Consider, for example, an application where a human is required to type in data for a field with specific formatting requirements. An example might be a date in the form ddmmmyy, defined by this pattern: ^\ed?\ed(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\ed\ed$ If the application sees the user's keystrokes one by one, and can check that what has been typed so far is potentially valid, it is able to raise an error as soon as a mistake is made, by beeping and not reflecting the character that has been typed, for example. This immediate feedback is likely to be a better user interface than a check that is delayed until the entire string has been entered. Partial matching can also be useful when the subject string is very long and is not all available at once.
PCRE supports partial matching by means of the PCRE_PARTIAL_SOFT and PCRE_PARTIAL_HARD options, which can be set when calling pcre_exec() or pcre_dfa_exec(). For backwards compatibility, PCRE_PARTIAL is a synonym for PCRE_PARTIAL_SOFT. The essential difference between the two options is whether or not a partial match is preferred to an alternative complete match, though the details differ between the two matching functions. If both options are set, PCRE_PARTIAL_HARD takes precedence.
Setting a partial matching option disables two of PCRE's optimizations. PCRE remembers the last literal byte in a pattern, and abandons matching immediately if such a byte is not present in the subject string. This optimization cannot be used for a subject string that might match only partially. If the pattern was studied, PCRE knows the minimum length of a matching string, and does not bother to run the matching function on shorter strings. This optimization is also disabled for partial matching. . .
If there are at least two slots in the offsets vector when pcre_exec() returns with a partial match, the first slot is set to the offset of the earliest character that was inspected when the partial match was found. For convenience, the second offset points to the end of the subject so that a substring can easily be identified.
For the majority of patterns, the first offset identifies the start of the partially matched string. However, for patterns that contain lookbehind assertions, or \eK, or begin with \eb or \eB, earlier characters have been inspected while carrying out the match. For example: /(?<=abc)123/ This pattern matches "123", but only if it is preceded by "abc". If the subject string is "xyzabc12", the offsets after a partial match are for the substring "abc12", because all these characters are needed if another match is tried with extra characters added to the subject.
What happens when a partial match is identified depends on which of the two partial matching options are set. . .
This option is "soft" because it prefers a complete match over a partial match. All the various matching items in a pattern behave as if the subject string is potentially complete. For example, \ez, \eZ, and $ match at the end of the subject, as normal, and for \eb and \eB the end of the subject is treated as a non-alphanumeric.
If there is more than one partial match, the first one that was found provides the data that is returned. Consider this pattern: /123\ew+X|dogY/ If this is matched against the subject string "abc123dog", both alternatives fail to match, but the end of the subject is reached during matching, so PCRE_ERROR_PARTIAL is returned. The offsets are set to 3 and 9, identifying "123dog" as the first partial match that was found. (In this example, there are two partial matches, because "dog" on its own partially matches the second alternative.) . .
Setting PCRE_PARTIAL_HARD also affects the way pcre_exec() checks UTF-8 subject strings for validity. Normally, an invalid UTF-8 sequence causes the error PCRE_ERROR_BADUTF8. However, in the special case of a truncated UTF-8 character at the end of the subject, PCRE_ERROR_SHORTUTF8 is returned when PCRE_PARTIAL_HARD is set. . .
When PCRE_PARTIAL_SOFT is set, PCRE_ERROR_PARTIAL is returned only if there have been no complete matches. Otherwise, the complete matches are returned. However, if PCRE_PARTIAL_HARD is set, a partial match takes precedence over any complete matches. The portion of the string that was inspected when the longest partial match was found is set as the first matching string, provided there are at least two slots in the offsets vector.
Because pcre_dfa_exec() always searches for all possible matches, and there is no difference between greedy and ungreedy repetition, its behaviour is different from pcre_exec when PCRE_PARTIAL_HARD is set. Consider the string "dog" matched against the ungreedy pattern shown above: /dog(sbody)??/ Whereas pcre_exec() stops as soon as it finds the complete match for "dog", pcre_dfa_exec() also finds the partial match for "dogsbody", and so returns that when PCRE_PARTIAL_HARD is set. . .
Using PCRE_PARTIAL_HARD in this case does yield PCRE_ERROR_PARTIAL, because then the partial match takes precedence. . .
