1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 4 <html> 5 <head> 6 <title>Kaleidoscope: Adding JIT and Optimizer Support</title> 7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> 8 <meta name="author" content="Chris Lattner"> 9 <link rel="stylesheet" href="../llvm.css" type="text/css"> 10 </head> 11 12 <body> 13 14 <h1>Kaleidoscope: Adding JIT and Optimizer Support</h1> 15 16 <ul> 17 <li><a href="index.html">Up to Tutorial Index</a></li> 18 <li>Chapter 4 19 <ol> 20 <li><a href="#intro">Chapter 4 Introduction</a></li> 21 <li><a href="#trivialconstfold">Trivial Constant Folding</a></li> 22 <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li> 23 <li><a href="#jit">Adding a JIT Compiler</a></li> 24 <li><a href="#code">Full Code Listing</a></li> 25 </ol> 26 </li> 27 <li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control 28 Flow</li> 29 </ul> 30 31 <div class="doc_author"> 32 <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a></p> 33 </div> 34 35 <!-- *********************************************************************** --> 36 <h2><a name="intro">Chapter 4 Introduction</a></h2> 37 <!-- *********************************************************************** --> 38 39 <div> 40 41 <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language 42 with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple 43 language and added support for generating LLVM IR. This chapter describes 44 two new techniques: adding optimizer support to your language, and adding JIT 45 compiler support. These additions will demonstrate how to get nice, efficient code 46 for the Kaleidoscope language.</p> 47 48 </div> 49 50 <!-- *********************************************************************** --> 51 <h2><a name="trivialconstfold">Trivial Constant Folding</a></h2> 52 <!-- *********************************************************************** --> 53 54 <div> 55 56 <p> 57 Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately, 58 it does not produce wonderful code. The IRBuilder, however, does give us 59 obvious optimizations when compiling simple code:</p> 60 61 <div class="doc_code"> 62 <pre> 63 ready> <b>def test(x) 1+2+x;</b> 64 Read function definition: 65 define double @test(double %x) { 66 entry: 67 %addtmp = fadd double 3.000000e+00, %x 68 ret double %addtmp 69 } 70 </pre> 71 </div> 72 73 <p>This code is not a literal transcription of the AST built by parsing the 74 input. That would be: 75 76 <div class="doc_code"> 77 <pre> 78 ready> <b>def test(x) 1+2+x;</b> 79 Read function definition: 80 define double @test(double %x) { 81 entry: 82 %addtmp = fadd double 2.000000e+00, 1.000000e+00 83 %addtmp1 = fadd double %addtmp, %x 84 ret double %addtmp1 85 } 86 </pre> 87 </div> 88 89 <p>Constant folding, as seen above, in particular, is a very common and very 90 important optimization: so much so that many language implementors implement 91 constant folding support in their AST representation.</p> 92 93 <p>With LLVM, you don't need this support in the AST. Since all calls to build 94 LLVM IR go through the LLVM IR builder, the builder itself checked to see if 95 there was a constant folding opportunity when you call it. If so, it just does 96 the constant fold and return the constant instead of creating an instruction. 97 98 <p>Well, that was easy :). In practice, we recommend always using 99 <tt>IRBuilder</tt> when generating code like this. It has no 100 "syntactic overhead" for its use (you don't have to uglify your compiler with 101 constant checks everywhere) and it can dramatically reduce the amount of 102 LLVM IR that is generated in some cases (particular for languages with a macro 103 preprocessor or that use a lot of constants).</p> 104 105 <p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact 106 that it does all of its analysis inline with the code as it is built. If you 107 take a slightly more complex example:</p> 108 109 <div class="doc_code"> 110 <pre> 111 ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> 112 ready> Read function definition: 113 define double @test(double %x) { 114 entry: 115 %addtmp = fadd double 3.000000e+00, %x 116 %addtmp1 = fadd double %x, 3.000000e+00 117 %multmp = fmul double %addtmp, %addtmp1 118 ret double %multmp 119 } 120 </pre> 121 </div> 122 123 <p>In this case, the LHS and RHS of the multiplication are the same value. We'd 124 really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead 125 of computing "<tt>x+3</tt>" twice.</p> 126 127 <p>Unfortunately, no amount of local analysis will be able to detect and correct 128 this. This requires two transformations: reassociation of expressions (to 129 make the add's lexically identical) and Common Subexpression Elimination (CSE) 130 to delete the redundant add instruction. Fortunately, LLVM provides a broad 131 range of optimizations that you can use, in the form of "passes".