Home | History | Annotate | Download | only in CellSPU
      1 //==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // Cell SPU Instructions:
     10 //===----------------------------------------------------------------------===//
     11 
     12 //===----------------------------------------------------------------------===//
     13 // TODO Items (not urgent today, but would be nice, low priority)
     14 //
     15 // ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
     16 // concatenating the byte argument b as "bbbb". Could recognize this bit pattern
     17 // in 16-bit and 32-bit constants and reduce instruction count.
     18 //===----------------------------------------------------------------------===//
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Pseudo instructions:
     22 //===----------------------------------------------------------------------===//
     23 
     24 let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
     25   def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt),
     26                                 "${:comment} ADJCALLSTACKDOWN",
     27                                 [(callseq_start timm:$amt)]>;
     28   def ADJCALLSTACKUP   : Pseudo<(outs), (ins u16imm_i32:$amt),
     29                                 "${:comment} ADJCALLSTACKUP",
     30                                 [(callseq_end timm:$amt)]>;
     31   def HBR_LABEL        : Pseudo<(outs), (ins hbrtarget:$targ), 
     32                                 "$targ:\t${:comment}branch hint target",[ ]>;
     33 }
     34 
     35 //===----------------------------------------------------------------------===//
     36 // Loads:
     37 // NB: The ordering is actually important, since the instruction selection
     38 // will try each of the instructions in sequence, i.e., the D-form first with
     39 // the 10-bit displacement, then the A-form with the 16 bit displacement, and
     40 // finally the X-form with the register-register.
     41 //===----------------------------------------------------------------------===//
     42 
     43 let canFoldAsLoad = 1 in {
     44   class LoadDFormVec<ValueType vectype>
     45     : RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src),
     46                "lqd\t$rT, $src",
     47                LoadStore,
     48                [(set (vectype VECREG:$rT), (load dform_addr:$src))]>
     49   { }
     50 
     51   class LoadDForm<RegisterClass rclass>
     52     : RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src),
     53                "lqd\t$rT, $src",
     54                LoadStore,
     55                [(set rclass:$rT, (load dform_addr:$src))]>
     56   { }
     57 
     58   multiclass LoadDForms
     59   {
     60     def v16i8: LoadDFormVec<v16i8>;
     61     def v8i16: LoadDFormVec<v8i16>;
     62     def v4i32: LoadDFormVec<v4i32>;
     63     def v2i64: LoadDFormVec<v2i64>;
     64     def v4f32: LoadDFormVec<v4f32>;
     65     def v2f64: LoadDFormVec<v2f64>;
     66 
     67     def r128:  LoadDForm<GPRC>;
     68     def r64:   LoadDForm<R64C>;
     69     def r32:   LoadDForm<R32C>;
     70     def f32:   LoadDForm<R32FP>;
     71     def f64:   LoadDForm<R64FP>;
     72     def r16:   LoadDForm<R16C>;
     73     def r8:    LoadDForm<R8C>;
     74   }
     75 
     76   class LoadAFormVec<ValueType vectype>
     77     : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
     78                "lqa\t$rT, $src",
     79                LoadStore,
     80                [(set (vectype VECREG:$rT), (load aform_addr:$src))]>
     81   { }
     82 
     83   class LoadAForm<RegisterClass rclass>
     84     : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src),
     85                "lqa\t$rT, $src",
     86                LoadStore,
     87                [(set rclass:$rT, (load aform_addr:$src))]>
     88   { }
     89 
     90   multiclass LoadAForms
     91   {
     92     def v16i8: LoadAFormVec<v16i8>;
     93     def v8i16: LoadAFormVec<v8i16>;
     94     def v4i32: LoadAFormVec<v4i32>;
     95     def v2i64: LoadAFormVec<v2i64>;
     96     def v4f32: LoadAFormVec<v4f32>;
     97     def v2f64: LoadAFormVec<v2f64>;
     98 
     99     def r128:  LoadAForm<GPRC>;
    100     def r64:   LoadAForm<R64C>;
    101     def r32:   LoadAForm<R32C>;
    102     def f32:   LoadAForm<R32FP>;
    103     def f64:   LoadAForm<R64FP>;
    104     def r16:   LoadAForm<R16C>;
    105     def r8:    LoadAForm<R8C>;
    106   }
    107 
    108   class LoadXFormVec<ValueType vectype>
    109     : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
    110              "lqx\t$rT, $src",
    111              LoadStore,
    112              [(set (vectype VECREG:$rT), (load xform_addr:$src))]>
    113   { }
    114 
    115   class LoadXForm<RegisterClass rclass>
    116     : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src),
    117              "lqx\t$rT, $src",
    118              LoadStore,
    119              [(set rclass:$rT, (load xform_addr:$src))]>
    120   { }
    121 
    122   multiclass LoadXForms
    123   {
    124     def v16i8: LoadXFormVec<v16i8>;
    125     def v8i16: LoadXFormVec<v8i16>;
    126     def v4i32: LoadXFormVec<v4i32>;
    127     def v2i64: LoadXFormVec<v2i64>;
    128     def v4f32: LoadXFormVec<v4f32>;
    129     def v2f64: LoadXFormVec<v2f64>;
    130 
    131     def r128:  LoadXForm<GPRC>;
    132     def r64:   LoadXForm<R64C>;
    133     def r32:   LoadXForm<R32C>;
    134     def f32:   LoadXForm<R32FP>;
    135     def f64:   LoadXForm<R64FP>;
    136     def r16:   LoadXForm<R16C>;
    137     def r8:    LoadXForm<R8C>;
    138   }
    139 
    140   defm LQA : LoadAForms;
    141   defm LQD : LoadDForms;
    142   defm LQX : LoadXForms;
    143 
    144 /* Load quadword, PC relative: Not much use at this point in time.
    145    Might be of use later for relocatable code. It's effectively the
    146    same as LQA, but uses PC-relative addressing.
    147   def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
    148                      "lqr\t$rT, $disp", LoadStore,
    149                      [(set VECREG:$rT, (load iaddr:$disp))]>;
    150  */
    151 }
    152 
    153 //===----------------------------------------------------------------------===//
    154 // Stores:
    155 //===----------------------------------------------------------------------===//
    156 class StoreDFormVec<ValueType vectype>
    157   : RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src),
    158              "stqd\t$rT, $src",
    159              LoadStore,
    160              [(store (vectype VECREG:$rT), dform_addr:$src)]>
    161 { }
    162 
    163 class StoreDForm<RegisterClass rclass>
    164   : RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src),
    165              "stqd\t$rT, $src",
    166              LoadStore,
    167              [(store rclass:$rT, dform_addr:$src)]>
    168 { }
    169 
    170 multiclass StoreDForms
    171 {
    172   def v16i8: StoreDFormVec<v16i8>;
    173   def v8i16: StoreDFormVec<v8i16>;
    174   def v4i32: StoreDFormVec<v4i32>;
    175   def v2i64: StoreDFormVec<v2i64>;
    176   def v4f32: StoreDFormVec<v4f32>;
    177   def v2f64: StoreDFormVec<v2f64>;
    178 
    179   def r128:  StoreDForm<GPRC>;
    180   def r64:   StoreDForm<R64C>;
    181   def r32:   StoreDForm<R32C>;
    182   def f32:   StoreDForm<R32FP>;
    183   def f64:   StoreDForm<R64FP>;
    184   def r16:   StoreDForm<R16C>;
    185   def r8:    StoreDForm<R8C>;
    186 }
    187 
    188 class StoreAFormVec<ValueType vectype>
    189   : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src),
    190              "stqa\t$rT, $src",
    191              LoadStore,
    192              [(store (vectype VECREG:$rT), aform_addr:$src)]>;
    193 
    194 class StoreAForm<RegisterClass rclass>
    195   : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src),
    196              "stqa\t$rT, $src",
    197              LoadStore,
    198              [(store rclass:$rT, aform_addr:$src)]>;
    199 
    200 multiclass StoreAForms
    201 {
    202   def v16i8: StoreAFormVec<v16i8>;
    203   def v8i16: StoreAFormVec<v8i16>;
    204   def v4i32: StoreAFormVec<v4i32>;
    205   def v2i64: StoreAFormVec<v2i64>;
    206   def v4f32: StoreAFormVec<v4f32>;
    207   def v2f64: StoreAFormVec<v2f64>;
    208 
    209   def r128:  StoreAForm<GPRC>;
    210   def r64:   StoreAForm<R64C>;
    211   def r32:   StoreAForm<R32C>;
    212   def f32:   StoreAForm<R32FP>;
    213   def f64:   StoreAForm<R64FP>;
    214   def r16:   StoreAForm<R16C>;
    215   def r8:    StoreAForm<R8C>;
    216 }
    217 
    218 class StoreXFormVec<ValueType vectype>
    219   : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
    220            "stqx\t$rT, $src",
    221            LoadStore,
    222            [(store (vectype VECREG:$rT), xform_addr:$src)]>
    223 { }
    224 
    225 class StoreXForm<RegisterClass rclass>
    226   : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src),
    227            "stqx\t$rT, $src",
    228            LoadStore,
    229            [(store rclass:$rT, xform_addr:$src)]>
    230 { }
    231 
    232 multiclass StoreXForms
    233 {
    234   def v16i8: StoreXFormVec<v16i8>;
    235   def v8i16: StoreXFormVec<v8i16>;
    236   def v4i32: StoreXFormVec<v4i32>;
    237   def v2i64: StoreXFormVec<v2i64>;
    238   def v4f32: StoreXFormVec<v4f32>;
    239   def v2f64: StoreXFormVec<v2f64>;
    240 
    241   def r128:  StoreXForm<GPRC>;
    242   def r64:   StoreXForm<R64C>;
    243   def r32:   StoreXForm<R32C>;
    244   def f32:   StoreXForm<R32FP>;
    245   def f64:   StoreXForm<R64FP>;
    246   def r16:   StoreXForm<R16C>;
    247   def r8:    StoreXForm<R8C>;
    248 }
    249 
    250 defm STQD : StoreDForms;
    251 defm STQA : StoreAForms;
    252 defm STQX : StoreXForms;
    253 
    254 /* Store quadword, PC relative: Not much use at this point in time. Might
    255    be useful for relocatable code.
    256 def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
    257                    "stqr\t$rT, $disp", LoadStore,
    258                    [(store VECREG:$rT, iaddr:$disp)]>;
    259 */
    260 
    261 //===----------------------------------------------------------------------===//
    262 // Generate Controls for Insertion:
    263 //===----------------------------------------------------------------------===//
    264 
    265 def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    266     "cbd\t$rT, $src", ShuffleOp,
    267     [(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
    268 
    269 def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
    270     "cbx\t$rT, $src", ShuffleOp,
    271     [(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
    272 
    273 def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    274     "chd\t$rT, $src", ShuffleOp,
    275     [(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
    276 
    277 def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
    278     "chx\t$rT, $src", ShuffleOp,
    279     [(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
    280 
    281 def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    282     "cwd\t$rT, $src", ShuffleOp,
    283     [(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
    284 
    285 def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
    286     "cwx\t$rT, $src", ShuffleOp,
    287     [(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
    288 
    289 def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    290     "cwd\t$rT, $src", ShuffleOp,
    291     [(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
    292 
    293 def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
    294     "cwx\t$rT, $src", ShuffleOp,
    295     [(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
    296 
    297 def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    298     "cdd\t$rT, $src", ShuffleOp,
    299     [(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
    300 
    301 def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
    302     "cdx\t$rT, $src", ShuffleOp,
    303     [(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
    304 
    305 def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    306     "cdd\t$rT, $src", ShuffleOp,
    307     [(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
    308 
    309 def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
    310     "cdx\t$rT, $src", ShuffleOp,
    311     [(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
    312 
    313 //===----------------------------------------------------------------------===//
    314 // Constant formation:
    315 //===----------------------------------------------------------------------===//
    316 
    317 def ILHv8i16:
    318   RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
    319     "ilh\t$rT, $val", ImmLoad,
    320     [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;
    321 
    322 def ILHr16:
    323   RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
    324     "ilh\t$rT, $val", ImmLoad,
    325     [(set R16C:$rT, immSExt16:$val)]>;
    326 
    327 // Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with
    328 // the right constant")
    329 def ILHr8:
    330   RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val),
    331     "ilh\t$rT, $val", ImmLoad,
    332     [(set R8C:$rT, immSExt8:$val)]>;
    333 
    334 // IL does sign extension!
    335 
    336 class ILInst<dag OOL, dag IOL, list<dag> pattern>:
    337   RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val",
    338            ImmLoad, pattern>;
    339 
    340 class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
    341   ILInst<(outs VECREG:$rT), (ins immtype:$val),
    342          [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
    343 
    344 class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
    345   ILInst<(outs rclass:$rT), (ins immtype:$val),
    346          [(set rclass:$rT, xform:$val)]>;
    347 
    348 multiclass ImmediateLoad
    349 {
    350   def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>;
    351   def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>;
    352 
    353   // TODO: Need v2f64, v4f32
    354 
    355   def r64: ILRegInst<R64C, s16imm_i64, immSExt16>;
    356   def r32: ILRegInst<R32C, s16imm_i32, immSExt16>;
    357   def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>;
    358   def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>;
    359 }
    360 
    361 defm IL : ImmediateLoad;
    362 
    363 class ILHUInst<dag OOL, dag IOL, list<dag> pattern>:
    364   RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val",
    365            ImmLoad, pattern>;
    366 
    367 class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
    368   ILHUInst<(outs VECREG:$rT), (ins immtype:$val),
    369            [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
    370 
    371 class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
    372   ILHUInst<(outs rclass:$rT), (ins immtype:$val),
    373            [(set rclass:$rT, xform:$val)]>;
    374 
    375 multiclass ImmLoadHalfwordUpper
    376 {
    377   def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>;
    378   def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>;
    379 
    380   def r64: ILHURegInst<R64C, u16imm_i64, hi16>;
    381   def r32: ILHURegInst<R32C, u16imm_i32, hi16>;
    382 
    383   // Loads the high portion of an address
    384   def hi: ILHURegInst<R32C, symbolHi, hi16>;
    385 
    386   // Used in custom lowering constant SFP loads:
    387   def f32: ILHURegInst<R32FP, f16imm, hi16_f32>;
    388 }
    389 
    390 defm ILHU : ImmLoadHalfwordUpper;
    391 
    392 // Immediate load address (can also be used to load 18-bit unsigned constants,
    393 // see the zext 16->32 pattern)
    394 
    395 class ILAInst<dag OOL, dag IOL, list<dag> pattern>:
    396   RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val",
    397            LoadNOP, pattern>;
    398 
    399 class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
    400   ILAInst<(outs VECREG:$rT), (ins immtype:$val),
    401           [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
    402 
    403 class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
    404   ILAInst<(outs rclass:$rT), (ins immtype:$val),
    405           [(set rclass:$rT, xform:$val)]>;
    406 
    407 multiclass ImmLoadAddress
    408 {
    409   def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>;
    410   def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>;
    411 
    412   def r64: ILARegInst<R64C, u18imm_i64, imm18>;
    413   def r32: ILARegInst<R32C, u18imm, imm18>;
    414   def f32: ILARegInst<R32FP, f18imm, fpimm18>;
    415   def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>;
    416 
    417   def hi: ILARegInst<R32C, symbolHi, imm18>;
    418   def lo: ILARegInst<R32C, symbolLo, imm18>;
    419 
    420   def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val),
    421                    [(set R32C:$rT, imm18:$val)]>;
    422 }
    423 
    424 defm ILA : ImmLoadAddress;
    425 
    426 // Immediate OR, Halfword Lower: The "other" part of loading large constants
    427 // into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
    428 // Note that these are really two operand instructions, but they're encoded
    429 // as three operands with the first two arguments tied-to each other.
    430 
    431 class IOHLInst<dag OOL, dag IOL, list<dag> pattern>:
    432   RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val",
    433            ImmLoad, pattern>,
    434   RegConstraint<"$rS = $rT">,
    435   NoEncode<"$rS">;
    436 
    437 class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>:
    438   IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val),
    439            [/* no pattern */]>;
    440 
    441 class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>:
    442   IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val),
    443            [/* no pattern */]>;
    444 
    445 multiclass ImmOrHalfwordLower
    446 {
    447   def v2i64: IOHLVecInst<v2i64, u16imm_i64>;
    448   def v4i32: IOHLVecInst<v4i32, u16imm_i32>;
    449 
    450   def r32: IOHLRegInst<R32C, i32imm>;
    451   def f32: IOHLRegInst<R32FP, f32imm>;
    452 
    453   def lo: IOHLRegInst<R32C, symbolLo>;
    454 }
    455 
    456 defm IOHL: ImmOrHalfwordLower;
    457 
    458 // Form select mask for bytes using immediate, used in conjunction with the
    459 // SELB instruction:
    460 
    461 class FSMBIVec<ValueType vectype>:
    462   RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
    463           "fsmbi\t$rT, $val",
    464           SelectOp,
    465           [(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>;
    466 
    467 multiclass FormSelectMaskBytesImm
    468 {
    469   def v16i8: FSMBIVec<v16i8>;
    470   def v8i16: FSMBIVec<v8i16>;
    471   def v4i32: FSMBIVec<v4i32>;
    472   def v2i64: FSMBIVec<v2i64>;
    473 }
    474 
    475 defm FSMBI : FormSelectMaskBytesImm;
    476 
    477 // fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
    478 class FSMBInst<dag OOL, dag IOL, list<dag> pattern>:
    479     RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp,
    480              pattern>;
    481 
    482 class FSMBRegInst<RegisterClass rclass, ValueType vectype>:
    483     FSMBInst<(outs VECREG:$rT), (ins rclass:$rA),
    484              [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
    485 
    486 class FSMBVecInst<ValueType vectype>:
    487     FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA),
    488              [(set (vectype VECREG:$rT),
    489                    (SPUselmask (vectype VECREG:$rA)))]>;
    490 
    491 multiclass FormSelectMaskBits {
    492   def v16i8_r16: FSMBRegInst<R16C, v16i8>;
    493   def v16i8:     FSMBVecInst<v16i8>;
    494 }
    495 
    496 defm FSMB: FormSelectMaskBits;
    497 
    498 // fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
    499 // only 8-bits wide (even though it's input as 16-bits here)
    500 
    501 class FSMHInst<dag OOL, dag IOL, list<dag> pattern>:
    502     RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp,
    503              pattern>;
    504 
    505 class FSMHRegInst<RegisterClass rclass, ValueType vectype>:
    506     FSMHInst<(outs VECREG:$rT), (ins rclass:$rA),
    507              [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
    508 
    509 class FSMHVecInst<ValueType vectype>:
    510     FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA),
    511              [(set (vectype VECREG:$rT),
    512                    (SPUselmask (vectype VECREG:$rA)))]>;
    513 
    514 multiclass FormSelectMaskHalfword {
    515   def v8i16_r16: FSMHRegInst<R16C, v8i16>;
    516   def v8i16:     FSMHVecInst<v8i16>;
    517 }
    518 
    519 defm FSMH: FormSelectMaskHalfword;
    520 
    521 // fsm: Form select mask for words. Like the other fsm* instructions,
    522 // only the lower 4 bits of $rA are significant.
