Home | History | Annotate | Download | only in tutorial
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 
      4 <html>
      5 <head>
      6   <title>Kaleidoscope: Extending the Language: Control Flow</title>
      7   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8   <meta name="author" content="Chris Lattner">
      9   <link rel="stylesheet" href="../llvm.css" type="text/css">
     10 </head>
     11 
     12 <body>
     13 
     14 <h1>Kaleidoscope: Extending the Language: Control Flow</h1>
     15 
     16 <ul>
     17 <li><a href="index.html">Up to Tutorial Index</a></li>
     18 <li>Chapter 5
     19   <ol>
     20     <li><a href="#intro">Chapter 5 Introduction</a></li>
     21     <li><a href="#ifthen">If/Then/Else</a>
     22     <ol>
     23       <li><a href="#iflexer">Lexer Extensions</a></li>
     24       <li><a href="#ifast">AST Extensions</a></li>
     25       <li><a href="#ifparser">Parser Extensions</a></li>
     26       <li><a href="#ifir">LLVM IR</a></li>
     27       <li><a href="#ifcodegen">Code Generation</a></li>
     28     </ol>
     29     </li>
     30     <li><a href="#for">'for' Loop Expression</a>
     31     <ol>
     32       <li><a href="#forlexer">Lexer Extensions</a></li>
     33       <li><a href="#forast">AST Extensions</a></li>
     34       <li><a href="#forparser">Parser Extensions</a></li>
     35       <li><a href="#forir">LLVM IR</a></li>
     36       <li><a href="#forcodegen">Code Generation</a></li>
     37     </ol>
     38     </li>
     39     <li><a href="#code">Full Code Listing</a></li>
     40   </ol>
     41 </li>
     42 <li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language: 
     43 User-defined Operators</li>
     44 </ul>
     45 
     46 <div class="doc_author">
     47   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a></p>
     48 </div>
     49 
     50 <!-- *********************************************************************** -->
     51 <h2><a name="intro">Chapter 5 Introduction</a></h2>
     52 <!-- *********************************************************************** -->
     53 
     54 <div>
     55 
     56 <p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
     57 with LLVM</a>" tutorial.  Parts 1-4 described the implementation of the simple
     58 Kaleidoscope language and included support for generating LLVM IR, followed by
     59 optimizations and a JIT compiler.  Unfortunately, as presented, Kaleidoscope is
     60 mostly useless: it has no control flow other than call and return.  This means
     61 that you can't have conditional branches in the code, significantly limiting its
     62 power.  In this episode of "build that compiler", we'll extend Kaleidoscope to
     63 have an if/then/else expression plus a simple 'for' loop.</p>
     64 
     65 </div>
     66 
     67 <!-- *********************************************************************** -->
     68 <h2><a name="ifthen">If/Then/Else</a></h2>
     69 <!-- *********************************************************************** -->
     70 
     71 <div>
     72 
     73 <p>
     74 Extending Kaleidoscope to support if/then/else is quite straightforward.  It
     75 basically requires adding support for this "new" concept to the lexer,
     76 parser, AST, and LLVM code emitter.  This example is nice, because it shows how
     77 easy it is to "grow" a language over time, incrementally extending it as new
     78 ideas are discovered.</p>
     79 
     80 <p>Before we get going on "how" we add this extension, lets talk about "what" we
     81 want.  The basic idea is that we want to be able to write this sort of thing:
     82 </p>
     83 
     84 <div class="doc_code">
     85 <pre>
     86 def fib(x)
     87   if x &lt; 3 then
     88     1
     89   else
     90     fib(x-1)+fib(x-2);
     91 </pre>
     92 </div>
     93 
     94 <p>In Kaleidoscope, every construct is an expression: there are no statements.
     95 As such, the if/then/else expression needs to return a value like any other.
     96 Since we're using a mostly functional form, we'll have it evaluate its
     97 conditional, then return the 'then' or 'else' value based on how the condition
     98 was resolved.  This is very similar to the C "?:" expression.</p>
     99 
    100 <p>The semantics of the if/then/else expression is that it evaluates the
    101 condition to a boolean equality value: 0.0 is considered to be false and
    102 everything else is considered to be true.
    103 If the condition is true, the first subexpression is evaluated and returned, if
    104 the condition is false, the second subexpression is evaluated and returned.
    105 Since Kaleidoscope allows side-effects, this behavior is important to nail down.
    106 </p>
    107 
    108 <p>Now that we know what we "want", lets break this down into its constituent
    109 pieces.</p>
    110 
    111 <!-- ======================================================================= -->
    112 <h4><a name="iflexer">Lexer Extensions for If/Then/Else</a></h4>
    113 <!-- ======================================================================= -->
    114 
    115 
    116 <div>
    117 
    118 <p>The lexer extensions are straightforward.  First we add new enum values
    119 for the relevant tokens:</p>
    120 
    121 <div class="doc_code">
    122 <pre>
    123   // control
    124   tok_if = -6, tok_then = -7, tok_else = -8,
    125 </pre>
    126 </div>
    127 
    128 <p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple
    129 stuff:</p>
    130 
    131 <div class="doc_code">
    132 <pre>
    133     ...
    134     if (IdentifierStr == "def") return tok_def;
    135     if (IdentifierStr == "extern") return tok_extern;
    136     <b>if (IdentifierStr == "if") return tok_if;
    137     if (IdentifierStr == "then") return tok_then;
    138     if (IdentifierStr == "else") return tok_else;</b>
    139     return tok_identifier;
    140 </pre>
    141 </div>
    142 
    143 </div>
    144 
    145 <!-- ======================================================================= -->
    146 <h4><a name="ifast">AST Extensions for If/Then/Else</a></h4>
    147 <!-- ======================================================================= -->
    148 
    149 <div>
    150 
    151 <p>To represent the new expression we add a new AST node for it:</p>
    152 
    153 <div class="doc_code">
    154 <pre>
    155 /// IfExprAST - Expression class for if/then/else.
    156 class IfExprAST : public ExprAST {
    157   ExprAST *Cond, *Then, *Else;
    158 public:
    159   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    160     : Cond(cond), Then(then), Else(_else) {}
    161   virtual Value *Codegen();
    162 };
    163 </pre>
    164 </div>
    165 
    166 <p>The AST node just has pointers to the various subexpressions.</p>
    167 
    168 </div>
    169 
    170 <!-- ======================================================================= -->
    171 <h4><a name="ifparser">Parser Extensions for If/Then/Else</a></h4>
    172 <!-- ======================================================================= -->
    173 
    174 <div>
    175 
    176 <p>Now that we have the relevant tokens coming from the lexer and we have the
    177 AST node to build, our parsing logic is relatively straightforward.  First we
    178 define a new parsing function:</p>
    179 
    180 <div class="doc_code">
    181 <pre>
    182 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    183 static ExprAST *ParseIfExpr() {
    184   getNextToken();  // eat the if.
    185   
    186   // condition.
    187   ExprAST *Cond = ParseExpression();
    188   if (!Cond) return 0;
    189   
    190   if (CurTok != tok_then)
    191     return Error("expected then");
    192   getNextToken();  // eat the then
    193   
    194   ExprAST *Then = ParseExpression();
    195   if (Then == 0) return 0;
    196   
    197   if (CurTok != tok_else)
    198     return Error("expected else");
    199   
    200   getNextToken();
    201   
    202   ExprAST *Else = ParseExpression();
    203   if (!Else) return 0;
    204   
    205   return new IfExprAST(Cond, Then, Else);
    206 }
    207 </pre>
    208 </div>
    209 
    210 <p>Next we hook it up as a primary expression:</p>
    211 
    212 <div class="doc_code">
    213 <pre>
    214 static ExprAST *ParsePrimary() {
    215   switch (CurTok) {
    216   default: return Error("unknown token when expecting an expression");
    217   case tok_identifier: return ParseIdentifierExpr();
    218   case tok_number:     return ParseNumberExpr();
    219   case '(':            return ParseParenExpr();
    220   <b>case tok_if:         return ParseIfExpr();</b>
    221   }
    222 }
    223 </pre>
    224 </div>
    225 
    226 </div>
    227 
    228 <!-- ======================================================================= -->
    229 <h4><a name="ifir">LLVM IR for If/Then/Else</a></h4>
    230 <!-- ======================================================================= -->
    231 
    232 <div>
    233 
    234 <p>Now that we have it parsing and building the AST, the final piece is adding
    235 LLVM code generation support.  This is the most interesting part of the
    236 if/then/else example, because this is where it starts to introduce new concepts.