</p> 132 133 </div> 134 135 <!-- *********************************************************************** --> 136 <h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2> 137 <!-- *********************************************************************** --> 138 139 <div> 140 141 <p>LLVM provides many optimization passes, which do many different sorts of 142 things and have different tradeoffs. Unlike other systems, LLVM doesn't hold 143 to the mistaken notion that one set of optimizations is right for all languages 144 and for all situations. LLVM allows a compiler implementor to make complete 145 decisions about what optimizations to use, in which order, and in what 146 situation.</p> 147 148 <p>As a concrete example, LLVM supports both "whole module" passes, which look 149 across as large of body of code as they can (often a whole file, but if run 150 at link time, this can be a substantial portion of the whole program). It also 151 supports and includes "per-function" passes which just operate on a single 152 function at a time, without looking at other functions. For more information 153 on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How 154 to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM 155 Passes</a>.</p> 156 157 <p>For Kaleidoscope, we are currently generating functions on the fly, one at 158 a time, as the user types them in. We aren't shooting for the ultimate 159 optimization experience in this setting, but we also want to catch the easy and 160 quick stuff where possible. As such, we will choose to run a few per-function 161 optimizations as the user types the function in. If we wanted to make a "static 162 Kaleidoscope compiler", we would use exactly the code we have now, except that 163 we would defer running the optimizer until the entire file has been parsed.</p> 164 165 <p>In order to get per-function optimizations going, we need to set up a 166 <a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and 167 organize the LLVM optimizations that we want to run. Once we have that, we can 168 add a set of optimizations to run. The code looks like this:</p> 169 170 <div class="doc_code"> 171 <pre> 172 FunctionPassManager OurFPM(TheModule); 173 174 // Set up the optimizer pipeline. Start with registering info about how the 175 // target lays out data structures. 176 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); 177 // Provide basic AliasAnalysis support for GVN. 178 OurFPM.add(createBasicAliasAnalysisPass()); 179 // Do simple "peephole" optimizations and bit-twiddling optzns. 180 OurFPM.add(createInstructionCombiningPass()); 181 // Reassociate expressions. 182 OurFPM.add(createReassociatePass()); 183 // Eliminate Common SubExpressions. 184 OurFPM.add(createGVNPass()); 185 // Simplify the control flow graph (deleting unreachable blocks, etc). 186 OurFPM.add(createCFGSimplificationPass()); 187 188 OurFPM.doInitialization(); 189 190 // Set the global so the code gen can use this. 191 TheFPM = &OurFPM; 192 193 // Run the main "interpreter loop" now. 194 MainLoop(); 195 </pre> 196 </div> 197 198 <p>This code defines a <tt>FunctionPassManager</tt>, "<tt>OurFPM</tt>". It 199 requires a pointer to the <tt>Module</tt> to construct itself. Once it is set 200 up, we use a series of "add" calls to add a bunch of LLVM passes. The first 201 pass is basically boilerplate, it adds a pass so that later optimizations know 202 how the data structures in the program are laid out. The 203 "<tt>TheExecutionEngine</tt>" variable is related to the JIT, which we will get 204 to in the next section.</p> 205 206 <p>In this case, we choose to add 4 optimization passes. The passes we chose 207 here are a pretty standard set of "cleanup" optimizations that are useful for 208 a wide variety of code. I won't delve into what they do but, believe me, 209 they are a good starting place :).</p> 210 211 <p>Once the PassManager is set up, we need to make use of it. We do this by 212 running it after our newly created function is constructed (in 213 <tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p> 214 215 <div class="doc_code"> 216 <pre> 217 if (Value *RetVal = Body->Codegen()) { 218 // Finish off the function. 219 Builder.CreateRet(RetVal); 220 221 // Validate the generated code, checking for consistency. 222 verifyFunction(*TheFunction); 223 224 <b>// Optimize the function. 