    523 
    524 class FSMInst<dag OOL, dag IOL, list<dag> pattern>:
    525     RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp,
    526              pattern>;
    527 
    528 class FSMRegInst<ValueType vectype, RegisterClass rclass>:
    529     FSMInst<(outs VECREG:$rT), (ins rclass:$rA),
    530             [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
    531 
    532 class FSMVecInst<ValueType vectype>:
    533     FSMInst<(outs VECREG:$rT), (ins VECREG:$rA),
    534             [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>;
    535 
    536 multiclass FormSelectMaskWord {
    537   def v4i32: FSMVecInst<v4i32>;
    538 
    539   def r32 :  FSMRegInst<v4i32, R32C>;
    540   def r16 :  FSMRegInst<v4i32, R16C>;
    541 }
    542 
    543 defm FSM : FormSelectMaskWord;
    544 
    545 // Special case when used for i64 math operations
    546 multiclass FormSelectMaskWord64 {
    547   def r32 : FSMRegInst<v2i64, R32C>;
    548   def r16 : FSMRegInst<v2i64, R16C>;
    549 }
    550 
    551 defm FSM64 : FormSelectMaskWord64;
    552 
    553 //===----------------------------------------------------------------------===//
    554 // Integer and Logical Operations:
    555 //===----------------------------------------------------------------------===//
    556 
    557 def AHv8i16:
    558   RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    559     "ah\t$rT, $rA, $rB", IntegerOp,
    560     [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;
    561 
    562 def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
    563           (AHv8i16 VECREG:$rA, VECREG:$rB)>;
    564 
    565 def AHr16:
    566   RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    567     "ah\t$rT, $rA, $rB", IntegerOp,
    568     [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;
    569 
    570 def AHIvec:
    571     RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    572       "ahi\t$rT, $rA, $val", IntegerOp,
    573       [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
    574                                      v8i16SExt10Imm:$val))]>;
    575 
    576 def AHIr16:
    577   RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
    578     "ahi\t$rT, $rA, $val", IntegerOp,
    579     [(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>;
    580 
    581 // v4i32, i32 add instruction:
    582 
    583 class AInst<dag OOL, dag IOL, list<dag> pattern>:
    584   RRForm<0b00000011000, OOL, IOL,
    585          "a\t$rT, $rA, $rB", IntegerOp,
    586          pattern>;
    587 
    588 class AVecInst<ValueType vectype>:
    589   AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    590         [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA),
    591                                          (vectype VECREG:$rB)))]>;
    592 
    593 class ARegInst<RegisterClass rclass>:
    594   AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
    595         [(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>;
    596         
    597 multiclass AddInstruction {
    598   def v4i32: AVecInst<v4i32>;
    599   def v16i8: AVecInst<v16i8>;
    600   def r32:   ARegInst<R32C>;
    601 }
    602 
    603 defm A : AddInstruction;
    604 
    605 class AIInst<dag OOL, dag IOL, list<dag> pattern>:
    606     RI10Form<0b00111000, OOL, IOL,
    607              "ai\t$rT, $rA, $val", IntegerOp,
    608              pattern>;
    609 
    610 class AIVecInst<ValueType vectype, PatLeaf immpred>:
    611     AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    612             [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>;
    613 
    614 class AIFPVecInst<ValueType vectype, PatLeaf immpred>:
    615     AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    616             [/* no pattern */]>;
    617 
    618 class AIRegInst<RegisterClass rclass, PatLeaf immpred>:
    619     AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
    620            [(set rclass:$rT, (add rclass:$rA, immpred:$val))]>;
    621 
    622 // This is used to add epsilons to floating point numbers in the f32 fdiv code:
    623 class AIFPInst<RegisterClass rclass, PatLeaf immpred>:
    624     AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
    625            [/* no pattern */]>;
    626 
    627 multiclass AddImmediate {
    628   def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>;
    629 
    630   def r32: AIRegInst<R32C, i32ImmSExt10>;
    631 
    632   def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>;
    633   def f32: AIFPInst<R32FP, i32ImmSExt10>;
    634 }
    635 
    636 defm AI : AddImmediate;
    637 
    638 def SFHvec:
    639     RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    640       "sfh\t$rT, $rA, $rB", IntegerOp,
    641       [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA),
    642                                      (v8i16 VECREG:$rB)))]>;
    643 
    644 def SFHr16:
    645     RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    646       "sfh\t$rT, $rA, $rB", IntegerOp,
    647       [(set R16C:$rT, (sub R16C:$rB, R16C:$rA))]>;
    648 
    649 def SFHIvec:
    650     RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    651       "sfhi\t$rT, $rA, $val", IntegerOp,
    652       [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
    653                                      (v8i16 VECREG:$rA)))]>;
    654 
    655 def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
    656   "sfhi\t$rT, $rA, $val", IntegerOp,
    657   [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;
    658 
    659 def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
    660                                   (ins VECREG:$rA, VECREG:$rB),
    661   "sf\t$rT, $rA, $rB", IntegerOp,
    662   [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rB), (v4i32 VECREG:$rA)))]>;
    663 
    664 
    665 def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
    666   "sf\t$rT, $rA, $rB", IntegerOp,
    667   [(set R32C:$rT, (sub R32C:$rB, R32C:$rA))]>;
    668 
    669 def SFIvec:
    670     RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    671       "sfi\t$rT, $rA, $val", IntegerOp,
    672       [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
    673                                      (v4i32 VECREG:$rA)))]>;
    674 
    675 def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
    676                                   (ins R32C:$rA, s10imm_i32:$val),
    677   "sfi\t$rT, $rA, $val", IntegerOp,
    678   [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;
    679 
    680 // ADDX: only available in vector form, doesn't match a pattern.
    681 class ADDXInst<dag OOL, dag IOL, list<dag> pattern>:
    682     RRForm<0b00000010110, OOL, IOL,
    683       "addx\t$rT, $rA, $rB",
    684       IntegerOp, pattern>;
    685 
    686 class ADDXVecInst<ValueType vectype>:
    687     ADDXInst<(outs VECREG:$rT),
    688              (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
    689              [/* no pattern */]>,
    690     RegConstraint<"$rCarry = $rT">,
    691     NoEncode<"$rCarry">;
    692 
    693 class ADDXRegInst<RegisterClass rclass>:
    694     ADDXInst<(outs rclass:$rT),
    695              (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
    696              [/* no pattern */]>,
    697     RegConstraint<"$rCarry = $rT">,
    698     NoEncode<"$rCarry">;
    699 
    700 multiclass AddExtended {
    701   def v2i64 : ADDXVecInst<v2i64>;
    702   def v4i32 : ADDXVecInst<v4i32>;
    703   def r64 : ADDXRegInst<R64C>;
    704   def r32 : ADDXRegInst<R32C>;
    705 }
    706 
    707 defm ADDX : AddExtended;
    708 
    709 // CG: Generate carry for add
    710 class CGInst<dag OOL, dag IOL, list<dag> pattern>:
    711     RRForm<0b01000011000, OOL, IOL,
    712       "cg\t$rT, $rA, $rB",
    713       IntegerOp, pattern>;
    714 
    715 class CGVecInst<ValueType vectype>:
    716     CGInst<(outs VECREG:$rT),
    717            (ins VECREG:$rA, VECREG:$rB),
    718            [/* no pattern */]>;
    719 
    720 class CGRegInst<RegisterClass rclass>:
    721     CGInst<(outs rclass:$rT),
    722            (ins rclass:$rA, rclass:$rB),
    723            [/* no pattern */]>;
    724 
    725 multiclass CarryGenerate {
    726   def v2i64 : CGVecInst<v2i64>;
    727   def v4i32 : CGVecInst<v4i32>;
    728   def r64 : CGRegInst<R64C>;
    729   def r32 : CGRegInst<R32C>;
    730 }
    731 
    732 defm CG : CarryGenerate;
    733 
    734 // SFX: Subract from, extended. This is used in conjunction with BG to subtract
    735 // with carry (borrow, in this case)
    736 class SFXInst<dag OOL, dag IOL, list<dag> pattern>:
    737     RRForm<0b10000010110, OOL, IOL,
    738       "sfx\t$rT, $rA, $rB",
    739       IntegerOp, pattern>;
    740 
    741 class SFXVecInst<ValueType vectype>:
    742     SFXInst<(outs VECREG:$rT),
    743             (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
    744              [/* no pattern */]>,
    745     RegConstraint<"$rCarry = $rT">,
    746     NoEncode<"$rCarry">;
    747 
    748 class SFXRegInst<RegisterClass rclass>:
    749     SFXInst<(outs rclass:$rT),
    750             (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
    751              [/* no pattern */]>,
    752     RegConstraint<"$rCarry = $rT">,
    753     NoEncode<"$rCarry">;
    754 
    755 multiclass SubtractExtended {
    756   def v2i64 : SFXVecInst<v2i64>;
    757   def v4i32 : SFXVecInst<v4i32>;
    758   def r64 : SFXRegInst<R64C>;
    759   def r32 : SFXRegInst<R32C>;
    760 }
    761 
    762 defm SFX : SubtractExtended;
    763 
    764 // BG: only available in vector form, doesn't match a pattern.
    765 class BGInst<dag OOL, dag IOL, list<dag> pattern>:
    766     RRForm<0b01000010000, OOL, IOL,
    767       "bg\t$rT, $rA, $rB",
    768       IntegerOp, pattern>;
    769 
    770 class BGVecInst<ValueType vectype>:
    771     BGInst<(outs VECREG:$rT),
    772            (ins VECREG:$rA, VECREG:$rB),
    773            [/* no pattern */]>;
    774 
    775 class BGRegInst<RegisterClass rclass>:
    776     BGInst<(outs rclass:$rT),
    777            (ins rclass:$rA, rclass:$rB),
    778            [/* no pattern */]>;
    779 
    780 multiclass BorrowGenerate {
    781   def v4i32 : BGVecInst<v4i32>;
    782   def v2i64 : BGVecInst<v2i64>;
    783   def r64 : BGRegInst<R64C>;
    784   def r32 : BGRegInst<R32C>;
    785 }
    786 
    787 defm BG : BorrowGenerate;
    788 
    789 // BGX: Borrow generate, extended.
    790 def BGXvec:
    791     RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
    792                                 VECREG:$rCarry),
    793       "bgx\t$rT, $rA, $rB", IntegerOp,
    794       []>,
    795     RegConstraint<"$rCarry = $rT">,
    796     NoEncode<"$rCarry">;
    797 
    798 // Halfword multiply variants:
    799 // N.B: These can be used to build up larger quantities (16x16 -> 32)
    800 
    801 def MPYv8i16:
    802   RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    803     "mpy\t$rT, $rA, $rB", IntegerMulDiv,
    804     [/* no pattern */]>;
    805 
    806 def MPYr16:
    807   RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    808     "mpy\t$rT, $rA, $rB", IntegerMulDiv,
    809     [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;
    810 
    811 // Unsigned 16-bit multiply:
    812 
    813 class MPYUInst<dag OOL, dag IOL, list<dag> pattern>:
    814     RRForm<0b00110011110, OOL, IOL,
    815       "mpyu\t$rT, $rA, $rB", IntegerMulDiv,
    816       pattern>;
    817 
    818 def MPYUv4i32:
    819   MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    820            [/* no pattern */]>;
    821 
    822 def MPYUr16:
    823   MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
    824            [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>;
    825 
    826 def MPYUr32:
    827   MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
    828            [/* no pattern */]>;
    829 
    830 // mpyi: multiply 16 x s10imm -> 32 result.
    831 
    832 class MPYIInst<dag OOL, dag IOL, list<dag> pattern>:
    833   RI10Form<0b00101110, OOL, IOL,
    834     "mpyi\t$rT, $rA, $val", IntegerMulDiv,
    835     pattern>;
    836 
    837 def MPYIvec:
    838   MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    839            [(set (v8i16 VECREG:$rT),
    840                  (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
    841 
    842 def MPYIr16:
    843   MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
    844            [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;
    845 
    846 // mpyui: same issues as other multiplies, plus, this doesn't match a
    847 // pattern... but may be used during target DAG selection or lowering
    848 
    849 class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>:
    850   RI10Form<0b10101110, OOL, IOL,
    851            "mpyui\t$rT, $rA, $val", IntegerMulDiv,
    852            pattern>;
    853     
    854 def MPYUIvec:
    855   MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    856             []>;
    857 
    858 def MPYUIr16:
    859   MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
    860             []>;
    861 
    862 // mpya: 16 x 16 + 16 -> 32 bit result
    863 class MPYAInst<dag OOL, dag IOL, list<dag> pattern>:
    864   RRRForm<0b0011, OOL, IOL,
    865           "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
    866           pattern>;
    867           
    868 def MPYAv4i32:
    869   MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
    870            [(set (v4i32 VECREG:$rT),
    871                  (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
    872                                               (v8i16 VECREG:$rB)))),
    873                       (v4i32 VECREG:$rC)))]>;
    874 
    875 def MPYAr32:
    876   MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
    877            [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
    878                                 R32C:$rC))]>;
    879                                 
    880 def MPYAr32_sext:
    881   MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
    882            [(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)),
    883                                 R32C:$rC))]>;
    884 
    885 def MPYAr32_sextinreg:
    886   MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
    887            [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
    888                                      (sext_inreg R32C:$rB, i16)),
    889                                 R32C:$rC))]>;
    890 
    891 // mpyh: multiply high, used to synthesize 32-bit multiplies
    892 class MPYHInst<dag OOL, dag IOL, list<dag> pattern>:
    893   RRForm<0b10100011110, OOL, IOL,
    894          "mpyh\t$rT, $rA, $rB", IntegerMulDiv,
    895          pattern>;
    896          
    897 def MPYHv4i32:
    898     MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    899              [/* no pattern */]>;
    900 
    901 def MPYHr32:
    902     MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
    903              [/* no pattern */]>;
    904 
    905 // mpys: multiply high and shift right (returns the top half of
    906 // a 16-bit multiply, sign extended to 32 bits.)
    907 
    908 class MPYSInst<dag OOL, dag IOL>:
    909     RRForm<0b11100011110, OOL, IOL, 
    910       "mpys\t$rT, $rA, $rB", IntegerMulDiv,
    911       [/* no pattern */]>;
    912 
    913 def MPYSv4i32:
    914     MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    915     
    916 def MPYSr16:
    917     MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>;
    918 
    919 // mpyhh: multiply high-high (returns the 32-bit result from multiplying
    920 // the top 16 bits of the $rA, $rB)
    921 
    922 class MPYHHInst<dag OOL, dag IOL>:
    923   RRForm<0b01100011110, OOL, IOL,
    924         "mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
    925         [/* no pattern */]>;
    926         
    927 def MPYHHv8i16:
    928     MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    929 
    930 def MPYHHr32:
    931     MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
    932 
    933 // mpyhha: Multiply high-high, add to $rT:
    934 
    935 class MPYHHAInst<dag OOL, dag IOL>:
    936     RRForm<0b01100010110, OOL, IOL,
    937       "mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
    938       [/* no pattern */]>;
    939 
    940 def MPYHHAvec:
    941     MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    942     
    943 def MPYHHAr32:
    944     MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
    945 
    946 // mpyhhu: Multiply high-high, unsigned, e.g.:
    947 //
    948 // +-------+-------+   +-------+-------+   +---------+
    949 // |  a0   .  a1   | x |  b0   .  b1   | = | a0 x b0 |
    950 // +-------+-------+   +-------+-------+   +---------+
    951 //
    952 // where a0, b0 are the upper 16 bits of the 32-bit word
    953 
    954 class MPYHHUInst<dag OOL, dag IOL>:
    955     RRForm<0b01110011110, OOL, IOL,
    956       "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
    957       [/* no pattern */]>;
    958 
    959 def MPYHHUv4i32:
    960     MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    961     
    962 def MPYHHUr32:
    963     MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
    964 
    965 // mpyhhau: Multiply high-high, unsigned
    966 
    967 class MPYHHAUInst<dag OOL, dag IOL>:
    968     RRForm<0b01110010110, OOL, IOL,
    969       "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
    970       [/* no pattern */]>;
    971 
    972 def MPYHHAUvec:
    973     MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    974     
    975 def MPYHHAUr32:
    976     MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
    977 
    978 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
    979 // clz: Count leading zeroes
    980 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
    981 class CLZInst<dag OOL, dag IOL, list<dag> pattern>:
    982     RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA",
    983              IntegerOp, pattern>;
    984 
    985 class CLZRegInst<RegisterClass rclass>:
    986     CLZInst<(outs rclass:$rT), (ins rclass:$rA),
    987             [(set rclass:$rT, (ctlz rclass:$rA))]>;
    988 
    989 class CLZVecInst<ValueType vectype>:
    990     CLZInst<(outs VECREG:$rT), (ins VECREG:$rA),
    991             [(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>;
    992 
    993 multiclass CountLeadingZeroes {
    994   def v4i32 : CLZVecInst<v4i32>;
    995   def r32   : CLZRegInst<R32C>;
    996 }
    997 
    998 defm CLZ : CountLeadingZeroes;
    999 
   1000 // cntb: Count ones in bytes (aka "population count")
   1001 //
   1002 // NOTE: This instruction is really a vector instruction, but the custom
   1003 // lowering code uses it in unorthodox ways to support CTPOP for other
   1004 // data types!
   1005 
   1006 def CNTBv16i8:
   1007     RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
   1008       "cntb\t$rT, $rA", IntegerOp,
   1009       [(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>;
   1010 
   1011 def CNTBv8i16 :
   1012     RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
   1013       "cntb\t$rT, $rA", IntegerOp,
   1014       [(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>;
   1015 
   1016 def CNTBv4i32 :
   1017     RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
   1018       "cntb\t$rT, $rA", IntegerOp,
   1019       [(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>;
   1020 
   1021 // gbb: Gather the low order bits from each byte in $rA into a single 16-bit
   1022 // quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are
   1023 // slots 1-3.
   1024 //
   1025 // Note: This instruction "pairs" with the fsmb instruction for all of the
   1026 // various types defined here.
   1027 //
   1028 // Note 2: The "VecInst" and "RegInst" forms refer to the result being either
   1029 // a vector or register.
   1030 
   1031 class GBBInst<dag OOL, dag IOL, list<dag> pattern>:
   1032   RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>;
   1033 
   1034 class GBBRegInst<RegisterClass rclass, ValueType vectype>:
   1035   GBBInst<(outs rclass:$rT), (ins VECREG:$rA),
   1036           [/* no pattern */]>;
   1037 
   1038 class GBBVecInst<ValueType vectype>:
   1039   GBBInst<(outs VECREG:$rT), (ins VECREG:$rA),
   1040           [/* no pattern */]>;
   1041 
   1042 multiclass GatherBitsFromBytes {
   1043   def v16i8_r32: GBBRegInst<R32C, v16i8>;
   1044   def v16i8_r16: GBBRegInst<R16C, v16i8>;
   1045   def v16i8:     GBBVecInst<v16i8>;
   1046 }
   1047 
   1048 defm GBB: GatherBitsFromBytes;
   1049 
   1050 // gbh: Gather all low order bits from each halfword in $rA into a single
   1051 // 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0
   1052 // and slots 1-3 also set to 0.
   1053 //
   1054 // See notes for GBBInst, above.
   1055 
   1056 class GBHInst<dag OOL, dag IOL, list<dag> pattern>:
   1057     RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp,
   1058              pattern>;
   1059 
   1060 class GBHRegInst<RegisterClass rclass, ValueType vectype>:
   1061     GBHInst<(outs rclass:$rT), (ins VECREG:$rA),
   1062             [/* no pattern */]>;
   1063 
   1064 class GBHVecInst<ValueType vectype>:
   1065     GBHInst<(outs VECREG:$rT), (ins VECREG:$rA),
   1066             [/* no pattern */]>;
   1067 
   1068 multiclass GatherBitsHalfword {
   1069   def v8i16_r32: GBHRegInst<R32C, v8i16>;
   1070   def v8i16_r16: GBHRegInst<R16C, v8i16>;
   1071   def v8i16:     GBHVecInst<v8i16>;
   1072 }
   1073 
   1074 defm GBH: GatherBitsHalfword;
   1075 
   1076 // gb: Gather all low order bits from each word in $rA into a single
   1077 // 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0,
   1078 // as well as slots 1-3.
   1079 //
   1080 // See notes for gbb, above.
   1081 
   1082 class GBInst<dag OOL, dag IOL, list<dag> pattern>:
   1083     RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp,
   1084              pattern>;
   1085 
   1086 class GBRegInst<RegisterClass rclass, ValueType vectype>:
   1087     GBInst<(outs rclass:$rT), (ins VECREG:$rA),
   1088            [/* no pattern */]>;
   1089 
   1090 class GBVecInst<ValueType vectype>:
   1091     GBInst<(outs VECREG:$rT), (ins VECREG:$rA),
   1092            [/* no pattern */]>;
   1093 
   1094 multiclass GatherBitsWord {
   1095   def v4i32_r32: GBRegInst<R32C, v4i32>;
   1096   def v4i32_r16: GBRegInst<R16C, v4i32>;
   1097   def v4i32:     GBVecInst<v4i32>;
   1098 }
   1099 
   1100 defm GB: GatherBitsWord;
   1101 
   1102 // avgb: average bytes
   1103 def AVGB:
   1104     RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1105       "avgb\t$rT, $rA, $rB", ByteOp,
   1106       []>;
   1107 
   1108 // absdb: absolute difference of bytes
   1109 def ABSDB:
   1110     RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1111       "absdb\t$rT, $rA, $rB", ByteOp,
   1112       []>;
   1113 
   1114 // sumb: sum bytes into halfwords
   1115 def SUMB:
   1116     RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1117       "sumb\t$rT, $rA, $rB", ByteOp,
   1118       []>;
   1119 
   1120 // Sign extension operations:
   1121 class XSBHInst<dag OOL, dag IOL, list<dag> pattern>:
   1122     RRForm_1<0b01101101010, OOL, IOL,
   1123       "xsbh\t$rDst, $rSrc",
   1124       IntegerOp, pattern>;
   1125 
   1126 class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>:
   1127     XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc),
   1128              pattern>;
   1129 
   1130 multiclass ExtendByteHalfword {
   1131   def v16i8:     XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
   1132                           [
   1133                   /*(set (v8i16 VECREG:$rDst), (sext (v8i16 VECREG:$rSrc)))*/]>;
   1134   def r8:        XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc),
   1135                           [(set R16C:$rDst, (sext R8C:$rSrc))]>;
   1136   def r16:       XSBHInRegInst<R16C,
   1137                                [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;
   1138 
   1139   // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
   1140   // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
   1141   // pattern below). Intentionally doesn't match a pattern because we want the
   1142   // sext 8->32 pattern to do the work for us, namely because we need the extra
   1143   // XSHWr32.