    237 All of the code above has been thoroughly described in previous chapters.
    238 </p>
    239 
    240 <p>To motivate the code we want to produce, lets take a look at a simple
    241 example.  Consider:</p>
    242 
    243 <div class="doc_code">
    244 <pre>
    245 extern foo();
    246 extern bar();
    247 def baz(x) if x then foo() else bar();
    248 </pre>
    249 </div>
    250 
    251 <p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
    252 looks like this:</p>
    253 
    254 <div class="doc_code">
    255 <pre>
    256 declare double @foo()
    257 
    258 declare double @bar()
    259 
    260 define double @baz(double %x) {
    261 entry:
    262 	%ifcond = fcmp one double %x, 0.000000e+00
    263 	br i1 %ifcond, label %then, label %else
    264 
    265 then:		; preds = %entry
    266 	%calltmp = call double @foo()
    267 	br label %ifcont
    268 
    269 else:		; preds = %entry
    270 	%calltmp1 = call double @bar()
    271 	br label %ifcont
    272 
    273 ifcont:		; preds = %else, %then
    274 	%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
    275 	ret double %iftmp
    276 }
    277 </pre>
    278 </div>
    279 
    280 <p>To visualize the control flow graph, you can use a nifty feature of the LLVM
    281 '<a href="http://llvm.org/cmds/opt.html">opt</a>' tool.  If you put this LLVM IR
    282 into "t.ll" and run "<tt>llvm-as &lt; t.ll | opt -analyze -view-cfg</tt>", <a
    283 href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
    284 see this graph:</p>
    285 
    286 <div style="text-align: center"><img src="LangImpl5-cfg.png" alt="Example CFG" width="423" 
    287 height="315"></div>
    288 
    289 <p>Another way to get this is to call "<tt>F-&gt;viewCFG()</tt>" or
    290 "<tt>F-&gt;viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by
    291 inserting actual calls into the code and recompiling or by calling these in the
    292 debugger.  LLVM has many nice features for visualizing various graphs.</p>
    293 
    294 <p>Getting back to the generated code, it is fairly simple: the entry block 
    295 evaluates the conditional expression ("x" in our case here) and compares the
    296 result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
    297 instruction ('one' is "Ordered and Not Equal").  Based on the result of this
    298 expression, the code jumps to either the "then" or "else" blocks, which contain
    299 the expressions for the true/false cases.</p>
    300 
    301 <p>Once the then/else blocks are finished executing, they both branch back to the
    302 'ifcont' block to execute the code that happens after the if/then/else.  In this
    303 case the only thing left to do is to return to the caller of the function.  The
    304 question then becomes: how does the code know which expression to return?</p>
    305 
    306 <p>The answer to this question involves an important SSA operation: the
    307 <a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
    308 operation</a>.  If you're not familiar with SSA, <a 
    309 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
    310 article</a> is a good introduction and there are various other introductions to
    311 it available on your favorite search engine.  The short version is that
    312 "execution" of the Phi operation requires "remembering" which block control came
    313 from.  The Phi operation takes on the value corresponding to the input control
    314 block.  In this case, if control comes in from the "then" block, it gets the
    315 value of "calltmp".  If control comes from the "else" block, it gets the value
    316 of "calltmp1".</p>
    317 
    318 <p>At this point, you are probably starting to think "Oh no! This means my
    319 simple and elegant front-end will have to start generating SSA form in order to
    320 use LLVM!".  Fortunately, this is not the case, and we strongly advise
    321 <em>not</em> implementing an SSA construction algorithm in your front-end
    322 unless there is an amazingly good reason to do so.  In practice, there are two
    323 sorts of values that float around in code written for your average imperative
    324 programming language that might need Phi nodes:</p>
    325 
    326 <ol>
    327 <li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
    328 <li>Values that are implicit in the structure of your AST, such as the Phi node
    329 in this case.</li>
    330 </ol>
    331 
    332 <p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable 
    333 variables"), we'll talk about #1
    334 in depth.  For now, just believe me that you don't need SSA construction to
    335 handle this case.  For #2, you have the choice of using the techniques that we will 
    336 describe for #1, or you can insert Phi nodes directly, if convenient.  In this 
    337 case, it is really really easy to generate the Phi node, so we choose to do it
    338 directly.</p>
    339 
    340 <p>Okay, enough of the motivation and overview, lets generate code!</p>
    341 
    342 </div>
    343 
    344 <!-- ======================================================================= -->
    345 <h4><a name="ifcodegen">Code Generation for If/Then/Else</a></h4>
    346 <!-- ======================================================================= -->
    347 
    348 <div>
    349 
    350 <p>In order to generate code for this, we implement the <tt>Codegen</tt> method
    351 for <tt>IfExprAST</tt>:</p>
    352 
    353 <div class="doc_code">
    354 <pre>
    355 Value *IfExprAST::Codegen() {
    356   Value *CondV = Cond-&gt;Codegen();
    357   if (CondV == 0) return 0;
    358   
    359   // Convert condition to a bool by comparing equal to 0.0.
    360   CondV = Builder.CreateFCmpONE(CondV, 
    361                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
    362                                 "ifcond");
    363 </pre>
    364 </div>
    365 
    366 <p>This code is straightforward and similar to what we saw before.  We emit the
    367 expression for the condition, then compare that value to zero to get a truth
    368 value as a 1-bit (bool) value.</p>
    369 
    370 <div class="doc_code">
    371 <pre>
    372   Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
    373   
    374   // Create blocks for the then and else cases.  Insert the 'then' block at the
    375   // end of the function.
    376   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
    377   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
    378   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
    379 
    380   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
    381 </pre>
    382 </div>
    383 
    384 <p>This code creates the basic blocks that are related to the if/then/else
    385 statement, and correspond directly to the blocks in the example above.  The
    386 first line gets the current Function object that is being built.  It
    387 gets this by asking the builder for the current BasicBlock, and asking that
    388 block for its "parent" (the function it is currently embedded into).</p>
    389 
    390 <p>Once it has that, it creates three blocks.  Note that it passes "TheFunction"
    391 into the constructor for the "then" block.  This causes the constructor to
    392 automatically insert the new block into the end of the specified function.  The
    393 other two blocks are created, but aren't yet inserted into the function.</p>
    394 
    395 <p>Once the blocks are created, we can emit the conditional branch that chooses
    396 between them.  Note that creating new blocks does not implicitly affect the
    397 IRBuilder, so it is still inserting into the block that the condition
    398 went into.  Also note that it is creating a branch to the "then" block and the
    399 "else" block, even though the "else" block isn't inserted into the function yet.
    400 This is all ok: it is the standard way that LLVM supports forward 
    401 references.</p>
    402 
    403 <div class="doc_code">
    404 <pre>
    405   // Emit then value.