225 TheFPM->run(*TheFunction);</b> 226 227 return TheFunction; 228 } 229 </pre> 230 </div> 231 232 <p>As you can see, this is pretty straightforward. The 233 <tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place, 234 improving (hopefully) its body. With this in place, we can try our test above 235 again:</p> 236 237 <div class="doc_code"> 238 <pre> 239 ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> 240 ready> Read function definition: 241 define double @test(double %x) { 242 entry: 243 %addtmp = fadd double %x, 3.000000e+00 244 %multmp = fmul double %addtmp, %addtmp 245 ret double %multmp 246 } 247 </pre> 248 </div> 249 250 <p>As expected, we now get our nicely optimized code, saving a floating point 251 add instruction from every execution of this function.</p> 252 253 <p>LLVM provides a wide variety of optimizations that can be used in certain 254 circumstances. Some <a href="../Passes.html">documentation about the various 255 passes</a> is available, but it isn't very complete. Another good source of 256 ideas can come from looking at the passes that <tt>llvm-gcc</tt> or 257 <tt>llvm-ld</tt> run to get started. The "<tt>opt</tt>" tool allows you to 258 experiment with passes from the command line, so you can see if they do 259 anything.</p> 260 261 <p>Now that we have reasonable code coming out of our front-end, lets talk about 262 executing it!</p> 263 264 </div> 265 266 <!-- *********************************************************************** --> 267 <h2><a name="jit">Adding a JIT Compiler</a></h2> 268 <!-- *********************************************************************** --> 269 270 <div> 271 272 <p>Code that is available in LLVM IR can have a wide variety of tools 273 applied to it. For example, you can run optimizations on it (as we did above), 274 you can dump it out in textual or binary forms, you can compile the code to an 275 assembly file (.s) for some target, or you can JIT compile it. The nice thing 276 about the LLVM IR representation is that it is the "common currency" between 277 many different parts of the compiler. 278 </p> 279 280 <p>In this section, we'll add JIT compiler support to our interpreter. The 281 basic idea that we want for Kaleidoscope is to have the user enter function 282 bodies as they do now, but immediately evaluate the top-level expressions they 283 type in. For example, if they type in "1 + 2;", we should evaluate and print 284 out 3. If they define a function, they should be able to call it from the 285 command line.</p> 286 287 <p>In order to do this, we first declare and initialize the JIT. This is done 288 by adding a global variable and a call in <tt>main</tt>:</p> 289 290 <div class="doc_code"> 291 <pre> 292 <b>static ExecutionEngine *TheExecutionEngine;</b> 293 ... 294 int main() { 295 .. 296 <b>// Create the JIT. This takes ownership of the module. 297 TheExecutionEngine = EngineBuilder(TheModule).create();</b> 298 .. 299 } 300 </pre> 301 </div> 302 303 <p>This creates an abstract "Execution Engine" which can be either a JIT 304 compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler 305 for you if one is available for your platform, otherwise it will fall back to 306 the interpreter.</p> 307 308 <p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used. 309 There are a variety of APIs that are useful, but the simplest one is the 310 "<tt>getPointerToFunction(F)</tt>" method. This method JIT compiles the 311 specified LLVM Function and returns a function pointer to the generated machine 312 code. In our case, this means that we can change the code that parses a 313 top-level expression to look like this:</p> 314 315 <div class="doc_code"> 316 <pre> 317 static void HandleTopLevelExpression() { 318 // Evaluate a top-level expression into an anonymous function. 319 if (FunctionAST *F = ParseTopLevelExpr()) { 320 if (Function *LF = F->Codegen()) { 321 LF->dump(); // Dump the function for exposition purposes. 322 323 <b>// JIT the function, returning a function pointer. 324 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 325 326 // Cast it to the right type (takes no arguments, returns a double) so we 327 // can call it as a native function. 328 double (*FP)() = (double (*)())(intptr_t)FPtr; 329 fprintf(stderr, "Evaluated to %f\n", FP());</b> 330 } 331 </pre> 332 </div> 333 334 <p>Recall that we compile top-level expressions into a self-contained LLVM 335 function that takes no arguments and returns the computed double. Because the 336 LLVM JIT compiler matches the native platform ABI, this means that you can just 337 cast the result pointer to a function pointer of that type and call it directly. 338 This means, there is no difference between JIT compiled code and native machine 339 code that is statically linked into your application.</p> 340 341 <p>With just these two changes, lets see how Kaleidoscope works now!</p> 342 343 <div class="doc_code"> 344 <pre> 345 ready> <b>4+5;</b> 346 define double @""() { 347 entry: 348 ret double 9.000000e+00 349 } 350 351 <em>Evaluated to 9.000000</em> 352 </pre> 353 </div> 354 355 <p>Well this looks like it is basically working. The dump of the function 356 shows the "no argument function that always returns double" that we synthesize 357 for each top-level expression that is typed in. This demonstrates very basic 358 functionality, but can we do more?