;arg_size() != Args.size()) {
    935       ErrorF("redefinition of function with different # args");
    936       return 0;
    937     }
    938   }
    939   
    940   // Set names for all arguments.
    941   unsigned Idx = 0;
    942   for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
    943        ++AI, ++Idx) {
    944     AI-&gt;setName(Args[Idx]);
    945     
    946     // Add arguments to variable symbol table.
    947     NamedValues[Args[Idx]] = AI;
    948   }
    949   
    950   return F;
    951 }
    952 
    953 Function *FunctionAST::Codegen() {
    954   NamedValues.clear();
    955   
    956   Function *TheFunction = Proto-&gt;Codegen();
    957   if (TheFunction == 0)
    958     return 0;
    959   
    960   // Create a new basic block to start insertion into.
    961   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
    962   Builder.SetInsertPoint(BB);
    963   
    964   if (Value *RetVal = Body-&gt;Codegen()) {
    965     // Finish off the function.
    966     Builder.CreateRet(RetVal);
    967 
    968     // Validate the generated code, checking for consistency.
    969     verifyFunction(*TheFunction);
    970 
    971     // Optimize the function.
    972     TheFPM-&gt;run(*TheFunction);
    973     
    974     return TheFunction;
    975   }
    976   
    977   // Error reading body, remove function.
    978   TheFunction-&gt;eraseFromParent();
    979   return 0;
    980 }
    981 
    982 //===----------------------------------------------------------------------===//
    983 // Top-Level parsing and JIT Driver
    984 //===----------------------------------------------------------------------===//
    985 
    986 static ExecutionEngine *TheExecutionEngine;
    987 
    988 static void HandleDefinition() {
    989   if (FunctionAST *F = ParseDefinition()) {
    990     if (Function *LF = F-&gt;Codegen()) {
    991       fprintf(stderr, "Read function definition:");
    992       LF-&gt;dump();
    993     }
    994   } else {
    995     // Skip token for error recovery.
    996     getNextToken();
    997   }
    998 }
    999 
   1000 static void HandleExtern() {
   1001   if (PrototypeAST *P = ParseExtern()) {
   1002     if (Function *F = P-&gt;Codegen()) {
   1003       fprintf(stderr, "Read extern: ");
   1004       F-&gt;dump();
   1005     }
   1006   } else {
   1007     // Skip token for error recovery.
   1008     getNextToken();
   1009   }
   1010 }
   1011 
   1012 static void HandleTopLevelExpression() {
   1013   // Evaluate a top-level expression into an anonymous function.
   1014   if (FunctionAST *F = ParseTopLevelExpr()) {
   1015     if (Function *LF = F-&gt;Codegen()) {
   1016       // JIT the function, returning a function pointer.
   1017       void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
   1018       
   1019       // Cast it to the right type (takes no arguments, returns a double) so we
   1020       // can call it as a native function.
   1021       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1022       fprintf(stderr, "Evaluated to %f\n", FP());
   1023     }
   1024   } else {
   1025     // Skip token for error recovery.
   1026     getNextToken();
   1027   }
   1028 }
   1029 
   1030 /// top ::= definition | external | expression | ';'
   1031 static void MainLoop() {
   1032   while (1) {
   1033     fprintf(stderr, "ready&gt; ");
   1034     switch (CurTok) {
   1035     case tok_eof:    return;
   1036     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1037     case tok_def:    HandleDefinition(); break;
   1038     case tok_extern: HandleExtern(); break;
   1039     default:         HandleTopLevelExpression(); break;
   1040     }
   1041   }
   1042 }
   1043 
   1044 //===----------------------------------------------------------------------===//
   1045 // "Library" functions that can be "extern'd" from user code.
   1046 //===----------------------------------------------------------------------===//
   1047 
   1048 /// putchard - putchar that takes a double and returns 0.
   1049 extern "C" 
   1050 double putchard(double X) {
   1051   putchar((char)X);
   1052   return 0;
   1053 }
   1054 
   1055 //===----------------------------------------------------------------------===//
   1056 // Main driver code.
   1057 //===----------------------------------------------------------------------===//
   1058 
   1059 int main() {
   1060   InitializeNativeTarget();
   1061   LLVMContext &amp;Context = getGlobalContext();
   1062 
   1063   // Install standard binary operators.
   1064   // 1 is lowest precedence.
   1065   BinopPrecedence['&lt;'] = 10;
   1066   BinopPrecedence['+'] = 20;
   1067   BinopPrecedence['-'] = 20;
   1068   BinopPrecedence['*'] = 40;  // highest.
   1069 
   1070   // Prime the first token.
   1071   fprintf(stderr, "ready&gt; ");
   1072   getNextToken();
   1073 
   1074   // Make the module, which holds all the code.
   1075   TheModule = new Module("my cool jit", Context);
   1076 
   1077   // Create the JIT.  This takes ownership of the module.
   1078   std::string ErrStr;
   1079 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
   1080   if (!TheExecutionEngine) {
   1081     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
   1082     exit(1);
   1083   }
   1084 
   1085   FunctionPassManager OurFPM(TheModule);
   1086 
   1087   // Set up the optimizer pipeline.  Start with registering info about how the
   1088   // target lays out data structures.
   1089   OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
   1090   // Provide basic AliasAnalysis support for GVN.
   1091   OurFPM.add(createBasicAliasAnalysisPass());
   1092   // Do simple "peephole" optimizations and bit-twiddling optzns.
   1093   OurFPM.add(createInstructionCombiningPass());
   1094   // Reassociate expressions.
   1095   OurFPM.add(createReassociatePass());
   1096   // Eliminate Common SubExpressions.
   1097   OurFPM.add(createGVNPass());
   1098   // Simplify the control flow graph (deleting unreachable blocks, etc).
   1099   OurFPM.add(createCFGSimplificationPass());
   1100 
   1101   OurFPM.doInitialization();
   1102 
   1103   // Set the global so the code gen can use this.
   1104   TheFPM = &amp;OurFPM;
   1105 
   1106   // Run the main "interpreter loop" now.
   1107   MainLoop();
   1108 
   1109   TheFPM = 0;
   1110 
   1111   // Print out all of the generated code.
   1112   TheModule-&gt;dump();
   1113 
   1114   return 0;
   1115 }
   1116 </pre>
   1117 </div>
   1118 
   1119 <a href="LangImpl5.html">Next: Extending the language: control flow</a>
   1120 </div>
   1121 
   1122 <!-- *********************************************************************** -->
   1123 <hr>
   1124 <address>
   1125   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1126   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   1127   <a href="http://validator.w3.org/check/referer"><img
   1128   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
   1129 
   1130   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1131   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1132   Last modified: $Date$
   1133 </address>
   1134 </body>
   1135 </html>
   1136