1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #if defined(V8_TARGET_ARCH_IA32) 31 32 #include "codegen.h" 33 #include "deoptimizer.h" 34 #include "full-codegen.h" 35 #include "safepoint-table.h" 36 37 namespace v8 { 38 namespace internal { 39 40 int Deoptimizer::table_entry_size_ = 10; 41 42 43 int Deoptimizer::patch_size() { 44 return Assembler::kCallInstructionLength; 45 } 46 47 48 static void ZapCodeRange(Address start, Address end) { 49 #ifdef DEBUG 50 ASSERT(start <= end); 51 int size = end - start; 52 CodePatcher destroyer(start, size); 53 while (size-- > 0) destroyer.masm()->int3(); 54 #endif 55 } 56 57 58 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) { 59 Isolate* isolate = code->GetIsolate(); 60 HandleScope scope(isolate); 61 62 // Compute the size of relocation information needed for the code 63 // patching in Deoptimizer::DeoptimizeFunction. 64 int min_reloc_size = 0; 65 Address prev_reloc_address = code->instruction_start(); 66 Address code_start_address = code->instruction_start(); 67 SafepointTable table(*code); 68 for (unsigned i = 0; i < table.length(); ++i) { 69 Address curr_reloc_address = code_start_address + table.GetPcOffset(i); 70 ASSERT_GE(curr_reloc_address, prev_reloc_address); 71 SafepointEntry safepoint_entry = table.GetEntry(i); 72 int deoptimization_index = safepoint_entry.deoptimization_index(); 73 if (deoptimization_index != Safepoint::kNoDeoptimizationIndex) { 74 // The gap code is needed to get to the state expected at the 75 // bailout and we need to skip the call opcode to get to the 76 // address that needs reloc. 77 curr_reloc_address += safepoint_entry.gap_code_size() + 1; 78 int pc_delta = curr_reloc_address - prev_reloc_address; 79 // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes 80 // if encodable with small pc delta encoding and up to 6 bytes 81 // otherwise. 82 if (pc_delta <= RelocInfo::kMaxSmallPCDelta) { 83 min_reloc_size += 2; 84 } else { 85 min_reloc_size += 6; 86 } 87 prev_reloc_address = curr_reloc_address; 88 } 89 } 90 91 // If the relocation information is not big enough we create a new 92 // relocation info object that is padded with comments to make it 93 // big enough for lazy doptimization. 94 int reloc_length = code->relocation_info()->length(); 95 if (min_reloc_size > reloc_length) { 96 int comment_reloc_size = RelocInfo::kMinRelocCommentSize; 97 // Padding needed. 98 int min_padding = min_reloc_size - reloc_length; 99 // Number of comments needed to take up at least that much space. 100 int additional_comments = 101 (min_padding + comment_reloc_size - 1) / comment_reloc_size; 102 // Actual padding size. 103 int padding = additional_comments * comment_reloc_size; 104 // Allocate new relocation info and copy old relocation to the end 105 // of the new relocation info array because relocation info is 106 // written and read backwards. 107 Factory* factory = isolate->factory(); 108 Handle<ByteArray> new_reloc = 109 factory->NewByteArray(reloc_length + padding, TENURED); 110 memcpy(new_reloc->GetDataStartAddress() + padding, 111 code->relocation_info()->GetDataStartAddress(), 112 reloc_length); 113 // Create a relocation writer to write the comments in the padding 114 // space. Use position 0 for everything to ensure short encoding. 115 RelocInfoWriter reloc_info_writer( 116 new_reloc->GetDataStartAddress() + padding, 0); 117 intptr_t comment_string 118 = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString); 119 RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string); 120 for (int i = 0; i < additional_comments; ++i) { 121 #ifdef DEBUG 122 byte* pos_before = reloc_info_writer.pos(); 123 #endif 124 reloc_info_writer.Write(&rinfo); 125 ASSERT(RelocInfo::kMinRelocCommentSize == 126 pos_before - reloc_info_writer.pos()); 127 } 128 // Replace relocation information on the code object. 129 code->set_relocation_info(*new_reloc); 130 } 131 } 132 133 134 void Deoptimizer::DeoptimizeFunction(JSFunction* function) { 135 if (!function->IsOptimized()) return; 136 137 Isolate* isolate = function->GetIsolate(); 138 HandleScope scope(isolate); 139 AssertNoAllocation no_allocation; 140 141 // Get the optimized code. 142 Code* code = function->code(); 143 Address code_start_address = code->instruction_start(); 144 145 // We will overwrite the code's relocation info in-place. Relocation info 146 // is written backward. The relocation info is the payload of a byte 147 // array. Later on we will slide this to the start of the byte array and 148 // create a filler object in the remaining space. 