1 //===- SPUOperands.td - Cell SPU Instruction Operands ------*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // Cell SPU Instruction Operands: 10 //===----------------------------------------------------------------------===// 11 12 // TO_IMM32 - Convert an i8/i16 to i32. 13 def TO_IMM32 : SDNodeXForm<imm, [{ 14 return getI32Imm(N->getZExtValue()); 15 }]>; 16 17 // TO_IMM16 - Convert an i8/i32 to i16. 18 def TO_IMM16 : SDNodeXForm<imm, [{ 19 return CurDAG->getTargetConstant(N->getZExtValue(), MVT::i16); 20 }]>; 21 22 23 def LO16 : SDNodeXForm<imm, [{ 24 unsigned val = N->getZExtValue(); 25 // Transformation function: get the low 16 bits. 26 return getI32Imm(val & 0xffff); 27 }]>; 28 29 def LO16_vec : SDNodeXForm<scalar_to_vector, [{ 30 SDValue OpVal(0, 0); 31 32 // Transformation function: get the low 16 bit immediate from a build_vector 33 // node. 34 assert(N->getOpcode() == ISD::BUILD_VECTOR 35 && "LO16_vec got something other than a BUILD_VECTOR"); 36 37 // Get first constant operand... 38 for (unsigned i = 0, e = N->getNumOperands(); 39 OpVal.getNode() == 0 && i != e; ++i) { 40 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 41 if (OpVal.getNode() == 0) 42 OpVal = N->getOperand(i); 43 } 44 45 assert(OpVal.getNode() != 0 && "LO16_vec did not locate a <defined> node"); 46 ConstantSDNode *CN = cast<ConstantSDNode>(OpVal); 47 return getI32Imm((unsigned)CN->getZExtValue() & 0xffff); 48 }]>; 49 50 // Transform an immediate, returning the high 16 bits shifted down: 51 def HI16 : SDNodeXForm<imm, [{ 52 return getI32Imm((unsigned)N->getZExtValue() >> 16); 53 }]>; 54 55 // Transformation function: shift the high 16 bit immediate from a build_vector 56 // node into the low 16 bits, and return a 16-bit constant. 57 def HI16_vec : SDNodeXForm<scalar_to_vector, [{ 58 SDValue OpVal(0, 0); 59 60 assert(N->getOpcode() == ISD::BUILD_VECTOR 61 && "HI16_vec got something other than a BUILD_VECTOR"); 62 63 // Get first constant operand... 64 for (unsigned i = 0, e = N->getNumOperands(); 65 OpVal.getNode() == 0 && i != e; ++i) { 66 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 67 if (OpVal.getNode() == 0) 68 OpVal = N->getOperand(i); 69 } 70 71 assert(OpVal.getNode() != 0 && "HI16_vec did not locate a <defined> node"); 72 ConstantSDNode *CN = cast<ConstantSDNode>(OpVal); 73 return getI32Imm((unsigned)CN->getZExtValue() >> 16); 74 }]>; 75 76 // simm7 predicate - True if the immediate fits in an 7-bit signed 77 // field. 78 def simm7: PatLeaf<(imm), [{ 79 int sextVal = int(N->getSExtValue()); 80 return (sextVal >= -64 && sextVal <= 63); 81 }]>; 82 83 // uimm7 predicate - True if the immediate fits in an 7-bit unsigned 84 // field. 85 def uimm7: PatLeaf<(imm), [{ 86 return (N->getZExtValue() <= 0x7f); 87 }]>; 88 89 // immSExt8 predicate - True if the immediate fits in an 8-bit sign extended 90 // field. 91 def immSExt8 : PatLeaf<(imm), [{ 92 int Value = int(N->getSExtValue()); 93 return (Value >= -(1 << 8) && Value <= (1 << 8) - 1); 94 }]>; 95 96 // immU8: immediate, unsigned 8-bit quantity 97 def immU8 : PatLeaf<(imm), [{ 98 return (N->getZExtValue() <= 0xff); 99 }]>; 100 101 // i32ImmSExt10 predicate - True if the i32 immediate fits in a 10-bit sign 102 // extended field. Used by RI10Form instructions like 'ldq'. 103 def i32ImmSExt10 : PatLeaf<(imm), [{ 104 return isI32IntS10Immediate(N); 105 }]>; 106 107 // i32ImmUns10 predicate - True if the i32 immediate fits in a 10-bit unsigned 108 // field. Used by RI10Form instructions like 'ldq'. 109 def i32ImmUns10 : PatLeaf<(imm), [{ 110 return isI32IntU10Immediate(N); 111 }]>; 112 113 // i16ImmSExt10 predicate - True if the i16 immediate fits in a 10-bit sign 114 // extended field. Used by RI10Form instructions like 'ldq'. 