</p> 359 360 <div class="doc_code"> 361 <pre> 362 ready> <b>def testfunc(x y) x + y*2; </b> 363 Read function definition: 364 define double @testfunc(double %x, double %y) { 365 entry: 366 %multmp = fmul double %y, 2.000000e+00 367 %addtmp = fadd double %multmp, %x 368 ret double %addtmp 369 } 370 371 ready> <b>testfunc(4, 10);</b> 372 define double @""() { 373 entry: 374 %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) 375 ret double %calltmp 376 } 377 378 <em>Evaluated to 24.000000</em> 379 </pre> 380 </div> 381 382 <p>This illustrates that we can now call user code, but there is something a bit 383 subtle going on here. Note that we only invoke the JIT on the anonymous 384 functions that <em>call testfunc</em>, but we never invoked it 385 on <em>testfunc</em> itself. What actually happened here is that the JIT 386 scanned for all non-JIT'd functions transitively called from the anonymous 387 function and compiled all of them before returning 388 from <tt>getPointerToFunction()</tt>.</p> 389 390 <p>The JIT provides a number of other more advanced interfaces for things like 391 freeing allocated machine code, rejit'ing functions to update them, etc. 392 However, even with this simple code, we get some surprisingly powerful 393 capabilities - check this out (I removed the dump of the anonymous functions, 394 you should get the idea by now :) :</p> 395 396 <div class="doc_code"> 397 <pre> 398 ready> <b>extern sin(x);</b> 399 Read extern: 400 declare double @sin(double) 401 402 ready> <b>extern cos(x);</b> 403 Read extern: 404 declare double @cos(double) 405 406 ready> <b>sin(1.0);</b> 407 <em>Evaluated to 0.841471</em> 408 409 ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b> 410 Read function definition: 411 define double @foo(double %x) { 412 entry: 413 %calltmp = call double @sin(double %x) 414 %multmp = fmul double %calltmp, %calltmp 415 %calltmp2 = call double @cos(double %x) 416 %multmp4 = fmul double %calltmp2, %calltmp2 417 %addtmp = fadd double %multmp, %multmp4 418 ret double %addtmp 419 } 420 421 ready> <b>foo(4.0);</b> 422 <em>Evaluated to 1.000000</em> 423 </pre> 424 </div> 425 426 <p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly 427 simple: in this 428 example, the JIT started execution of a function and got to a function call. It 429 realized that the function was not yet JIT compiled and invoked the standard set 430 of routines to resolve the function. In this case, there is no body defined 431 for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the 432 Kaleidoscope process itself. 433 Since "<tt>sin</tt>" is defined within the JIT's address space, it simply 434 patches up calls in the module to call the libm version of <tt>sin</tt> 435 directly.</p> 436 437 <p>The LLVM JIT provides a number of interfaces (look in the 438 <tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get 439 resolved. It allows you to establish explicit mappings between IR objects and 440 addresses (useful for LLVM global variables that you want to map to static 441 tables, for example), allows you to dynamically decide on the fly based on the 442 function name, and even allows you to have the JIT compile functions lazily the 443 first time they're called.</p> 444 445 <p>One interesting application of this is that we can now extend the language 446 by writing arbitrary C++ code to implement operations. For example, if we add: 447 </p> 448 449 <div class="doc_code"> 450 <pre> 451 /// putchard - putchar that takes a double and returns 0. 452 extern "C" 453 double putchard(double X) { 454 putchar((char)X); 455 return 0; 456 } 457 </pre> 458 </div> 459 460 <p>Now we can produce simple output to the console by using things like: 461 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on 462 the console (120 is the ASCII code for 'x'). Similar code could be used to 463 implement file I/O, console input, and many other capabilities in 464 Kaleidoscope.</p> 465 466 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At 467 this point, we can compile a non-Turing-complete programming language, optimize 468 and JIT compile it in a user-driven way. Next up we'll look into <a 469 href="LangImpl5.html">extending the language with control flow constructs</a>, 470 tackling some interesting LLVM IR issues along the way.</p> 471 472 </div> 473 474 <!-- *********************************************************************** --> 475 <h2><a name="code">Full Code Listing</a></h2> 476 <!