1 //===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This describes the calling conventions for the X86-32 and X86-64 11 // architectures. 12 // 13 //===----------------------------------------------------------------------===// 14 15 /// CCIfSubtarget - Match if the current subtarget has a feature F. 16 class CCIfSubtarget<string F, CCAction A> 17 : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>; 18 19 //===----------------------------------------------------------------------===// 20 // Return Value Calling Conventions 21 //===----------------------------------------------------------------------===// 22 23 // Return-value conventions common to all X86 CC's. 24 def RetCC_X86Common : CallingConv<[ 25 // Scalar values are returned in AX first, then DX. For i8, the ABI 26 // requires the values to be in AL and AH, however this code uses AL and DL 27 // instead. This is because using AH for the second register conflicts with 28 // the way LLVM does multiple return values -- a return of {i16,i8} would end 29 // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI 30 // for functions that return two i8 values are currently expected to pack the 31 // values into an i16 (which uses AX, and thus AL:AH). 32 CCIfType<[i8] , CCAssignToReg<[AL, DL]>>, 33 CCIfType<[i16], CCAssignToReg<[AX, DX]>>, 34 CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>, 35 CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>, 36 37 // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 38 // can only be used by ABI non-compliant code. If the target doesn't have XMM 39 // registers, it won't have vector types. 40 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 41 CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, 42 43 // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 44 // can only be used by ABI non-compliant code. This vector type is only 45 // supported while using the AVX target feature. 46 CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 47 CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, 48 49 // MMX vector types are always returned in MM0. If the target doesn't have 50 // MM0, it doesn't support these vector types. 51 CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, 52 53 // Long double types are always returned in ST0 (even with SSE). 54 CCIfType<[f80], CCAssignToReg<[ST0, ST1]>> 55 ]>; 56 57 // X86-32 C return-value convention. 58 def RetCC_X86_32_C : CallingConv<[ 59 // The X86-32 calling convention returns FP values in ST0, unless marked 60 // with "inreg" (used here to distinguish one kind of reg from another, 61 // weirdly; this is really the sse-regparm calling convention) in which 62 // case they use XMM0, otherwise it is the same as the common X86 calling 63 // conv. 64 CCIfInReg<CCIfSubtarget<"hasXMMInt()", 65 CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, 66 CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>, 67 CCDelegateTo<RetCC_X86Common> 68 ]>; 69 70 // X86-32 FastCC return-value convention. 71 def RetCC_X86_32_Fast : CallingConv<[ 72 // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has 73 // SSE2. 74 // This can happen when a float, 2 x float, or 3 x float vector is split by 75 // target lowering, and is returned in 1-3 sse regs. 76 CCIfType<[f32], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, 77 CCIfType<[f64], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, 78 79 // For integers, ECX can be used as an extra return register 80 CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, 81 CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, 82 CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, 83 84 // Otherwise, it is the same as the common X86 calling convention. 85 CCDelegateTo<RetCC_X86Common> 86 ]>; 87 88 // X86-64 C return-value convention. 89 def RetCC_X86_64_C : CallingConv<[ 90 // The X86-64 calling convention always returns FP values in XMM0. 91 CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, 92 CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, 93 94 // MMX vector types are always returned in XMM0. 95 CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, 96 CCDelegateTo<RetCC_X86Common> 97 ]>; 98 99 // X86-Win64 C return-value convention. 100 def RetCC_X86_Win64_C : CallingConv<[ 101 // The X86-Win64 calling convention always returns __m64 values in RAX. 102 CCIfType<[x86mmx], CCBitConvertToType<i64>>, 103 104 // Otherwise, everything is the same as 'normal' X86-64 C CC. 105 CCDelegateTo<RetCC_X86_64_C> 106 ]>; 107 108 109 // This is the root return-value convention for the X86-32 backend. 110 def RetCC_X86_32 : CallingConv<[ 111 // If FastCC, use RetCC_X86_32_Fast. 112 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, 113 // Otherwise, use RetCC_X86_32_C. 114 CCDelegateTo<RetCC_X86_32_C> 115 ]>; 116 117 // This is the root return-value convention for the X86-64 backend. 118 def RetCC_X86_64 : CallingConv<[ 119 // Mingw64 and native Win64 use Win64 CC 120 CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, 121 122 // Otherwise, drop to normal X86-64 CC 123 CCDelegateTo<RetCC_X86_64_C> 124 ]>; 125 126 // This is the return-value convention used for the entire X86 backend. 