115 def i16ImmSExt10 : PatLeaf<(imm), [{ 116 return isI16IntS10Immediate(N); 117 }]>; 118 119 // i16ImmUns10 predicate - True if the i16 immediate fits into a 10-bit unsigned 120 // value. Used by RI10Form instructions. 121 def i16ImmUns10 : PatLeaf<(imm), [{ 122 return isI16IntU10Immediate(N); 123 }]>; 124 125 def immSExt16 : PatLeaf<(imm), [{ 126 // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended 127 // field. 128 short Ignored; 129 return isIntS16Immediate(N, Ignored); 130 }]>; 131 132 def immZExt16 : PatLeaf<(imm), [{ 133 // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended 134 // field. 135 return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 136 }], LO16>; 137 138 def immU16 : PatLeaf<(imm), [{ 139 // immU16 predicate- True if the immediate fits into a 16-bit unsigned field. 140 return (uint64_t)N->getZExtValue() == (N->getZExtValue() & 0xffff); 141 }]>; 142 143 def imm18 : PatLeaf<(imm), [{ 144 // imm18 predicate: True if the immediate fits into an 18-bit unsigned field. 145 int Value = (int) N->getZExtValue(); 146 return isUInt<18>(Value); 147 }]>; 148 149 def lo16 : PatLeaf<(imm), [{ 150 // lo16 predicate - returns true if the immediate has all zeros in the 151 // low order bits and is a 32-bit constant: 152 if (N->getValueType(0) == MVT::i32) { 153 uint32_t val = N->getZExtValue(); 154 return ((val & 0x0000ffff) == val); 155 } 156 157 return false; 158 }], LO16>; 159 160 def hi16 : PatLeaf<(imm), [{ 161 // hi16 predicate - returns true if the immediate has all zeros in the 162 // low order bits and is a 32-bit constant: 163 if (N->getValueType(0) == MVT::i32) { 164 uint32_t val = uint32_t(N->getZExtValue()); 165 return ((val & 0xffff0000) == val); 166 } else if (N->getValueType(0) == MVT::i64) { 167 uint64_t val = N->getZExtValue(); 168 return ((val & 0xffff0000ULL) == val); 169 } 170 171 return false; 172 }], HI16>; 173 174 def bitshift : PatLeaf<(imm), [{ 175 // bitshift predicate - returns true if 0 < imm <= 7 for SHLQBII 176 // (shift left quadword by bits immediate) 177 int64_t Val = N->getZExtValue(); 178 return (Val > 0 && Val <= 7); 179 }]>; 180 181 //===----------------------------------------------------------------------===// 182 // Floating point operands: 183 //===----------------------------------------------------------------------===// 184 185 // Transform a float, returning the high 16 bits shifted down, as if 186 // the float was really an unsigned integer: 187 def HI16_f32 : SDNodeXForm<fpimm, [{ 188 float fval = N->getValueAPF().convertToFloat(); 189 return getI32Imm(FloatToBits(fval) >> 16); 190 }]>; 191 192 // Transformation function on floats: get the low 16 bits as if the float was 193 // an unsigned integer. 194 def LO16_f32 : SDNodeXForm<fpimm, [{ 195 float fval = N->getValueAPF().convertToFloat(); 196 return getI32Imm(FloatToBits(fval) & 0xffff); 197 }]>; 198 199 def FPimm_sext16 : SDNodeXForm<fpimm, [{ 200 float fval = N->getValueAPF().convertToFloat(); 201 return getI32Imm((int) ((FloatToBits(fval) << 16) >> 16)); 202 }]>; 203 204 def FPimm_u18 : SDNodeXForm<fpimm, [{ 205 float fval = N->getValueAPF().convertToFloat(); 206 return getI32Imm(FloatToBits(fval) & ((1 << 18) - 1)); 207 }]>; 208 209 def fpimmSExt16 : PatLeaf<(fpimm), [{ 210 short Ignored; 211 return isFPS16Immediate(N, Ignored); 212 }], FPimm_sext16>; 213 214 // Does the SFP constant only have upp 16 bits set? 215 def hi16_f32 : PatLeaf<(fpimm), [{ 216 if (N->getValueType(0) == MVT::f32) { 217 uint32_t val = FloatToBits(N->getValueAPF().convertToFloat()); 218 return ((val & 0xffff0000) == val); 219 } 220 221 return false; 222 }], HI16_f32>; 223 224 // Does the SFP constant fit into 18 bits? 225 def fpimm18 : PatLeaf<(fpimm), [{ 226 if (N->getValueType(0) == MVT::f32) { 227 uint32_t Value = FloatToBits(N->getValueAPF().convertToFloat()); 228 return isUInt<18>(Value); 229 } 230 231 return false; 232 }], FPimm_u18>; 