-- *********************************************************************** --> 477 478 <div> 479 480 <p> 481 Here is the complete code listing for our running example, enhanced with the 482 LLVM JIT and optimizer. To build this example, use: 483 </p> 484 485 <div class="doc_code"> 486 <pre> 487 # Compile 488 g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy 489 # Run 490 ./toy 491 </pre> 492 </div> 493 494 <p> 495 If you are compiling this on Linux, make sure to add the "-rdynamic" option 496 as well. This makes sure that the external functions are resolved properly 497 at runtime.</p> 498 499 <p>Here is the code:</p> 500 501 <div class="doc_code"> 502 <pre> 503 #include "llvm/DerivedTypes.h" 504 #include "llvm/ExecutionEngine/ExecutionEngine.h" 505 #include "llvm/ExecutionEngine/JIT.h" 506 #include "llvm/LLVMContext.h" 507 #include "llvm/Module.h" 508 #include "llvm/PassManager.h" 509 #include "llvm/Analysis/Verifier.h" 510 #include "llvm/Analysis/Passes.h" 511 #include "llvm/Target/TargetData.h" 512 #include "llvm/Target/TargetSelect.h" 513 #include "llvm/Transforms/Scalar.h" 514 #include "llvm/Support/IRBuilder.h" 515 #include <cstdio> 516 #include <string> 517 #include <map> 518 #include <vector> 519 using namespace llvm; 520 521 //===----------------------------------------------------------------------===// 522 // Lexer 523 //===----------------------------------------------------------------------===// 524 525 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 526 // of these for known things. 527 enum Token { 528 tok_eof = -1, 529 530 // commands 531 tok_def = -2, tok_extern = -3, 532 533 // primary 534 tok_identifier = -4, tok_number = -5 535 }; 536 537 static std::string IdentifierStr; // Filled in if tok_identifier 538 static double NumVal; // Filled in if tok_number 539 540 /// gettok - Return the next token from standard input. 541 static int gettok() { 542 static int LastChar = ' '; 543 544 // Skip any whitespace. 545 while (isspace(LastChar)) 546 LastChar = getchar(); 547 548 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 549 IdentifierStr = LastChar; 550 while (isalnum((LastChar = getchar()))) 551 IdentifierStr += LastChar; 552 553 if (IdentifierStr == "def") return tok_def; 554 if (IdentifierStr == "extern") return tok_extern; 555 return tok_identifier; 556 } 557 558 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 559 std::string NumStr; 560 do { 561 NumStr += LastChar; 562 LastChar = getchar(); 563 } while (isdigit(LastChar) || LastChar == '.'); 564 565 NumVal = strtod(NumStr.c_str(), 0); 566 return tok_number; 567 } 568 569 if (LastChar == '#') { 570 // Comment until end of line. 571 do LastChar = getchar(); 572 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 573 574 if (LastChar != EOF) 575 return gettok(); 576 } 577 578 // Check for end of file. Don't eat the EOF. 579 if (LastChar == EOF) 580 return tok_eof; 581 582 // Otherwise, just return the character as its ascii value. 583 int ThisChar = LastChar; 584 LastChar = getchar(); 585 return ThisChar; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // Abstract Syntax Tree (aka Parse Tree) 590 //===----------------------------------------------------------------------===// 591 592 /// ExprAST - Base class for all expression nodes. 593 class ExprAST { 594 public: 595 virtual ~ExprAST() {} 596 virtual Value *Codegen() = 0; 597 }; 598 599 /// NumberExprAST - Expression class for numeric literals like "1.0". 600 class NumberExprAST : public ExprAST { 601 double Val; 602 public: 603 NumberExprAST(double val) : Val(val) {} 604 virtual Value *Codegen(); 605 }; 606 607 /// VariableExprAST - Expression class for referencing a variable, like "a". 608 class VariableExprAST : public ExprAST { 609 std::string Name; 610 public: 611 VariableExprAST(const std::string &name) : Name(name) {} 612 virtual Value *Codegen(); 613 }; 614 615 /// BinaryExprAST - Expression class for a binary operator. 616 class BinaryExprAST : public ExprAST { 617 char Op; 618 ExprAST *LHS, *RHS; 619 public: 620 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 621 : Op(op), LHS(lhs), RHS(rhs) {} 622 virtual Value *Codegen(); 623 }; 624 625 /// CallExprAST - Expression class for function calls. 626 class CallExprAST : public ExprAST { 627 std::string Callee; 628 std::vector<ExprAST*> Args; 629 public: 630 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 631 : Callee(callee), Args(args) {} 632 virtual Value *Codegen(); 633 }; 634 635 /// PrototypeAST - This class represents the "prototype" for a function, 636 /// which captures its name, and its argument names (thus implicitly the number 637 /// of arguments the function takes). 638 class PrototypeAST { 639 std::string Name; 640 std::vector<std::string> Args; 641 public: 642 PrototypeAST(const std::string &name, const std::vector<std::string> &args) 643 : Name(name), Args(args) {} 644 645 Function *Codegen(); 646 }; 647 648 /// FunctionAST - This class represents a function definition itself. 