    406   Builder.SetInsertPoint(ThenBB);
    407   
    408   Value *ThenV = Then-&gt;Codegen();
    409   if (ThenV == 0) return 0;
    410   
    411   Builder.CreateBr(MergeBB);
    412   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
    413   ThenBB = Builder.GetInsertBlock();
    414 </pre>
    415 </div>
    416 
    417 <p>After the conditional branch is inserted, we move the builder to start
    418 inserting into the "then" block.  Strictly speaking, this call moves the
    419 insertion point to be at the end of the specified block.  However, since the
    420 "then" block is empty, it also starts out by inserting at the beginning of the
    421 block.  :)</p>
    422 
    423 <p>Once the insertion point is set, we recursively codegen the "then" expression
    424 from the AST.  To finish off the "then" block, we create an unconditional branch
    425 to the merge block.  One interesting (and very important) aspect of the LLVM IR
    426 is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
    427 to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
    428 instruction</a> such as return or branch.  This means that all control flow,
    429 <em>including fall throughs</em> must be made explicit in the LLVM IR.  If you
    430 violate this rule, the verifier will emit an error.</p>
    431 
    432 <p>The final line here is quite subtle, but is very important.  The basic issue
    433 is that when we create the Phi node in the merge block, we need to set up the
    434 block/value pairs that indicate how the Phi will work.  Importantly, the Phi
    435 node expects to have an entry for each predecessor of the block in the CFG.  Why
    436 then, are we getting the current block when we just set it to ThenBB 5 lines
    437 above?  The problem is that the "Then" expression may actually itself change the
    438 block that the Builder is emitting into if, for example, it contains a nested
    439 "if/then/else" expression.  Because calling Codegen recursively could
    440 arbitrarily change the notion of the current block, we are required to get an
    441 up-to-date value for code that will set up the Phi node.</p>
    442 
    443 <div class="doc_code">
    444 <pre>
    445   // Emit else block.
    446   TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
    447   Builder.SetInsertPoint(ElseBB);
    448   
    449   Value *ElseV = Else-&gt;Codegen();
    450   if (ElseV == 0) return 0;
    451   
    452   Builder.CreateBr(MergeBB);
    453   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
    454   ElseBB = Builder.GetInsertBlock();
    455 </pre>
    456 </div>
    457 
    458 <p>Code generation for the 'else' block is basically identical to codegen for
    459 the 'then' block.  The only significant difference is the first line, which adds
    460 the 'else' block to the function.  Recall previously that the 'else' block was
    461 created, but not added to the function.  Now that the 'then' and 'else' blocks
    462 are emitted, we can finish up with the merge code:</p>
    463 
    464 <div class="doc_code">
    465 <pre>
    466   // Emit merge block.
    467   TheFunction->getBasicBlockList().push_back(MergeBB);
    468   Builder.SetInsertPoint(MergeBB);
    469   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
    470                                   "iftmp");
    471   
    472   PN->addIncoming(ThenV, ThenBB);
    473   PN->addIncoming(ElseV, ElseBB);
    474   return PN;
    475 }
    476 </pre>
    477 </div>
    478 
    479 <p>The first two lines here are now familiar: the first adds the "merge" block
    480 to the Function object (it was previously floating, like the else block above).
    481 The second block changes the insertion point so that newly created code will go
    482 into the "merge" block.  Once that is done, we need to create the PHI node and
    483 set up the block/value pairs for the PHI.</p>
    484 
    485 <p>Finally, the CodeGen function returns the phi node as the value computed by
    486 the if/then/else expression.  In our example above, this returned value will 
    487 feed into the code for the top-level function, which will create the return
    488 instruction.</p>
    489 
    490 <p>Overall, we now have the ability to execute conditional code in
    491 Kaleidoscope.  With this extension, Kaleidoscope is a fairly complete language
    492 that can calculate a wide variety of numeric functions.  Next up we'll add
    493 another useful expression that is familiar from non-functional languages...</p>
    494 
    495 </div>
    496 
    497 </div>
    498 
    499 <!-- *********************************************************************** -->
    500 <h2><a name="for">'for' Loop Expression</a></h2>
    501 <!-- *********************************************************************** -->
    502 
    503 <div>
    504 
    505 <p>Now that we know how to add basic control flow constructs to the language,
    506 we have the tools to add more powerful things.  Lets add something more
    507 aggressive, a 'for' expression:</p>
    508 
    509 <div class="doc_code">
    510 <pre>
    511  extern putchard(char)
    512  def printstar(n)
    513    for i = 1, i &lt; n, 1.0 in
    514      putchard(42);  # ascii 42 = '*'
    515      
    516  # print 100 '*' characters
    517  printstar(100);
    518 </pre>
    519 </div>
    520 
    521 <p>This expression defines a new variable ("i" in this case) which iterates from
    522 a starting value, while the condition ("i &lt; n" in this case) is true, 
    523 incrementing by an optional step value ("1.0" in this case).  If the step value
    524 is omitted, it defaults to 1.0.  While the loop is true, it executes its 
    525 body expression.  Because we don't have anything better to return, we'll just
    526 define the loop as always returning 0.0.  In the future when we have mutable
    527 variables, it will get more useful.</p>
    528 
    529 <p>As before, lets talk about the changes that we need to Kaleidoscope to
    530 support this.</p>
    531 
    532 <!-- ======================================================================= -->
    533 <h4><a name="forlexer">Lexer Extensions for the 'for' Loop</a></h4>
    534 <!-- ======================================================================= -->
    535 
    536 <div>
    537 
    538 <p>The lexer extensions are the same sort of thing as for if/then/else:</p>
    539 
    540 <div class="doc_code">
    541 <pre>
    542   ... in enum Token ...
    543   // control
    544   tok_if = -6, tok_then = -7, tok_else = -8,
    545 <b>  tok_for = -9, tok_in = -10</b>
    546 
    547   ... in gettok ...
    548   if (IdentifierStr == "def") return tok_def;
    549   if (IdentifierStr == "extern") return tok_extern;
    550   if (IdentifierStr == "if") return tok_if;
    551   if (IdentifierStr == "then") return tok_then;
    552   if (IdentifierStr == "else") return tok_else;
    553   <b>if (IdentifierStr == "for") return tok_for;
    554   if (IdentifierStr == "in") return tok_in;</b>
    555   return tok_identifier;
    556 </pre>
    557 </div>
    558 
    559 </div>
    560 
    561 <!-- ======================================================================= -->
    562 <h4><a name="forast">AST Extensions for the 'for' Loop</a></h4>
    563 <!-- ======================================================================= -->
    564 
    565 <div>
    566 
    567 <p>The AST node is just as simple.  It basically boils down to capturing
    568 the variable name and the constituent expressions in the node.</p>
    569 
    570 <div class="doc_code">
    571 <pre>
    572 /// ForExprAST - Expression class for for/in.
    573 class ForExprAST : public ExprAST {
    574   std::string VarName;
    575   ExprAST *Start, *End, *Step, *Body;
    576 public:
    577   ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
    578              ExprAST *step, ExprAST *body)
    579     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    580   virtual Value *Codegen();
    581 };
    582 </pre>
    583 </div>
    584 
    585 </div>
    586 
    587 <!-- ======================================================================= -->
    588 <h4><a name="forparser">Parser Extensions for the 'for' Loop</a></h4>
    589 <!-- ======================================================================= -->
    590 
    591 <div>
    592 
    593 <p>The parser code is also fairly standard.  The only interesting thing here is
    594 handling of the optional step value.  The parser code handles it by checking to
    595 see if the second comma is present.  If not, it sets the step value to null in
    596 the AST node:</p>
    597 
    598 <div class="doc_code">
    599 <pre>
    600 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    601 static ExprAST *ParseForExpr() {
    602   getNextToken();  // eat the for.
    603 
    604   if (CurTok != tok_identifier)
    605     return Error("expected identifier after for");
    606   
    607   std::string IdName = IdentifierStr;
    608   getNextToken();  // eat identifier.
    609   
    610   if (CurTok != '=')
    611     return Error("expected '=' after for");
    612   getNextToken();  // eat '='.
    613   
    614   
    615   ExprAST *Start = ParseExpression();
    616   if (Start == 0) return 0;
    617   if (CurTok != ',')
    618     return Error("expected ',' after for start value");
    619   getNextToken();
    620   
    621   ExprAST *End = ParseExpression();
    622   if (End == 0) return 0;
    623   
    624   // The step value is optional.
    625   ExprAST *Step = 0;
    626   if (CurTok == ',') {
    627     getNextToken();
    628     Step = ParseExpression();
    629     if (Step == 0) return 0;
    630   }
    631   
    632   if (CurTok != tok_in)
    633     return Error("expected 'in' after for");
    634   getNextToken();  // eat 'in'.