149 ByteArray* reloc_info = code->relocation_info(); 150 Address reloc_end_address = reloc_info->address() + reloc_info->Size(); 151 RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address); 152 153 // For each return after a safepoint insert a call to the corresponding 154 // deoptimization entry. Since the call is a relative encoding, write new 155 // reloc info. We do not need any of the existing reloc info because the 156 // existing code will not be used again (we zap it in debug builds). 157 SafepointTable table(code); 158 Address prev_address = code_start_address; 159 for (unsigned i = 0; i < table.length(); ++i) { 160 Address curr_address = code_start_address + table.GetPcOffset(i); 161 ASSERT_GE(curr_address, prev_address); 162 ZapCodeRange(prev_address, curr_address); 163 164 SafepointEntry safepoint_entry = table.GetEntry(i); 165 int deoptimization_index = safepoint_entry.deoptimization_index(); 166 if (deoptimization_index != Safepoint::kNoDeoptimizationIndex) { 167 // The gap code is needed to get to the state expected at the bailout. 168 curr_address += safepoint_entry.gap_code_size(); 169 170 CodePatcher patcher(curr_address, patch_size()); 171 Address deopt_entry = GetDeoptimizationEntry(deoptimization_index, LAZY); 172 patcher.masm()->call(deopt_entry, RelocInfo::NONE); 173 174 // We use RUNTIME_ENTRY for deoptimization bailouts. 175 RelocInfo rinfo(curr_address + 1, // 1 after the call opcode. 176 RelocInfo::RUNTIME_ENTRY, 177 reinterpret_cast<intptr_t>(deopt_entry)); 178 reloc_info_writer.Write(&rinfo); 179 ASSERT_GE(reloc_info_writer.pos(), 180 reloc_info->address() + ByteArray::kHeaderSize); 181 curr_address += patch_size(); 182 } 183 prev_address = curr_address; 184 } 185 ZapCodeRange(prev_address, 186 code_start_address + code->safepoint_table_offset()); 187 188 // Move the relocation info to the beginning of the byte array. 189 int new_reloc_size = reloc_end_address - reloc_info_writer.pos(); 190 memmove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size); 191 192 // The relocation info is in place, update the size. 193 reloc_info->set_length(new_reloc_size); 194 195 // Handle the junk part after the new relocation info. We will create 196 // a non-live object in the extra space at the end of the former reloc info. 197 Address junk_address = reloc_info->address() + reloc_info->Size(); 198 ASSERT(junk_address <= reloc_end_address); 199 isolate->heap()->CreateFillerObjectAt(junk_address, 200 reloc_end_address - junk_address); 201 202 // Add the deoptimizing code to the list. 203 DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code); 204 DeoptimizerData* data = isolate->deoptimizer_data(); 205 node->set_next(data->deoptimizing_code_list_); 206 data->deoptimizing_code_list_ = node; 207 208 // Set the code for the function to non-optimized version. 209 function->ReplaceCode(function->shared()->code()); 210 211 if (FLAG_trace_deopt) { 212 PrintF("[forced deoptimization: "); 213 function->PrintName(); 214 PrintF(" / %x]\n", reinterpret_cast<uint32_t>(function)); 215 #ifdef DEBUG 216 if (FLAG_print_code) { 217 code->PrintLn(); 218 } 219 #endif 220 } 221 } 222 223 224 void Deoptimizer::PatchStackCheckCodeAt(Address pc_after, 225 Code* check_code, 226 Code* replacement_code) { 227 Address call_target_address = pc_after - kIntSize; 228 ASSERT(check_code->entry() == 229 Assembler::target_address_at(call_target_address)); 230 // The stack check code matches the pattern: 231 // 232 // cmp esp, <limit> 233 // jae ok 234 // call <stack guard> 235 // test eax, <loop nesting depth> 236 // ok: ... 237 // 238 // We will patch away the branch so the code is: 239 // 240 // cmp esp, <limit> ;; Not changed 241 // nop 242 // nop 243 // call <on-stack replacment> 244 // test eax, <loop nesting depth> 245 // ok: 246 ASSERT(*(call_target_address - 3) == 0x73 && // jae 247 *(call_target_address - 2) == 0x07 && // offset 248 *(call_target_address - 1) == 0xe8); // call 249 *(call_target_address - 3) = 0x90; // nop 250 *(call_target_address - 2) = 0x90; // nop 251 Assembler::set_target_address_at(call_target_address, 252 replacement_code->entry()); 253 } 254 255 256 void Deoptimizer::RevertStackCheckCodeAt(Address pc_after, 257 Code* check_code, 258 Code* replacement_code) { 259 Address call_target_address = pc_after - kIntSize; 260 ASSERT(replacement_code->entry() == 261 Assembler::target_address_at(call_target_address)); 262 // Replace the nops from patching (Deoptimizer::PatchStackCheckCode) to 263 // restore the conditional branch. 