233 234 //===----------------------------------------------------------------------===// 235 // 64-bit operands (TODO): 236 //===----------------------------------------------------------------------===// 237 238 //===----------------------------------------------------------------------===// 239 // build_vector operands: 240 //===----------------------------------------------------------------------===// 241 242 // v16i8SExt8Imm_xform function: convert build_vector to 8-bit sign extended 243 // immediate constant load for v16i8 vectors. N.B.: The incoming constant has 244 // to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a). 245 def v16i8SExt8Imm_xform: SDNodeXForm<build_vector, [{ 246 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8); 247 }]>; 248 249 // v16i8SExt8Imm: Predicate test for 8-bit sign extended immediate constant 250 // load, works in conjunction with its transform function. N.B.: This relies the 251 // incoming constant being a 16-bit quantity, where the upper and lower bytes 252 // are EXACTLY the same (e.g., 0x2a2a) 253 def v16i8SExt8Imm: PatLeaf<(build_vector), [{ 254 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0; 255 }], v16i8SExt8Imm_xform>; 256 257 // v16i8U8Imm_xform function: convert build_vector to unsigned 8-bit 258 // immediate constant load for v16i8 vectors. N.B.: The incoming constant has 259 // to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a). 260 def v16i8U8Imm_xform: SDNodeXForm<build_vector, [{ 261 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8); 262 }]>; 263 264 // v16i8U8Imm: Predicate test for unsigned 8-bit immediate constant 265 // load, works in conjunction with its transform function. N.B.: This relies the 266 // incoming constant being a 16-bit quantity, where the upper and lower bytes 267 // are EXACTLY the same (e.g., 0x2a2a) 268 def v16i8U8Imm: PatLeaf<(build_vector), [{ 269 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0; 270 }], v16i8U8Imm_xform>; 271 272 // v8i16SExt8Imm_xform function: convert build_vector to 8-bit sign extended 273 // immediate constant load for v8i16 vectors. 274 def v8i16SExt8Imm_xform: SDNodeXForm<build_vector, [{ 275 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16); 276 }]>; 277 278 // v8i16SExt8Imm: Predicate test for 8-bit sign extended immediate constant 279 // load, works in conjunction with its transform function. 280 def v8i16SExt8Imm: PatLeaf<(build_vector), [{ 281 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16).getNode() != 0; 282 }], v8i16SExt8Imm_xform>; 283 284 // v8i16SExt10Imm_xform function: convert build_vector to 16-bit sign extended 285 // immediate constant load for v8i16 vectors. 286 def v8i16SExt10Imm_xform: SDNodeXForm<build_vector, [{ 287 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16); 288 }]>; 289 290 // v8i16SExt10Imm: Predicate test for 16-bit sign extended immediate constant 291 // load, works in conjunction with its transform function. 292 def v8i16SExt10Imm: PatLeaf<(build_vector), [{ 293 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0; 294 }], v8i16SExt10Imm_xform>; 295 296 // v8i16Uns10Imm_xform function: convert build_vector to 16-bit unsigned 297 // immediate constant load for v8i16 vectors. 298 def v8i16Uns10Imm_xform: SDNodeXForm<build_vector, [{ 299 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16); 300 }]>; 301 302 // v8i16Uns10Imm: Predicate test for 16-bit unsigned immediate constant 303 // load, works in conjunction with its transform function. 304 def v8i16Uns10Imm: PatLeaf<(build_vector), [{ 305 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0; 306 }], v8i16Uns10Imm_xform>; 307 308 // v8i16SExt16Imm_xform function: convert build_vector to 16-bit sign extended 309 // immediate constant load for v8i16 vectors. 