Home | History | Annotate | Download | only in sha
      1 /* crypto/sha/sha256.c */
      2 /* ====================================================================
      3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
      4  * according to the OpenSSL license [found in ../../LICENSE].
      5  * ====================================================================
      6  */
      7 #include <openssl/opensslconf.h>
      8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
      9 
     10 #include <stdlib.h>
     11 #include <string.h>
     12 
     13 #include <openssl/crypto.h>
     14 #include <openssl/sha.h>
     15 #include <openssl/opensslv.h>
     16 
     17 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
     18 
     19 int SHA224_Init (SHA256_CTX *c)
     20 	{
     21 	memset (c,0,sizeof(*c));
     22 	c->h[0]=0xc1059ed8UL;	c->h[1]=0x367cd507UL;
     23 	c->h[2]=0x3070dd17UL;	c->h[3]=0xf70e5939UL;
     24 	c->h[4]=0xffc00b31UL;	c->h[5]=0x68581511UL;
     25 	c->h[6]=0x64f98fa7UL;	c->h[7]=0xbefa4fa4UL;
     26 	c->md_len=SHA224_DIGEST_LENGTH;
     27 	return 1;
     28 	}
     29 
     30 int SHA256_Init (SHA256_CTX *c)
     31 	{
     32 	memset (c,0,sizeof(*c));
     33 	c->h[0]=0x6a09e667UL;	c->h[1]=0xbb67ae85UL;
     34 	c->h[2]=0x3c6ef372UL;	c->h[3]=0xa54ff53aUL;
     35 	c->h[4]=0x510e527fUL;	c->h[5]=0x9b05688cUL;
     36 	c->h[6]=0x1f83d9abUL;	c->h[7]=0x5be0cd19UL;
     37 	c->md_len=SHA256_DIGEST_LENGTH;
     38 	return 1;
     39 	}
     40 
     41 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
     42 	{
     43 	SHA256_CTX c;
     44 	static unsigned char m[SHA224_DIGEST_LENGTH];
     45 
     46 	if (md == NULL) md=m;
     47 	SHA224_Init(&c);
     48 	SHA256_Update(&c,d,n);
     49 	SHA256_Final(md,&c);
     50 	OPENSSL_cleanse(&c,sizeof(c));
     51 	return(md);
     52 	}
     53 
     54 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
     55 	{
     56 	SHA256_CTX c;
     57 	static unsigned char m[SHA256_DIGEST_LENGTH];
     58 
     59 	if (md == NULL) md=m;
     60 	SHA256_Init(&c);
     61 	SHA256_Update(&c,d,n);
     62 	SHA256_Final(md,&c);
     63 	OPENSSL_cleanse(&c,sizeof(c));
     64 	return(md);
     65 	}
     66 
     67 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
     68 {   return SHA256_Update (c,data,len);   }
     69 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
     70 {   return SHA256_Final (md,c);   }
     71 
     72 #define	DATA_ORDER_IS_BIG_ENDIAN
     73 
     74 #define	HASH_LONG		SHA_LONG
     75 #define	HASH_CTX		SHA256_CTX
     76 #define	HASH_CBLOCK		SHA_CBLOCK
     77 /*
     78  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
     79  * default: case below covers for it. It's not clear however if it's
     80  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
     81  * but if it is, then default: case shall be extended. For reference.
     82  * Idea behind separate cases for pre-defined lenghts is to let the
     83  * compiler decide if it's appropriate to unroll small loops.
