Home | History | Annotate | Download | only in Analysis
      1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements an abstract sparse conditional propagation algorithm,
     11 // modeled after SCCP, but with a customizable lattice function.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "sparseprop"
     16 #include "llvm/Analysis/SparsePropagation.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/Function.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 using namespace llvm;
     23 
     24 //===----------------------------------------------------------------------===//
     25 //                  AbstractLatticeFunction Implementation
     26 //===----------------------------------------------------------------------===//
     27 
     28 AbstractLatticeFunction::~AbstractLatticeFunction() {}
     29 
     30 /// PrintValue - Render the specified lattice value to the specified stream.
     31 void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) {
     32   if (V == UndefVal)
     33     OS << "undefined";
     34   else if (V == OverdefinedVal)
     35     OS << "overdefined";
     36   else if (V == UntrackedVal)
     37     OS << "untracked";
     38   else
     39     OS << "unknown lattice value";
     40 }
     41 
     42 //===----------------------------------------------------------------------===//
     43 //                          SparseSolver Implementation
     44 //===----------------------------------------------------------------------===//
     45 
     46 /// getOrInitValueState - Return the LatticeVal object that corresponds to the
     47 /// value, initializing the value's state if it hasn't been entered into the
     48 /// map yet.   This function is necessary because not all values should start
     49 /// out in the underdefined state... Arguments should be overdefined, and
     50 /// constants should be marked as constants.
     51 ///
     52 SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
     53   DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
     54   if (I != ValueState.end()) return I->second;  // Common case, in the map
     55 
     56   LatticeVal LV;
     57   if (LatticeFunc->IsUntrackedValue(V))
     58     return LatticeFunc->getUntrackedVal();
     59   else if (Constant *C = dyn_cast<Constant>(V))
     60     LV = LatticeFunc->ComputeConstant(C);
     61   else if (Argument *A = dyn_cast<Argument>(V))
     62     LV = LatticeFunc->ComputeArgument(A);
     63   else if (!isa<Instruction>(V))
     64     // All other non-instructions are overdefined.
     65     LV = LatticeFunc->getOverdefinedVal();
     66   else
     67     // All instructions are underdefined by default.
     68     LV = LatticeFunc->getUndefVal();
     69 
     70   // If this value is untracked, don't add it to the map.
     71   if (LV == LatticeFunc->getUntrackedVal())
     72     return LV;
     73   return ValueState[V] = LV;
     74 }
     75 
     76 /// UpdateState - When the state for some instruction is potentially updated,
     77 /// this function notices and adds I to the worklist if needed.
     78 void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
     79   DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
     80   if (I != ValueState.end() && I->second == V)
     81     return;  // No change.
     82 
     83   // An update.  Visit uses of I.
     84   ValueState[&Inst] = V;
     85   InstWorkList.push_back(&Inst);
     86 }
     87 
     88 /// MarkBlockExecutable - This method can be used by clients to mark all of
     89 /// the blocks that are known to be intrinsically live in the processed unit.
     90 void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
     91   DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
     92   BBExecutable.insert(BB);   // Basic block is executable!
     93   BBWorkList.push_back(BB);  // Add the block to the work list!
     94 }
     95 
     96 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
     97 /// work list if it is not already executable...
     98 void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
     99   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    100     return;  // This edge is already known to be executable!
    101 
    102   DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    103         << " -> " << Dest->getName() << "\n");
    104 
    105   if (BBExecutable.count(Dest)) {
    106     // The destination is already executable, but we just made an edge
    107     // feasible that wasn't before.  Revisit the PHI nodes in the block
    108     // because they have potentially new operands.
    109     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
    110       visitPHINode(*cast<PHINode>(I));
    111 
    112   } else {
    113     MarkBlockExecutable(Dest);
    114   }
    115 }
    116 
    117 
    118 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
    119 /// successors are reachable from a given terminator instruction.
    120 void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
    121                                          SmallVectorImpl<bool> &Succs,
    122                                          bool AggressiveUndef) {
    123   Succs.resize(TI.getNumSuccessors());
    124   if (TI.getNumSuccessors() == 0) return;
    125 
    126   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    127     if (BI->isUnconditional()) {
    128       Succs[0] = true;
    129       return;
    130     }
    131 
    132     LatticeVal BCValue;
    133     if (AggressiveUndef)
    134       BCValue = getOrInitValueState(BI->getCondition());
    135     else
    136       BCValue = getLatticeState(BI->getCondition());
    137 
    138     if (BCValue == LatticeFunc->getOverdefinedVal() ||
    139         BCValue == LatticeFunc->getUntrackedVal()) {
    140       // Overdefined condition variables can branch either way.
    141       Succs[0] = Succs[1] = true;
    142       return;
    143     }
    144 
    145     // If undefined, neither is feasible yet.
    146     if (BCValue == LatticeFunc->getUndefVal())
    147       return;
    148 
    149     Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
    150     if (C == 0 || !isa<ConstantInt>(C)) {
    151       // Non-constant values can go either way.
    152       Succs[0] = Succs[1] = true;
    153       return;
    154     }
    155 
    156     // Constant condition variables mean the branch can only go a single way
    157     Succs[C->isNullValue()] = true;
    158     return;
    159   }
    160 
    161   if (isa<InvokeInst>(TI)) {
    162     // Invoke instructions successors are always executable.
    163     // TODO: Could ask the lattice function if the value can throw.
