Home | History | Annotate | Download | only in X86
      1 //===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===//
      2 // 
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 // 
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This describes the calling conventions for the X86-32 and X86-64
     11 // architectures.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 /// CCIfSubtarget - Match if the current subtarget has a feature F.
     16 class CCIfSubtarget<string F, CCAction A>
     17  : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
     18 
     19 //===----------------------------------------------------------------------===//
     20 // Return Value Calling Conventions
     21 //===----------------------------------------------------------------------===//
     22 
     23 // Return-value conventions common to all X86 CC's.
     24 def RetCC_X86Common : CallingConv<[
     25   // Scalar values are returned in AX first, then DX.  For i8, the ABI
     26   // requires the values to be in AL and AH, however this code uses AL and DL
     27   // instead. This is because using AH for the second register conflicts with
     28   // the way LLVM does multiple return values -- a return of {i16,i8} would end
     29   // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
     30   // for functions that return two i8 values are currently expected to pack the
     31   // values into an i16 (which uses AX, and thus AL:AH).
     32   CCIfType<[i8] , CCAssignToReg<[AL, DL]>>,
     33   CCIfType<[i16], CCAssignToReg<[AX, DX]>>,
     34   CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>,
     35   CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>,
     36 
     37   // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
     38   // can only be used by ABI non-compliant code. If the target doesn't have XMM
     39   // registers, it won't have vector types.
     40   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
     41             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
     42 
     43   // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
     44   // can only be used by ABI non-compliant code. This vector type is only
     45   // supported while using the AVX target feature.
     46   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
     47             CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
     48 
     49   // MMX vector types are always returned in MM0. If the target doesn't have
     50   // MM0, it doesn't support these vector types.
     51   CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
     52 
     53   // Long double types are always returned in ST0 (even with SSE).
     54   CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
     55 ]>;
     56 
     57 // X86-32 C return-value convention.
     58 def RetCC_X86_32_C : CallingConv<[
     59   // The X86-32 calling convention returns FP values in ST0, unless marked
     60   // with "inreg" (used here to distinguish one kind of reg from another,
     61   // weirdly; this is really the sse-regparm calling convention) in which
     62   // case they use XMM0, otherwise it is the same as the common X86 calling
     63   // conv.
     64   CCIfInReg<CCIfSubtarget<"hasXMMInt()",
     65     CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
     66   CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
     67   CCDelegateTo<RetCC_X86Common>
     68 ]>;
     69 
     70 // X86-32 FastCC return-value convention.
     71 def RetCC_X86_32_Fast : CallingConv<[
     72   // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
     73   // SSE2.
     74   // This can happen when a float, 2 x float, or 3 x float vector is split by
     75   // target lowering, and is returned in 1-3 sse regs.
     76   CCIfType<[f32], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
     77   CCIfType<[f64], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
     78 
     79   // For integers, ECX can be used as an extra return register
     80   CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
     81   CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
     82   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
     83 
     84   // Otherwise, it is the same as the common X86 calling convention.
     85   CCDelegateTo<RetCC_X86Common>
     86 ]>;
     87 
     88 // X86-64 C return-value convention.
     89 def RetCC_X86_64_C : CallingConv<[
     90   // The X86-64 calling convention always returns FP values in XMM0.
     91   CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
     92   CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
     93 
     94   // MMX vector types are always returned in XMM0.
     95   CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
     96   CCDelegateTo<RetCC_X86Common>
     97 ]>;
     98 
     99 // X86-Win64 C return-value convention.
    100 def RetCC_X86_Win64_C : CallingConv<[
    101   // The X86-Win64 calling convention always returns __m64 values in RAX.
    102   CCIfType<[x86mmx], CCBitConvertToType<i64>>,
    103 
    104   // Otherwise, everything is the same as 'normal' X86-64 C CC.
    105   CCDelegateTo<RetCC_X86_64_C>
    106 ]>;
    107 
    108 
    109 // This is the root return-value convention for the X86-32 backend.
    110 def RetCC_X86_32 : CallingConv<[
    111   // If FastCC, use RetCC_X86_32_Fast.
    112   CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
    113   // Otherwise, use RetCC_X86_32_C.
    114   CCDelegateTo<RetCC_X86_32_C>
    115 ]>;
    116 
    117 // This is the root return-value convention for the X86-64 backend.
    118 def RetCC_X86_64 : CallingConv<[
    119   // Mingw64 and native Win64 use Win64 CC
    120   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
    121 
    122   // Otherwise, drop to normal X86-64 CC
    123   CCDelegateTo<RetCC_X86_64_C>
    124 ]>;
    125 
    126 // This is the return-value convention used for the entire X86 backend.
    127 def RetCC_X86 : CallingConv<[
    128   CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
    129   CCDelegateTo<RetCC_X86_32>
    130 ]>;
    131 
    132 //===----------------------------------------------------------------------===//
    133 // X86-64 Argument Calling Conventions
    134 //===----------------------------------------------------------------------===//
    135 
    136 def CC_X86_64_C : CallingConv<[
    137   // Handles byval parameters.