310 def v8i16Uns16Imm_xform: SDNodeXForm<build_vector, [{ 311 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16); 312 }]>; 313 314 // v8i16SExt16Imm: Predicate test for 16-bit sign extended immediate constant 315 // load, works in conjunction with its transform function. 316 def v8i16SExt16Imm: PatLeaf<(build_vector), [{ 317 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16).getNode() != 0; 318 }], v8i16Uns16Imm_xform>; 319 320 // v4i32SExt10Imm_xform function: convert build_vector to 10-bit sign extended 321 // immediate constant load for v4i32 vectors. 322 def v4i32SExt10Imm_xform: SDNodeXForm<build_vector, [{ 323 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32); 324 }]>; 325 326 // v4i32SExt10Imm: Predicate test for 10-bit sign extended immediate constant 327 // load, works in conjunction with its transform function. 328 def v4i32SExt10Imm: PatLeaf<(build_vector), [{ 329 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0; 330 }], v4i32SExt10Imm_xform>; 331 332 // v4i32Uns10Imm_xform function: convert build_vector to 10-bit unsigned 333 // immediate constant load for v4i32 vectors. 334 def v4i32Uns10Imm_xform: SDNodeXForm<build_vector, [{ 335 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32); 336 }]>; 337 338 // v4i32Uns10Imm: Predicate test for 10-bit unsigned immediate constant 339 // load, works in conjunction with its transform function. 340 def v4i32Uns10Imm: PatLeaf<(build_vector), [{ 341 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0; 342 }], v4i32Uns10Imm_xform>; 343 344 // v4i32SExt16Imm_xform function: convert build_vector to 16-bit sign extended 345 // immediate constant load for v4i32 vectors. 346 def v4i32SExt16Imm_xform: SDNodeXForm<build_vector, [{ 347 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32); 348 }]>; 349 350 // v4i32SExt16Imm: Predicate test for 16-bit sign extended immediate constant 351 // load, works in conjunction with its transform function. 352 def v4i32SExt16Imm: PatLeaf<(build_vector), [{ 353 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32).getNode() != 0; 354 }], v4i32SExt16Imm_xform>; 355 356 // v4i32Uns18Imm_xform function: convert build_vector to 18-bit unsigned 357 // immediate constant load for v4i32 vectors. 358 def v4i32Uns18Imm_xform: SDNodeXForm<build_vector, [{ 359 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32); 360 }]>; 361 362 // v4i32Uns18Imm: Predicate test for 18-bit unsigned immediate constant load, 363 // works in conjunction with its transform function. 364 def v4i32Uns18Imm: PatLeaf<(build_vector), [{ 365 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32).getNode() != 0; 366 }], v4i32Uns18Imm_xform>; 367 368 // ILHUvec_get_imm xform function: convert build_vector to ILHUvec imm constant 369 // load. 370 def ILHUvec_get_imm: SDNodeXForm<build_vector, [{ 371 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32); 372 }]>; 373 374 /// immILHUvec: Predicate test for a ILHU constant vector. 375 def immILHUvec: PatLeaf<(build_vector), [{ 376 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32).getNode() != 0; 377 }], ILHUvec_get_imm>; 378 379 // Catch-all for any other i32 vector constants 380 def v4i32_get_imm: SDNodeXForm<build_vector, [{ 381 return SPU::get_v4i32_imm(N, *CurDAG); 382 }]>; 383 384 def v4i32Imm: PatLeaf<(build_vector), [{ 385 return SPU::get_v4i32_imm(N, *CurDAG).getNode() != 0; 386 }], v4i32_get_imm>; 387 388 // v2i64SExt10Imm_xform function: convert build_vector to 10-bit sign extended 389 // immediate constant load for v2i64 vectors. 390 def v2i64SExt10Imm_xform: SDNodeXForm<build_vector, [{ 391 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64); 392 }]>; 393 394 // v2i64SExt10Imm: Predicate test for 10-bit sign extended immediate constant 395 // load, works in conjunction with its transform function. 