    635   
    636   ExprAST *Body = ParseExpression();
    637   if (Body == 0) return 0;
    638 
    639   return new ForExprAST(IdName, Start, End, Step, Body);
    640 }
    641 </pre>
    642 </div>
    643 
    644 </div>
    645 
    646 <!-- ======================================================================= -->
    647 <h4><a name="forir">LLVM IR for the 'for' Loop</a></h4>
    648 <!-- ======================================================================= -->
    649 
    650 <div>
    651 
    652 <p>Now we get to the good part: the LLVM IR we want to generate for this thing.
    653 With the simple example above, we get this LLVM IR (note that this dump is
    654 generated with optimizations disabled for clarity):
    655 </p>
    656 
    657 <div class="doc_code">
    658 <pre>
    659 declare double @putchard(double)
    660 
    661 define double @printstar(double %n) {
    662 entry:
    663         ; initial value = 1.0 (inlined into phi)
    664 	br label %loop
    665 
    666 loop:		; preds = %loop, %entry
    667 	%i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
    668         ; body
    669 	%calltmp = call double @putchard(double 4.200000e+01)
    670         ; increment
    671 	%nextvar = fadd double %i, 1.000000e+00
    672 
    673         ; termination test
    674 	%cmptmp = fcmp ult double %i, %n
    675 	%booltmp = uitofp i1 %cmptmp to double
    676 	%loopcond = fcmp one double %booltmp, 0.000000e+00
    677 	br i1 %loopcond, label %loop, label %afterloop
    678 
    679 afterloop:		; preds = %loop
    680         ; loop always returns 0.0
    681 	ret double 0.000000e+00
    682 }
    683 </pre>
    684 </div>
    685 
    686 <p>This loop contains all the same constructs we saw before: a phi node, several
    687 expressions, and some basic blocks.  Lets see how this fits together.</p>
    688 
    689 </div>
    690 
    691 <!-- ======================================================================= -->
    692 <h4><a name="forcodegen">Code Generation for the 'for' Loop</a></h4>
    693 <!-- ======================================================================= -->
    694 
    695 <div>
    696 
    697 <p>The first part of Codegen is very simple: we just output the start expression
    698 for the loop value:</p>
    699 
    700 <div class="doc_code">
    701 <pre>
    702 Value *ForExprAST::Codegen() {
    703   // Emit the start code first, without 'variable' in scope.
    704   Value *StartVal = Start-&gt;Codegen();
    705   if (StartVal == 0) return 0;
    706 </pre>
    707 </div>
    708 
    709 <p>With this out of the way, the next step is to set up the LLVM basic block
    710 for the start of the loop body.  In the case above, the whole loop body is one
    711 block, but remember that the body code itself could consist of multiple blocks
    712 (e.g. if it contains an if/then/else or a for/in expression).</p>
    713 
    714 <div class="doc_code">
    715 <pre>
    716   // Make the new basic block for the loop header, inserting after current
    717   // block.
    718   Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
    719   BasicBlock *PreheaderBB = Builder.GetInsertBlock();
    720   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
    721   
    722   // Insert an explicit fall through from the current block to the LoopBB.
    723   Builder.CreateBr(LoopBB);
    724 </pre>
    725 </div>
    726 
    727 <p>This code is similar to what we saw for if/then/else.  Because we will need
    728 it to create the Phi node, we remember the block that falls through into the
    729 loop.  Once we have that, we create the actual block that starts the loop and
    730 create an unconditional branch for the fall-through between the two blocks.</p>
    731   
    732 <div class="doc_code">
    733 <pre>
    734   // Start insertion in LoopBB.
    735   Builder.SetInsertPoint(LoopBB);
    736   
    737   // Start the PHI node with an entry for Start.
    738   PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
    739   Variable-&gt;addIncoming(StartVal, PreheaderBB);
    740 </pre>
    741 </div>
    742 
    743 <p>Now that the "preheader" for the loop is set up, we switch to emitting code
    744 for the loop body.  To begin with, we move the insertion point and create the
    745 PHI node for the loop induction variable.  Since we already know the incoming
    746 value for the starting value, we add it to the Phi node.  Note that the Phi will
    747 eventually get a second value for the backedge, but we can't set it up yet
    748 (because it doesn't exist!).</p>
    749 
    750 <div class="doc_code">
    751 <pre>
    752   // Within the loop, the variable is defined equal to the PHI node.  If it
    753   // shadows an existing variable, we have to restore it, so save it now.
    754   Value *OldVal = NamedValues[VarName];
    755   NamedValues[VarName] = Variable;
    756   
    757   // Emit the body of the loop.  This, like any other expr, can change the
    758   // current BB.  Note that we ignore the value computed by the body, but don't
    759   // allow an error.
    760   if (Body-&gt;Codegen() == 0)
    761     return 0;
    762 </pre>
    763 </div>
    764 
    765 <p>Now the code starts to get more interesting.  Our 'for' loop introduces a new
    766 variable to the symbol table.  This means that our symbol table can now contain
    767 either function arguments or loop variables.  To handle this, before we codegen
    768 the body of the loop, we add the loop variable as the current value for its
    769 name.  Note that it is possible that there is a variable of the same name in the
    770 outer scope.  It would be easy to make this an error (emit an error and return
    771 null if there is already an entry for VarName) but we choose to allow shadowing
    772 of variables.  In order to handle this correctly, we remember the Value that
    773 we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is
    774 no shadowed variable).</p>
    775 
    776 <p>Once the loop variable is set into the symbol table, the code recursively
    777 codegen's the body.  This allows the body to use the loop variable: any
    778 references to it will naturally find it in the symbol table.</p>
    779 
    780 <div class="doc_code">
    781 <pre>
    782   // Emit the step value.
    783   Value *StepVal;
    784   if (Step) {
    785     StepVal = Step-&gt;Codegen();
    786     if (StepVal == 0) return 0;
    787   } else {
    788     // If not specified, use 1.0.
    789     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
    790   }
    791   
    792   Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
    793 </pre>
    794 </div>
    795 
    796 <p>Now that the body is emitted, we compute the next value of the iteration
    797 variable by adding the step value, or 1.0 if it isn't present. '<tt>NextVar</tt>'
    798 will be the value of the loop variable on the next iteration of the loop.</p>
    799 
    800 <div class="doc_code">
    801 <pre>
    802   // Compute the end condition.
    803   Value *EndCond = End-&gt;Codegen();
    804   if (EndCond == 0) return EndCond;
    805   
    806   // Convert condition to a bool by comparing equal to 0.0.
    807   EndCond = Builder.CreateFCmpONE(EndCond, 
    808                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
    809                                   "loopcond");
    810 </pre>
    811 </div>
    812 
    813 <p>Finally, we evaluate the exit value of the loop, to determine whether the
    814 loop should exit.  This mirrors the condition evaluation for the if/then/else
    815 statement.</p>
    816       
    817 <div class="doc_code">
    818 <pre>
    819   // Create the "after loop" block and insert it.
    820   BasicBlock *LoopEndBB = Builder.GetInsertBlock();
    821   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
    822   
    823   // Insert the conditional branch into the end of LoopEndBB.
    824   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
    825   
    826   // Any new code will be inserted in AfterBB.
    827   Builder.SetInsertPoint(AfterBB);
    828 </pre>
    829 </div>
    830 
    831 <p>With the code for the body of the loop complete, we just need to finish up
    832 the control flow for it.  This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop").  Based on the value of the
    833 exit condition, it creates a conditional branch that chooses between executing
    834 the loop again and exiting the loop.  Any future code is emitted in the
    835 "afterloop" block, so it sets the insertion position to it.</p>
    836   
    837 <div class="doc_code">
    838 <pre>
    839   // Add a new entry to the PHI node for the backedge.
    840   Variable-&gt;addIncoming(NextVar, LoopEndBB);
    841   
    842   // Restore the unshadowed variable.
    843   if (OldVal)
    844     NamedValues[VarName] = OldVal;
    845   else
    846     NamedValues.erase(VarName);
    847   
    848   // for expr always returns 0.0.