    138   CCIfByVal<CCPassByVal<8, 8>>,
    139 
    140   // Promote i8/i16 arguments to i32.
    141   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    142 
    143   // The 'nest' parameter, if any, is passed in R10.
    144   CCIfNest<CCAssignToReg<[R10]>>,
    145 
    146   // The first 6 integer arguments are passed in integer registers.
    147   CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
    148   CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
    149 
    150   // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
    151   CCIfType<[x86mmx],
    152             CCIfSubtarget<"isTargetDarwin()",
    153             CCIfSubtarget<"hasXMMInt()",
    154             CCPromoteToType<v2i64>>>>,
    155 
    156   // The first 8 FP/Vector arguments are passed in XMM registers.
    157   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    158             CCIfSubtarget<"hasXMM()",
    159             CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
    160 
    161   // The first 8 256-bit vector arguments are passed in YMM registers.
    162   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    163             CCIfSubtarget<"hasAVX()",
    164             CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]>>>,
    165 
    166   // Integer/FP values get stored in stack slots that are 8 bytes in size and
    167   // 8-byte aligned if there are no more registers to hold them.
    168   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
    169 
    170   // Long doubles get stack slots whose size and alignment depends on the
    171   // subtarget.
    172   CCIfType<[f80], CCAssignToStack<0, 0>>,
    173 
    174   // Vectors get 16-byte stack slots that are 16-byte aligned.
    175   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
    176 
    177   // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
    178   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    179            CCAssignToStack<32, 32>>
    180 ]>;
    181 
    182 // Calling convention used on Win64
    183 def CC_X86_Win64_C : CallingConv<[
    184   // FIXME: Handle byval stuff.
    185   // FIXME: Handle varargs.
    186 
    187   // Promote i8/i16 arguments to i32.
    188   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    189 
    190   // The 'nest' parameter, if any, is passed in R10.
    191   CCIfNest<CCAssignToReg<[R10]>>,
    192 
    193   // 128 bit vectors are passed by pointer
    194   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
    195 
    196   // The first 4 MMX vector arguments are passed in GPRs.
    197   CCIfType<[x86mmx], CCBitConvertToType<i64>>,
    198 
    199   // The first 4 integer arguments are passed in integer registers.
    200   CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
    201                                           [XMM0, XMM1, XMM2, XMM3]>>,
    202   
    203   // Do not pass the sret argument in RCX, the Win64 thiscall calling
    204   // convention requires "this" to be passed in RCX.                                        
    205   CCIfCC<"CallingConv::X86_ThisCall", 
    206     CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
    207                                                      [XMM1, XMM2, XMM3]>>>>,
    208 
    209   CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
    210                                           [XMM0, XMM1, XMM2, XMM3]>>,
    211 
    212   // The first 4 FP/Vector arguments are passed in XMM registers.
    213   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    214            CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
    215                                    [RCX , RDX , R8  , R9  ]>>,
    216 
    217   // Integer/FP values get stored in stack slots that are 8 bytes in size and
    218   // 8-byte aligned if there are no more registers to hold them.
    219   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
    220 
    221   // Long doubles get stack slots whose size and alignment depends on the
    222   // subtarget.
    223   CCIfType<[f80], CCAssignToStack<0, 0>>
    224 ]>;
    225 
    226 def CC_X86_64_GHC : CallingConv<[
    227   // Promote i8/i16/i32 arguments to i64.
    228   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
    229 
    230   // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
    231   CCIfType<[i64],
    232             CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
    233 
    234   // Pass in STG registers: F1, F2, F3, F4, D1, D2
    235   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    236             CCIfSubtarget<"hasXMM()",
    237             CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
    238 ]>;
    239 
    240 //===----------------------------------------------------------------------===//
    241 // X86 C Calling Convention
    242 //===----------------------------------------------------------------------===//
    243 
    244 /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
    245 /// values are spilled on the stack, and the first 4 vector values go in XMM
    246 /// regs.
    247 def CC_X86_32_Common : CallingConv<[
    248   // Handles byval parameters.
    249   CCIfByVal<CCPassByVal<4, 4>>,
    250 
    251   // The first 3 float or double arguments, if marked 'inreg' and if the call
    252   // is not a vararg call and if SSE2 is available, are passed in SSE registers.
    253   CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
    254                 CCIfSubtarget<"hasXMMInt()",
    255                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
    256 
    257   // The first 3 __m64 vector arguments are passed in mmx registers if the
    258   // call is not a vararg call.
    259   CCIfNotVarArg<CCIfType<[x86mmx],
    260                 CCAssignToReg<[MM0, MM1, MM2]>>>,
    261 
    262   // Integer/Float values get stored in stack slots that are 4 bytes in
    263   // size and 4-byte aligned.