   1144   def r32:   XSBHInRegInst<R32C, [/* no pattern */]>;
   1145   
   1146   // Same as the 32-bit version, but for i64
   1147   def r64:   XSBHInRegInst<R64C, [/* no pattern */]>;
   1148 }
   1149 
   1150 defm XSBH : ExtendByteHalfword;
   1151 
   1152 // Sign extend halfwords to words:
   1153 
   1154 class XSHWInst<dag OOL, dag IOL, list<dag> pattern>:
   1155     RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc",
   1156             IntegerOp, pattern>;
   1157 
   1158 class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>:
   1159     XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc),
   1160              [(set (out_vectype VECREG:$rDest),
   1161                    (sext (in_vectype VECREG:$rSrc)))]>;
   1162 
   1163 class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>:
   1164     XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc),
   1165              pattern>;
   1166              
   1167 class XSHWRegInst<RegisterClass rclass>:
   1168     XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc),
   1169              [(set rclass:$rDest, (sext R16C:$rSrc))]>;
   1170 
   1171 multiclass ExtendHalfwordWord {
   1172   def v4i32: XSHWVecInst<v8i16, v4i32>;
   1173 
   1174   def r16:   XSHWRegInst<R32C>;
   1175 
   1176   def r32:   XSHWInRegInst<R32C,
   1177                           [(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>;
   1178   def r64:   XSHWInRegInst<R64C, [/* no pattern */]>;
   1179 }
   1180 
   1181 defm XSHW : ExtendHalfwordWord;
   1182 
   1183 // Sign-extend words to doublewords (32->64 bits)
   1184 
   1185 class XSWDInst<dag OOL, dag IOL, list<dag> pattern>:
   1186     RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc",
   1187               IntegerOp, pattern>;
   1188       
   1189 class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>:
   1190     XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
   1191              [/*(set (out_vectype VECREG:$rDst),
   1192                    (sext (out_vectype VECREG:$rSrc)))*/]>;
   1193       
   1194 class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>:
   1195     XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc),
   1196              [(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>;
   1197              
   1198 multiclass ExtendWordToDoubleWord {
   1199   def v2i64: XSWDVecInst<v4i32, v2i64>;
   1200   def r64:   XSWDRegInst<R32C, R64C>;
   1201   
   1202   def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc),
   1203                           [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
   1204 }
   1205 
   1206 defm XSWD : ExtendWordToDoubleWord;
   1207 
   1208 // AND operations
   1209 
   1210 class ANDInst<dag OOL, dag IOL, list<dag> pattern> :
   1211     RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB",
   1212            IntegerOp, pattern>;
   1213 
   1214 class ANDVecInst<ValueType vectype>:
   1215     ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1216              [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
   1217                                               (vectype VECREG:$rB)))]>;
   1218 
   1219 class ANDRegInst<RegisterClass rclass>:
   1220     ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1221              [(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>;
   1222 
   1223 multiclass BitwiseAnd
   1224 {
   1225   def v16i8: ANDVecInst<v16i8>;
   1226   def v8i16: ANDVecInst<v8i16>;
   1227   def v4i32: ANDVecInst<v4i32>;
   1228   def v2i64: ANDVecInst<v2i64>;
   1229 
   1230   def r128:  ANDRegInst<GPRC>;
   1231   def r64:   ANDRegInst<R64C>;
   1232   def r32:   ANDRegInst<R32C>;
   1233   def r16:   ANDRegInst<R16C>;
   1234   def r8:    ANDRegInst<R8C>;
   1235 
   1236   //===---------------------------------------------
   1237   // Special instructions to perform the fabs instruction
   1238   def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
   1239                       [/* Intentionally does not match a pattern */]>;
   1240 
   1241   def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
   1242                       [/* Intentionally does not match a pattern */]>;
   1243 
   1244   def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1245                        [/* Intentionally does not match a pattern */]>;
   1246 
   1247   //===---------------------------------------------
   1248 
   1249   // Hacked form of AND to zero-extend 16-bit quantities to 32-bit
   1250   // quantities -- see 16->32 zext pattern.
   1251   //
   1252   // This pattern is somewhat artificial, since it might match some
   1253   // compiler generated pattern but it is unlikely to do so.
   1254 
   1255   def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
   1256                       [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
   1257 }
   1258 
   1259 defm AND : BitwiseAnd;
   1260 
   1261 
   1262 def vnot_cell_conv : PatFrag<(ops node:$in),
   1263                              (xor node:$in, (bitconvert (v4i32 immAllOnesV)))>;
   1264 
   1265 // N.B.: vnot_cell_conv is one of those special target selection pattern
   1266 // fragments,
   1267 // in which we expect there to be a bit_convert on the constant. Bear in mind
   1268 // that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
   1269 // constant -1 vector.)
   1270 
   1271 class ANDCInst<dag OOL, dag IOL, list<dag> pattern>:
   1272     RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB",
   1273            IntegerOp, pattern>;
   1274 
   1275 class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
   1276     ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1277              [(set (vectype VECREG:$rT),
   1278                    (and (vectype VECREG:$rA),
   1279                         (vnot_frag (vectype VECREG:$rB))))]>;
   1280 
   1281 class ANDCRegInst<RegisterClass rclass>:
   1282     ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1283              [(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>;
   1284 
   1285 multiclass AndComplement
   1286 {
   1287   def v16i8: ANDCVecInst<v16i8>;
   1288   def v8i16: ANDCVecInst<v8i16>;
   1289   def v4i32: ANDCVecInst<v4i32>;
   1290   def v2i64: ANDCVecInst<v2i64>;
   1291 
   1292   def r128: ANDCRegInst<GPRC>;
   1293   def r64:  ANDCRegInst<R64C>;
   1294   def r32:  ANDCRegInst<R32C>;
   1295   def r16:  ANDCRegInst<R16C>;
   1296   def r8:   ANDCRegInst<R8C>;
   1297 
   1298   // Sometimes, the xor pattern has a bitcast constant:
   1299   def v16i8_conv: ANDCVecInst<v16i8, vnot_cell_conv>;
   1300 }
   1301 
   1302 defm ANDC : AndComplement;
   1303 
   1304 class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>:
   1305     RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val",
   1306              ByteOp, pattern>;
   1307 
   1308 multiclass AndByteImm
   1309 {
   1310   def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
   1311                        [(set (v16i8 VECREG:$rT),
   1312                              (and (v16i8 VECREG:$rA),
   1313                                   (v16i8 v16i8U8Imm:$val)))]>;
   1314 
   1315   def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
   1316                     [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>;
   1317 }
   1318 
   1319 defm ANDBI : AndByteImm;
   1320 
   1321 class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> :
   1322     RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val",
   1323              ByteOp, pattern>;
   1324 
   1325 multiclass AndHalfwordImm
   1326 {
   1327   def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   1328                        [(set (v8i16 VECREG:$rT),
   1329                              (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
   1330 
   1331   def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
   1332                      [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>;
   1333 
   1334   // Zero-extend i8 to i16:
   1335   def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val),
   1336                       [(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>;
   1337 }
   1338 
   1339 defm ANDHI : AndHalfwordImm;
   1340 
   1341 class ANDIInst<dag OOL, dag IOL, list<dag> pattern> :
   1342     RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val",
   1343              IntegerOp, pattern>;
   1344 
   1345 multiclass AndWordImm
   1346 {
   1347   def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   1348                       [(set (v4i32 VECREG:$rT),
   1349                             (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;
   1350 
   1351   def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
   1352                     [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;
   1353 
   1354   // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32
   1355   // pattern below.
   1356   def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
   1357                       [(set R32C:$rT,
   1358                             (and (zext R8C:$rA), i32ImmSExt10:$val))]>;
   1359 
   1360   // Hacked form of ANDI to zero-extend i16 quantities to i32. See the
   1361   // zext 16->32 pattern below.
   1362   //
   1363   // Note that this pattern is somewhat artificial, since it might match
   1364   // something the compiler generates but is unlikely to occur in practice.
   1365   def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
   1366                        [(set R32C:$rT,
   1367                              (and (zext R16C:$rA), i32ImmSExt10:$val))]>;
   1368 }
   1369 
   1370 defm ANDI : AndWordImm;
   1371 
   1372 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   1373 // Bitwise OR group:
   1374 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   1375 
   1376 // Bitwise "or" (N.B.: These are also register-register copy instructions...)
   1377 class ORInst<dag OOL, dag IOL, list<dag> pattern>:
   1378     RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB",
   1379            IntegerOp, pattern>;
   1380 
   1381 class ORVecInst<ValueType vectype>:
   1382     ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1383            [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
   1384                                            (vectype VECREG:$rB)))]>;
   1385 
   1386 class ORRegInst<RegisterClass rclass>:
   1387     ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1388            [(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>;
   1389 
   1390 
   1391 multiclass BitwiseOr
   1392 {
   1393   def v16i8: ORVecInst<v16i8>;
   1394   def v8i16: ORVecInst<v8i16>;
   1395   def v4i32: ORVecInst<v4i32>;
   1396   def v2i64: ORVecInst<v2i64>;
   1397 
   1398   def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1399                     [(set (v4f32 VECREG:$rT),
   1400                           (v4f32 (bitconvert (or (v4i32 VECREG:$rA),
   1401                                                  (v4i32 VECREG:$rB)))))]>;
   1402 
   1403   def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1404                     [(set (v2f64 VECREG:$rT),
   1405                           (v2f64 (bitconvert (or (v2i64 VECREG:$rA),
   1406                                                  (v2i64 VECREG:$rB)))))]>;
   1407 
   1408   def r128: ORRegInst<GPRC>;
   1409   def r64:  ORRegInst<R64C>;
   1410   def r32:  ORRegInst<R32C>;
   1411   def r16:  ORRegInst<R16C>;
   1412   def r8:   ORRegInst<R8C>;
   1413 
   1414   // OR instructions used to copy f32 and f64 registers.
   1415   def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
   1416                   [/* no pattern */]>;
   1417 
   1418   def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
   1419                   [/* no pattern */]>;
   1420 }
   1421 
   1422 defm OR : BitwiseOr;
   1423 
   1424 //===----------------------------------------------------------------------===//
   1425 // SPU::PREFSLOT2VEC and VEC2PREFSLOT re-interpretations of registers
   1426 //===----------------------------------------------------------------------===//
   1427 def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)),
   1428           (COPY_TO_REGCLASS R8C:$rA, VECREG)>;
   1429 
   1430 def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)),
   1431           (COPY_TO_REGCLASS R16C:$rA, VECREG)>;
   1432 
   1433 def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)),
   1434           (COPY_TO_REGCLASS R32C:$rA, VECREG)>;
   1435 
   1436 def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)),
   1437           (COPY_TO_REGCLASS R64C:$rA, VECREG)>;
   1438 
   1439 def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)),
   1440           (COPY_TO_REGCLASS R32FP:$rA, VECREG)>;
   1441 
   1442 def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)),
   1443           (COPY_TO_REGCLASS R64FP:$rA, VECREG)>;
   1444  
   1445 def : Pat<(i8 (SPUvec2prefslot (v16i8 VECREG:$rA))),
   1446           (COPY_TO_REGCLASS (v16i8 VECREG:$rA), R8C)>;
   1447 
   1448 def : Pat<(i16 (SPUvec2prefslot (v8i16 VECREG:$rA))),
   1449           (COPY_TO_REGCLASS (v8i16 VECREG:$rA), R16C)>;
   1450 
   1451 def : Pat<(i32 (SPUvec2prefslot (v4i32 VECREG:$rA))),
   1452           (COPY_TO_REGCLASS (v4i32 VECREG:$rA), R32C)>;
   1453 
   1454 def : Pat<(i64 (SPUvec2prefslot (v2i64 VECREG:$rA))),
   1455           (COPY_TO_REGCLASS (v2i64 VECREG:$rA), R64C)>;
   1456 
   1457 def : Pat<(f32 (SPUvec2prefslot (v4f32 VECREG:$rA))),
   1458           (COPY_TO_REGCLASS (v4f32 VECREG:$rA), R32FP)>;
   1459 
   1460 def : Pat<(f64 (SPUvec2prefslot (v2f64 VECREG:$rA))),
   1461           (COPY_TO_REGCLASS (v2f64 VECREG:$rA), R64FP)>;
   1462 
   1463 // Load Register: This is an assembler alias for a bitwise OR of a register
   1464 // against itself. It's here because it brings some clarity to assembly
   1465 // language output.
   1466 
   1467 let hasCtrlDep = 1 in {
   1468     class LRInst<dag OOL, dag IOL>
   1469               : SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> {
   1470       bits<7> RA;
   1471       bits<7> RT;
   1472 
   1473       let Pattern = [/*no pattern*/];
   1474 
   1475       let Inst{0-10} = 0b10000010000;   /* It's an OR operation */
   1476       let Inst{11-17} = RA;
   1477       let Inst{18-24} = RA;
   1478       let Inst{25-31} = RT;
   1479     }
   1480 
   1481     class LRVecInst<ValueType vectype>:
   1482         LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
   1483 
   1484     class LRRegInst<RegisterClass rclass>:
   1485         LRInst<(outs rclass:$rT), (ins rclass:$rA)>;
   1486 
   1487     multiclass LoadRegister {
   1488       def v2i64: LRVecInst<v2i64>;
   1489       def v2f64: LRVecInst<v2f64>;
   1490       def v4i32: LRVecInst<v4i32>;
   1491       def v4f32: LRVecInst<v4f32>;
   1492       def v8i16: LRVecInst<v8i16>;
   1493       def v16i8: LRVecInst<v16i8>;
   1494 
   1495       def r128:  LRRegInst<GPRC>;
   1496       def r64:   LRRegInst<R64C>;
   1497       def f64:   LRRegInst<R64FP>;
   1498       def r32:   LRRegInst<R32C>;
   1499       def f32:   LRRegInst<R32FP>;
   1500       def r16:   LRRegInst<R16C>;
   1501       def r8:    LRRegInst<R8C>;
   1502     }
   1503 
   1504     defm LR: LoadRegister;
   1505 }
   1506 
   1507 // ORC: Bitwise "or" with complement (c = a | ~b)
   1508 
   1509 class ORCInst<dag OOL, dag IOL, list<dag> pattern>:
   1510     RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB",
   1511            IntegerOp, pattern>;
   1512 
   1513 class ORCVecInst<ValueType vectype>:
   1514     ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1515             [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
   1516                                             (vnot (vectype VECREG:$rB))))]>;
   1517 
   1518 class ORCRegInst<RegisterClass rclass>:
   1519   ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1520           [(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>;
   1521 
   1522 multiclass BitwiseOrComplement
   1523 {
   1524   def v16i8: ORCVecInst<v16i8>;
   1525   def v8i16: ORCVecInst<v8i16>;
   1526   def v4i32: ORCVecInst<v4i32>;
   1527   def v2i64: ORCVecInst<v2i64>;
   1528 
   1529   def r128:  ORCRegInst<GPRC>;
   1530   def r64:   ORCRegInst<R64C>;
   1531   def r32:   ORCRegInst<R32C>;
   1532   def r16:   ORCRegInst<R16C>;
   1533   def r8:    ORCRegInst<R8C>;
   1534 }
   1535 
   1536 defm ORC : BitwiseOrComplement;
   1537 
   1538 // OR byte immediate
   1539 class ORBIInst<dag OOL, dag IOL, list<dag> pattern>:
   1540     RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val",
   1541              IntegerOp, pattern>;
   1542 
   1543 class ORBIVecInst<ValueType vectype, PatLeaf immpred>:
   1544     ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
   1545              [(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA),
   1546                                            (vectype immpred:$val)))]>;
   1547 
   1548 multiclass BitwiseOrByteImm
   1549 {
   1550   def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>;
   1551 
   1552   def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
   1553                    [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>;
   1554 }
   1555 
   1556 defm ORBI : BitwiseOrByteImm;
   1557 
   1558 // OR halfword immediate
   1559 class ORHIInst<dag OOL, dag IOL, list<dag> pattern>:
   1560     RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val",
   1561              IntegerOp, pattern>;
   1562 
   1563 class ORHIVecInst<ValueType vectype, PatLeaf immpred>:
   1564     ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
   1565               [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
   1566                                               immpred:$val))]>;
   1567 
   1568 multiclass BitwiseOrHalfwordImm
   1569 {
   1570   def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>;
   1571 
   1572   def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
   1573                     [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>;
   1574 
   1575   // Specialized ORHI form used to promote 8-bit registers to 16-bit
   1576   def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val),
   1577                       [(set R16C:$rT, (or (anyext R8C:$rA),
   1578                                           i16ImmSExt10:$val))]>;
   1579 }
   1580 
   1581 defm ORHI : BitwiseOrHalfwordImm;
   1582 
   1583 class ORIInst<dag OOL, dag IOL, list<dag> pattern>:
   1584     RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val",
   1585              IntegerOp, pattern>;
   1586 
   1587 class ORIVecInst<ValueType vectype, PatLeaf immpred>:
   1588     ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
   1589             [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
   1590                                             immpred:$val))]>;
   1591 
   1592 // Bitwise "or" with immediate
   1593 multiclass BitwiseOrImm
   1594 {
   1595   def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>;
   1596 
   1597   def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, u10imm_i32:$val),
   1598                    [(set R32C:$rT, (or R32C:$rA, i32ImmUns10:$val))]>;
   1599 
   1600   // i16i32: hacked version of the ori instruction to extend 16-bit quantities
   1601   // to 32-bit quantities. used exclusively to match "anyext" conversions (vide
   1602   // infra "anyext 16->32" pattern.)
   1603   def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
   1604                       [(set R32C:$rT, (or (anyext R16C:$rA),
   1605                                           i32ImmSExt10:$val))]>;
   1606 
   1607   // i8i32: Hacked version of the ORI instruction to extend 16-bit quantities
   1608   // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide
   1609   // infra "anyext 16->32" pattern.)
   1610   def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
   1611                      [(set R32C:$rT, (or (anyext R8C:$rA),
   1612                                          i32ImmSExt10:$val))]>;
   1613 }
   1614 
   1615 defm ORI : BitwiseOrImm;
   1616 
   1617 // ORX: "or" across the vector: or's $rA's word slots leaving the result in
   1618 // $rT[0], slots 1-3 are zeroed.
   1619 //
   1620 // FIXME: Needs to match an intrinsic pattern.
   1621 def ORXv4i32:
   1622     RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1623       "orx\t$rT, $rA, $rB", IntegerOp,
   1624       []>;
   1625 
   1626 // XOR:
   1627 
   1628 class XORInst<dag OOL, dag IOL, list<dag> pattern> :
   1629     RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB",
   1630            IntegerOp, pattern>;
   1631 
   1632 class XORVecInst<ValueType vectype>:
   1633     XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1634              [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA),
   1635                                               (vectype VECREG:$rB)))]>;
   1636 
   1637 class XORRegInst<RegisterClass rclass>:
   1638     XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1639              [(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>;
   1640 
   1641 multiclass BitwiseExclusiveOr
   1642 {
   1643   def v16i8: XORVecInst<v16i8>;
   1644   def v8i16: XORVecInst<v8i16>;
   1645   def v4i32: XORVecInst<v4i32>;
   1646   def v2i64: XORVecInst<v2i64>;
   1647 
   1648   def r128:  XORRegInst<GPRC>;
   1649   def r64:   XORRegInst<R64C>;
   1650   def r32:   XORRegInst<R32C>;
   1651   def r16:   XORRegInst<R16C>;
   1652   def r8:    XORRegInst<R8C>;
   1653 
   1654   // XOR instructions used to negate f32 and f64 quantities.