     84  */
     85 #define	HASH_MAKE_STRING(c,s)	do {	\
     86 	unsigned long ll;		\
     87 	unsigned int  nn;		\
     88 	switch ((c)->md_len)		\
     89 	{   case SHA224_DIGEST_LENGTH:	\
     90 		for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++)	\
     91 		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
     92 		break;			\
     93 	    case SHA256_DIGEST_LENGTH:	\
     94 		for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++)	\
     95 		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
     96 		break;			\
     97 	    default:			\
     98 		if ((c)->md_len > SHA256_DIGEST_LENGTH)	\
     99 		    return 0;				\
    100 		for (nn=0;nn<(c)->md_len/4;nn++)		\
    101 		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
    102 		break;			\
    103 	}				\
    104 	} while (0)
    105 
    106 #define	HASH_UPDATE		SHA256_Update
    107 #define	HASH_TRANSFORM		SHA256_Transform
    108 #define	HASH_FINAL		SHA256_Final
    109 #define	HASH_BLOCK_DATA_ORDER	sha256_block_data_order
    110 #ifndef SHA256_ASM
    111 static
    112 #endif
    113 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
    114 
    115 #include "md32_common.h"
    116 
    117 #ifndef SHA256_ASM
    118 static const SHA_LONG K256[64] = {
    119 	0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
    120 	0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
    121 	0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
    122 	0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
    123 	0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
    124 	0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
    125 	0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
    126 	0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
    127 	0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
    128 	0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
    129 	0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
    130 	0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
    131 	0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
    132 	0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
    133 	0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
    134 	0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
    135 
    136 /*
    137  * FIPS specification refers to right rotations, while our ROTATE macro
    138  * is left one. This is why you might notice that rotation coefficients
    139  * differ from those observed in FIPS document by 32-N...
    140  */
    141 #define Sigma0(x)	(ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
    142 #define Sigma1(x)	(ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
    143 #define sigma0(x)	(ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
    144 #define sigma1(x)	(ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
    145 
    146 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
    147 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
    148 
    149 #ifdef OPENSSL_SMALL_FOOTPRINT
    150 
    151 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
    152 	{
    153 	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
    154 	SHA_LONG	X[16],l;
    155 	int i;
    156 	const unsigned char *data=in;
    157 
    158 			while (num--) {
    159 
    160 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
    161 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
    162 
    163 	for (i=0;i<16;i++)
    164 		{
    165 		HOST_c2l(data,l); T1 = X[i] = l;
    166 		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
    167 		T2 = Sigma0(a) + Maj(a,b,c);
    168 		h = g;	g = f;	f = e;	e = d + T1;
    169 		d = c;	c = b;	b = a;	a = T1 + T2;
    170 		}
    171 
    172 	for (;i<64;i++)
    173 		{
    174 		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
    175 		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);
    176 
    177 		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
    178 		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
    179 		T2 = Sigma0(a) + Maj(a,b,c);
    180 		h = g;	g = f;	f = e;	e = d + T1;
    181 		d = c;	c = b;	b = a;	a = T1 + T2;
    182 		}
    183 
    184 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
    185 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
    186 
    187 			}
    188 }
    189 
    190 #else
    191 
    192 #define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
    193 	T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];	\
    194 	h = Sigma0(a) + Maj(a,b,c);			\
    195 	d += T1;	h += T1;		} while (0)
    196 
    197 #define	ROUND_16_63(i,a,b,c,d,e,f,g,h,X)	do {	\
    198 	s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);	\
    199 	s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);	\
    200 	T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];	\
    201 	ROUND_00_15(i,a,b,c,d,e,f,g,h);		} while (0)
    202 
    203 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
    204 	{
    205 	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
    206 	SHA_LONG	X[16];
    207 	int i;
    208 	const unsigned char *data=in;
    209 	const union { long one; char little; } is_endian = {1};
    210 
    211 			while (num--) {
    212 
    213 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
    214 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
    215 
    216 	if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
    217 		{
    218 		const SHA_LONG *W=(const SHA_LONG *)data;
    219 
    220 		T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
    221 		T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
    222 		T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
    223 		T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
    224 		T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
    225 		T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
    226 		T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
    227 		T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
    228 		T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
    229 		T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
    230 		T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
    231 		T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
    232 		T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
    233 		T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
    234 		T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
    235 		T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
    236 
    237 		data += SHA256_CBLOCK;
    238 		}
    239 	else
    240 		{
    241 		SHA_LONG l;
    242 
    243 		HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
    244 		HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
    245 		HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
    246 		HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
    247 		HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
    248 		HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
    249 		HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
    250 		HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
    251 		HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
    252 		HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
    253 		HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
    254 		HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
    255 		HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
    256 		HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
    257 		HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
    258 		HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
    259 		}
    260 
    261 	for (i=16;i<64;i+=8)
    262 		{
    263 		ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
    264 		ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
    265 		ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
    266 		ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
    267 		ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
    268 		ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
    269 		ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
    270 		ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
    271 		}
    272 
    273 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
    274 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
    275 
    276 			}
    277 	}
    278 
    279 #endif
    280 #endif /* SHA256_ASM */
    281 
    282 #endif /* OPENSSL_NO_SHA256 */
    283