396 def v2i64SExt10Imm: PatLeaf<(build_vector), [{ 397 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64).getNode() != 0; 398 }], v2i64SExt10Imm_xform>; 399 400 // v2i64SExt16Imm_xform function: convert build_vector to 16-bit sign extended 401 // immediate constant load for v2i64 vectors. 402 def v2i64SExt16Imm_xform: SDNodeXForm<build_vector, [{ 403 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64); 404 }]>; 405 406 // v2i64SExt16Imm: Predicate test for 16-bit sign extended immediate constant 407 // load, works in conjunction with its transform function. 408 def v2i64SExt16Imm: PatLeaf<(build_vector), [{ 409 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64).getNode() != 0; 410 }], v2i64SExt16Imm_xform>; 411 412 // v2i64Uns18Imm_xform function: convert build_vector to 18-bit unsigned 413 // immediate constant load for v2i64 vectors. 414 def v2i64Uns18Imm_xform: SDNodeXForm<build_vector, [{ 415 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64); 416 }]>; 417 418 // v2i64Uns18Imm: Predicate test for 18-bit unsigned immediate constant load, 419 // works in conjunction with its transform function. 420 def v2i64Uns18Imm: PatLeaf<(build_vector), [{ 421 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64).getNode() != 0; 422 }], v2i64Uns18Imm_xform>; 423 424 /// immILHUvec: Predicate test for a ILHU constant vector. 425 def immILHUvec_i64: PatLeaf<(build_vector), [{ 426 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i64).getNode() != 0; 427 }], ILHUvec_get_imm>; 428 429 // Catch-all for any other i32 vector constants 430 def v2i64_get_imm: SDNodeXForm<build_vector, [{ 431 return SPU::get_v2i64_imm(N, *CurDAG); 432 }]>; 433 434 def v2i64Imm: PatLeaf<(build_vector), [{ 435 return SPU::get_v2i64_imm(N, *CurDAG).getNode() != 0; 436 }], v2i64_get_imm>; 437 438 //===----------------------------------------------------------------------===// 439 // Operand Definitions. 440 441 def s7imm: Operand<i8> { 442 let PrintMethod = "printS7ImmOperand"; 443 } 444 445 def s7imm_i8: Operand<i8> { 446 let PrintMethod = "printS7ImmOperand"; 447 } 448 449 def u7imm: Operand<i16> { 450 let PrintMethod = "printU7ImmOperand"; 451 } 452 453 def u7imm_i8: Operand<i8> { 454 let PrintMethod = "printU7ImmOperand"; 455 } 456 457 def u7imm_i32: Operand<i32> { 458 let PrintMethod = "printU7ImmOperand"; 459 } 460 461 // Halfword, signed 10-bit constant 462 def s10imm : Operand<i16> { 463 let PrintMethod = "printS10ImmOperand"; 464 } 465 466 def s10imm_i8: Operand<i8> { 467 let PrintMethod = "printS10ImmOperand"; 468 } 469 470 def s10imm_i32: Operand<i32> { 471 let PrintMethod = "printS10ImmOperand"; 472 } 473 474 def s10imm_i64: Operand<i64> { 475 let PrintMethod = "printS10ImmOperand"; 476 } 477 478 // Unsigned 10-bit integers: 479 def u10imm: Operand<i16> { 480 let PrintMethod = "printU10ImmOperand"; 481 } 482 483 def u10imm_i8: Operand<i8> { 484 let PrintMethod = "printU10ImmOperand"; 485 } 486 487 def u10imm_i32: Operand<i32> { 488 let PrintMethod = "printU10ImmOperand"; 489 } 490 491 def s16imm : Operand<i16> { 492 let PrintMethod = "printS16ImmOperand"; 493 } 494 495 def s16imm_i8: Operand<i8> { 496 let PrintMethod = "printS16ImmOperand"; 497 } 498 499 def s16imm_i32: Operand<i32> { 500 let PrintMethod = "printS16ImmOperand"; 501 } 502 503 def s16imm_i64: Operand<i64> { 504 let PrintMethod = "printS16ImmOperand"; 505 } 506 507 def s16imm_f32: Operand<f32> { 508 let PrintMethod = "printS16ImmOperand"; 509 } 510 511 def s16imm_f64: Operand<f64> { 512 let PrintMethod = "printS16ImmOperand"; 513 } 514 515 def u16imm_i64 : Operand<i64> { 516 let PrintMethod = "printU16ImmOperand"; 517 } 518 519 def u16imm_i32 : Operand<i32> { 520 let PrintMethod = "printU16ImmOperand"; 521 } 522 523 def u16imm : Operand<i16> { 524 let PrintMethod = "printU16ImmOperand"; 525 } 526 527 def f16imm : Operand<f32> { 528 let