649 class FunctionAST { 650 PrototypeAST *Proto; 651 ExprAST *Body; 652 public: 653 FunctionAST(PrototypeAST *proto, ExprAST *body) 654 : Proto(proto), Body(body) {} 655 656 Function *Codegen(); 657 }; 658 659 //===----------------------------------------------------------------------===// 660 // Parser 661 //===----------------------------------------------------------------------===// 662 663 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 664 /// token the parser is looking at. getNextToken reads another token from the 665 /// lexer and updates CurTok with its results. 666 static int CurTok; 667 static int getNextToken() { 668 return CurTok = gettok(); 669 } 670 671 /// BinopPrecedence - This holds the precedence for each binary operator that is 672 /// defined. 673 static std::map<char, int> BinopPrecedence; 674 675 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 676 static int GetTokPrecedence() { 677 if (!isascii(CurTok)) 678 return -1; 679 680 // Make sure it's a declared binop. 681 int TokPrec = BinopPrecedence[CurTok]; 682 if (TokPrec <= 0) return -1; 683 return TokPrec; 684 } 685 686 /// Error* - These are little helper functions for error handling. 687 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 688 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 689 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 690 691 static ExprAST *ParseExpression(); 692 693 /// identifierexpr 694 /// ::= identifier 695 /// ::= identifier '(' expression* ')' 696 static ExprAST *ParseIdentifierExpr() { 697 std::string IdName = IdentifierStr; 698 699 getNextToken(); // eat identifier. 700 701 if (CurTok != '(') // Simple variable ref. 702 return new VariableExprAST(IdName); 703 704 // Call. 705 getNextToken(); // eat ( 706 std::vector<ExprAST*> Args; 707 if (CurTok != ')') { 708 while (1) { 709 ExprAST *Arg = ParseExpression(); 710 if (!Arg) return 0; 711 Args.push_back(Arg); 712 713 if (CurTok == ')') break; 714 715 if (CurTok != ',') 716 return Error("Expected ')' or ',' in argument list"); 717 getNextToken(); 718 } 719 } 720 721 // Eat the ')'. 722 getNextToken(); 723 724 return new CallExprAST(IdName, Args); 725 } 726 727 /// numberexpr ::= number 728 static ExprAST *ParseNumberExpr() { 729 ExprAST *Result = new NumberExprAST(NumVal); 730 getNextToken(); // consume the number 731 return Result; 732 } 733 734 /// parenexpr ::= '(' expression ')' 735 static ExprAST *ParseParenExpr() { 736 getNextToken(); // eat (. 737 ExprAST *V = ParseExpression(); 738 if (!V) return 0; 739 740 if (CurTok != ')') 741 return Error("expected ')'"); 742 getNextToken(); // eat ). 743 return V; 744 } 745 746 /// primary 747 /// ::= identifierexpr 748 /// ::= numberexpr 749 /// ::= parenexpr 750 static ExprAST *ParsePrimary() { 751 switch (CurTok) { 752 default: return Error("unknown token when expecting an expression"); 753 case tok_identifier: return ParseIdentifierExpr(); 754 case tok_number: return ParseNumberExpr(); 755 case '(': return ParseParenExpr(); 756 } 757 } 758 759 /// binoprhs 760 /// ::= ('+' primary)* 761 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 762 // If this is a binop, find its precedence. 763 while (1) { 764 int TokPrec = GetTokPrecedence(); 765 766 // If this is a binop that binds at least as tightly as the current binop, 767 // consume it, otherwise we are done. 768 if (TokPrec < ExprPrec) 769 return LHS; 770 771 // Okay, we know this is a binop. 772 int BinOp = CurTok; 773 getNextToken(); // eat binop 774 775 // Parse the primary expression after the binary operator. 776 ExprAST *RHS = ParsePrimary(); 777 if (!RHS) return 0; 778 779 // If BinOp binds less tightly with RHS than the operator after RHS, let 780 // the pending operator take RHS as its LHS. 781 int NextPrec = GetTokPrecedence(); 782 if (TokPrec < NextPrec) { 783 RHS = ParseBinOpRHS(TokPrec+1, RHS); 784 if (RHS == 0) return 0; 785 } 786 787 // Merge LHS/RHS. 788 LHS = new BinaryExprAST(BinOp, LHS, RHS); 789 } 790 } 791 792 /// expression 793 /// ::= primary binoprhs 794 /// 795 static ExprAST *ParseExpression() { 796 ExprAST *LHS = ParsePrimary(); 797 if (!LHS) return 0; 798 799 return ParseBinOpRHS(0, LHS); 800 } 801 802 /// prototype 803 /// ::= id '(' id* ')' 804 static PrototypeAST *ParsePrototype() { 805 if (CurTok != tok_identifier) 806 return ErrorP("Expected function name in prototype"); 807 808 std::string FnName = IdentifierStr; 809 getNextToken(); 810 811 if (CurTok != '(') 812 return ErrorP("Expected '(' in prototype"); 813 814 std::vector<std::string> ArgNames; 815 while (getNextToken() == tok_identifier) 816 ArgNames.push_back(IdentifierStr); 817 if (CurTok != ')') 818 return ErrorP("Expected ')' in prototype"); 819 820 // success. 821 getNextToken(); // eat ')'. 