    264   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
    265   
    266   // Doubles get 8-byte slots that are 4-byte aligned.
    267   CCIfType<[f64], CCAssignToStack<8, 4>>,
    268 
    269   // Long doubles get slots whose size depends on the subtarget.
    270   CCIfType<[f80], CCAssignToStack<0, 4>>,
    271 
    272   // The first 4 SSE vector arguments are passed in XMM registers.
    273   CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    274                 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
    275 
    276   // The first 4 AVX 256-bit vector arguments are passed in YMM registers.
    277   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    278                 CCIfSubtarget<"hasAVX()",
    279                 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
    280 
    281   // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
    282   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
    283 
    284   // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
    285   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    286            CCAssignToStack<32, 32>>,
    287 
    288   // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
    289   // passed in the parameter area.
    290   CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>;
    291 
    292 def CC_X86_32_C : CallingConv<[
    293   // Promote i8/i16 arguments to i32.
    294   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    295 
    296   // The 'nest' parameter, if any, is passed in ECX.
    297   CCIfNest<CCAssignToReg<[ECX]>>,
    298 
    299   // The first 3 integer arguments, if marked 'inreg' and if the call is not
    300   // a vararg call, are passed in integer registers.
    301   CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
    302 
    303   // Otherwise, same as everything else.
    304   CCDelegateTo<CC_X86_32_Common>
    305 ]>;
    306 
    307 def CC_X86_32_FastCall : CallingConv<[
    308   // Promote i8/i16 arguments to i32.
    309   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    310 
    311   // The 'nest' parameter, if any, is passed in EAX.
    312   CCIfNest<CCAssignToReg<[EAX]>>,
    313 
    314   // The first 2 integer arguments are passed in ECX/EDX
    315   CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
    316 
    317   // Otherwise, same as everything else.
    318   CCDelegateTo<CC_X86_32_Common>
    319 ]>;
    320 
    321 def CC_X86_32_ThisCall : CallingConv<[
    322   // Promote i8/i16 arguments to i32.
    323   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    324 
    325   // The 'nest' parameter, if any, is passed in EAX.
    326   CCIfNest<CCAssignToReg<[EAX]>>,
    327 
    328   // The first integer argument is passed in ECX
    329   CCIfType<[i32], CCAssignToReg<[ECX]>>,
    330 
    331   // Otherwise, same as everything else.
    332   CCDelegateTo<CC_X86_32_Common>
    333 ]>;
    334 
    335 def CC_X86_32_FastCC : CallingConv<[
    336   // Handles byval parameters.  Note that we can't rely on the delegation
    337   // to CC_X86_32_Common for this because that happens after code that
    338   // puts arguments in registers.
    339   CCIfByVal<CCPassByVal<4, 4>>,
    340 
    341   // Promote i8/i16 arguments to i32.
    342   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    343 
    344   // The 'nest' parameter, if any, is passed in EAX.
    345   CCIfNest<CCAssignToReg<[EAX]>>,
    346 
    347   // The first 2 integer arguments are passed in ECX/EDX
    348   CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
    349 
    350   // The first 3 float or double arguments, if the call is not a vararg
    351   // call and if SSE2 is available, are passed in SSE registers.
    352   CCIfNotVarArg<CCIfType<[f32,f64],
    353                 CCIfSubtarget<"hasXMMInt()",
    354                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
    355 
    356   // Doubles get 8-byte slots that are 8-byte aligned.
    357   CCIfType<[f64], CCAssignToStack<8, 8>>,
    358 
    359   // Otherwise, same as everything else.
    360   CCDelegateTo<CC_X86_32_Common>
    361 ]>;
    362 
    363 def CC_X86_32_GHC : CallingConv<[
    364   // Promote i8/i16 arguments to i32.
    365   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    366 
    367   // Pass in STG registers: Base, Sp, Hp, R1
    368   CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
    369 ]>;
    370 
    371 //===----------------------------------------------------------------------===//
    372 // X86 Root Argument Calling Conventions
    373 //===----------------------------------------------------------------------===//
    374 
    375 // This is the root argument convention for the X86-32 backend.
    376 def CC_X86_32 : CallingConv<[
    377   CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
    378   CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
    379   CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
    380   CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
    381 
    382   // Otherwise, drop to normal X86-32 CC
    383   CCDelegateTo<CC_X86_32_C>
    384 ]>;
    385 
    386 // This is the root argument convention for the X86-64 backend.
    387 def CC_X86_64 : CallingConv<[
    388   CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
    389 
    390   // Mingw64 and native Win64 use Win64 CC
    391   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
    392 
    393   // Otherwise, drop to normal X86-64 CC
    394   CCDelegateTo<CC_X86_64_C>
    395 ]>;
    396 
    397 // This is the argument convention used for the entire X86 backend.
    398 def CC_X86 : CallingConv<[
    399   CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
    400   CCDelegateTo<CC_X86_32>
    401 ]>;
    402