PrintMethod = "printU16ImmOperand"; 529 } 530 531 def s18imm : Operand<i32> { 532 let PrintMethod = "printS18ImmOperand"; 533 } 534 535 def u18imm : Operand<i32> { 536 let PrintMethod = "printU18ImmOperand"; 537 } 538 539 def u18imm_i64 : Operand<i64> { 540 let PrintMethod = "printU18ImmOperand"; 541 } 542 543 def f18imm : Operand<f32> { 544 let PrintMethod = "printU18ImmOperand"; 545 } 546 547 def f18imm_f64 : Operand<f64> { 548 let PrintMethod = "printU18ImmOperand"; 549 } 550 551 // Negated 7-bit halfword rotate immediate operands 552 def rothNeg7imm : Operand<i32> { 553 let PrintMethod = "printROTHNeg7Imm"; 554 } 555 556 def rothNeg7imm_i16 : Operand<i16> { 557 let PrintMethod = "printROTHNeg7Imm"; 558 } 559 560 // Negated 7-bit word rotate immediate operands 561 def rotNeg7imm : Operand<i32> { 562 let PrintMethod = "printROTNeg7Imm"; 563 } 564 565 def rotNeg7imm_i16 : Operand<i16> { 566 let PrintMethod = "printROTNeg7Imm"; 567 } 568 569 def rotNeg7imm_i8 : Operand<i8> { 570 let PrintMethod = "printROTNeg7Imm"; 571 } 572 573 def target : Operand<OtherVT> { 574 let PrintMethod = "printBranchOperand"; 575 } 576 577 // Absolute address call target 578 def calltarget : Operand<iPTR> { 579 let PrintMethod = "printCallOperand"; 580 let MIOperandInfo = (ops u18imm:$calldest); 581 } 582 583 // PC relative call target 584 def relcalltarget : Operand<iPTR> { 585 let PrintMethod = "printPCRelativeOperand"; 586 let MIOperandInfo = (ops s16imm:$calldest); 587 } 588 589 // Branch targets: 590 def brtarget : Operand<OtherVT> { 591 let PrintMethod = "printPCRelativeOperand"; 592 } 593 594 // Hint for branch target 595 def hbrtarget : Operand<OtherVT> { 596 let PrintMethod = "printHBROperand"; 597 } 598 599 // Indirect call target 600 def indcalltarget : Operand<iPTR> { 601 let PrintMethod = "printCallOperand"; 602 let MIOperandInfo = (ops ptr_rc:$calldest); 603 } 604 605 def symbolHi: Operand<i32> { 606 let PrintMethod = "printSymbolHi"; 607 } 608 609 def symbolLo: Operand<i32> { 610 let PrintMethod = "printSymbolLo"; 611 } 612 613 def symbolLSA: Operand<i32> { 614 let PrintMethod = "printSymbolLSA"; 615 } 616 617 // Shuffle address memory operaand [s7imm(reg) d-format] 618 def shufaddr : Operand<iPTR> { 619 let PrintMethod = "printShufAddr"; 620 let MIOperandInfo = (ops s7imm:$imm, ptr_rc:$reg); 621 } 622 623 // memory s10imm(reg) operand 624 def dformaddr : Operand<iPTR> { 625 let PrintMethod = "printDFormAddr"; 626 let MIOperandInfo = (ops s10imm:$imm, ptr_rc:$reg); 627 } 628 629 // 256K local store address 630 // N.B.: The tblgen code generator expects to have two operands, an offset 631 // and a pointer. Of these, only the immediate is actually used. 632 def addr256k : Operand<iPTR> { 633 let PrintMethod = "printAddr256K"; 634 let MIOperandInfo = (ops s16imm:$imm, ptr_rc:$reg); 635 } 636 637 // memory s18imm(reg) operand 638 def memri18 : Operand<iPTR> { 639 let PrintMethod = "printMemRegImmS18"; 640 let MIOperandInfo = (ops s18imm:$imm, ptr_rc:$reg); 641 } 642 643 // memory register + register operand 644 def memrr : Operand<iPTR> { 645 let PrintMethod = "printMemRegReg"; 646 let MIOperandInfo = (ops ptr_rc:$reg_a, ptr_rc:$reg_b); 647 } 648 649 // Define SPU-specific addressing modes: These come in three basic 650 // flavors: 651 // 652 // D-form : [r+I10] (10-bit signed offset + reg) 653 // X-form : [r+r] (reg+reg) 654 // A-form : abs (256K LSA offset) 655 // D-form(2): [r+I7] (7-bit signed offset + reg) 656 657 def dform_addr : ComplexPattern<iPTR, 2, "SelectDFormAddr", 658 [], [SDNPWantRoot]>; 659 def xform_addr : ComplexPattern<iPTR, 2, "SelectXFormAddr", 660 [], [SDNPWantRoot]>; 661 def aform_addr : ComplexPattern<iPTR, 2, "SelectAFormAddr", 662 [], [SDNPWantRoot]>; 663 def dform2_addr : ComplexPattern<iPTR, 2, "SelectDForm2Addr", 664 [], [SDNPWantRoot]>; 665