822 823 return new PrototypeAST(FnName, ArgNames); 824 } 825 826 /// definition ::= 'def' prototype expression 827 static FunctionAST *ParseDefinition() { 828 getNextToken(); // eat def. 829 PrototypeAST *Proto = ParsePrototype(); 830 if (Proto == 0) return 0; 831 832 if (ExprAST *E = ParseExpression()) 833 return new FunctionAST(Proto, E); 834 return 0; 835 } 836 837 /// toplevelexpr ::= expression 838 static FunctionAST *ParseTopLevelExpr() { 839 if (ExprAST *E = ParseExpression()) { 840 // Make an anonymous proto. 841 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 842 return new FunctionAST(Proto, E); 843 } 844 return 0; 845 } 846 847 /// external ::= 'extern' prototype 848 static PrototypeAST *ParseExtern() { 849 getNextToken(); // eat extern. 850 return ParsePrototype(); 851 } 852 853 //===----------------------------------------------------------------------===// 854 // Code Generation 855 //===----------------------------------------------------------------------===// 856 857 static Module *TheModule; 858 static IRBuilder<> Builder(getGlobalContext()); 859 static std::map<std::string, Value*> NamedValues; 860 static FunctionPassManager *TheFPM; 861 862 Value *ErrorV(const char *Str) { Error(Str); return 0; } 863 864 Value *NumberExprAST::Codegen() { 865 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 866 } 867 868 Value *VariableExprAST::Codegen() { 869 // Look this variable up in the function. 870 Value *V = NamedValues[Name]; 871 return V ? V : ErrorV("Unknown variable name"); 872 } 873 874 Value *BinaryExprAST::Codegen() { 875 Value *L = LHS->Codegen(); 876 Value *R = RHS->Codegen(); 877 if (L == 0 || R == 0) return 0; 878 879 switch (Op) { 880 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 881 case '-': return Builder.CreateFSub(L, R, "subtmp"); 882 case '*': return Builder.CreateFMul(L, R, "multmp"); 883 case '<': 884 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 885 // Convert bool 0/1 to double 0.0 or 1.0 886 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 887 "booltmp"); 888 default: return ErrorV("invalid binary operator"); 889 } 890 } 891 892 Value *CallExprAST::Codegen() { 893 // Look up the name in the global module table. 894 Function *CalleeF = TheModule->getFunction(Callee); 895 if (CalleeF == 0) 896 return ErrorV("Unknown function referenced"); 897 898 // If argument mismatch error. 899 if (CalleeF->arg_size() != Args.size()) 900 return ErrorV("Incorrect # arguments passed"); 901 902 std::vector<Value*> ArgsV; 903 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 904 ArgsV.push_back(Args[i]->Codegen()); 905 if (ArgsV.back() == 0) return 0; 906 } 907 908 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); 909 } 910 911 Function *PrototypeAST::Codegen() { 912 // Make the function type: double(double,double) etc. 913 std::vector<const Type*> Doubles(Args.size(), 914 Type::getDoubleTy(getGlobalContext())); 915 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), 916 Doubles, false); 917 918 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); 919 920 // If F conflicted, there was already something named 'Name'. If it has a 921 // body, don't allow redefinition or reextern. 922 if (F->getName() != Name) { 923 // Delete the one we just made and get the existing one. 924 F->eraseFromParent(); 925 F = TheModule->getFunction(Name); 926 927 // If F already has a body, reject this. 928 if (!F->empty()) { 929 ErrorF("redefinition of function"); 930 return 0; 931 } 932 933 // If F took a different number of args, reject. 934 if (F->arg_size() != Args.size()) { 935 ErrorF("redefinition of function with different # args"); 936 return 0; 937 } 938 } 939 940 // Set names for all arguments. 941 unsigned Idx = 0; 942 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 943 ++AI, ++Idx) { 944 AI->setName(Args[Idx]); 945 946 // Add arguments to variable symbol table. 947 NamedValues[Args[Idx]] = AI; 948 } 949 950 return F; 951 } 952 953 Function *FunctionAST::Codegen() { 954 NamedValues.clear(); 955 956 Function *TheFunction = Proto->Codegen(); 957 if (TheFunction == 0) 958 return 0; 959 960 // Create a new basic block to start insertion into. 961 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 962 Builder.SetInsertPoint(BB); 963 964 if (Value *RetVal = Body->Codegen()) { 965 // Finish off the function. 966 Builder.CreateRet(RetVal); 967 968 // Validate the generated code, checking for consistency. 969 verifyFunction(*TheFunction); 970 971 // Optimize the function. 972 TheFPM->run(*TheFunction); 973 974 return TheFunction; 975 } 976 977 // Error reading body, remove function. 