   1655 
   1656   def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
   1657                      [/* no pattern */]>;
   1658 
   1659   def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
   1660                      [/* no pattern */]>;
   1661 
   1662   def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1663                       [/* no pattern, see fneg{32,64} */]>;
   1664 }
   1665 
   1666 defm XOR : BitwiseExclusiveOr;
   1667 
   1668 //==----------------------------------------------------------
   1669 
   1670 class XORBIInst<dag OOL, dag IOL, list<dag> pattern>:
   1671     RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val",
   1672              IntegerOp, pattern>;
   1673 
   1674 multiclass XorByteImm
   1675 {
   1676   def v16i8:
   1677     XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
   1678               [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;
   1679 
   1680   def r8:
   1681     XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
   1682               [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>;
   1683 }
   1684 
   1685 defm XORBI : XorByteImm;
   1686 
   1687 def XORHIv8i16:
   1688     RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
   1689       "xorhi\t$rT, $rA, $val", IntegerOp,
   1690       [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
   1691                                       v8i16SExt10Imm:$val))]>;
   1692 
   1693 def XORHIr16:
   1694     RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
   1695       "xorhi\t$rT, $rA, $val", IntegerOp,
   1696       [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;
   1697 
   1698 def XORIv4i32:
   1699     RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val),
   1700       "xori\t$rT, $rA, $val", IntegerOp,
   1701       [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
   1702                                      v4i32SExt10Imm:$val))]>;
   1703 
   1704 def XORIr32:
   1705     RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
   1706       "xori\t$rT, $rA, $val", IntegerOp,
   1707       [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;
   1708 
   1709 // NAND:
   1710 
   1711 class NANDInst<dag OOL, dag IOL, list<dag> pattern>:
   1712     RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB",
   1713            IntegerOp, pattern>;
   1714 
   1715 class NANDVecInst<ValueType vectype>:
   1716     NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1717              [(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA),
   1718                                                     (vectype VECREG:$rB))))]>;
   1719 class NANDRegInst<RegisterClass rclass>:
   1720     NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1721              [(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>;
   1722 
   1723 multiclass BitwiseNand
   1724 {
   1725   def v16i8: NANDVecInst<v16i8>;
   1726   def v8i16: NANDVecInst<v8i16>;
   1727   def v4i32: NANDVecInst<v4i32>;
   1728   def v2i64: NANDVecInst<v2i64>;
   1729 
   1730   def r128:  NANDRegInst<GPRC>;
   1731   def r64:   NANDRegInst<R64C>;
   1732   def r32:   NANDRegInst<R32C>;
   1733   def r16:   NANDRegInst<R16C>;
   1734   def r8:    NANDRegInst<R8C>;
   1735 }
   1736 
   1737 defm NAND : BitwiseNand;
   1738 
   1739 // NOR:
   1740 
   1741 class NORInst<dag OOL, dag IOL, list<dag> pattern>:
   1742     RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB",
   1743            IntegerOp, pattern>;
   1744 
   1745 class NORVecInst<ValueType vectype>:
   1746     NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1747             [(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA),
   1748                                                   (vectype VECREG:$rB))))]>;
   1749 class NORRegInst<RegisterClass rclass>:
   1750     NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1751             [(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>;
   1752 
   1753 multiclass BitwiseNor
   1754 {
   1755   def v16i8: NORVecInst<v16i8>;
   1756   def v8i16: NORVecInst<v8i16>;
   1757   def v4i32: NORVecInst<v4i32>;
   1758   def v2i64: NORVecInst<v2i64>;
   1759 
   1760   def r128:  NORRegInst<GPRC>;
   1761   def r64:   NORRegInst<R64C>;
   1762   def r32:   NORRegInst<R32C>;
   1763   def r16:   NORRegInst<R16C>;
   1764   def r8:    NORRegInst<R8C>;
   1765 }
   1766 
   1767 defm NOR : BitwiseNor;
   1768 
   1769 // Select bits:
   1770 class SELBInst<dag OOL, dag IOL, list<dag> pattern>:
   1771     RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC",
   1772             IntegerOp, pattern>;
   1773 
   1774 class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
   1775   SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   1776            [(set (vectype VECREG:$rT),
   1777                  (or (and (vectype VECREG:$rC), (vectype VECREG:$rB)),
   1778                      (and (vnot_frag (vectype VECREG:$rC)),
   1779                           (vectype VECREG:$rA))))]>;
   1780 
   1781 class SELBVecVCondInst<ValueType vectype>:
   1782   SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   1783            [(set (vectype VECREG:$rT),
   1784                  (select (vectype VECREG:$rC),
   1785                          (vectype VECREG:$rB),
   1786                          (vectype VECREG:$rA)))]>;
   1787 
   1788 class SELBVecCondInst<ValueType vectype>:
   1789   SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC),
   1790            [(set (vectype VECREG:$rT),
   1791                  (select R32C:$rC,
   1792                          (vectype VECREG:$rB),
   1793                          (vectype VECREG:$rA)))]>;
   1794 
   1795 class SELBRegInst<RegisterClass rclass>:
   1796   SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC),
   1797            [(set rclass:$rT,
   1798                  (or (and rclass:$rB, rclass:$rC),
   1799                      (and rclass:$rA, (not rclass:$rC))))]>;
   1800 
   1801 class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>:
   1802   SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC),
   1803            [(set rclass:$rT,
   1804                  (select rcond:$rC, rclass:$rB, rclass:$rA))]>;
   1805 
   1806 multiclass SelectBits
   1807 {
   1808   def v16i8: SELBVecInst<v16i8>;
   1809   def v8i16: SELBVecInst<v8i16>;
   1810   def v4i32: SELBVecInst<v4i32>;
   1811   def v2i64: SELBVecInst<v2i64, vnot_cell_conv>;
   1812 
   1813   def r128:  SELBRegInst<GPRC>;
   1814   def r64:   SELBRegInst<R64C>;
   1815   def r32:   SELBRegInst<R32C>;
   1816   def r16:   SELBRegInst<R16C>;
   1817   def r8:    SELBRegInst<R8C>;
   1818 
   1819   def v16i8_cond: SELBVecCondInst<v16i8>;
   1820   def v8i16_cond: SELBVecCondInst<v8i16>;
   1821   def v4i32_cond: SELBVecCondInst<v4i32>;
   1822   def v2i64_cond: SELBVecCondInst<v2i64>;
   1823 
   1824   def v16i8_vcond: SELBVecCondInst<v16i8>;
   1825   def v8i16_vcond: SELBVecCondInst<v8i16>;
   1826   def v4i32_vcond: SELBVecCondInst<v4i32>;
   1827   def v2i64_vcond: SELBVecCondInst<v2i64>;
   1828 
   1829   def v4f32_cond:
   1830         SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   1831                  [(set (v4f32 VECREG:$rT),
   1832                        (select (v4i32 VECREG:$rC),
   1833                                (v4f32 VECREG:$rB),
   1834                                (v4f32 VECREG:$rA)))]>;
   1835 
   1836   // SELBr64_cond is defined in SPU64InstrInfo.td
   1837   def r32_cond:   SELBRegCondInst<R32C, R32C>;
   1838   def f32_cond:   SELBRegCondInst<R32C, R32FP>;
   1839   def r16_cond:   SELBRegCondInst<R16C, R16C>;
   1840   def r8_cond:    SELBRegCondInst<R8C,  R8C>;
   1841 }
   1842 
   1843 defm SELB : SelectBits;
   1844 
   1845 class SPUselbPatVec<ValueType vectype, SPUInstr inst>:
   1846    Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)),
   1847        (inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
   1848 
   1849 def : SPUselbPatVec<v16i8, SELBv16i8>;
   1850 def : SPUselbPatVec<v8i16, SELBv8i16>;
   1851 def : SPUselbPatVec<v4i32, SELBv4i32>;
   1852 def : SPUselbPatVec<v2i64, SELBv2i64>;
   1853 
   1854 class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>:
   1855    Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC),
   1856        (inst rclass:$rA, rclass:$rB, rclass:$rC)>;
   1857 
   1858 def : SPUselbPatReg<R8C,   SELBr8>;
   1859 def : SPUselbPatReg<R16C,  SELBr16>;
   1860 def : SPUselbPatReg<R32C,  SELBr32>;
   1861 def : SPUselbPatReg<R64C,  SELBr64>;
   1862 
   1863 // EQV: Equivalence (1 for each same bit, otherwise 0)
   1864 //
   1865 // Note: There are a lot of ways to match this bit operator and these patterns
   1866 // attempt to be as exhaustive as possible.
   1867 
   1868 class EQVInst<dag OOL, dag IOL, list<dag> pattern>:
   1869     RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB",
   1870            IntegerOp, pattern>;
   1871 
   1872 class EQVVecInst<ValueType vectype>:
   1873     EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1874             [(set (vectype VECREG:$rT),
   1875                   (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
   1876                       (and (vnot (vectype VECREG:$rA)),
   1877                            (vnot (vectype VECREG:$rB)))))]>;
   1878 
   1879 class EQVRegInst<RegisterClass rclass>:
   1880     EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1881             [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB),
   1882                                   (and (not rclass:$rA), (not rclass:$rB))))]>;
   1883 
   1884 class EQVVecPattern1<ValueType vectype>:
   1885   EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1886           [(set (vectype VECREG:$rT),
   1887                 (xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>;
   1888 
   1889 class EQVRegPattern1<RegisterClass rclass>:
   1890   EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1891           [(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>;
   1892 
   1893 class EQVVecPattern2<ValueType vectype>:
   1894   EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1895           [(set (vectype VECREG:$rT),
   1896                 (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
   1897                     (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>;
   1898 
   1899 class EQVRegPattern2<RegisterClass rclass>:
   1900   EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1901           [(set rclass:$rT,
   1902                 (or (and rclass:$rA, rclass:$rB),
   1903                     (not (or rclass:$rA, rclass:$rB))))]>;
   1904 
   1905 class EQVVecPattern3<ValueType vectype>:
   1906   EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   1907           [(set (vectype VECREG:$rT),
   1908                 (not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>;
   1909 
   1910 class EQVRegPattern3<RegisterClass rclass>:
   1911   EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   1912           [(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>;
   1913 
   1914 multiclass BitEquivalence
   1915 {
   1916   def v16i8: EQVVecInst<v16i8>;
   1917   def v8i16: EQVVecInst<v8i16>;
   1918   def v4i32: EQVVecInst<v4i32>;
   1919   def v2i64: EQVVecInst<v2i64>;
   1920 
   1921   def v16i8_1: EQVVecPattern1<v16i8>;
   1922   def v8i16_1: EQVVecPattern1<v8i16>;
   1923   def v4i32_1: EQVVecPattern1<v4i32>;
   1924   def v2i64_1: EQVVecPattern1<v2i64>;
   1925 
   1926   def v16i8_2: EQVVecPattern2<v16i8>;
   1927   def v8i16_2: EQVVecPattern2<v8i16>;
   1928   def v4i32_2: EQVVecPattern2<v4i32>;
   1929   def v2i64_2: EQVVecPattern2<v2i64>;
   1930 
   1931   def v16i8_3: EQVVecPattern3<v16i8>;
   1932   def v8i16_3: EQVVecPattern3<v8i16>;
   1933   def v4i32_3: EQVVecPattern3<v4i32>;
   1934   def v2i64_3: EQVVecPattern3<v2i64>;
   1935 
   1936   def r128:  EQVRegInst<GPRC>;
   1937   def r64:   EQVRegInst<R64C>;
   1938   def r32:   EQVRegInst<R32C>;
   1939   def r16:   EQVRegInst<R16C>;
   1940   def r8:    EQVRegInst<R8C>;
   1941 
   1942   def r128_1: EQVRegPattern1<GPRC>;
   1943   def r64_1:  EQVRegPattern1<R64C>;
   1944   def r32_1:  EQVRegPattern1<R32C>;
   1945   def r16_1:  EQVRegPattern1<R16C>;
   1946   def r8_1:   EQVRegPattern1<R8C>;
   1947 
   1948   def r128_2: EQVRegPattern2<GPRC>;
   1949   def r64_2:  EQVRegPattern2<R64C>;
   1950   def r32_2:  EQVRegPattern2<R32C>;
   1951   def r16_2:  EQVRegPattern2<R16C>;
   1952   def r8_2:   EQVRegPattern2<R8C>;
   1953 
   1954   def r128_3: EQVRegPattern3<GPRC>;
   1955   def r64_3:  EQVRegPattern3<R64C>;
   1956   def r32_3:  EQVRegPattern3<R32C>;
   1957   def r16_3:  EQVRegPattern3<R16C>;
   1958   def r8_3:   EQVRegPattern3<R8C>;
   1959 }
   1960 
   1961 defm EQV: BitEquivalence;
   1962 
   1963 //===----------------------------------------------------------------------===//
   1964 // Vector shuffle...
   1965 //===----------------------------------------------------------------------===//
   1966 // SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
   1967 // See the SPUshuffle SDNode operand above, which sets up the DAG pattern
   1968 // matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
   1969 // the SPUISD::SHUFB opcode.
   1970 //===----------------------------------------------------------------------===//
   1971 
   1972 class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>:
   1973     RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC",
   1974             ShuffleOp, pattern>;
   1975 
   1976 class SHUFBVecInst<ValueType resultvec, ValueType maskvec>:
   1977     SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   1978               [(set (resultvec VECREG:$rT),
   1979                     (SPUshuffle (resultvec VECREG:$rA),
   1980                                 (resultvec VECREG:$rB),
   1981                                 (maskvec VECREG:$rC)))]>;
   1982 
   1983 class SHUFBGPRCInst:
   1984     SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC),
   1985               [/* no pattern */]>;
   1986 
   1987 multiclass ShuffleBytes
   1988 {
   1989   def v16i8     : SHUFBVecInst<v16i8, v16i8>;
   1990   def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>;
   1991   def v8i16     : SHUFBVecInst<v8i16, v16i8>;
   1992   def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>;
   1993   def v4i32     : SHUFBVecInst<v4i32, v16i8>;
   1994   def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>;
   1995   def v2i64     : SHUFBVecInst<v2i64, v16i8>;
   1996   def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>;
   1997 
   1998   def v4f32     : SHUFBVecInst<v4f32, v16i8>;
   1999   def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>;
   2000 
   2001   def v2f64     : SHUFBVecInst<v2f64, v16i8>;
   2002   def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>;
   2003 
   2004   def gprc      : SHUFBGPRCInst;
   2005 }
   2006 
   2007 defm SHUFB : ShuffleBytes;
   2008 
   2009 //===----------------------------------------------------------------------===//
   2010 // Shift and rotate group:
   2011 //===----------------------------------------------------------------------===//
   2012 
   2013 class SHLHInst<dag OOL, dag IOL, list<dag> pattern>:
   2014     RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB",
   2015            RotShiftVec, pattern>;
   2016 
   2017 class SHLHVecInst<ValueType vectype>:
   2018     SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2019              [(set (vectype VECREG:$rT),
   2020                    (SPUvec_shl (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
   2021 
   2022 multiclass ShiftLeftHalfword
   2023 {
   2024   def v8i16: SHLHVecInst<v8i16>;
   2025   def r16:   SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
   2026                       [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
   2027   def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
   2028                         [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
   2029 }
   2030 
   2031 defm SHLH : ShiftLeftHalfword;
   2032 
   2033 //===----------------------------------------------------------------------===//
   2034 
   2035 class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>:
   2036     RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val",
   2037             RotShiftVec, pattern>;
   2038 
   2039 class SHLHIVecInst<ValueType vectype>:
   2040     SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
   2041               [(set (vectype VECREG:$rT),
   2042                     (SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
   2043 
   2044 multiclass ShiftLeftHalfwordImm
   2045 {
   2046   def v8i16: SHLHIVecInst<v8i16>;
   2047   def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
   2048                      [(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>;
   2049 }
   2050 
   2051 defm SHLHI : ShiftLeftHalfwordImm;
   2052 
   2053 def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
   2054           (SHLHIv8i16 VECREG:$rA, (TO_IMM16 uimm7:$val))>;
   2055 
   2056 def : Pat<(shl R16C:$rA, (i32 uimm7:$val)),
   2057           (SHLHIr16 R16C:$rA, (TO_IMM16 uimm7:$val))>;
   2058 
   2059 //===----------------------------------------------------------------------===//
   2060 
   2061 class SHLInst<dag OOL, dag IOL, list<dag> pattern>:
   2062     RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB",
   2063            RotShiftVec, pattern>;
   2064 
   2065 multiclass ShiftLeftWord
   2066 {
   2067   def v4i32:
   2068       SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2069               [(set (v4i32 VECREG:$rT),
   2070                     (SPUvec_shl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
   2071   def r32:
   2072       SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
   2073               [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
   2074 }
   2075 
   2076 defm SHL: ShiftLeftWord;
   2077 
   2078 //===----------------------------------------------------------------------===//
   2079 
   2080 class SHLIInst<dag OOL, dag IOL, list<dag> pattern>:
   2081     RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val",
   2082             RotShiftVec, pattern>;
   2083 
   2084 multiclass ShiftLeftWordImm
   2085 {
   2086   def v4i32:
   2087     SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
   2088              [(set (v4i32 VECREG:$rT),
   2089                    (SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;
   2090 
   2091   def r32:
   2092     SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
   2093              [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
   2094 }
   2095 
   2096 defm SHLI : ShiftLeftWordImm;
   2097 
   2098 //===----------------------------------------------------------------------===//
   2099 // SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
   2100 // register) to the left. Vector form is here to ensure type correctness.
   2101 //
   2102 // The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift
   2103 // of 7 bits is actually possible.
   2104 //
   2105 // Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI
   2106 // to shift i64 and i128. SHLQBI is the residual left over after shifting by
   2107 // bytes with SHLQBY.
   2108 
   2109 class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>:
   2110     RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB",
   2111            RotShiftQuad, pattern>;
   2112 
   2113 class SHLQBIVecInst<ValueType vectype>:
   2114     SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
   2115                [(set (vectype VECREG:$rT),
   2116                      (SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>;
   2117 
   2118 class SHLQBIRegInst<RegisterClass rclass>:
   2119     SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
   2120                [/* no pattern */]>;
   2121 
   2122 multiclass ShiftLeftQuadByBits
   2123 {
   2124   def v16i8: SHLQBIVecInst<v16i8>;
   2125   def v8i16: SHLQBIVecInst<v8i16>;
   2126   def v4i32: SHLQBIVecInst<v4i32>;
   2127   def v4f32: SHLQBIVecInst<v4f32>;
   2128   def v2i64: SHLQBIVecInst<v2i64>;
   2129   def v2f64: SHLQBIVecInst<v2f64>;
   2130 
   2131   def r128:  SHLQBIRegInst<GPRC>;
   2132 }
   2133 
   2134 defm SHLQBI : ShiftLeftQuadByBits;
   2135 
   2136 // See note above on SHLQBI. In this case, the predicate actually does then
   2137 // enforcement, whereas with SHLQBI, we have to "take it on faith."
   2138 class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
   2139     RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val",
   2140             RotShiftQuad, pattern>;
   2141 
   2142 class SHLQBIIVecInst<ValueType vectype>:
   2143     SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
   2144                 [(set (vectype VECREG:$rT),
   2145                       (SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>;
   2146 
   2147 multiclass ShiftLeftQuadByBitsImm
   2148 {
   2149   def v16i8 : SHLQBIIVecInst<v16i8>;
   2150   def v8i16 : SHLQBIIVecInst<v8i16>;
   2151   def v4i32 : SHLQBIIVecInst<v4i32>;
   2152   def v4f32 : SHLQBIIVecInst<v4f32>;
   2153   def v2i64 : SHLQBIIVecInst<v2i64>;
   2154   def v2f64 : SHLQBIIVecInst<v2f64>;
   2155 }
   2156 
   2157 defm SHLQBII : ShiftLeftQuadByBitsImm;
   2158 
   2159 // SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
   2160 // not by bits. See notes above on SHLQBI.