127 def RetCC_X86 : CallingConv<[ 128 CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>, 129 CCDelegateTo<RetCC_X86_32> 130 ]>; 131 132 //===----------------------------------------------------------------------===// 133 // X86-64 Argument Calling Conventions 134 //===----------------------------------------------------------------------===// 135 136 def CC_X86_64_C : CallingConv<[ 137 // Handles byval parameters. 138 CCIfByVal<CCPassByVal<8, 8>>, 139 140 // Promote i8/i16 arguments to i32. 141 CCIfType<[i8, i16], CCPromoteToType<i32>>, 142 143 // The 'nest' parameter, if any, is passed in R10. 144 CCIfNest<CCAssignToReg<[R10]>>, 145 146 // The first 6 integer arguments are passed in integer registers. 147 CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, 148 CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, 149 150 // The first 8 MMX vector arguments are passed in XMM registers on Darwin. 151 CCIfType<[x86mmx], 152 CCIfSubtarget<"isTargetDarwin()", 153 CCIfSubtarget<"hasXMMInt()", 154 CCPromoteToType<v2i64>>>>, 155 156 // The first 8 FP/Vector arguments are passed in XMM registers. 157 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 158 CCIfSubtarget<"hasXMM()", 159 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, 160 161 // The first 8 256-bit vector arguments are passed in YMM registers. 162 CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 163 CCIfSubtarget<"hasAVX()", 164 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]>>>, 165 166 // Integer/FP values get stored in stack slots that are 8 bytes in size and 167 // 8-byte aligned if there are no more registers to hold them. 168 CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, 169 170 // Long doubles get stack slots whose size and alignment depends on the 171 // subtarget. 172 CCIfType<[f80], CCAssignToStack<0, 0>>, 173 174 // Vectors get 16-byte stack slots that are 16-byte aligned. 175 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, 176 177 // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. 178 CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 179 CCAssignToStack<32, 32>> 180 ]>; 181 182 // Calling convention used on Win64 183 def CC_X86_Win64_C : CallingConv<[ 184 // FIXME: Handle byval stuff. 185 // FIXME: Handle varargs. 186 187 // Promote i8/i16 arguments to i32. 188 CCIfType<[i8, i16], CCPromoteToType<i32>>, 189 190 // The 'nest' parameter, if any, is passed in R10. 191 CCIfNest<CCAssignToReg<[R10]>>, 192 193 // 128 bit vectors are passed by pointer 194 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, 195 196 // The first 4 MMX vector arguments are passed in GPRs. 197 CCIfType<[x86mmx], CCBitConvertToType<i64>>, 198 199 // The first 4 integer arguments are passed in integer registers. 200 CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], 201 [XMM0, XMM1, XMM2, XMM3]>>, 202 203 // Do not pass the sret argument in RCX, the Win64 thiscall calling 204 // convention requires "this" to be passed in RCX. 205 CCIfCC<"CallingConv::X86_ThisCall", 206 CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ], 207 [XMM1, XMM2, XMM3]>>>>, 208 209 CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], 210 [XMM0, XMM1, XMM2, XMM3]>>, 211 212 // The first 4 FP/Vector arguments are passed in XMM registers. 213 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 214 CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], 215 [RCX , RDX , R8 , R9 ]>>, 216 217 // Integer/FP values get stored in stack slots that are 8 bytes in size and 218 // 8-byte aligned if there are no more registers to hold them. 219 CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, 220 221 // Long doubles get stack slots whose size and alignment depends on the 222 // subtarget. 223 CCIfType<[f80], CCAssignToStack<0, 0>> 224 ]>; 225 226 def CC_X86_64_GHC : CallingConv<[ 227 // Promote i8/i16/i32 arguments to i64. 228 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, 229 230 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim 231 CCIfType<[i64], 232 CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, 233 234 // Pass in STG registers: F1, F2, F3, F4, D1, D2 235 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 236 CCIfSubtarget<"hasXMM()", 237 CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>> 238 ]>; 239 240 //===----------------------------------------------------------------------===// 241 // X86 C Calling Convention 242 //===----------------------------------------------------------------------===// 243 244 /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP 245 /// values are spilled on the stack, and the first 4 vector values go in XMM 246 /// regs. 247 def CC_X86_32_Common : CallingConv<[ 248 // Handles byval parameters. 249 CCIfByVal<CCPassByVal<4, 4>>, 250 251 // The first 3 float or double arguments, if marked 'inreg' and if the call 252 // is not a vararg call and if SSE2 is available, are passed in SSE registers. 253 CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], 254 CCIfSubtarget<"hasXMMInt()", 255 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>, 256 257 // The first 3 __m64 vector arguments are passed in mmx registers if the 258 // call is not a vararg call. 259 CCIfNotVarArg<CCIfType<[x86mmx], 260 CCAssignToReg<[MM0, MM1, MM2]>>>, 261 262 // Integer/Float values get stored in stack slots that are 4 bytes in 263 // size and 4-byte aligned. 