978 TheFunction->eraseFromParent(); 979 return 0; 980 } 981 982 //===----------------------------------------------------------------------===// 983 // Top-Level parsing and JIT Driver 984 //===----------------------------------------------------------------------===// 985 986 static ExecutionEngine *TheExecutionEngine; 987 988 static void HandleDefinition() { 989 if (FunctionAST *F = ParseDefinition()) { 990 if (Function *LF = F->Codegen()) { 991 fprintf(stderr, "Read function definition:"); 992 LF->dump(); 993 } 994 } else { 995 // Skip token for error recovery. 996 getNextToken(); 997 } 998 } 999 1000 static void HandleExtern() { 1001 if (PrototypeAST *P = ParseExtern()) { 1002 if (Function *F = P->Codegen()) { 1003 fprintf(stderr, "Read extern: "); 1004 F->dump(); 1005 } 1006 } else { 1007 // Skip token for error recovery. 1008 getNextToken(); 1009 } 1010 } 1011 1012 static void HandleTopLevelExpression() { 1013 // Evaluate a top-level expression into an anonymous function. 1014 if (FunctionAST *F = ParseTopLevelExpr()) { 1015 if (Function *LF = F->Codegen()) { 1016 // JIT the function, returning a function pointer. 1017 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 1018 1019 // Cast it to the right type (takes no arguments, returns a double) so we 1020 // can call it as a native function. 1021 double (*FP)() = (double (*)())(intptr_t)FPtr; 1022 fprintf(stderr, "Evaluated to %f\n", FP()); 1023 } 1024 } else { 1025 // Skip token for error recovery. 1026 getNextToken(); 1027 } 1028 } 1029 1030 /// top ::= definition | external | expression | ';' 1031 static void MainLoop() { 1032 while (1) { 1033 fprintf(stderr, "ready> "); 1034 switch (CurTok) { 1035 case tok_eof: return; 1036 case ';': getNextToken(); break; // ignore top-level semicolons. 1037 case tok_def: HandleDefinition(); break; 1038 case tok_extern: HandleExtern(); break; 1039 default: HandleTopLevelExpression(); break; 1040 } 1041 } 1042 } 1043 1044 //===----------------------------------------------------------------------===// 1045 // "Library" functions that can be "extern'd" from user code. 1046 //===----------------------------------------------------------------------===// 1047 1048 /// putchard - putchar that takes a double and returns 0. 1049 extern "C" 1050 double putchard(double X) { 1051 putchar((char)X); 1052 return 0; 1053 } 1054 1055 //===----------------------------------------------------------------------===// 1056 // Main driver code. 1057 //===----------------------------------------------------------------------===// 1058 1059 int main() { 1060 InitializeNativeTarget(); 1061 LLVMContext &Context = getGlobalContext(); 1062 1063 // Install standard binary operators. 1064 // 1 is lowest precedence. 1065 BinopPrecedence['<'] = 10; 1066 BinopPrecedence['+'] = 20; 1067 BinopPrecedence['-'] = 20; 1068 BinopPrecedence['*'] = 40; // highest. 1069 1070 // Prime the first token. 1071 fprintf(stderr, "ready> "); 1072 getNextToken(); 1073 1074 // Make the module, which holds all the code. 1075 TheModule = new Module("my cool jit", Context); 1076 1077 // Create the JIT. This takes ownership of the module. 1078 std::string ErrStr; 1079 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); 1080 if (!TheExecutionEngine) { 1081 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 1082 exit(1); 1083 } 1084 1085 FunctionPassManager OurFPM(TheModule); 1086 1087 // Set up the optimizer pipeline. Start with registering info about how the 1088 // target lays out data structures. 1089 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); 1090 // Provide basic AliasAnalysis support for GVN. 1091 OurFPM.add(createBasicAliasAnalysisPass()); 1092 // Do simple "peephole" optimizations and bit-twiddling optzns. 1093 OurFPM.add(createInstructionCombiningPass()); 1094 // Reassociate expressions. 1095 OurFPM.add(createReassociatePass()); 1096 // Eliminate Common SubExpressions. 1097 OurFPM.add(createGVNPass()); 1098 // Simplify the control flow graph (deleting unreachable blocks, etc). 1099 OurFPM.add(createCFGSimplificationPass()); 1100 1101 OurFPM.doInitialization(); 1102 1103 // Set the global so the code gen can use this. 1104 TheFPM = &OurFPM; 1105 1106 // Run the main "interpreter loop" now. 1107 MainLoop(); 1108 1109 TheFPM = 0; 1110 1111 // Print out all of the generated code. 1112 TheModule->dump(); 1113 1114 return 0; 1115 } 1116 </pre> 1117 </div> 1118 1119 <a href="LangImpl5.html">Next: Extending the language: control flow</a> 1120 </div> 1121 1122 <!-- *********************************************************************** --> 1123 <hr> 1124 <address> 1125 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 1126 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> 1127 <a href="http://validator.w3.org/check/referer"><img 1128 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> 1129 1130 <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br> 1131 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> 1132 Last modified: $Date$ 1133 </address> 1134 </body> 1135 </html> 1136