   2161 
   2162 class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>:
   2163     RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB",
   2164             RotShiftQuad, pattern>;
   2165 
   2166 class SHLQBYVecInst<ValueType vectype>:
   2167     SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
   2168                [(set (vectype VECREG:$rT),
   2169                      (SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>;
   2170 
   2171 multiclass ShiftLeftQuadBytes
   2172 {
   2173   def v16i8: SHLQBYVecInst<v16i8>;
   2174   def v8i16: SHLQBYVecInst<v8i16>;
   2175   def v4i32: SHLQBYVecInst<v4i32>;
   2176   def v4f32: SHLQBYVecInst<v4f32>;
   2177   def v2i64: SHLQBYVecInst<v2i64>;
   2178   def v2f64: SHLQBYVecInst<v2f64>;
   2179   def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
   2180                        [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>;
   2181 }
   2182 
   2183 defm SHLQBY: ShiftLeftQuadBytes;
   2184 
   2185 class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
   2186     RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val",
   2187             RotShiftQuad, pattern>;
   2188 
   2189 class SHLQBYIVecInst<ValueType vectype>:
   2190     SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
   2191                 [(set (vectype VECREG:$rT),
   2192                       (SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
   2193 
   2194 multiclass ShiftLeftQuadBytesImm
   2195 {
   2196   def v16i8: SHLQBYIVecInst<v16i8>;
   2197   def v8i16: SHLQBYIVecInst<v8i16>;
   2198   def v4i32: SHLQBYIVecInst<v4i32>;
   2199   def v4f32: SHLQBYIVecInst<v4f32>;
   2200   def v2i64: SHLQBYIVecInst<v2i64>;
   2201   def v2f64: SHLQBYIVecInst<v2f64>;
   2202   def r128:  SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val),
   2203                          [(set GPRC:$rT,
   2204                                (SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>;
   2205 }
   2206 
   2207 defm SHLQBYI : ShiftLeftQuadBytesImm;
   2208 
   2209 class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
   2210     RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB",
   2211            RotShiftQuad, pattern>;
   2212 
   2213 class SHLQBYBIVecInst<ValueType vectype>:
   2214     SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
   2215                 [/* no pattern */]>;
   2216 
   2217 class SHLQBYBIRegInst<RegisterClass rclass>:
   2218     SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
   2219                  [/* no pattern */]>;
   2220 
   2221 multiclass ShiftLeftQuadBytesBitCount
   2222 {
   2223   def v16i8: SHLQBYBIVecInst<v16i8>;
   2224   def v8i16: SHLQBYBIVecInst<v8i16>;
   2225   def v4i32: SHLQBYBIVecInst<v4i32>;
   2226   def v4f32: SHLQBYBIVecInst<v4f32>;
   2227   def v2i64: SHLQBYBIVecInst<v2i64>;
   2228   def v2f64: SHLQBYBIVecInst<v2f64>;
   2229 
   2230   def r128:  SHLQBYBIRegInst<GPRC>;
   2231 }
   2232 
   2233 defm SHLQBYBI : ShiftLeftQuadBytesBitCount;
   2234 
   2235 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2236 // Rotate halfword:
   2237 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2238 class ROTHInst<dag OOL, dag IOL, list<dag> pattern>:
   2239     RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB",
   2240            RotShiftVec, pattern>;
   2241 
   2242 class ROTHVecInst<ValueType vectype>:
   2243     ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2244              [(set (vectype VECREG:$rT),
   2245                    (SPUvec_rotl VECREG:$rA, (v8i16 VECREG:$rB)))]>;
   2246 
   2247 class ROTHRegInst<RegisterClass rclass>:
   2248     ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
   2249              [(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>;
   2250 
   2251 multiclass RotateLeftHalfword
   2252 {
   2253   def v8i16: ROTHVecInst<v8i16>;
   2254   def r16: ROTHRegInst<R16C>;
   2255 }
   2256 
   2257 defm ROTH: RotateLeftHalfword;
   2258 
   2259 def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
   2260                           [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;
   2261 
   2262 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2263 // Rotate halfword, immediate:
   2264 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2265 class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>:
   2266     RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val",
   2267             RotShiftVec, pattern>;
   2268 
   2269 class ROTHIVecInst<ValueType vectype>:
   2270     ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
   2271               [(set (vectype VECREG:$rT),
   2272                     (SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>;
   2273 
   2274 multiclass RotateLeftHalfwordImm
   2275 {
   2276   def v8i16: ROTHIVecInst<v8i16>;
   2277   def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
   2278                      [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
   2279   def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
   2280                          [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
   2281 }
   2282 
   2283 defm ROTHI: RotateLeftHalfwordImm;
   2284 
   2285 def : Pat<(SPUvec_rotl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
   2286           (ROTHIv8i16 VECREG:$rA, (TO_IMM16 imm:$val))>;
   2287 
   2288 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2289 // Rotate word:
   2290 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2291 
   2292 class ROTInst<dag OOL, dag IOL, list<dag> pattern>:
   2293     RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB",
   2294            RotShiftVec, pattern>;
   2295 
   2296 class ROTVecInst<ValueType vectype>:
   2297     ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
   2298             [(set (vectype VECREG:$rT),
   2299                   (SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>;
   2300 
   2301 class ROTRegInst<RegisterClass rclass>:
   2302     ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
   2303             [(set rclass:$rT,
   2304                   (rotl rclass:$rA, R32C:$rB))]>;
   2305 
   2306 multiclass RotateLeftWord
   2307 {
   2308   def v4i32: ROTVecInst<v4i32>;
   2309   def r32:   ROTRegInst<R32C>;
   2310 }
   2311 
   2312 defm ROT: RotateLeftWord;
   2313 
   2314 // The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or
   2315 // 32-bit register
   2316 def ROTr32_r16_anyext:
   2317     ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB),
   2318             [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>;
   2319 
   2320 def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))),
   2321           (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
   2322 
   2323 def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))),
   2324           (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
   2325 
   2326 def ROTr32_r8_anyext:
   2327     ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB),
   2328             [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>;
   2329 
   2330 def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))),
   2331           (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
   2332 
   2333 def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))),
   2334           (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
   2335 
   2336 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2337 // Rotate word, immediate
   2338 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2339 
   2340 class ROTIInst<dag OOL, dag IOL, list<dag> pattern>:
   2341     RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val",
   2342             RotShiftVec, pattern>;
   2343 
   2344 class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>:
   2345     ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
   2346              [(set (vectype VECREG:$rT),
   2347                    (SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>;
   2348 
   2349 class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
   2350     ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
   2351              [(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>;
   2352 
   2353 multiclass RotateLeftWordImm
   2354 {
   2355   def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>;
   2356   def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>;
   2357   def v4i32_i8:  ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>;
   2358 
   2359   def r32:       ROTIRegInst<R32C, u7imm_i32, i32, uimm7>;
   2360   def r32_i16:   ROTIRegInst<R32C, u7imm, i16, uimm7>;
   2361   def r32_i8:    ROTIRegInst<R32C, u7imm_i8, i8, uimm7>;
   2362 }
   2363 
   2364 defm ROTI : RotateLeftWordImm;
   2365 
   2366 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2367 // Rotate quad by byte (count)
   2368 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2369 
   2370 class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>:
   2371     RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB",
   2372            RotShiftQuad, pattern>;
   2373 
   2374 class ROTQBYGenInst<ValueType type, RegisterClass rc>:
   2375     ROTQBYInst<(outs rc:$rT), (ins rc:$rA, R32C:$rB),
   2376                [(set (type rc:$rT),
   2377                      (SPUrotbytes_left (type rc:$rA), R32C:$rB))]>;
   2378 
   2379 class ROTQBYVecInst<ValueType type>:
   2380     ROTQBYGenInst<type, VECREG>;
   2381 
   2382 multiclass RotateQuadLeftByBytes
   2383 {
   2384   def v16i8: ROTQBYVecInst<v16i8>;
   2385   def v8i16: ROTQBYVecInst<v8i16>;
   2386   def v4i32: ROTQBYVecInst<v4i32>;
   2387   def v4f32: ROTQBYVecInst<v4f32>;
   2388   def v2i64: ROTQBYVecInst<v2i64>;
   2389   def v2f64: ROTQBYVecInst<v2f64>;
   2390   def i128:  ROTQBYGenInst<i128, GPRC>;
   2391 }
   2392 
   2393 defm ROTQBY: RotateQuadLeftByBytes;
   2394 
   2395 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2396 // Rotate quad by byte (count), immediate
   2397 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2398 
   2399 class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
   2400     RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val",
   2401             RotShiftQuad, pattern>;
   2402 
   2403 class ROTQBYIGenInst<ValueType type, RegisterClass rclass>:
   2404     ROTQBYIInst<(outs rclass:$rT), (ins rclass:$rA, u7imm:$val),
   2405                 [(set (type rclass:$rT),
   2406                       (SPUrotbytes_left (type rclass:$rA), (i16 uimm7:$val)))]>;
   2407 
   2408 class ROTQBYIVecInst<ValueType vectype>:
   2409     ROTQBYIGenInst<vectype, VECREG>;
   2410 
   2411 multiclass RotateQuadByBytesImm
   2412 {
   2413   def v16i8: ROTQBYIVecInst<v16i8>;
   2414   def v8i16: ROTQBYIVecInst<v8i16>;
   2415   def v4i32: ROTQBYIVecInst<v4i32>;
   2416   def v4f32: ROTQBYIVecInst<v4f32>;
   2417   def v2i64: ROTQBYIVecInst<v2i64>;
   2418   def vfi64: ROTQBYIVecInst<v2f64>;
   2419   def i128:  ROTQBYIGenInst<i128, GPRC>;
   2420 }
   2421 
   2422 defm ROTQBYI: RotateQuadByBytesImm;
   2423 
   2424 // See ROTQBY note above.
   2425 class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
   2426     RI7Form<0b00110011100, OOL, IOL,
   2427       "rotqbybi\t$rT, $rA, $shift",
   2428       RotShiftQuad, pattern>;
   2429 
   2430 class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>:
   2431     ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift),
   2432       [(set (vectype VECREG:$rT),
   2433             (SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>;
   2434 
   2435 multiclass RotateQuadByBytesByBitshift {
   2436   def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>;
   2437   def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>;
   2438   def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>;
   2439   def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>;
   2440 }
   2441 
   2442 defm ROTQBYBI : RotateQuadByBytesByBitshift;
   2443 
   2444 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2445 // See ROTQBY note above.
   2446 //
   2447 // Assume that the user of this instruction knows to shift the rotate count
   2448 // into bit 29
   2449 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2450 
   2451 class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>:
   2452     RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB",
   2453            RotShiftQuad, pattern>;
   2454 
   2455 class ROTQBIVecInst<ValueType vectype>:
   2456     ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
   2457                [/* no pattern yet */]>;
   2458 
   2459 class ROTQBIRegInst<RegisterClass rclass>:
   2460     ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
   2461                [/* no pattern yet */]>;
   2462 
   2463 multiclass RotateQuadByBitCount
   2464 {
   2465   def v16i8: ROTQBIVecInst<v16i8>;
   2466   def v8i16: ROTQBIVecInst<v8i16>;
   2467   def v4i32: ROTQBIVecInst<v4i32>;
   2468   def v2i64: ROTQBIVecInst<v2i64>;
   2469 
   2470   def r128:  ROTQBIRegInst<GPRC>;
   2471   def r64:   ROTQBIRegInst<R64C>;
   2472 }
   2473 
   2474 defm ROTQBI: RotateQuadByBitCount;
   2475 
   2476 class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
   2477     RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val",
   2478             RotShiftQuad, pattern>;
   2479 
   2480 class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype,
   2481                      PatLeaf pred>:
   2482     ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
   2483                 [/* no pattern yet */]>;
   2484 
   2485 class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
   2486                      PatLeaf pred>:
   2487     ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
   2488                 [/* no pattern yet */]>;
   2489 
   2490 multiclass RotateQuadByBitCountImm
   2491 {
   2492   def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>;
   2493   def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>;
   2494   def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>;
   2495   def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>;
   2496 
   2497   def r128:  ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>;
   2498   def r64:   ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>;
   2499 }
   2500 
   2501 defm ROTQBII : RotateQuadByBitCountImm;
   2502 
   2503 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2504 // ROTHM v8i16 form:
   2505 // NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
   2506 //          so this only matches a synthetically generated/lowered code
   2507 //          fragment.
   2508 // NOTE(2): $rB must be negated before the right rotate!
   2509 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2510 
   2511 class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>:
   2512     RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB",
   2513            RotShiftVec, pattern>;
   2514 
   2515 def ROTHMv8i16:
   2516     ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2517               [/* see patterns below - $rB must be negated */]>;
   2518 
   2519 def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
   2520           (ROTHMv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>;
   2521 
   2522 // ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
   2523 // Note: This instruction doesn't match a pattern because rB must be negated
   2524 // for the instruction to work. Thus, the pattern below the instruction!
   2525 
   2526 def ROTHMr16:
   2527     ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
   2528               [/* see patterns below - $rB must be negated! */]>;
   2529 
   2530 def : Pat<(srl R16C:$rA, R32C:$rB),
   2531           (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
   2532 
   2533 def : Pat<(srl R16C:$rA, R16C:$rB),
   2534           (ROTHMr16 R16C:$rA,
   2535                     (SFIr32 (XSHWr16 R16C:$rB), 0))>;
   2536 
   2537 def : Pat<(srl R16C:$rA, R8C:$rB),
   2538           (ROTHMr16 R16C:$rA,
   2539                     (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
   2540 
   2541 // ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
   2542 // that the immediate can be complemented, so that the user doesn't have to
   2543 // worry about it.
   2544 
   2545 class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>:
   2546     RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val",
   2547             RotShiftVec, pattern>;
   2548 
   2549 def ROTHMIv8i16:
   2550     ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
   2551                [/* no pattern */]>;
   2552 
   2553 def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)),
   2554           (ROTHMIv8i16 VECREG:$rA, imm:$val)>;
   2555 
   2556 def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)),
   2557          (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;
   2558 
   2559 def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)),
   2560          (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;
   2561 
   2562 def ROTHMIr16:
   2563     ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
   2564                [/* no pattern */]>;
   2565 
   2566 def: Pat<(srl R16C:$rA, (i32 uimm7:$val)),
   2567          (ROTHMIr16 R16C:$rA, uimm7:$val)>;
   2568 
   2569 def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
   2570          (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
   2571 
   2572 def: Pat<(srl R16C:$rA, (i8 uimm7:$val)),
   2573          (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
   2574 
   2575 // ROTM v4i32 form: See the ROTHM v8i16 comments.
   2576 class ROTMInst<dag OOL, dag IOL, list<dag> pattern>:
   2577     RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB",
   2578            RotShiftVec, pattern>;
   2579 
   2580 def ROTMv4i32:
   2581     ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2582              [/* see patterns below - $rB must be negated */]>;
   2583 
   2584 def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)),
   2585           (ROTMv4i32 VECREG:$rA, (SFIvec VECREG:$rB, 0))>;
   2586 
   2587 def ROTMr32:
   2588     ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
   2589              [/* see patterns below - $rB must be negated */]>;
   2590 
   2591 def : Pat<(srl R32C:$rA, R32C:$rB),
   2592           (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
   2593 
   2594 def : Pat<(srl R32C:$rA, R16C:$rB),
   2595           (ROTMr32 R32C:$rA,
   2596                    (SFIr32 (XSHWr16 R16C:$rB), 0))>;
   2597 
   2598 def : Pat<(srl R32C:$rA, R8C:$rB),
   2599           (ROTMr32 R32C:$rA,
   2600                    (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
   2601 
   2602 // ROTMI v4i32 form: See the comment for ROTHM v8i16.
   2603 def ROTMIv4i32:
   2604     RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
   2605       "rotmi\t$rT, $rA, $val", RotShiftVec,
   2606       [(set (v4i32 VECREG:$rT),
   2607             (SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>;
   2608 
   2609 def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i16 uimm7:$val)),
   2610           (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;
   2611 
   2612 def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i8 uimm7:$val)),
   2613           (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;
   2614 
   2615 // ROTMI r32 form: know how to complement the immediate value.
   2616 def ROTMIr32:
   2617     RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
   2618       "rotmi\t$rT, $rA, $val", RotShiftVec,
   2619       [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;
   2620 
   2621 def : Pat<(srl R32C:$rA, (i16 imm:$val)),
   2622           (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;
   2623 
   2624 def : Pat<(srl R32C:$rA, (i8 imm:$val)),
   2625           (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;
   2626 
   2627 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2628 // ROTQMBY: This is a vector form merely so that when used in an
   2629 // instruction pattern, type checking will succeed. This instruction assumes
   2630 // that the user knew to negate $rB.