    849   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
    850 }
    851 </pre>
    852 </div>
    853 
    854 <p>The final code handles various cleanups: now that we have the "NextVar"
    855 value, we can add the incoming value to the loop PHI node.  After that, we
    856 remove the loop variable from the symbol table, so that it isn't in scope after
    857 the for loop.  Finally, code generation of the for loop always returns 0.0, so
    858 that is what we return from <tt>ForExprAST::Codegen</tt>.</p>
    859 
    860 <p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
    861 the tutorial.  In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors
    862 to know.  In the next chapter of our saga, we will get a bit crazier and add
    863 <a href="LangImpl6.html">user-defined operators</a> to our poor innocent 
    864 language.</p>
    865 
    866 </div>
    867 
    868 </div>
    869 
    870 <!-- *********************************************************************** -->
    871 <h2><a name="code">Full Code Listing</a></h2>
    872 <!-- *********************************************************************** -->
    873 
    874 <div>
    875 
    876 <p>
    877 Here is the complete code listing for our running example, enhanced with the
    878 if/then/else and for expressions..  To build this example, use:
    879 </p>
    880 
    881 <div class="doc_code">
    882 <pre>
    883    # Compile
    884    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
    885    # Run
    886    ./toy
    887 </pre>
    888 </div>
    889 
    890 <p>Here is the code:</p>
    891 
    892 <div class="doc_code">
    893 <pre>
    894 #include "llvm/DerivedTypes.h"
    895 #include "llvm/ExecutionEngine/ExecutionEngine.h"
    896 #include "llvm/ExecutionEngine/JIT.h"
    897 #include "llvm/LLVMContext.h"
    898 #include "llvm/Module.h"
    899 #include "llvm/PassManager.h"
    900 #include "llvm/Analysis/Verifier.h"
    901 #include "llvm/Analysis/Passes.h"
    902 #include "llvm/Target/TargetData.h"
    903 #include "llvm/Target/TargetSelect.h"
    904 #include "llvm/Transforms/Scalar.h"
    905 #include "llvm/Support/IRBuilder.h"
    906 #include &lt;cstdio&gt;
    907 #include &lt;string&gt;
    908 #include &lt;map&gt;
    909 #include &lt;vector&gt;
    910 using namespace llvm;
    911 
    912 //===----------------------------------------------------------------------===//
    913 // Lexer
    914 //===----------------------------------------------------------------------===//
    915 
    916 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
    917 // of these for known things.
    918 enum Token {
    919   tok_eof = -1,
    920 
    921   // commands
    922   tok_def = -2, tok_extern = -3,
    923 
    924   // primary
    925   tok_identifier = -4, tok_number = -5,
    926   
    927   // control
    928   tok_if = -6, tok_then = -7, tok_else = -8,
    929   tok_for = -9, tok_in = -10
    930 };
    931 
    932 static std::string IdentifierStr;  // Filled in if tok_identifier
    933 static double NumVal;              // Filled in if tok_number
    934 
    935 /// gettok - Return the next token from standard input.
    936 static int gettok() {
    937   static int LastChar = ' ';
    938 
    939   // Skip any whitespace.
    940   while (isspace(LastChar))
    941     LastChar = getchar();
    942 
    943   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    944     IdentifierStr = LastChar;
    945     while (isalnum((LastChar = getchar())))
    946       IdentifierStr += LastChar;
    947 
    948     if (IdentifierStr == "def") return tok_def;
    949     if (IdentifierStr == "extern") return tok_extern;
    950     if (IdentifierStr == "if") return tok_if;
    951     if (IdentifierStr == "then") return tok_then;
    952     if (IdentifierStr == "else") return tok_else;
    953     if (IdentifierStr == "for") return tok_for;
    954     if (IdentifierStr == "in") return tok_in;
    955     return tok_identifier;
    956   }
    957 
    958   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    959     std::string NumStr;
    960     do {
    961       NumStr += LastChar;
    962       LastChar = getchar();
    963     } while (isdigit(LastChar) || LastChar == '.');
    964 
    965     NumVal = strtod(NumStr.c_str(), 0);
    966     return tok_number;
    967   }
    968 
    969   if (LastChar == '#') {
    970     // Comment until end of line.
    971     do LastChar = getchar();
    972     while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
    973     
    974     if (LastChar != EOF)
    975       return gettok();
    976   }
    977   
    978   // Check for end of file.  Don't eat the EOF.
    979   if (LastChar == EOF)
    980     return tok_eof;
    981 
    982   // Otherwise, just return the character as its ascii value.
    983   int ThisChar = LastChar;
    984   LastChar = getchar();
    985   return ThisChar;
    986 }
    987 
    988 //===----------------------------------------------------------------------===//
    989 // Abstract Syntax Tree (aka Parse Tree)
    990 //===----------------------------------------------------------------------===//
    991 
    992 /// ExprAST - Base class for all expression nodes.
    993 class ExprAST {
    994 public:
    995   virtual ~ExprAST() {}
    996   virtual Value *Codegen() = 0;
    997 };
    998 
    999 /// NumberExprAST - Expression class for numeric literals like "1.0".
   1000 class NumberExprAST : public ExprAST {
   1001   double Val;
   1002 public:
   1003   NumberExprAST(double val) : Val(val) {}
   1004   virtual Value *Codegen();
   1005 };
   1006 
   1007 /// VariableExprAST - Expression class for referencing a variable, like "a".
   1008 class VariableExprAST : public ExprAST {
   1009   std::string Name;
   1010 public:
   1011   VariableExprAST(const std::string &amp;name) : Name(name) {}
   1012   virtual Value *Codegen();
   1013 };
   1014 
   1015 /// BinaryExprAST - Expression class for a binary operator.
   1016 class BinaryExprAST : public ExprAST {
   1017   char Op;
   1018   ExprAST *LHS, *RHS;
   1019 public:
   1020   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
   1021     : Op(op), LHS(lhs), RHS(rhs) {}
   1022   virtual Value *Codegen();
   1023 };
   1024 
   1025 /// CallExprAST - Expression class for function calls.
   1026 class CallExprAST : public ExprAST {
   1027   std::string Callee;
   1028   std::vector&lt;ExprAST*&gt; Args;
   1029 public:
   1030   CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
   1031     : Callee(callee), Args(args) {}
   1032   virtual Value *Codegen();
   1033 };
   1034 
   1035 /// IfExprAST - Expression class for if/then/else.
   1036 class IfExprAST : public ExprAST {
   1037   ExprAST *Cond, *Then, *Else;
   1038 public:
   1039   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
   1040   : Cond(cond), Then(then), Else(_else) {}
   1041   virtual Value *Codegen();
   1042 };
   1043 
   1044 /// ForExprAST - Expression class for for/in.
   1045 class ForExprAST : public ExprAST {
   1046   std::string VarName;
   1047   ExprAST *Start, *End, *Step, *Body;
   1048 public:
   1049   ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
   1050              ExprAST *step, ExprAST *body)
   1051     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
   1052   virtual Value *Codegen();
   1053 };
   1054 
   1055 /// PrototypeAST - This class represents the "prototype" for a function,
   1056 /// which captures its name, and its argument names (thus implicitly the number
   1057 /// of arguments the function takes).
   1058 class PrototypeAST {
   1059   std::string Name;
   1060   std::vector&lt;std::string&gt; Args;
   1061 public:
   1062   PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
   1063     : Name(name), Args(args) {}
   1064   
   1065   Function *Codegen();
   1066 };
   1067 
   1068 /// FunctionAST - This class represents a function definition itself.
   1069 class FunctionAST {
   1070   PrototypeAST *Proto;
   1071   ExprAST *Body;
   1072 public:
   1073   FunctionAST(PrototypeAST *proto, ExprAST *body)
   1074     : Proto(proto), Body(body) {}
   1075   
   1076   Function *Codegen();
   1077 };
   1078 
   1079 //===----------------------------------------------------------------------===//
   1080 // Parser
   1081 //===----------------------------------------------------------------------===//
   1082 
   1083 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
   1084 /// token the parser is looking at.  getNextToken reads another token from the
   1085 /// lexer and updates CurTok with its results.
   1086 static int CurTok;
   1087 static int getNextToken() {
   1088   return CurTok = gettok();
   1089 }
   1090 
   1091 /// BinopPrecedence - This holds the precedence for each binary operator that is
   1092 /// defined.