264 CCIfType<[i32, f32], CCAssignToStack<4, 4>>, 265 266 // Doubles get 8-byte slots that are 4-byte aligned. 267 CCIfType<[f64], CCAssignToStack<8, 4>>, 268 269 // Long doubles get slots whose size depends on the subtarget. 270 CCIfType<[f80], CCAssignToStack<0, 4>>, 271 272 // The first 4 SSE vector arguments are passed in XMM registers. 273 CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 274 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>, 275 276 // The first 4 AVX 256-bit vector arguments are passed in YMM registers. 277 CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 278 CCIfSubtarget<"hasAVX()", 279 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>, 280 281 // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. 282 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, 283 284 // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. 285 CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 286 CCAssignToStack<32, 32>>, 287 288 // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are 289 // passed in the parameter area. 290 CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>; 291 292 def CC_X86_32_C : CallingConv<[ 293 // Promote i8/i16 arguments to i32. 294 CCIfType<[i8, i16], CCPromoteToType<i32>>, 295 296 // The 'nest' parameter, if any, is passed in ECX. 297 CCIfNest<CCAssignToReg<[ECX]>>, 298 299 // The first 3 integer arguments, if marked 'inreg' and if the call is not 300 // a vararg call, are passed in integer registers. 301 CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>, 302 303 // Otherwise, same as everything else. 304 CCDelegateTo<CC_X86_32_Common> 305 ]>; 306 307 def CC_X86_32_FastCall : CallingConv<[ 308 // Promote i8/i16 arguments to i32. 309 CCIfType<[i8, i16], CCPromoteToType<i32>>, 310 311 // The 'nest' parameter, if any, is passed in EAX. 312 CCIfNest<CCAssignToReg<[EAX]>>, 313 314 // The first 2 integer arguments are passed in ECX/EDX 315 CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, 316 317 // Otherwise, same as everything else. 318 CCDelegateTo<CC_X86_32_Common> 319 ]>; 320 321 def CC_X86_32_ThisCall : CallingConv<[ 322 // Promote i8/i16 arguments to i32. 323 CCIfType<[i8, i16], CCPromoteToType<i32>>, 324 325 // The 'nest' parameter, if any, is passed in EAX. 326 CCIfNest<CCAssignToReg<[EAX]>>, 327 328 // The first integer argument is passed in ECX 329 CCIfType<[i32], CCAssignToReg<[ECX]>>, 330 331 // Otherwise, same as everything else. 332 CCDelegateTo<CC_X86_32_Common> 333 ]>; 334 335 def CC_X86_32_FastCC : CallingConv<[ 336 // Handles byval parameters. Note that we can't rely on the delegation 337 // to CC_X86_32_Common for this because that happens after code that 338 // puts arguments in registers. 339 CCIfByVal<CCPassByVal<4, 4>>, 340 341 // Promote i8/i16 arguments to i32. 342 CCIfType<[i8, i16], CCPromoteToType<i32>>, 343 344 // The 'nest' parameter, if any, is passed in EAX. 345 CCIfNest<CCAssignToReg<[EAX]>>, 346 347 // The first 2 integer arguments are passed in ECX/EDX 348 CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, 349 350 // The first 3 float or double arguments, if the call is not a vararg 351 // call and if SSE2 is available, are passed in SSE registers. 352 CCIfNotVarArg<CCIfType<[f32,f64], 353 CCIfSubtarget<"hasXMMInt()", 354 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, 355 356 // Doubles get 8-byte slots that are 8-byte aligned. 357 CCIfType<[f64], CCAssignToStack<8, 8>>, 358 359 // Otherwise, same as everything else. 360 CCDelegateTo<CC_X86_32_Common> 361 ]>; 362 363 def CC_X86_32_GHC : CallingConv<[ 364 // Promote i8/i16 arguments to i32. 365 CCIfType<[i8, i16], CCPromoteToType<i32>>, 366 367 // Pass in STG registers: Base, Sp, Hp, R1 368 CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> 369 ]>; 370 371 //===----------------------------------------------------------------------===// 372 // X86 Root Argument Calling Conventions 373 //===----------------------------------------------------------------------===// 374 375 // This is the root argument convention for the X86-32 backend. 376 def CC_X86_32 : CallingConv<[ 377 CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>, 378 CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, 379 CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, 380 CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, 381 382 // Otherwise, drop to normal X86-32 CC 383 CCDelegateTo<CC_X86_32_C> 384 ]>; 385 386 // This is the root argument convention for the X86-64 backend. 387 def CC_X86_64 : CallingConv<[ 388 CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, 389 390 // Mingw64 and native Win64 use Win64 CC 391 CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, 392 393 // Otherwise, drop to normal X86-64 CC 394 CCDelegateTo<CC_X86_64_C> 395 ]>; 396 397 // This is the argument convention used for the entire X86 backend. 398 def CC_X86 : CallingConv<[ 399 CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>, 400 CCDelegateTo<CC_X86_32> 401 ]>; 402