    164     Succs[0] = Succs[1] = true;
    165     return;
    166   }
    167 
    168   if (isa<IndirectBrInst>(TI)) {
    169     Succs.assign(Succs.size(), true);
    170     return;
    171   }
    172 
    173   SwitchInst &SI = cast<SwitchInst>(TI);
    174   LatticeVal SCValue;
    175   if (AggressiveUndef)
    176     SCValue = getOrInitValueState(SI.getCondition());
    177   else
    178     SCValue = getLatticeState(SI.getCondition());
    179 
    180   if (SCValue == LatticeFunc->getOverdefinedVal() ||
    181       SCValue == LatticeFunc->getUntrackedVal()) {
    182     // All destinations are executable!
    183     Succs.assign(TI.getNumSuccessors(), true);
    184     return;
    185   }
    186 
    187   // If undefined, neither is feasible yet.
    188   if (SCValue == LatticeFunc->getUndefVal())
    189     return;
    190 
    191   Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
    192   if (C == 0 || !isa<ConstantInt>(C)) {
    193     // All destinations are executable!
    194     Succs.assign(TI.getNumSuccessors(), true);
    195     return;
    196   }
    197 
    198   Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true;
    199 }
    200 
    201 
    202 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
    203 /// basic block to the 'To' basic block is currently feasible...
    204 bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
    205                                   bool AggressiveUndef) {
    206   SmallVector<bool, 16> SuccFeasible;
    207   TerminatorInst *TI = From->getTerminator();
    208   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
    209 
    210   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    211     if (TI->getSuccessor(i) == To && SuccFeasible[i])
    212       return true;
    213 
    214   return false;
    215 }
    216 
    217 void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
    218   SmallVector<bool, 16> SuccFeasible;
    219   getFeasibleSuccessors(TI, SuccFeasible, true);
    220 
    221   BasicBlock *BB = TI.getParent();
    222 
    223   // Mark all feasible successors executable...
    224   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    225     if (SuccFeasible[i])
    226       markEdgeExecutable(BB, TI.getSuccessor(i));
    227 }
    228 
    229 void SparseSolver::visitPHINode(PHINode &PN) {
    230   // The lattice function may store more information on a PHINode than could be
    231   // computed from its incoming values.  For example, SSI form stores its sigma
    232   // functions as PHINodes with a single incoming value.
    233   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
    234     LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
    235     if (IV != LatticeFunc->getUntrackedVal())
    236       UpdateState(PN, IV);
    237     return;
    238   }
    239 
    240   LatticeVal PNIV = getOrInitValueState(&PN);
    241   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
    242 
    243   // If this value is already overdefined (common) just return.
    244   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
    245     return;  // Quick exit
    246 
    247   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
    248   // and slow us down a lot.  Just mark them overdefined.
    249   if (PN.getNumIncomingValues() > 64) {
    250     UpdateState(PN, Overdefined);
    251     return;
    252   }
    253 
    254   // Look at all of the executable operands of the PHI node.  If any of them
    255   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
    256   // transfer function to give us the merge of the incoming values.
    257   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    258     // If the edge is not yet known to be feasible, it doesn't impact the PHI.
    259     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
    260       continue;
    261 
    262     // Merge in this value.
    263     LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
    264     if (OpVal != PNIV)
    265       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
    266 
    267     if (PNIV == Overdefined)
    268       break;  // Rest of input values don't matter.
    269   }
    270 
    271   // Update the PHI with the compute value, which is the merge of the inputs.
    272   UpdateState(PN, PNIV);
    273 }
    274 
    275 
    276 void SparseSolver::visitInst(Instruction &I) {
    277   // PHIs are handled by the propagation logic, they are never passed into the
    278   // transfer functions.
    279   if (PHINode *PN = dyn_cast<PHINode>(&I))
    280     return visitPHINode(*PN);
    281 
    282   // Otherwise, ask the transfer function what the result is.  If this is
    283   // something that we care about, remember it.
    284   LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
    285   if (IV != LatticeFunc->getUntrackedVal())
    286     UpdateState(I, IV);
    287 
    288   if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
    289     visitTerminatorInst(*TI);
    290 }
    291 
    292 void SparseSolver::Solve(Function &F) {
    293   MarkBlockExecutable(&F.getEntryBlock());
    294 
    295   // Process the work lists until they are empty!
    296   while (!BBWorkList.empty() || !InstWorkList.empty()) {
    297     // Process the instruction work list.
    298     while (!InstWorkList.empty()) {
    299       Instruction *I = InstWorkList.back();
    300       InstWorkList.pop_back();
    301 
    302       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n");
    303 
    304       // "I" got into the work list because it made a transition.  See if any
    305       // users are both live and in need of updating.
    306       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
    307            UI != E; ++UI) {
    308         Instruction *U = cast<Instruction>(*UI);
    309         if (BBExecutable.count(U->getParent()))   // Inst is executable?
    310           visitInst(*U);
    311       }
    312     }
    313 
    314     // Process the basic block work list.
    315     while (!BBWorkList.empty()) {
    316       BasicBlock *BB = BBWorkList.back();
    317       BBWorkList.pop_back();
    318 
    319       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
    320 
    321       // Notify all instructions in this basic block that they are newly
    322       // executable.
    323       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    324         visitInst(*I);
    325     }
    326   }
    327 }
    328 
    329 void SparseSolver::Print(Function &F, raw_ostream &OS) const {
    330   OS << "\nFUNCTION: " << F.getNameStr() << "\n";
    331   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    332     if (!BBExecutable.count(BB))
    333       OS << "INFEASIBLE: ";
    334     OS << "\t";
    335     if (BB->hasName())
    336       OS << BB->getNameStr() << ":\n";
    337     else
    338       OS << "; anon bb\n";
    339     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    340       LatticeFunc->PrintValue(getLatticeState(I), OS);
    341       OS << *I << "\n";
    342     }
    343 
    344     OS << "\n";
    345   }
    346 }
    347 
    348