   1093 static std::map&lt;char, int&gt; BinopPrecedence;
   1094 
   1095 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
   1096 static int GetTokPrecedence() {
   1097   if (!isascii(CurTok))
   1098     return -1;
   1099   
   1100   // Make sure it's a declared binop.
   1101   int TokPrec = BinopPrecedence[CurTok];
   1102   if (TokPrec &lt;= 0) return -1;
   1103   return TokPrec;
   1104 }
   1105 
   1106 /// Error* - These are little helper functions for error handling.
   1107 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
   1108 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
   1109 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
   1110 
   1111 static ExprAST *ParseExpression();
   1112 
   1113 /// identifierexpr
   1114 ///   ::= identifier
   1115 ///   ::= identifier '(' expression* ')'
   1116 static ExprAST *ParseIdentifierExpr() {
   1117   std::string IdName = IdentifierStr;
   1118   
   1119   getNextToken();  // eat identifier.
   1120   
   1121   if (CurTok != '(') // Simple variable ref.
   1122     return new VariableExprAST(IdName);
   1123   
   1124   // Call.
   1125   getNextToken();  // eat (
   1126   std::vector&lt;ExprAST*&gt; Args;
   1127   if (CurTok != ')') {
   1128     while (1) {
   1129       ExprAST *Arg = ParseExpression();
   1130       if (!Arg) return 0;
   1131       Args.push_back(Arg);
   1132 
   1133       if (CurTok == ')') break;
   1134 
   1135       if (CurTok != ',')
   1136         return Error("Expected ')' or ',' in argument list");
   1137       getNextToken();
   1138     }
   1139   }
   1140 
   1141   // Eat the ')'.
   1142   getNextToken();
   1143   
   1144   return new CallExprAST(IdName, Args);
   1145 }
   1146 
   1147 /// numberexpr ::= number
   1148 static ExprAST *ParseNumberExpr() {
   1149   ExprAST *Result = new NumberExprAST(NumVal);
   1150   getNextToken(); // consume the number
   1151   return Result;
   1152 }
   1153 
   1154 /// parenexpr ::= '(' expression ')'
   1155 static ExprAST *ParseParenExpr() {
   1156   getNextToken();  // eat (.
   1157   ExprAST *V = ParseExpression();
   1158   if (!V) return 0;
   1159   
   1160   if (CurTok != ')')
   1161     return Error("expected ')'");
   1162   getNextToken();  // eat ).
   1163   return V;
   1164 }
   1165 
   1166 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
   1167 static ExprAST *ParseIfExpr() {
   1168   getNextToken();  // eat the if.
   1169   
   1170   // condition.
   1171   ExprAST *Cond = ParseExpression();
   1172   if (!Cond) return 0;
   1173   
   1174   if (CurTok != tok_then)
   1175     return Error("expected then");
   1176   getNextToken();  // eat the then
   1177   
   1178   ExprAST *Then = ParseExpression();
   1179   if (Then == 0) return 0;
   1180   
   1181   if (CurTok != tok_else)
   1182     return Error("expected else");
   1183   
   1184   getNextToken();
   1185   
   1186   ExprAST *Else = ParseExpression();
   1187   if (!Else) return 0;
   1188   
   1189   return new IfExprAST(Cond, Then, Else);
   1190 }
   1191 
   1192 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
   1193 static ExprAST *ParseForExpr() {
   1194   getNextToken();  // eat the for.
   1195 
   1196   if (CurTok != tok_identifier)
   1197     return Error("expected identifier after for");
   1198   
   1199   std::string IdName = IdentifierStr;
   1200   getNextToken();  // eat identifier.
   1201   
   1202   if (CurTok != '=')
   1203     return Error("expected '=' after for");
   1204   getNextToken();  // eat '='.
   1205   
   1206   
   1207   ExprAST *Start = ParseExpression();
   1208   if (Start == 0) return 0;
   1209   if (CurTok != ',')
   1210     return Error("expected ',' after for start value");
   1211   getNextToken();
   1212   
   1213   ExprAST *End = ParseExpression();
   1214   if (End == 0) return 0;
   1215   
   1216   // The step value is optional.
   1217   ExprAST *Step = 0;
   1218   if (CurTok == ',') {
   1219     getNextToken();
   1220     Step = ParseExpression();
   1221     if (Step == 0) return 0;
   1222   }
   1223   
   1224   if (CurTok != tok_in)
   1225     return Error("expected 'in' after for");
   1226   getNextToken();  // eat 'in'.
   1227   
   1228   ExprAST *Body = ParseExpression();
   1229   if (Body == 0) return 0;
   1230 
   1231   return new ForExprAST(IdName, Start, End, Step, Body);
   1232 }
   1233 
   1234 /// primary
   1235 ///   ::= identifierexpr
   1236 ///   ::= numberexpr
   1237 ///   ::= parenexpr
   1238 ///   ::= ifexpr
   1239 ///   ::= forexpr
   1240 static ExprAST *ParsePrimary() {
   1241   switch (CurTok) {
   1242   default: return Error("unknown token when expecting an expression");
   1243   case tok_identifier: return ParseIdentifierExpr();
   1244   case tok_number:     return ParseNumberExpr();
   1245   case '(':            return ParseParenExpr();
   1246   case tok_if:         return ParseIfExpr();
   1247   case tok_for:        return ParseForExpr();
   1248   }
   1249 }
   1250 
   1251 /// binoprhs
   1252 ///   ::= ('+' primary)*
   1253 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
   1254   // If this is a binop, find its precedence.
   1255   while (1) {
   1256     int TokPrec = GetTokPrecedence();
   1257     
   1258     // If this is a binop that binds at least as tightly as the current binop,
   1259     // consume it, otherwise we are done.
   1260     if (TokPrec &lt; ExprPrec)
   1261       return LHS;
   1262     
   1263     // Okay, we know this is a binop.
   1264     int BinOp = CurTok;
   1265     getNextToken();  // eat binop
   1266     
   1267     // Parse the primary expression after the binary operator.
   1268     ExprAST *RHS = ParsePrimary();
   1269     if (!RHS) return 0;
   1270     
   1271     // If BinOp binds less tightly with RHS than the operator after RHS, let
   1272     // the pending operator take RHS as its LHS.
   1273     int NextPrec = GetTokPrecedence();
   1274     if (TokPrec &lt; NextPrec) {
   1275       RHS = ParseBinOpRHS(TokPrec+1, RHS);
   1276       if (RHS == 0) return 0;
   1277     }
   1278     
   1279     // Merge LHS/RHS.
   1280     LHS = new BinaryExprAST(BinOp, LHS, RHS);
   1281   }
   1282 }
   1283 
   1284 /// expression
   1285 ///   ::= primary binoprhs
   1286 ///
   1287 static ExprAST *ParseExpression() {
   1288   ExprAST *LHS = ParsePrimary();
   1289   if (!LHS) return 0;
   1290   
   1291   return ParseBinOpRHS(0, LHS);
   1292 }
   1293 
   1294 /// prototype
   1295 ///   ::= id '(' id* ')'
   1296 static PrototypeAST *ParsePrototype() {
   1297   if (CurTok != tok_identifier)
   1298     return ErrorP("Expected function name in prototype");
   1299 
   1300   std::string FnName = IdentifierStr;
   1301   getNextToken();
   1302   
   1303   if (CurTok != '(')
   1304     return ErrorP("Expected '(' in prototype");
   1305   
   1306   std::vector&lt;std::string&gt; ArgNames;
   1307   while (getNextToken() == tok_identifier)
   1308     ArgNames.push_back(IdentifierStr);
   1309   if (CurTok != ')')
   1310     return ErrorP("Expected ')' in prototype");
   1311   
   1312   // success.
   1313   getNextToken();  // eat ')'.
   1314   
   1315   return new PrototypeAST(FnName, ArgNames);
   1316 }
   1317 
   1318 /// definition ::= 'def' prototype expression
   1319 static FunctionAST *ParseDefinition() {
   1320   getNextToken();  // eat def.