   2631 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2632 
   2633 class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>:
   2634     RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB",
   2635            RotShiftQuad, pattern>;
   2636 
   2637 class ROTQMBYVecInst<ValueType vectype>:
   2638     ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
   2639                 [/* no pattern, $rB must be negated */]>;
   2640 
   2641 class ROTQMBYRegInst<RegisterClass rclass>:
   2642     ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
   2643                 [/* no pattern */]>;
   2644 
   2645 multiclass RotateQuadBytes
   2646 {
   2647   def v16i8: ROTQMBYVecInst<v16i8>;
   2648   def v8i16: ROTQMBYVecInst<v8i16>;
   2649   def v4i32: ROTQMBYVecInst<v4i32>;
   2650   def v2i64: ROTQMBYVecInst<v2i64>;
   2651 
   2652   def r128: ROTQMBYRegInst<GPRC>;
   2653   def r64:  ROTQMBYRegInst<R64C>;
   2654 }
   2655 
   2656 defm ROTQMBY : RotateQuadBytes;
   2657 
   2658 def : Pat<(SPUsrl_bytes GPRC:$rA, R32C:$rB),
   2659           (ROTQMBYr128  GPRC:$rA, 
   2660                         (SFIr32 R32C:$rB, 0))>;
   2661 
   2662 class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>:
   2663     RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val",
   2664             RotShiftQuad, pattern>;
   2665 
   2666 class ROTQMBYIVecInst<ValueType vectype>:
   2667     ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
   2668                  [/* no pattern */]>;
   2669 
   2670 class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
   2671                       PatLeaf pred>:
   2672     ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
   2673                  [/* no pattern */]>;
   2674 
   2675 // 128-bit zero extension form:
   2676 class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>:
   2677     ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val),
   2678                  [/* no pattern */]>;
   2679 
   2680 multiclass RotateQuadBytesImm
   2681 {
   2682   def v16i8: ROTQMBYIVecInst<v16i8>;
   2683   def v8i16: ROTQMBYIVecInst<v8i16>;
   2684   def v4i32: ROTQMBYIVecInst<v4i32>;
   2685   def v2i64: ROTQMBYIVecInst<v2i64>;
   2686 
   2687   def r128:  ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>;
   2688   def r64:   ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>;
   2689   
   2690   def r128_zext_r8:  ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>;
   2691   def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>;
   2692   def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>;
   2693   def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>;
   2694 }
   2695 
   2696 defm ROTQMBYI : RotateQuadBytesImm;
   2697 
   2698 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2699 // Rotate right and mask by bit count
   2700 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2701 
   2702 class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
   2703     RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB",
   2704            RotShiftQuad, pattern>;
   2705 
   2706 class ROTQMBYBIVecInst<ValueType vectype>:
   2707     ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
   2708                   [/* no pattern, */]>;
   2709 
   2710 multiclass RotateMaskQuadByBitCount
   2711 {
   2712   def v16i8: ROTQMBYBIVecInst<v16i8>;
   2713   def v8i16: ROTQMBYBIVecInst<v8i16>;
   2714   def v4i32: ROTQMBYBIVecInst<v4i32>;
   2715   def v2i64: ROTQMBYBIVecInst<v2i64>;
   2716   def r128: ROTQMBYBIInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
   2717                            [/*no pattern*/]>;
   2718 }
   2719 
   2720 defm ROTQMBYBI: RotateMaskQuadByBitCount;
   2721 
   2722 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2723 // Rotate quad and mask by bits
   2724 // Note that the rotate amount has to be negated
   2725 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2726 
   2727 class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>:
   2728     RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB",
   2729            RotShiftQuad, pattern>;
   2730 
   2731 class ROTQMBIVecInst<ValueType vectype>:
   2732     ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
   2733                 [/* no pattern */]>;
   2734 
   2735 class ROTQMBIRegInst<RegisterClass rclass>:
   2736     ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
   2737                 [/* no pattern */]>;
   2738 
   2739 multiclass RotateMaskQuadByBits
   2740 {
   2741   def v16i8: ROTQMBIVecInst<v16i8>;
   2742   def v8i16: ROTQMBIVecInst<v8i16>;
   2743   def v4i32: ROTQMBIVecInst<v4i32>;
   2744   def v2i64: ROTQMBIVecInst<v2i64>;
   2745 
   2746   def r128:  ROTQMBIRegInst<GPRC>;
   2747   def r64:   ROTQMBIRegInst<R64C>;
   2748 }
   2749 
   2750 defm ROTQMBI: RotateMaskQuadByBits;
   2751 
   2752 def : Pat<(srl GPRC:$rA, R32C:$rB),
   2753           (ROTQMBYBIr128 (ROTQMBIr128  GPRC:$rA, 
   2754                                        (SFIr32 R32C:$rB, 0)),
   2755                          (SFIr32 R32C:$rB, 0))>;
   2756 
   2757 
   2758 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2759 // Rotate quad and mask by bits, immediate
   2760 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2761 
   2762 class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>:
   2763     RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val",
   2764             RotShiftQuad, pattern>;
   2765 
   2766 class ROTQMBIIVecInst<ValueType vectype>:
   2767    ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
   2768                  [/* no pattern */]>;
   2769 
   2770 class ROTQMBIIRegInst<RegisterClass rclass>:
   2771    ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val),
   2772                  [/* no pattern */]>;
   2773 
   2774 multiclass RotateMaskQuadByBitsImm
   2775 {
   2776   def v16i8: ROTQMBIIVecInst<v16i8>;
   2777   def v8i16: ROTQMBIIVecInst<v8i16>;
   2778   def v4i32: ROTQMBIIVecInst<v4i32>;
   2779   def v2i64: ROTQMBIIVecInst<v2i64>;
   2780 
   2781   def r128:  ROTQMBIIRegInst<GPRC>;
   2782   def r64:   ROTQMBIIRegInst<R64C>;
   2783 }
   2784 
   2785 defm ROTQMBII: RotateMaskQuadByBitsImm;
   2786 
   2787 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2788 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2789 
   2790 def ROTMAHv8i16:
   2791     RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2792       "rotmah\t$rT, $rA, $rB", RotShiftVec,
   2793       [/* see patterns below - $rB must be negated */]>;
   2794 
   2795 def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
   2796           (ROTMAHv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>;
   2797 
   2798 def ROTMAHr16:
   2799     RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
   2800       "rotmah\t$rT, $rA, $rB", RotShiftVec,
   2801       [/* see patterns below - $rB must be negated */]>;
   2802 
   2803 def : Pat<(sra R16C:$rA, R32C:$rB),
   2804           (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
   2805 
   2806 def : Pat<(sra R16C:$rA, R16C:$rB),
   2807           (ROTMAHr16 R16C:$rA,
   2808                      (SFIr32 (XSHWr16 R16C:$rB), 0))>;
   2809 
   2810 def : Pat<(sra R16C:$rA, R8C:$rB),
   2811           (ROTMAHr16 R16C:$rA,
   2812                      (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
   2813 
   2814 def ROTMAHIv8i16:
   2815     RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
   2816       "rotmahi\t$rT, $rA, $val", RotShiftVec,
   2817       [(set (v8i16 VECREG:$rT),
   2818             (SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;
   2819 
   2820 def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)),
   2821           (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;
   2822 
   2823 def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)),
   2824           (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;
   2825 
   2826 def ROTMAHIr16:
   2827     RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
   2828       "rotmahi\t$rT, $rA, $val", RotShiftVec,
   2829       [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;
   2830 
   2831 def : Pat<(sra R16C:$rA, (i32 imm:$val)),
   2832           (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
   2833 
   2834 def : Pat<(sra R16C:$rA, (i8 imm:$val)),
   2835           (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
   2836 
   2837 def ROTMAv4i32:
   2838     RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2839       "rotma\t$rT, $rA, $rB", RotShiftVec,
   2840       [/* see patterns below - $rB must be negated */]>;
   2841 
   2842 def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)),
   2843           (ROTMAv4i32 VECREG:$rA, (SFIvec (v4i32 VECREG:$rB), 0))>;
   2844 
   2845 def ROTMAr32:
   2846     RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
   2847       "rotma\t$rT, $rA, $rB", RotShiftVec,
   2848       [/* see patterns below - $rB must be negated */]>;
   2849 
   2850 def : Pat<(sra R32C:$rA, R32C:$rB),
   2851           (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
   2852 
   2853 def : Pat<(sra R32C:$rA, R16C:$rB),
   2854           (ROTMAr32 R32C:$rA,
   2855                     (SFIr32 (XSHWr16 R16C:$rB), 0))>;
   2856 
   2857 def : Pat<(sra R32C:$rA, R8C:$rB),
   2858           (ROTMAr32 R32C:$rA,
   2859                     (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
   2860 
   2861 class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>:
   2862     RRForm<0b01011110000, OOL, IOL,
   2863       "rotmai\t$rT, $rA, $val",
   2864       RotShiftVec, pattern>;
   2865 
   2866 class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>:
   2867     ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val),
   2868       [(set (vectype VECREG:$rT),
   2869             (SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>;
   2870 
   2871 class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>:
   2872     ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val),
   2873       [(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>;
   2874 
   2875 multiclass RotateMaskAlgebraicImm {
   2876   def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>;
   2877   def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>;
   2878   def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>;
   2879   def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>;
   2880 }
   2881 
   2882 defm ROTMAI : RotateMaskAlgebraicImm;
   2883 
   2884 //===----------------------------------------------------------------------===//
   2885 // Branch and conditionals:
   2886 //===----------------------------------------------------------------------===//
   2887 
   2888 let isTerminator = 1, isBarrier = 1 in {
   2889   // Halt If Equal (r32 preferred slot only, no vector form)
   2890   def HEQr32:
   2891     RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
   2892       "heq\t$rA, $rB", BranchResolv,
   2893       [/* no pattern to match */]>;
   2894 
   2895   def HEQIr32 :
   2896     RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
   2897       "heqi\t$rA, $val", BranchResolv,
   2898       [/* no pattern to match */]>;
   2899 
   2900   // HGT/HGTI: These instructions use signed arithmetic for the comparison,
   2901   // contrasting with HLGT/HLGTI, which use unsigned comparison:
   2902   def HGTr32:
   2903     RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
   2904       "hgt\t$rA, $rB", BranchResolv,
   2905       [/* no pattern to match */]>;
   2906 
   2907   def HGTIr32:
   2908     RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
   2909       "hgti\t$rA, $val", BranchResolv,
   2910       [/* no pattern to match */]>;
   2911 
   2912   def HLGTr32:
   2913     RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
   2914       "hlgt\t$rA, $rB", BranchResolv,
   2915       [/* no pattern to match */]>;
   2916 
   2917   def HLGTIr32:
   2918     RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
   2919       "hlgti\t$rA, $val", BranchResolv,
   2920       [/* no pattern to match */]>;
   2921 }
   2922 
   2923 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2924 // Comparison operators for i8, i16 and i32:
   2925 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   2926 
   2927 class CEQBInst<dag OOL, dag IOL, list<dag> pattern> :
   2928   RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB",
   2929          ByteOp, pattern>;
   2930 
   2931 multiclass CmpEqualByte
   2932 {
   2933   def v16i8 :
   2934     CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2935       [(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
   2936                                        (v8i16 VECREG:$rB)))]>;
   2937 
   2938   def r8 :
   2939     CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
   2940              [(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>;
   2941 }
   2942 
   2943 class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> :
   2944   RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val",
   2945            ByteOp, pattern>;
   2946 
   2947 multiclass CmpEqualByteImm
   2948 {
   2949   def v16i8 :
   2950     CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
   2951               [(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA),
   2952                                                v16i8SExt8Imm:$val))]>;
   2953   def r8:
   2954     CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
   2955              [(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>;
   2956 }
   2957 
   2958 class CEQHInst<dag OOL, dag IOL, list<dag> pattern> :
   2959   RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB",
   2960          ByteOp, pattern>;
   2961 
   2962 multiclass CmpEqualHalfword
   2963 {
   2964   def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2965                        [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
   2966                                                         (v8i16 VECREG:$rB)))]>;
   2967 
   2968   def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
   2969                      [(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>;
   2970 }
   2971 
   2972 class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> :
   2973   RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val",
   2974            ByteOp, pattern>;
   2975 
   2976 multiclass CmpEqualHalfwordImm
   2977 {
   2978   def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   2979                         [(set (v8i16 VECREG:$rT),
   2980                               (seteq (v8i16 VECREG:$rA),
   2981                                      (v8i16 v8i16SExt10Imm:$val)))]>;
   2982   def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
   2983                       [(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>;
   2984 }
   2985 
   2986 class CEQInst<dag OOL, dag IOL, list<dag> pattern> :
   2987   RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB",
   2988          ByteOp, pattern>;
   2989 
   2990 multiclass CmpEqualWord
   2991 {
   2992   def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   2993                       [(set (v4i32 VECREG:$rT),
   2994                             (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
   2995 
   2996   def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
   2997                     [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>;
   2998 }
   2999 
   3000 class CEQIInst<dag OOL, dag IOL, list<dag> pattern> :
   3001   RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val",
   3002            ByteOp, pattern>;
   3003 
   3004 multiclass CmpEqualWordImm
   3005 {
   3006   def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   3007                        [(set (v4i32 VECREG:$rT),
   3008                              (seteq (v4i32 VECREG:$rA),
   3009                                     (v4i32 v4i32SExt16Imm:$val)))]>;
   3010 
   3011   def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
   3012                     [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>;
   3013 }
   3014 
   3015 class CGTBInst<dag OOL, dag IOL, list<dag> pattern> :
   3016   RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
   3017          ByteOp, pattern>;
   3018 
   3019 multiclass CmpGtrByte
   3020 {
   3021   def v16i8 :
   3022     CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3023       [(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
   3024                                        (v8i16 VECREG:$rB)))]>;
   3025 
   3026   def r8 :
   3027     CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
   3028              [(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>;
   3029 }
   3030 
   3031 class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
   3032   RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
   3033            ByteOp, pattern>;
   3034 
   3035 multiclass CmpGtrByteImm
   3036 {
   3037   def v16i8 :
   3038     CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
   3039               [(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA),
   3040                                                v16i8SExt8Imm:$val))]>;
   3041   def r8:
   3042     CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
   3043               [(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>;
   3044 }
   3045 
   3046 class CGTHInst<dag OOL, dag IOL, list<dag> pattern> :
   3047   RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB",
   3048          ByteOp, pattern>;
   3049 
   3050 multiclass CmpGtrHalfword
   3051 {
   3052   def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3053                        [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
   3054                                                         (v8i16 VECREG:$rB)))]>;
   3055 
   3056   def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
   3057                      [(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>;
   3058 }
   3059 
   3060 class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
   3061   RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val",
   3062            ByteOp, pattern>;
   3063 
   3064 multiclass CmpGtrHalfwordImm
   3065 {
   3066   def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   3067                         [(set (v8i16 VECREG:$rT),
   3068                               (setgt (v8i16 VECREG:$rA),
   3069                                      (v8i16 v8i16SExt10Imm:$val)))]>;
   3070   def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
   3071                       [(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>;
   3072 }
   3073 
   3074 class CGTInst<dag OOL, dag IOL, list<dag> pattern> :
   3075   RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB",
   3076          ByteOp, pattern>;
   3077 
   3078 multiclass CmpGtrWord
   3079 {
   3080   def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3081                       [(set (v4i32 VECREG:$rT),
   3082                             (setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
   3083 
   3084   def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
   3085                     [(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>;
   3086 }
   3087 
   3088 class CGTIInst<dag OOL, dag IOL, list<dag> pattern> :
   3089   RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val",
   3090            ByteOp, pattern>;
   3091 
   3092 multiclass CmpGtrWordImm
   3093 {
   3094   def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   3095                        [(set (v4i32 VECREG:$rT),
   3096                              (setgt (v4i32 VECREG:$rA),
   3097                                     (v4i32 v4i32SExt16Imm:$val)))]>;
   3098 
   3099   def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
   3100                     [(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>;
   3101 
   3102   // CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence:
   3103   def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   3104                        [(set (v4i32 VECREG:$rT),
   3105                              (setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))),
   3106                                     (v4i32 v4i32SExt16Imm:$val)))]>;
   3107 
   3108   def f32:   CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val),
   3109                       [/* no pattern */]>;
   3110 }
   3111 
   3112 class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> :
   3113   RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB",
   3114          ByteOp, pattern>;
   3115 
   3116 multiclass CmpLGtrByte
   3117 {
   3118   def v16i8 :
   3119     CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3120       [(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
   3121                                        (v8i16 VECREG:$rB)))]>;
   3122 
   3123   def r8 :
   3124     CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
   3125              [(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>;
   3126 }
   3127 
   3128 class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
   3129   RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val",
   3130            ByteOp, pattern>;
   3131 
   3132 multiclass CmpLGtrByteImm
   3133 {
   3134   def v16i8 :
   3135     CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
   3136               [(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA),
   3137                                                v16i8SExt8Imm:$val))]>;
   3138   def r8:
   3139     CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
   3140              [(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>;
   3141 }
   3142 
   3143 class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> :
   3144   RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB",
   3145          ByteOp, pattern>;
   3146 
   3147 multiclass CmpLGtrHalfword
   3148 {
   3149   def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3150                        [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
   3151                                                         (v8i16 VECREG:$rB)))]>;
   3152 
   3153   def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
   3154                      [(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>;
   3155 }
   3156 
   3157 class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
   3158   RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val",
   3159            ByteOp, pattern>;
   3160 
   3161 multiclass CmpLGtrHalfwordImm
   3162 {
   3163   def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   3164                          [(set (v8i16 VECREG:$rT),
   3165                                (setugt (v8i16 VECREG:$rA),
   3166                                        (v8i16 v8i16SExt10Imm:$val)))]>;
   3167   def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
   3168                        [(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>;
   3169 }
   3170 
   3171 class CLGTInst<dag OOL, dag IOL, list<dag> pattern> :
   3172   RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB",
   3173          ByteOp, pattern>;
   3174 
   3175 multiclass CmpLGtrWord
   3176 {
   3177   def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3178                       [(set (v4i32 VECREG:$rT),
   3179                             (setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
   3180 
   3181   def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
   3182                      [(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>;
   3183 }
   3184 
   3185 class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> :
   3186   RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val",
   3187            ByteOp, pattern>;
   3188 
   3189 multiclass CmpLGtrWordImm
   3190 {
   3191   def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
   3192                        [(set (v4i32 VECREG:$rT),
   3193                              (setugt (v4i32 VECREG:$rA),
   3194                                     (v4i32 v4i32SExt16Imm:$val)))]>;
   3195 
   3196   def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
   3197                      [(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>;
   3198 }
   3199 
   3200 defm CEQB   : CmpEqualByte;
   3201 defm CEQBI  : CmpEqualByteImm;
   3202 defm CEQH   : CmpEqualHalfword;
   3203 defm CEQHI  : CmpEqualHalfwordImm;
   3204 defm CEQ    : CmpEqualWord;
   3205 defm CEQI   : CmpEqualWordImm;
   3206 defm CGTB   : CmpGtrByte;
   3207 defm CGTBI  : CmpGtrByteImm;
   3208 defm CGTH   : CmpGtrHalfword;
   3209 defm CGTHI  : CmpGtrHalfwordImm;
   3210 defm CGT    : CmpGtrWord;
   3211 defm CGTI   : CmpGtrWordImm;
   3212 defm CLGTB  : CmpLGtrByte;
   3213 defm CLGTBI : CmpLGtrByteImm;
   3214 defm CLGTH  : CmpLGtrHalfword;
   3215 defm CLGTHI : CmpLGtrHalfwordImm;
   3216 defm CLGT   : CmpLGtrWord;
   3217 defm CLGTI  : CmpLGtrWordImm;
   3218 
   3219 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   3220 // For SETCC primitives not supported above (setlt, setle, setge, etc.)
   3221 // define a pattern to generate the right code, as a binary operator
   3222 // (in a manner of speaking.)
   3223 //
   3224 // Notes:
   3225 // 1. This only matches the setcc set of conditionals. Special pattern
   3226 //    matching is used for select conditionals.
   3227 //
   3228 // 2. The "DAG" versions of these classes is almost exclusively used for
   3229 //    i64 comparisons. See the tblgen fundamentals documentation for what
   3230 //    ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern
   3231 //    class for where ResultInstrs originates.