Items that were formerly restricted were repeated single characters and repeated metasequences. If PCRE_PARTIAL was set for a pattern that did not conform to the restrictions, pcre_exec() returned the error code PCRE_ERROR_BADPARTIAL (-13). This error code is no longer in use. The PCRE_INFO_OKPARTIAL call to pcre_fullinfo() to find out if a compiled pattern can be used for partial matching now always returns 1. . .
If the escape sequence \eP is present more than once in a pcretest data line, the PCRE_PARTIAL_HARD option is set for the match. . .
You can set the PCRE_PARTIAL_SOFT or PCRE_PARTIAL_HARD options with PCRE_DFA_RESTART to continue partial matching over multiple segments. This facility can be used to pass very long subject strings to pcre_dfa_exec(). . .
Note: If the pattern contains lookbehind assertions, or \eK, or starts with \eb or \eB, the string that is returned for a partial match will include characters that precede the partially matched string itself, because these must be retained when adding on more characters for a subsequent matching attempt. . .
1. If the pattern contains a test for the beginning of a line, you need to pass the PCRE_NOTBOL option when the subject string for any call does start at the beginning of a line. There is also a PCRE_NOTEOL option, but in practice when doing multi-segment matching you should be using PCRE_PARTIAL_HARD, which includes the effect of PCRE_NOTEOL.
2. Lookbehind assertions at the start of a pattern are catered for in the offsets that are returned for a partial match. However, in theory, a lookbehind assertion later in the pattern could require even earlier characters to be inspected, and it might not have been reached when a partial match occurs. This is probably an extremely unlikely case; you could guard against it to a certain extent by always including extra characters at the start.
3. Matching a subject string that is split into multiple segments may not always produce exactly the same result as matching over one single long string, especially when PCRE_PARTIAL_SOFT is used. The section "Partial Matching and Word Boundaries" above describes an issue that arises if the pattern ends with \eb or \eB. Another kind of difference may occur when there are multiple matching possibilities, because (for PCRE_PARTIAL_SOFT) a partial match result is given only when there are no completed matches. This means that as soon as the shortest match has been found, continuation to a new subject segment is no longer possible. Consider again this pcretest example: re> /dog(sbody)?/ data> dogsb\eP 0: dog data> do\eP\eD Partial match: do data> gsb\eR\eP\eD 0: g data> dogsbody\eD 0: dogsbody 1: dog The first data line passes the string "dogsb" to pcre_exec(), setting the PCRE_PARTIAL_SOFT option. Although the string is a partial match for "dogsbody", the result is not PCRE_ERROR_PARTIAL, because the shorter string "dog" is a complete match. Similarly, when the subject is presented to pcre_dfa_exec() in several parts ("do" and "gsb" being the first two) the match stops when "dog" has been found, and it is not possible to continue. On the other hand, if "dogsbody" is presented as a single string, pcre_dfa_exec() finds both matches.
Because of these problems, it is best to use PCRE_PARTIAL_HARD when matching multi-segment data. The example above then behaves differently: re> /dog(sbody)?/ data> dogsb\eP\eP Partial match: dogsb data> do\eP\eD Partial match: do data> gsb\eR\eP\eP\eD Partial match: gsb 4. Patterns that contain alternatives at the top level which do not all start with the same pattern item may not work as expected when PCRE_DFA_RESTART is used with pcre_dfa_exec(). For example, consider this pattern: 1234|3789 If the first part of the subject is "ABC123", a partial match of the first alternative is found at offset 3. There is no partial match for the second alternative, because such a match does not start at the same point in the subject string. Attempting to continue with the string "7890" does not yield a match because only those alternatives that match at one point in the subject are remembered. The problem arises because the start of the second alternative matches within the first alternative. There is no problem with anchored patterns or patterns such as: 1234|ABCD where no string can be a partial match for both alternatives. This is not a problem if pcre_exec() is used, because the entire match has to be rerun each time: re> /1234|3789/ data> ABC123\eP\eP Partial match: 123 data> 1237890 0: 3789 Of course, instead of using PCRE_DFA_RESTART, the same technique of re-running the entire match can also be used with pcre_dfa_exec(). Another possibility is to work with two buffers. If a partial match at offset n in the first buffer is followed by "no match" when PCRE_DFA_RESTART is used on the second buffer, you can then try a new match starting at offset n+1 in the first buffer. . .
Philip Hazel University Computing Service Cambridge CB2 3QH, England.. .
Last updated: 07 November 2010 Copyright (c) 1997-2010 University of Cambridge.