   1321   PrototypeAST *Proto = ParsePrototype();
   1322   if (Proto == 0) return 0;
   1323 
   1324   if (ExprAST *E = ParseExpression())
   1325     return new FunctionAST(Proto, E);
   1326   return 0;
   1327 }
   1328 
   1329 /// toplevelexpr ::= expression
   1330 static FunctionAST *ParseTopLevelExpr() {
   1331   if (ExprAST *E = ParseExpression()) {
   1332     // Make an anonymous proto.
   1333     PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
   1334     return new FunctionAST(Proto, E);
   1335   }
   1336   return 0;
   1337 }
   1338 
   1339 /// external ::= 'extern' prototype
   1340 static PrototypeAST *ParseExtern() {
   1341   getNextToken();  // eat extern.
   1342   return ParsePrototype();
   1343 }
   1344 
   1345 //===----------------------------------------------------------------------===//
   1346 // Code Generation
   1347 //===----------------------------------------------------------------------===//
   1348 
   1349 static Module *TheModule;
   1350 static IRBuilder&lt;&gt; Builder(getGlobalContext());
   1351 static std::map&lt;std::string, Value*&gt; NamedValues;
   1352 static FunctionPassManager *TheFPM;
   1353 
   1354 Value *ErrorV(const char *Str) { Error(Str); return 0; }
   1355 
   1356 Value *NumberExprAST::Codegen() {
   1357   return ConstantFP::get(getGlobalContext(), APFloat(Val));
   1358 }
   1359 
   1360 Value *VariableExprAST::Codegen() {
   1361   // Look this variable up in the function.
   1362   Value *V = NamedValues[Name];
   1363   return V ? V : ErrorV("Unknown variable name");
   1364 }
   1365 
   1366 Value *BinaryExprAST::Codegen() {
   1367   Value *L = LHS-&gt;Codegen();
   1368   Value *R = RHS-&gt;Codegen();
   1369   if (L == 0 || R == 0) return 0;
   1370   
   1371   switch (Op) {
   1372   case '+': return Builder.CreateFAdd(L, R, "addtmp");
   1373   case '-': return Builder.CreateFSub(L, R, "subtmp");
   1374   case '*': return Builder.CreateFMul(L, R, "multmp");
   1375   case '&lt;':
   1376     L = Builder.CreateFCmpULT(L, R, "cmptmp");
   1377     // Convert bool 0/1 to double 0.0 or 1.0
   1378     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
   1379                                 "booltmp");
   1380   default: return ErrorV("invalid binary operator");
   1381   }
   1382 }
   1383 
   1384 Value *CallExprAST::Codegen() {
   1385   // Look up the name in the global module table.
   1386   Function *CalleeF = TheModule-&gt;getFunction(Callee);
   1387   if (CalleeF == 0)
   1388     return ErrorV("Unknown function referenced");
   1389   
   1390   // If argument mismatch error.
   1391   if (CalleeF-&gt;arg_size() != Args.size())
   1392     return ErrorV("Incorrect # arguments passed");
   1393 
   1394   std::vector&lt;Value*&gt; ArgsV;
   1395   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   1396     ArgsV.push_back(Args[i]-&gt;Codegen());
   1397     if (ArgsV.back() == 0) return 0;
   1398   }
   1399   
   1400   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
   1401 }
   1402 
   1403 Value *IfExprAST::Codegen() {
   1404   Value *CondV = Cond-&gt;Codegen();
   1405   if (CondV == 0) return 0;
   1406   
   1407   // Convert condition to a bool by comparing equal to 0.0.
   1408   CondV = Builder.CreateFCmpONE(CondV, 
   1409                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1410                                 "ifcond");
   1411   
   1412   Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
   1413   
   1414   // Create blocks for the then and else cases.  Insert the 'then' block at the
   1415   // end of the function.
   1416   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
   1417   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
   1418   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
   1419   
   1420   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
   1421   
   1422   // Emit then value.
   1423   Builder.SetInsertPoint(ThenBB);
   1424   
   1425   Value *ThenV = Then-&gt;Codegen();
   1426   if (ThenV == 0) return 0;
   1427   
   1428   Builder.CreateBr(MergeBB);
   1429   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
   1430   ThenBB = Builder.GetInsertBlock();
   1431   
   1432   // Emit else block.
   1433   TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
   1434   Builder.SetInsertPoint(ElseBB);
   1435   
   1436   Value *ElseV = Else-&gt;Codegen();
   1437   if (ElseV == 0) return 0;
   1438   
   1439   Builder.CreateBr(MergeBB);
   1440   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
   1441   ElseBB = Builder.GetInsertBlock();
   1442   
   1443   // Emit merge block.
   1444   TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
   1445   Builder.SetInsertPoint(MergeBB);
   1446   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
   1447                                   "iftmp");
   1448   
   1449   PN-&gt;addIncoming(ThenV, ThenBB);
   1450   PN-&gt;addIncoming(ElseV, ElseBB);
   1451   return PN;
   1452 }
   1453 
   1454 Value *ForExprAST::Codegen() {
   1455   // Output this as:
   1456   //   ...
   1457   //   start = startexpr
   1458   //   goto loop
   1459   // loop: 
   1460   //   variable = phi [start, loopheader], [nextvariable, loopend]
   1461   //   ...
   1462   //   bodyexpr
   1463   //   ...
   1464   // loopend:
   1465   //   step = stepexpr
   1466   //   nextvariable = variable + step
   1467   //   endcond = endexpr
   1468   //   br endcond, loop, endloop
   1469   // outloop:
   1470   
   1471   // Emit the start code first, without 'variable' in scope.
   1472   Value *StartVal = Start-&gt;Codegen();
   1473   if (StartVal == 0) return 0;
   1474   
   1475   // Make the new basic block for the loop header, inserting after current
   1476   // block.
   1477   Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
   1478   BasicBlock *PreheaderBB = Builder.GetInsertBlock();
   1479   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
   1480   
   1481   // Insert an explicit fall through from the current block to the LoopBB.
   1482   Builder.CreateBr(LoopBB);
   1483 
   1484   // Start insertion in LoopBB.
   1485   Builder.SetInsertPoint(LoopBB);
   1486   
   1487   // Start the PHI node with an entry for Start.
   1488   PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
   1489   Variable-&gt;addIncoming(StartVal, PreheaderBB);
   1490   
   1491   // Within the loop, the variable is defined equal to the PHI node.  If it
   1492   // shadows an existing variable, we have to restore it, so save it now.
   1493   Value *OldVal = NamedValues[VarName];
   1494   NamedValues[VarName] = Variable;
   1495   
   1496   // Emit the body of the loop.  This, like any other expr, can change the
   1497   // current BB.  Note that we ignore the value computed by the body, but don't
   1498   // allow an error.
   1499   if (Body-&gt;Codegen() == 0)
   1500     return 0;
   1501   
   1502   // Emit the step value.
   1503   Value *StepVal;
   1504   if (Step) {
   1505     StepVal = Step-&gt;Codegen();
   1506     if (StepVal == 0) return 0;
   1507   } else {
   1508     // If not specified, use 1.0.
   1509     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
   1510   }
   1511   
   1512   Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
   1513 
   1514   // Compute the end condition.
   1515   Value *EndCond = End-&gt;Codegen();
   1516   if (EndCond == 0) return EndCond;
   1517   
   1518   // Convert condition to a bool by comparing equal to 0.0.
   1519   EndCond = Builder.CreateFCmpONE(EndCond, 
   1520                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1521                                   "loopcond");
   1522   
   1523   // Create the "after loop" block and insert it.
   1524   BasicBlock *LoopEndBB = Builder.GetInsertBlock();
   1525   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
   1526   
   1527   // Insert the conditional branch into the end of LoopEndBB.
   1528   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
   1529   
   1530   // Any new code will be inserted in AfterBB.
   1531   Builder.SetInsertPoint(AfterBB);
   1532   
   1533   // Add a new entry to the PHI node for the backedge.
   1534   Variable-&gt;addIncoming(NextVar, LoopEndBB);
   1535   
   1536   // Restore the unshadowed variable.