   3232 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   3233 
   3234 class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
   3235                       SPUInstr xorinst, SPUInstr cmpare>:
   3236   Pat<(cond rclass:$rA, rclass:$rB),
   3237       (xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>;
   3238 
   3239 class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
   3240                       PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>:
   3241   Pat<(cond rclass:$rA, (inttype immpred:$imm)),
   3242       (xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>;
   3243 
   3244 def : SETCCNegCondReg<setne, R8C, i8, XORBIr8,  CEQBr8>;
   3245 def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>;
   3246 
   3247 def : SETCCNegCondReg<setne, R16C, i16, XORHIr16,     CEQHr16>;
   3248 def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>;
   3249 
   3250 def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>;
   3251 def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>;
   3252 
   3253 class SETCCBinOpReg<PatFrag cond, RegisterClass rclass,
   3254                     SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
   3255     Pat<(cond rclass:$rA, rclass:$rB),
   3256         (binop (cmpOp1 rclass:$rA, rclass:$rB),
   3257                (cmpOp2 rclass:$rA, rclass:$rB))>;
   3258 
   3259 class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
   3260                     ValueType immtype,
   3261                     SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
   3262     Pat<(cond rclass:$rA, (immtype immpred:$imm)),
   3263         (binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)),
   3264                (cmpOp2 rclass:$rA, (immtype immpred:$imm)))>;
   3265 
   3266 def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>;
   3267 def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>;
   3268 def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>;
   3269 def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>;
   3270 def : Pat<(setle R8C:$rA, R8C:$rB),
   3271           (XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
   3272 def :  Pat<(setle R8C:$rA, immU8:$imm),
   3273            (XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
   3274 
   3275 def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>;
   3276 def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16,
   3277                     ORr16, CGTHIr16, CEQHIr16>;
   3278 def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>;
   3279 def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>;
   3280 def : Pat<(setle R16C:$rA, R16C:$rB),
   3281           (XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
   3282 def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm),
   3283           (XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
   3284 
   3285 def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>;
   3286 def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32,
   3287                     ORr32, CGTIr32, CEQIr32>;
   3288 def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>;
   3289 def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>;
   3290 def : Pat<(setle R32C:$rA, R32C:$rB),
   3291           (XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
   3292 def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm),
   3293           (XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
   3294 
   3295 def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>;
   3296 def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>;
   3297 def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>;
   3298 def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>;
   3299 def : Pat<(setule R8C:$rA, R8C:$rB),
   3300           (XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
   3301 def :  Pat<(setule R8C:$rA, immU8:$imm),
   3302            (XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
   3303 
   3304 def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>;
   3305 def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16,
   3306                     ORr16, CLGTHIr16, CEQHIr16>;
   3307 def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>;
   3308 def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16,
   3309                     CLGTHIr16, CEQHIr16>;
   3310 def : Pat<(setule R16C:$rA, R16C:$rB),
   3311           (XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
   3312 def :  Pat<(setule R16C:$rA, i16ImmSExt10:$imm),
   3313            (XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
   3314 
   3315 def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>;
   3316 def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32,
   3317                     ORr32, CLGTIr32, CEQIr32>;
   3318 def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>;
   3319 def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>;
   3320 def : Pat<(setule R32C:$rA, R32C:$rB),
   3321           (XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
   3322 def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm),
   3323           (XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
   3324 
   3325 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   3326 // select conditional patterns:
   3327 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   3328 
   3329 class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
   3330                        SPUInstr selinstr, SPUInstr cmpare>:
   3331   Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
   3332               rclass:$rTrue, rclass:$rFalse),
   3333       (selinstr rclass:$rTrue, rclass:$rFalse,
   3334                 (cmpare rclass:$rA, rclass:$rB))>;
   3335 
   3336 class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
   3337                        PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>:
   3338   Pat<(select (inttype (cond rclass:$rA, immpred:$imm)),
   3339               rclass:$rTrue, rclass:$rFalse),
   3340       (selinstr rclass:$rTrue, rclass:$rFalse,
   3341                 (cmpare rclass:$rA, immpred:$imm))>;
   3342 
   3343 def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>;
   3344 def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>;
   3345 def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>;
   3346 def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>;
   3347 def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>;
   3348 def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>;
   3349 
   3350 def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>;
   3351 def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>;
   3352 def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>;
   3353 def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>;
   3354 def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>;
   3355 def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>;
   3356 
   3357 def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>;
   3358 def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>;
   3359 def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>;
   3360 def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>;
   3361 def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>;
   3362 def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>;
   3363 
   3364 class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
   3365                      SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
   3366                      SPUInstr cmpOp2>:
   3367   Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
   3368               rclass:$rTrue, rclass:$rFalse),
   3369       (selinstr rclass:$rFalse, rclass:$rTrue,
   3370                 (binop (cmpOp1 rclass:$rA, rclass:$rB),
   3371                        (cmpOp2 rclass:$rA, rclass:$rB)))>;
   3372 
   3373 class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
   3374                      ValueType inttype,
   3375                      SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
   3376                      SPUInstr cmpOp2>:
   3377     Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))),
   3378                 rclass:$rTrue, rclass:$rFalse),
   3379         (selinstr rclass:$rFalse, rclass:$rTrue,
   3380                   (binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)),
   3381                          (cmpOp2 rclass:$rA, (inttype immpred:$imm))))>;
   3382 
   3383 def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>;
   3384 def : SELECTBinOpImm<setge, R8C, immSExt8, i8,
   3385                      SELBr8, ORr8, CGTBIr8, CEQBIr8>;
   3386 
   3387 def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>;
   3388 def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16,
   3389                      SELBr16, ORr16, CGTHIr16, CEQHIr16>;
   3390 
   3391 def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>;
   3392 def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32,
   3393                      SELBr32, ORr32, CGTIr32, CEQIr32>;
   3394 
   3395 def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>;
   3396 def : SELECTBinOpImm<setuge, R8C, immSExt8, i8,
   3397                      SELBr8, ORr8, CLGTBIr8, CEQBIr8>;
   3398 
   3399 def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>;
   3400 def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16,
   3401                      SELBr16, ORr16, CLGTHIr16, CEQHIr16>;
   3402 
   3403 def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>;
   3404 def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32,
   3405                      SELBr32, ORr32, CLGTIr32, CEQIr32>;
   3406 
   3407 //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
   3408 
   3409 let isCall = 1,
   3410   // All calls clobber the non-callee-saved registers:
   3411   Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
   3412           R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
   3413           R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
   3414           R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
   3415           R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
   3416           R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
   3417           R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
   3418           R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
   3419   // All of these instructions use $lr (aka $0)
   3420   Uses = [R0]  in {
   3421   // Branch relative and set link: Used if we actually know that the target
   3422   // is within [-32768, 32767] bytes of the target
   3423   def BRSL:
   3424     BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
   3425       "brsl\t$$lr, $func",
   3426       [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;
   3427 
   3428   // Branch absolute and set link: Used if we actually know that the target
   3429   // is an absolute address
   3430   def BRASL:
   3431     BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
   3432       "brasl\t$$lr, $func",
   3433       [(SPUcall (SPUaform tglobaladdr:$func, 0))]>;
   3434 
   3435   // Branch indirect and set link if external data. These instructions are not
   3436   // actually generated, matched by an intrinsic:
   3437   def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
   3438   def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
   3439   def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
   3440   def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;
   3441 
   3442   // Branch indirect and set link. This is the "X-form" address version of a
   3443   // function call
   3444   def BISL:
   3445     BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
   3446 }
   3447 
   3448 // Support calls to external symbols:      
   3449 def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)),
   3450           (BRSL texternalsym:$func)>;
   3451       
   3452 def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)),
   3453           (BRASL texternalsym:$func)>;
   3454 
   3455 // Unconditional branches:
   3456 let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
   3457   let isBarrier = 1 in {
   3458     def BR :
   3459       UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
   3460         "br\t$dest",
   3461         [(br bb:$dest)]>;
   3462 
   3463     // Unconditional, absolute address branch
   3464     def BRA:
   3465       UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
   3466         "bra\t$dest",
   3467         [/* no pattern */]>;
   3468 
   3469     // Indirect branch
   3470     def BI:
   3471       BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
   3472   }
   3473 
   3474   // Conditional branches:
   3475   class BRNZInst<dag IOL, list<dag> pattern>:
   3476     RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest",
   3477              BranchResolv, pattern>;
   3478 
   3479   class BRNZRegInst<RegisterClass rclass>:
   3480     BRNZInst<(ins rclass:$rCond, brtarget:$dest),
   3481              [(brcond rclass:$rCond, bb:$dest)]>;
   3482 
   3483   class BRNZVecInst<ValueType vectype>:
   3484     BRNZInst<(ins VECREG:$rCond, brtarget:$dest),
   3485              [(brcond (vectype VECREG:$rCond), bb:$dest)]>;
   3486 
   3487   multiclass BranchNotZero {
   3488     def v4i32 : BRNZVecInst<v4i32>;
   3489     def r32   : BRNZRegInst<R32C>;
   3490   }
   3491 
   3492   defm BRNZ : BranchNotZero;
   3493 
   3494   class BRZInst<dag IOL, list<dag> pattern>:
   3495     RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest",
   3496              BranchResolv, pattern>;
   3497 
   3498   class BRZRegInst<RegisterClass rclass>:
   3499     BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
   3500 
   3501   class BRZVecInst<ValueType vectype>:
   3502     BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
   3503 
   3504   multiclass BranchZero {
   3505     def v4i32: BRZVecInst<v4i32>;
   3506     def r32:   BRZRegInst<R32C>;
   3507   }
   3508 
   3509   defm BRZ: BranchZero;
   3510 
   3511   // Note: LLVM doesn't do branch conditional, indirect. Otherwise these would
   3512   // be useful:
   3513   /*
   3514   class BINZInst<dag IOL, list<dag> pattern>:
   3515    BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>;
   3516 
   3517   class BINZRegInst<RegisterClass rclass>:
   3518     BINZInst<(ins rclass:$rA, brtarget:$dest),
   3519              [(brcond rclass:$rA, R32C:$dest)]>;
   3520 
   3521   class BINZVecInst<ValueType vectype>:
   3522     BINZInst<(ins VECREG:$rA, R32C:$dest),
   3523              [(brcond (vectype VECREG:$rA), R32C:$dest)]>;
   3524 
   3525   multiclass BranchNotZeroIndirect {
   3526     def v4i32: BINZVecInst<v4i32>;
   3527     def r32:   BINZRegInst<R32C>;
   3528   }
   3529 
   3530   defm BINZ: BranchNotZeroIndirect;
   3531 
   3532   class BIZInst<dag IOL, list<dag> pattern>:
   3533     BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>;
   3534 
   3535   class BIZRegInst<RegisterClass rclass>:
   3536     BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>;
   3537 
   3538   class BIZVecInst<ValueType vectype>:
   3539     BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>;
   3540 
   3541   multiclass BranchZeroIndirect {
   3542     def v4i32: BIZVecInst<v4i32>;
   3543     def r32:   BIZRegInst<R32C>;
   3544   }
   3545 
   3546   defm BIZ: BranchZeroIndirect;
   3547   */
   3548 
   3549   class BRHNZInst<dag IOL, list<dag> pattern>:
   3550     RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv,
   3551              pattern>;
   3552 
   3553   class BRHNZRegInst<RegisterClass rclass>:
   3554     BRHNZInst<(ins rclass:$rCond, brtarget:$dest),
   3555               [(brcond rclass:$rCond, bb:$dest)]>;
   3556 
   3557   class BRHNZVecInst<ValueType vectype>:
   3558     BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>;
   3559 
   3560   multiclass BranchNotZeroHalfword {
   3561     def v8i16: BRHNZVecInst<v8i16>;
   3562     def r16:   BRHNZRegInst<R16C>;
   3563   }
   3564 
   3565   defm BRHNZ: BranchNotZeroHalfword;
   3566 
   3567   class BRHZInst<dag IOL, list<dag> pattern>:
   3568     RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv,
   3569              pattern>;
   3570 
   3571   class BRHZRegInst<RegisterClass rclass>:
   3572     BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
   3573 
   3574   class BRHZVecInst<ValueType vectype>:
   3575     BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
   3576 
   3577   multiclass BranchZeroHalfword {
   3578     def v8i16: BRHZVecInst<v8i16>;
   3579     def r16:   BRHZRegInst<R16C>;
   3580   }
   3581 
   3582   defm BRHZ: BranchZeroHalfword;
   3583 }
   3584 
   3585 //===----------------------------------------------------------------------===//
   3586 // setcc and brcond patterns:
   3587 //===----------------------------------------------------------------------===//
   3588 
   3589 def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
   3590           (BRHZr16 R16C:$rA, bb:$dest)>;
   3591 def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
   3592           (BRHNZr16 R16C:$rA, bb:$dest)>;
   3593 
   3594 def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
   3595           (BRZr32 R32C:$rA, bb:$dest)>;
   3596 def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
   3597           (BRNZr32 R32C:$rA, bb:$dest)>;
   3598 
   3599 multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
   3600 {
   3601   def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
   3602                   (brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
   3603 
   3604   def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
   3605                 (brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>;
   3606 
   3607   def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
   3608                    (brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
   3609 
   3610   def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
   3611                 (brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
   3612 }
   3613 
   3614 defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>;
   3615 defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>;
   3616 
   3617 multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
   3618 {
   3619   def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
   3620                    (brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
   3621 
   3622   def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
   3623                 (brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
   3624 
   3625   def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
   3626                    (brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
   3627 
   3628   def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
   3629                 (brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
   3630 }
   3631 
   3632 defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>;
   3633 defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>;
   3634 
   3635 multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
   3636                            SPUInstr orinst32, SPUInstr brinst32>
   3637 {
   3638   def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
   3639                   (brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val),
   3640                                       (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
   3641                             bb:$dest)>;
   3642 
   3643   def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
   3644                (brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB),
   3645                                    (CEQHr16 R16C:$rA, R16:$rB)),
   3646                          bb:$dest)>;
   3647 
   3648   def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
   3649                    (brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val),
   3650                                        (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
   3651                              bb:$dest)>;
   3652 
   3653   def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
   3654                 (brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB),
   3655                                     (CEQr32 R32C:$rA, R32C:$rB)),
   3656                           bb:$dest)>;
   3657 }
   3658 
   3659 defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>;
   3660 defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>;
   3661 
   3662 multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
   3663 {
   3664   def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
   3665                    (brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
   3666 
   3667   def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
   3668                 (brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
   3669 
   3670   def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
   3671                    (brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
   3672 
   3673   def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
   3674                 (brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
   3675 }
   3676 
   3677 defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>;
   3678 defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>;
   3679 
   3680 multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
   3681                           SPUInstr orinst32, SPUInstr brinst32>
   3682 {
   3683   def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
   3684                   (brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val),
   3685                                       (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
   3686                             bb:$dest)>;
   3687 
   3688   def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
   3689                (brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB),
   3690                                    (CEQHr16 R16C:$rA, R16:$rB)),
   3691                          bb:$dest)>;
   3692 
   3693   def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
   3694                    (brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val),
   3695                                        (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
   3696                              bb:$dest)>;
   3697 
   3698   def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
   3699                 (brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB),
   3700                                     (CEQr32 R32C:$rA, R32C:$rB)),
   3701                           bb:$dest)>;
   3702 }
   3703 
   3704 defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>;
   3705 defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>;
   3706 
   3707 let isTerminator = 1, isBarrier = 1 in {
   3708   let isReturn = 1 in {
   3709     def RET:
   3710         RETForm<"bi\t$$lr", [(retflag)]>;
   3711   }
   3712 }
   3713 
   3714 //===----------------------------------------------------------------------===//
   3715 // Single precision floating point instructions
   3716 //===----------------------------------------------------------------------===//
   3717 
   3718 class FAInst<dag OOL, dag IOL, list<dag> pattern>:
   3719     RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB",
   3720            SPrecFP, pattern>;
   3721 
   3722 class FAVecInst<ValueType vectype>:
   3723     FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3724              [(set (vectype VECREG:$rT),
   3725                    (fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
   3726 
   3727 multiclass SFPAdd
   3728 {
   3729   def v4f32: FAVecInst<v4f32>;
   3730   def f32:   FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
   3731                     [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
   3732 }
   3733 
   3734 defm FA : SFPAdd;
   3735 
   3736 class FSInst<dag OOL, dag IOL, list<dag> pattern>:
   3737     RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB",
   3738            SPrecFP, pattern>;
   3739 
   3740 class FSVecInst<ValueType vectype>:
   3741     FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3742            [(set (vectype VECREG:$rT),
   3743                  (fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
   3744 
   3745 multiclass SFPSub
   3746 {
   3747   def v4f32: FSVecInst<v4f32>;
   3748   def f32:   FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
   3749                     [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
   3750 }
   3751 
   3752 defm FS : SFPSub;
   3753 
   3754 class FMInst<dag OOL, dag IOL, list<dag> pattern>:
   3755     RRForm<0b01100011010, OOL, IOL,
   3756       "fm\t$rT, $rA, $rB", SPrecFP,
   3757       pattern>;
   3758 
   3759 class FMVecInst<ValueType type>:
   3760     FMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3761            [(set (type VECREG:$rT),
   3762                  (fmul (type VECREG:$rA), (type VECREG:$rB)))]>;
   3763 
   3764 multiclass SFPMul
   3765 {
   3766   def v4f32: FMVecInst<v4f32>;
   3767   def f32:   FMInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
   3768                      [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>; 
   3769 }
   3770 
   3771 defm FM : SFPMul;
   3772 
   3773 // Floating point multiply and add
   3774 // e.g. d = c + (a * b)
   3775 def FMAv4f32:
   3776     RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   3777       "fma\t$rT, $rA, $rB, $rC", SPrecFP,
   3778       [(set (v4f32 VECREG:$rT),
   3779             (fadd (v4f32 VECREG:$rC),
   3780                   (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;
   3781 
   3782 def FMAf32:
   3783     RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
   3784       "fma\t$rT, $rA, $rB, $rC", SPrecFP,
   3785       [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
   3786 
   3787 // FP multiply and subtract
   3788 // Subtracts value in rC from product
   3789 // res = a * b - c
   3790 def FMSv4f32 :
   3791     RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   3792       "fms\t$rT, $rA, $rB, $rC", SPrecFP,
   3793       [(set (v4f32 VECREG:$rT),
   3794             (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
   3795                   (v4f32 VECREG:$rC)))]>;
   3796 
   3797 def FMSf32 :
   3798     RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
   3799       "fms\t$rT, $rA, $rB, $rC", SPrecFP,
   3800       [(set R32FP:$rT,
   3801             (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;
   3802 
   3803 // Floating Negative Mulitply and Subtract
   3804 // Subtracts product from value in rC
   3805 // res = fneg(fms a b c)
   3806 //     = - (a * b - c)
   3807 //     = c - a * b
   3808 // NOTE: subtraction order
   3809 // fsub a b = a - b
   3810 // fs a b = b - a?
   3811 def FNMSf32 :
   3812     RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
   3813       "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
   3814       [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
   3815 
   3816 def FNMSv4f32 :
   3817     RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   3818       "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
   3819       [(set (v4f32 VECREG:$rT),
   3820             (fsub (v4f32 VECREG:$rC),
   3821                   (fmul (v4f32 VECREG:$rA),
   3822                         (v4f32 VECREG:$rB))))]>;
   3823 
   3824 
   3825 
   3826 
   3827 // Floating point reciprocal estimate
   3828 
   3829 class FRESTInst<dag OOL, dag IOL>:
   3830   RRForm_1<0b00110111000, OOL, IOL,
   3831            "frest\t$rT, $rA", SPrecFP,
   3832            [/* no pattern */]>;
   3833 
   3834 def FRESTv4f32 :
   3835     FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
   3836 
   3837 def FRESTf32 :
   3838     FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>;
   3839 
   3840 // Floating point interpolate (used in conjunction with reciprocal estimate)
   3841 def FIv4f32 :
   3842     RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   3843       "fi\t$rT, $rA, $rB", SPrecFP,
   3844       [/* no pattern */]>;
   3845 
   3846 def FIf32 :
   3847     RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
   3848       "fi\t$rT, $rA, $rB", SPrecFP,
   3849       [/* no pattern */]>;
   3850 
   3851 //--------------------------------------------------------------------------
   3852 // Basic single precision floating point comparisons:
   3853 //
   3854 // Note: There is no support on SPU for single precision NaN. Consequently,
   3855 // ordered and unordered comparisons are the same.
   3856 //--------------------------------------------------------------------------
   3857 
   3858 def FCEQf32 :
   3859     RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
   3860       "fceq\t$rT, $rA, $rB", SPrecFP,
   3861       [(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>;
   3862 
   3863 def : Pat<(setoeq R32FP:$rA, R32FP:$rB),
   3864           (FCEQf32 R32FP:$rA, R32FP:$rB)>;
   3865 
   3866 def FCMEQf32 :
   3867     RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
   3868       "fcmeq\t$rT, $rA, $rB", SPrecFP,
   3869       [(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
   3870 
   3871 def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)),
   3872           (FCMEQf32 R32FP:$rA, R32FP:$rB)>;
   3873 
   3874 def FCGTf32 :
   3875     RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
   3876       "fcgt\t$rT, $rA, $rB", SPrecFP,
   3877       [(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>;
   3878 
   3879 def : Pat<(setogt R32FP:$rA, R32FP:$rB),
   3880           (FCGTf32 R32FP:$rA, R32FP:$rB)>;
   3881 
   3882 def FCMGTf32 :
   3883     RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
   3884       "fcmgt\t$rT, $rA, $rB", SPrecFP,
   3885       [(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
   3886 
   3887 def : Pat<(setogt (fabs R32FP:$rA), (fabs R32FP:$rB)),
   3888           (FCMGTf32 R32FP:$rA, R32FP:$rB)>;
   3889 
   3890 //--------------------------------------------------------------------------
   3891 // Single precision floating point comparisons and SETCC equivalents:
   3892 //--------------------------------------------------------------------------
   3893 
   3894 def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>;
   3895 def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>;
   3896 
   3897 def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>;
   3898 def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>;
   3899 
   3900 def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>;
   3901 def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>;
   3902 
   3903 def : Pat<(setule R32FP:$rA, R32FP:$rB),
   3904           (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
   3905 def : Pat<(setole R32FP:$rA, R32FP:$rB),
   3906           (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
   3907 
   3908 // FP Status and Control Register Write
   3909 // Why isn't rT a don't care in the ISA?
   3910 // Should we create a special RRForm_3 for this guy and zero out the rT?
   3911 def FSCRWf32 :
   3912     RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
   3913       "fscrwr\t$rA", SPrecFP,
   3914       [/* This instruction requires an intrinsic. Note: rT is unused. */]>;
   3915 
   3916 // FP Status and Control Register Read
   3917 def FSCRRf32 :
   3918     RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
   3919       "fscrrd\t$rT", SPrecFP,
   3920       [/* This instruction requires an intrinsic */]>;
   3921 
   3922 // llvm instruction space
   3923 // How do these map onto cell instructions?
   3924 // fdiv rA rB
   3925 //   frest rC rB        # c = 1/b (both lines)
   3926 //   fi rC rB rC
   3927 //   fm rD rA rC        # d = a * 1/b
   3928 //   fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
   3929 //   fma rB rB rC rD            # b = b * c + d
   3930 //                              = -(d *b -a) * c + d
   3931 //                              = a * c - c ( a *b *c - a)
   3932 
   3933 // fcopysign (???)
   3934 
   3935 // Library calls:
   3936 // These llvm instructions will actually map to library calls.
   3937 // All that's needed, then, is to check that the appropriate library is
   3938 // imported and do a brsl to the proper function name.
   3939 // frem # fmod(x, y): x - (x/y) * y
   3940 // (Note: fmod(double, double), fmodf(float,float)
   3941 // fsqrt?
   3942 // fsin?
   3943 // fcos?
   3944 // Unimplemented SPU instruction space
   3945 // floating reciprocal absolute square root estimate (frsqest)
   3946 
   3947 // The following are probably just intrinsics
   3948 // status and control register write
   3949 // status and control register read
   3950 
   3951 //--------------------------------------
   3952 // Floating Point Conversions
   3953 // Signed conversions:
   3954 def CSiFv4f32:
   3955     CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
   3956       "csflt\t$rT, $rA, 0", SPrecFP,
   3957       [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;
   3958 
   3959 // Convert signed integer to floating point
   3960 def CSiFf32 :
   3961     CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
   3962       "csflt\t$rT, $rA, 0", SPrecFP,
   3963       [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;
   3964 
   3965 // Convert unsigned into to float
   3966 def CUiFv4f32 :
   3967     CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
   3968       "cuflt\t$rT, $rA, 0", SPrecFP,
   3969       [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;
   3970 
   3971 def CUiFf32 :
   3972     CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
   3973       "cuflt\t$rT, $rA, 0", SPrecFP,
   3974       [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;
   3975 
   3976 // Convert float to unsigned int
   3977 // Assume that scale = 0
   3978 
   3979 def CFUiv4f32 :
   3980     CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
   3981       "cfltu\t$rT, $rA, 0", SPrecFP,
   3982       [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;
   3983 
   3984 def CFUif32 :
   3985     CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
   3986       "cfltu\t$rT, $rA, 0", SPrecFP,
   3987       [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;
   3988 
   3989 // Convert float to signed int
   3990 // Assume that scale = 0
   3991 
   3992 def CFSiv4f32 :
   3993     CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
   3994       "cflts\t$rT, $rA, 0", SPrecFP,
   3995       [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;
   3996 
   3997 def CFSif32 :
   3998     CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
   3999       "cflts\t$rT, $rA, 0", SPrecFP,
   4000       [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;
   4001 
   4002 //===----------------------------------------------------------------------==//
   4003 // Single<->Double precision conversions
   4004 //===----------------------------------------------------------------------==//
   4005 
   4006 // NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
   4007 // v4f32, output is v2f64--which goes in the name?)
   4008 
   4009 // Floating point extend single to double
   4010 // NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
   4011 // operates on two double-word slots (i.e. 1st and 3rd fp numbers
   4012 // are ignored).
   4013 def FESDvec :
   4014     RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
   4015       "fesd\t$rT, $rA", SPrecFP,
   4016       [/*(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))*/]>;
   4017 
   4018 def FESDf32 :
   4019     RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
   4020       "fesd\t$rT, $rA", SPrecFP,
   4021       [(set R64FP:$rT, (fextend R32FP:$rA))]>;
   4022 
   4023 // Floating point round double to single
   4024 //def FRDSvec :
   4025 //    RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
   4026 //      "frds\t$rT, $rA,", SPrecFP,
   4027 //      [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;
   4028 
   4029 def FRDSf64 :
   4030     RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
   4031       "frds\t$rT, $rA", SPrecFP,
   4032       [(set R32FP:$rT, (fround R64FP:$rA))]>;
   4033 
   4034 //ToDo include anyextend?
   4035 
   4036 //===----------------------------------------------------------------------==//
   4037 // Double precision floating point instructions
   4038 //===----------------------------------------------------------------------==//
   4039 def FAf64 :
   4040     RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
   4041       "dfa\t$rT, $rA, $rB", DPrecFP,
   4042       [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;
   4043 
   4044 def FAv2f64 :
   4045     RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   4046       "dfa\t$rT, $rA, $rB", DPrecFP,
   4047       [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
   4048 
   4049 def FSf64 :
   4050     RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
   4051       "dfs\t$rT, $rA, $rB", DPrecFP,
   4052       [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;
   4053 
   4054 def FSv2f64 :
   4055     RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   4056       "dfs\t$rT, $rA, $rB", DPrecFP,
   4057       [(set (v2f64 VECREG:$rT),
   4058             (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
   4059 
   4060 def FMf64 :
   4061     RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
   4062       "dfm\t$rT, $rA, $rB", DPrecFP,
   4063       [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;
   4064 
   4065 def FMv2f64:
   4066     RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
   4067       "dfm\t$rT, $rA, $rB", DPrecFP,
   4068       [(set (v2f64 VECREG:$rT),
   4069             (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
   4070 
   4071 def FMAf64:
   4072     RRForm<0b00111010110, (outs R64FP:$rT),
   4073                           (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
   4074       "dfma\t$rT, $rA, $rB", DPrecFP,
   4075       [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
   4076     RegConstraint<"$rC = $rT">,
   4077     NoEncode<"$rC">;
   4078 
   4079 def FMAv2f64:
   4080     RRForm<0b00111010110, (outs VECREG:$rT),
   4081                           (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   4082       "dfma\t$rT, $rA, $rB", DPrecFP,
   4083       [(set (v2f64 VECREG:$rT),
   4084             (fadd (v2f64 VECREG:$rC),
   4085                   (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
   4086     RegConstraint<"$rC = $rT">,
   4087     NoEncode<"$rC">;
   4088 
   4089 def FMSf64 :
   4090     RRForm<0b10111010110, (outs R64FP:$rT),
   4091                           (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
   4092       "dfms\t$rT, $rA, $rB", DPrecFP,
   4093       [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
   4094     RegConstraint<"$rC = $rT">,
   4095     NoEncode<"$rC">;
   4096 
   4097 def FMSv2f64 :
   4098     RRForm<0b10111010110, (outs VECREG:$rT),
   4099                           (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   4100       "dfms\t$rT, $rA, $rB", DPrecFP,
   4101       [(set (v2f64 VECREG:$rT),
   4102             (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
   4103                   (v2f64 VECREG:$rC)))]>;
   4104 
   4105 // DFNMS: - (a * b - c)
   4106 // - (a * b) + c => c - (a * b)
   4107 
   4108 class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>:
   4109     RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB",
   4110            DPrecFP, pattern>,
   4111     RegConstraint<"$rC = $rT">,
   4112     NoEncode<"$rC">;
   4113 
   4114 class DFNMSVecInst<list<dag> pattern>:
   4115     DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   4116               pattern>;
   4117 
   4118 class DFNMSRegInst<list<dag> pattern>:
   4119     DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
   4120              pattern>;
   4121 
   4122 multiclass DFMultiplySubtract
   4123 {
   4124   def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT), 
   4125                                  (fsub (v2f64 VECREG:$rC),
   4126                                        (fmul (v2f64 VECREG:$rA),
   4127                                              (v2f64 VECREG:$rB))))]>;
   4128 
   4129   def f64 : DFNMSRegInst<[(set R64FP:$rT,
   4130                                (fsub R64FP:$rC,
   4131                                      (fmul R64FP:$rA, R64FP:$rB)))]>;
   4132 }
   4133 
   4134 defm DFNMS : DFMultiplySubtract;
   4135 
   4136 // - (a * b + c)
   4137 // - (a * b) - c
   4138 def FNMAf64 :
   4139     RRForm<0b11111010110, (outs R64FP:$rT),
   4140                           (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
   4141       "dfnma\t$rT, $rA, $rB", DPrecFP,
   4142       [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
   4143     RegConstraint<"$rC = $rT">,
   4144     NoEncode<"$rC">;
   4145 
   4146 def FNMAv2f64 :
   4147     RRForm<0b11111010110, (outs VECREG:$rT),
   4148                           (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
   4149       "dfnma\t$rT, $rA, $rB", DPrecFP,
   4150       [(set (v2f64 VECREG:$rT),
   4151             (fneg (fadd (v2f64 VECREG:$rC),
   4152                         (fmul (v2f64 VECREG:$rA),
   4153                               (v2f64 VECREG:$rB)))))]>,
   4154     RegConstraint<"$rC = $rT">,
   4155     NoEncode<"$rC">;
   4156 
   4157 //===----------------------------------------------------------------------==//
   4158 // Floating point negation and absolute value
   4159 //===----------------------------------------------------------------------==//
   4160 
   4161 def : Pat<(fneg (v4f32 VECREG:$rA)),
   4162           (XORfnegvec (v4f32 VECREG:$rA),
   4163                       (v4f32 (ILHUv4i32 0x8000)))>;
   4164 
   4165 def : Pat<(fneg R32FP:$rA),
   4166           (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;
   4167 
   4168 // Floating point absolute value
   4169 // Note: f64 fabs is custom-selected.
   4170 
   4171 def : Pat<(fabs R32FP:$rA),
   4172           (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;
   4173 
   4174 def : Pat<(fabs (v4f32 VECREG:$rA)),
   4175           (ANDfabsvec (v4f32 VECREG:$rA),
   4176                       (IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>;
   4177 
   4178 //===----------------------------------------------------------------------===//
   4179 // Hint for branch instructions:
   4180 //===----------------------------------------------------------------------===//
   4181 def HBRA :
   4182     HBI16Form<0b0001001,(ins hbrtarget:$brinst, brtarget:$btarg), "hbra\t$brinst, $btarg">;
   4183 
   4184 //===----------------------------------------------------------------------===//
   4185 // Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
   4186 // in the odd pipeline)
   4187 //===----------------------------------------------------------------------===//
   4188 
   4189 def ENOP : SPUInstr<(outs), (ins), "nop", ExecNOP> {
   4190   let Pattern = [];
   4191 
   4192   let Inst{0-10} = 0b10000000010;
   4193   let Inst{11-17} = 0;
   4194   let Inst{18-24} = 0;
   4195   let Inst{25-31} = 0;
   4196 }
   4197 
   4198 def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> {
   4199   let Pattern = [];
   4200 
   4201   let Inst{0-10} = 0b10000000000;
   4202   let Inst{11-17} = 0;
   4203   let Inst{18-24} = 0;
   4204   let Inst{25-31} = 0;
   4205 }
   4206 
   4207 //===----------------------------------------------------------------------===//
   4208 // Bit conversions (type conversions between vector/packed types)
   4209 // NOTE: Promotions are handled using the XS* instructions.
   4210 //===----------------------------------------------------------------------===//
   4211 def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
   4212 def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
   4213 def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
   4214 def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
   4215 def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;
   4216 
   4217 def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
   4218 def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
   4219 def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
   4220 def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
   4221 def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;
   4222 
   4223 def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
   4224 def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
   4225 def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
   4226 def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
   4227 def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;
   4228 
   4229 def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
   4230 def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
   4231 def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
   4232 def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
   4233 def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;
   4234 
   4235 def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
   4236 def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
   4237 def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
   4238 def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
   4239 def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;
   4240 
   4241 def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
   4242 def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
   4243 def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
   4244 def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
   4245 def : Pat<(v2f64 (bitconvert (v4f32 VECREG:$src))), (v2f64 VECREG:$src)>;
   4246 
   4247 def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))),
   4248           (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
   4249 def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))),
   4250           (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
   4251 def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))),
   4252           (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
   4253 def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))),
   4254           (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
   4255 def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))),
   4256           (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
   4257 def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))),
   4258           (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
   4259 
   4260 def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))),
   4261           (v16i8 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
   4262 def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))),
   4263           (v8i16 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
   4264 def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))),
   4265           (v4i32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
   4266 def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))),
   4267           (v2i64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
   4268 def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))),
   4269           (v4f32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
   4270 def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))),
   4271           (v2f64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
   4272 
   4273 def : Pat<(i32 (bitconvert R32FP:$rA)),
   4274           (COPY_TO_REGCLASS R32FP:$rA, R32C)>;
   4275 
   4276 def : Pat<(f32 (bitconvert R32C:$rA)),
   4277           (COPY_TO_REGCLASS R32C:$rA, R32FP)>;
   4278 
   4279 def : Pat<(i64 (bitconvert R64FP:$rA)),
   4280           (COPY_TO_REGCLASS R64FP:$rA, R64C)>;
   4281 
   4282 def : Pat<(f64 (bitconvert R64C:$rA)),
   4283           (COPY_TO_REGCLASS R64C:$rA, R64FP)>;
   4284 
   4285 
   4286 //===----------------------------------------------------------------------===//
   4287 // Instruction patterns:
   4288 //===----------------------------------------------------------------------===//
   4289 
   4290 // General 32-bit constants:
   4291 def : Pat<(i32 imm:$imm),
   4292           (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;
   4293 
   4294 // Single precision float constants:
   4295 def : Pat<(f32 fpimm:$imm),
   4296           (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;
   4297 
   4298 // General constant 32-bit vectors
   4299 def : Pat<(v4i32 v4i32Imm:$imm),
   4300           (IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
   4301                      (LO16_vec v4i32Imm:$imm))>;
   4302 
   4303 // 8-bit constants
   4304 def : Pat<(i8 imm:$imm),
   4305           (ILHr8 imm:$imm)>;
   4306 
   4307 //===----------------------------------------------------------------------===//
   4308 // Zero/Any/Sign extensions
   4309 //===----------------------------------------------------------------------===//
   4310 
   4311 // sext 8->32: Sign extend bytes to words
   4312 def : Pat<(sext_inreg R32C:$rSrc, i8),
   4313           (XSHWr32 (XSBHr32 R32C:$rSrc))>;
   4314 
   4315 def : Pat<(i32 (sext R8C:$rSrc)),
   4316           (XSHWr16 (XSBHr8 R8C:$rSrc))>;
   4317 
   4318 // sext 8->64: Sign extend bytes to double word
   4319 def : Pat<(sext_inreg R64C:$rSrc, i8),
   4320           (XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>;
   4321           
   4322 def : Pat<(i64 (sext R8C:$rSrc)),
   4323           (XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>;
   4324 
   4325 // zext 8->16: Zero extend bytes to halfwords
   4326 def : Pat<(i16 (zext R8C:$rSrc)),
   4327           (ANDHIi8i16 R8C:$rSrc, 0xff)>;
   4328 
   4329 // zext 8->32: Zero extend bytes to words
   4330 def : Pat<(i32 (zext R8C:$rSrc)),
   4331           (ANDIi8i32 R8C:$rSrc, 0xff)>;
   4332 
   4333 // zext 8->64: Zero extend bytes to double words
   4334 def : Pat<(i64 (zext R8C:$rSrc)),
   4335           (COPY_TO_REGCLASS (SELBv4i32 (ROTQMBYv4i32
   4336                                     (COPY_TO_REGCLASS 
   4337                                        (ANDIi8i32 R8C:$rSrc,0xff), VECREG),
   4338                                     0x4),
   4339                                   (ILv4i32 0x0),
   4340                                   (FSMBIv4i32 0x0f0f)), R64C)>;
   4341 
   4342 // anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits
   4343 def : Pat<(i16 (anyext R8C:$rSrc)),
   4344           (ORHIi8i16 R8C:$rSrc, 0)>;
   4345 
   4346 // anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits
   4347 def : Pat<(i32 (anyext R8C:$rSrc)),
   4348           (COPY_TO_REGCLASS R8C:$rSrc, R32C)>;
   4349 
   4350 // sext 16->64: Sign extend halfword to double word
   4351 def : Pat<(sext_inreg R64C:$rSrc, i16),
   4352           (XSWDr64_inreg (XSHWr64 R64C:$rSrc))>;
   4353           
   4354 def : Pat<(sext R16C:$rSrc),
   4355           (XSWDr64 (XSHWr16 R16C:$rSrc))>;
   4356 
   4357 // zext 16->32: Zero extend halfwords to words
   4358 def : Pat<(i32 (zext R16C:$rSrc)),
   4359           (ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>;
   4360 
   4361 def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
   4362           (ANDIi16i32 R16C:$rSrc, 0xf)>;
   4363 
   4364 def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
   4365           (ANDIi16i32 R16C:$rSrc, 0xff)>;
   4366 
   4367 def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
   4368           (ANDIi16i32 R16C:$rSrc, 0xfff)>;
   4369 
   4370 // anyext 16->32: Extend 16->32 bits, irrespective of sign
   4371 def : Pat<(i32 (anyext R16C:$rSrc)),
   4372           (COPY_TO_REGCLASS R16C:$rSrc, R32C)>;
   4373 
   4374 //===----------------------------------------------------------------------===//
   4375 // Truncates:
   4376 // These truncates are for the SPU's supported types (i8, i16, i32). i64 and
   4377 // above are custom lowered.
   4378 //===----------------------------------------------------------------------===//
   4379 
   4380 def : Pat<(i8 (trunc GPRC:$src)),
   4381           (COPY_TO_REGCLASS
   4382             (SHUFBgprc GPRC:$src, GPRC:$src,
   4383                        (IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)), R8C)>;
   4384 
   4385 def : Pat<(i8 (trunc R64C:$src)),
   4386           (COPY_TO_REGCLASS
   4387             (SHUFBv2i64_m32
   4388               (COPY_TO_REGCLASS R64C:$src, VECREG),
   4389               (COPY_TO_REGCLASS R64C:$src, VECREG),
   4390               (IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)), R8C)>;
   4391 
   4392 def : Pat<(i8 (trunc R32C:$src)),
   4393           (COPY_TO_REGCLASS
   4394             (SHUFBv4i32_m32
   4395                (COPY_TO_REGCLASS R32C:$src, VECREG),
   4396                (COPY_TO_REGCLASS R32C:$src, VECREG),
   4397                (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;
   4398 
   4399 def : Pat<(i8 (trunc R16C:$src)),
   4400           (COPY_TO_REGCLASS
   4401             (SHUFBv4i32_m32
   4402                (COPY_TO_REGCLASS R16C:$src, VECREG),
   4403                (COPY_TO_REGCLASS R16C:$src, VECREG),
   4404                (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;
   4405 
   4406 def : Pat<(i16 (trunc GPRC:$src)),
   4407           (COPY_TO_REGCLASS
   4408             (SHUFBgprc GPRC:$src, GPRC:$src,
   4409                        (IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)), R16C)>;
   4410 
   4411 def : Pat<(i16 (trunc R64C:$src)),
   4412           (COPY_TO_REGCLASS
   4413             (SHUFBv2i64_m32
   4414               (COPY_TO_REGCLASS R64C:$src, VECREG),
   4415               (COPY_TO_REGCLASS R64C:$src, VECREG),
   4416               (IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)), R16C)>;
   4417 
   4418 def : Pat<(i16 (trunc R32C:$src)),
   4419           (COPY_TO_REGCLASS
   4420             (SHUFBv4i32_m32
   4421                (COPY_TO_REGCLASS R32C:$src, VECREG),
   4422                (COPY_TO_REGCLASS R32C:$src, VECREG),
   4423                (IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)), R16C)>;
   4424 
   4425 def : Pat<(i32 (trunc GPRC:$src)),
   4426           (COPY_TO_REGCLASS
   4427             (SHUFBgprc GPRC:$src, GPRC:$src,
   4428                        (IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)), R32C)>;
   4429 
   4430 def : Pat<(i32 (trunc R64C:$src)),
   4431           (COPY_TO_REGCLASS
   4432             (SHUFBv2i64_m32
   4433               (COPY_TO_REGCLASS R64C:$src, VECREG),
   4434               (COPY_TO_REGCLASS R64C:$src, VECREG),
   4435               (IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)), R32C)>;
   4436 
   4437 //===----------------------------------------------------------------------===//
   4438 // Address generation: SPU, like PPC, has to split addresses into high and
   4439 // low parts in order to load them into a register.
   4440 //===----------------------------------------------------------------------===//
   4441 
   4442 def : Pat<(SPUaform tglobaladdr:$in, 0),  (ILAlsa tglobaladdr:$in)>;
   4443 def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>;
   4444 def : Pat<(SPUaform tjumptable:$in, 0),   (ILAlsa tjumptable:$in)>;
   4445 def : Pat<(SPUaform tconstpool:$in, 0),   (ILAlsa  tconstpool:$in)>;
   4446 
   4447 def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0),
   4448                        (SPUlo tglobaladdr:$in, 0)),
   4449           (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
   4450 
   4451 def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0),
   4452                        (SPUlo texternalsym:$in, 0)),
   4453           (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
   4454 
   4455 def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0),
   4456                        (SPUlo tjumptable:$in, 0)),
   4457           (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
   4458 
   4459 def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0),
   4460                        (SPUlo tconstpool:$in, 0)),
   4461           (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
   4462 
   4463 def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)),
   4464           (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
   4465 
   4466 def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)),
   4467           (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
   4468 
   4469 def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)),
   4470           (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
   4471 
   4472 def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)),
   4473           (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
   4474 
   4475 // Intrinsics:
   4476 include "CellSDKIntrinsics.td"
   4477 // Various math operator instruction sequences
   4478 include "SPUMathInstr.td"
   4479 // 64-bit "instructions"/support
   4480 include "SPU64InstrInfo.td"
   4481 // 128-bit "instructions"/support
   4482 include "SPU128InstrInfo.td"
   4483