   1537   if (OldVal)
   1538     NamedValues[VarName] = OldVal;
   1539   else
   1540     NamedValues.erase(VarName);
   1541 
   1542   
   1543   // for expr always returns 0.0.
   1544   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
   1545 }
   1546 
   1547 Function *PrototypeAST::Codegen() {
   1548   // Make the function type:  double(double,double) etc.
   1549   std::vector&lt;const Type*&gt; Doubles(Args.size(),
   1550                                    Type::getDoubleTy(getGlobalContext()));
   1551   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
   1552                                        Doubles, false);
   1553   
   1554   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
   1555   
   1556   // If F conflicted, there was already something named 'Name'.  If it has a
   1557   // body, don't allow redefinition or reextern.
   1558   if (F-&gt;getName() != Name) {
   1559     // Delete the one we just made and get the existing one.
   1560     F-&gt;eraseFromParent();
   1561     F = TheModule-&gt;getFunction(Name);
   1562     
   1563     // If F already has a body, reject this.
   1564     if (!F-&gt;empty()) {
   1565       ErrorF("redefinition of function");
   1566       return 0;
   1567     }
   1568     
   1569     // If F took a different number of args, reject.
   1570     if (F-&gt;arg_size() != Args.size()) {
   1571       ErrorF("redefinition of function with different # args");
   1572       return 0;
   1573     }
   1574   }
   1575   
   1576   // Set names for all arguments.
   1577   unsigned Idx = 0;
   1578   for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
   1579        ++AI, ++Idx) {
   1580     AI-&gt;setName(Args[Idx]);
   1581     
   1582     // Add arguments to variable symbol table.
   1583     NamedValues[Args[Idx]] = AI;
   1584   }
   1585   
   1586   return F;
   1587 }
   1588 
   1589 Function *FunctionAST::Codegen() {
   1590   NamedValues.clear();
   1591   
   1592   Function *TheFunction = Proto-&gt;Codegen();
   1593   if (TheFunction == 0)
   1594     return 0;
   1595   
   1596   // Create a new basic block to start insertion into.
   1597   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
   1598   Builder.SetInsertPoint(BB);
   1599   
   1600   if (Value *RetVal = Body-&gt;Codegen()) {
   1601     // Finish off the function.
   1602     Builder.CreateRet(RetVal);
   1603 
   1604     // Validate the generated code, checking for consistency.
   1605     verifyFunction(*TheFunction);
   1606 
   1607     // Optimize the function.
   1608     TheFPM-&gt;run(*TheFunction);
   1609     
   1610     return TheFunction;
   1611   }
   1612   
   1613   // Error reading body, remove function.
   1614   TheFunction-&gt;eraseFromParent();
   1615   return 0;
   1616 }
   1617 
   1618 //===----------------------------------------------------------------------===//
   1619 // Top-Level parsing and JIT Driver
   1620 //===----------------------------------------------------------------------===//
   1621 
   1622 static ExecutionEngine *TheExecutionEngine;
   1623 
   1624 static void HandleDefinition() {
   1625   if (FunctionAST *F = ParseDefinition()) {
   1626     if (Function *LF = F-&gt;Codegen()) {
   1627       fprintf(stderr, "Read function definition:");
   1628       LF-&gt;dump();
   1629     }
   1630   } else {
   1631     // Skip token for error recovery.
   1632     getNextToken();
   1633   }
   1634 }
   1635 
   1636 static void HandleExtern() {
   1637   if (PrototypeAST *P = ParseExtern()) {
   1638     if (Function *F = P-&gt;Codegen()) {
   1639       fprintf(stderr, "Read extern: ");
   1640       F-&gt;dump();
   1641     }
   1642   } else {
   1643     // Skip token for error recovery.
   1644     getNextToken();
   1645   }
   1646 }
   1647 
   1648 static void HandleTopLevelExpression() {
   1649   // Evaluate a top-level expression into an anonymous function.
   1650   if (FunctionAST *F = ParseTopLevelExpr()) {
   1651     if (Function *LF = F-&gt;Codegen()) {
   1652       // JIT the function, returning a function pointer.
   1653       void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
   1654       
   1655       // Cast it to the right type (takes no arguments, returns a double) so we
   1656       // can call it as a native function.
   1657       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1658       fprintf(stderr, "Evaluated to %f\n", FP());
   1659     }
   1660   } else {
   1661     // Skip token for error recovery.
   1662     getNextToken();
   1663   }
   1664 }
   1665 
   1666 /// top ::= definition | external | expression | ';'
   1667 static void MainLoop() {
   1668   while (1) {
   1669     fprintf(stderr, "ready&gt; ");
   1670     switch (CurTok) {
   1671     case tok_eof:    return;
   1672     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1673     case tok_def:    HandleDefinition(); break;
   1674     case tok_extern: HandleExtern(); break;
   1675     default:         HandleTopLevelExpression(); break;
   1676     }
   1677   }
   1678 }
   1679 
   1680 //===----------------------------------------------------------------------===//
   1681 // "Library" functions that can be "extern'd" from user code.
   1682 //===----------------------------------------------------------------------===//
   1683 
   1684 /// putchard - putchar that takes a double and returns 0.
   1685 extern "C" 
   1686 double putchard(double X) {
   1687   putchar((char)X);
   1688   return 0;
   1689 }
   1690 
   1691 //===----------------------------------------------------------------------===//
   1692 // Main driver code.
   1693 //===----------------------------------------------------------------------===//
   1694 
   1695 int main() {
   1696   InitializeNativeTarget();
   1697   LLVMContext &amp;Context = getGlobalContext();
   1698 
   1699   // Install standard binary operators.
   1700   // 1 is lowest precedence.
   1701   BinopPrecedence['&lt;'] = 10;
   1702   BinopPrecedence['+'] = 20;
   1703   BinopPrecedence['-'] = 20;
   1704   BinopPrecedence['*'] = 40;  // highest.
   1705 
   1706   // Prime the first token.
   1707   fprintf(stderr, "ready&gt; ");
   1708   getNextToken();
   1709 
   1710   // Make the module, which holds all the code.
   1711   TheModule = new Module("my cool jit", Context);
   1712 
   1713   // Create the JIT.  This takes ownership of the module.
   1714   std::string ErrStr;
   1715   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
   1716   if (!TheExecutionEngine) {
   1717     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
   1718     exit(1);
   1719   }
   1720 
   1721   FunctionPassManager OurFPM(TheModule);
   1722 
   1723   // Set up the optimizer pipeline.  Start with registering info about how the
   1724   // target lays out data structures.
   1725   OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
   1726   // Provide basic AliasAnalysis support for GVN.
   1727   OurFPM.add(createBasicAliasAnalysisPass());
   1728   // Do simple "peephole" optimizations and bit-twiddling optzns.
   1729   OurFPM.add(createInstructionCombiningPass());
   1730   // Reassociate expressions.
   1731   OurFPM.add(createReassociatePass());
   1732   // Eliminate Common SubExpressions.
   1733   OurFPM.add(createGVNPass());
   1734   // Simplify the control flow graph (deleting unreachable blocks, etc).
   1735   OurFPM.add(createCFGSimplificationPass());
   1736 
   1737   OurFPM.doInitialization();
   1738 
   1739   // Set the global so the code gen can use this.
   1740   TheFPM = &amp;OurFPM;
   1741 
   1742   // Run the main "interpreter loop" now.
   1743   MainLoop();
   1744 
   1745   TheFPM = 0;
   1746 
   1747   // Print out all of the generated code.
   1748   TheModule-&gt;dump();
   1749 
   1750   return 0;
   1751 }
   1752 </pre>
   1753 </div>
   1754 
   1755 <a href="LangImpl6.html">Next: Extending the language: user-defined operators</a>
   1756 </div>
   1757 
   1758 <!-- *********************************************************************** -->
   1759 <hr>
   1760 <address>
   1761   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1762   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   1763   <a href="http://validator.w3.org/check/referer"><img
   1764   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
   1765 
   1766   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1767   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1768   Last modified: $Date$
   1769 </address>
   1770 </body>
   1771 </html>
   1772