264 ASSERT(*(call_target_address - 3) == 0x90 && // nop 265 *(call_target_address - 2) == 0x90 && // nop 266 *(call_target_address - 1) == 0xe8); // call 267 *(call_target_address - 3) = 0x73; // jae 268 *(call_target_address - 2) = 0x07; // offset 269 Assembler::set_target_address_at(call_target_address, 270 check_code->entry()); 271 } 272 273 274 static int LookupBailoutId(DeoptimizationInputData* data, unsigned ast_id) { 275 ByteArray* translations = data->TranslationByteArray(); 276 int length = data->DeoptCount(); 277 for (int i = 0; i < length; i++) { 278 if (static_cast<unsigned>(data->AstId(i)->value()) == ast_id) { 279 TranslationIterator it(translations, data->TranslationIndex(i)->value()); 280 int value = it.Next(); 281 ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value)); 282 // Read the number of frames. 283 value = it.Next(); 284 if (value == 1) return i; 285 } 286 } 287 UNREACHABLE(); 288 return -1; 289 } 290 291 292 void Deoptimizer::DoComputeOsrOutputFrame() { 293 DeoptimizationInputData* data = DeoptimizationInputData::cast( 294 optimized_code_->deoptimization_data()); 295 unsigned ast_id = data->OsrAstId()->value(); 296 // TODO(kasperl): This should not be the bailout_id_. It should be 297 // the ast id. Confusing. 298 ASSERT(bailout_id_ == ast_id); 299 300 int bailout_id = LookupBailoutId(data, ast_id); 301 unsigned translation_index = data->TranslationIndex(bailout_id)->value(); 302 ByteArray* translations = data->TranslationByteArray(); 303 304 TranslationIterator iterator(translations, translation_index); 305 Translation::Opcode opcode = 306 static_cast<Translation::Opcode>(iterator.Next()); 307 ASSERT(Translation::BEGIN == opcode); 308 USE(opcode); 309 int count = iterator.Next(); 310 ASSERT(count == 1); 311 USE(count); 312 313 opcode = static_cast<Translation::Opcode>(iterator.Next()); 314 USE(opcode); 315 ASSERT(Translation::FRAME == opcode); 316 unsigned node_id = iterator.Next(); 317 USE(node_id); 318 ASSERT(node_id == ast_id); 319 JSFunction* function = JSFunction::cast(ComputeLiteral(iterator.Next())); 320 USE(function); 321 ASSERT(function == function_); 322 unsigned height = iterator.Next(); 323 unsigned height_in_bytes = height * kPointerSize; 324 USE(height_in_bytes); 325 326 unsigned fixed_size = ComputeFixedSize(function_); 327 unsigned input_frame_size = input_->GetFrameSize(); 328 ASSERT(fixed_size + height_in_bytes == input_frame_size); 329 330 unsigned stack_slot_size = optimized_code_->stack_slots() * kPointerSize; 331 unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value(); 332 unsigned outgoing_size = outgoing_height * kPointerSize; 333 unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size; 334 ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call. 335 336 if (FLAG_trace_osr) { 337 PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ", 338 reinterpret_cast<intptr_t>(function_)); 339 function_->PrintName(); 340 PrintF(" => node=%u, frame=%d->%d]\n", 341 ast_id, 342 input_frame_size, 343 output_frame_size); 344 } 345 346 // There's only one output frame in the OSR case. 347 output_count_ = 1; 348 output_ = new FrameDescription*[1]; 349 output_[0] = new(output_frame_size) FrameDescription( 350 output_frame_size, function_); 351 352 // Clear the incoming parameters in the optimized frame to avoid 353 // confusing the garbage collector. 354 unsigned output_offset = output_frame_size - kPointerSize; 355 int parameter_count = function_->shared()->formal_parameter_count() + 1; 356 for (int i = 0; i < parameter_count; ++i) { 357 output_[0]->SetFrameSlot(output_offset, 0); 358 output_offset -= kPointerSize; 359 } 360 361 // Translate the incoming parameters. This may overwrite some of the 362 // incoming argument slots we've just cleared. 363 int input_offset = input_frame_size - kPointerSize; 364 bool ok = true; 365 int limit = input_offset - (parameter_count * kPointerSize); 366 while (ok && input_offset > limit) { 367 ok = DoOsrTranslateCommand(&iterator, &input_offset); 368 } 369 370 // There are no translation commands for the caller's pc and fp, the 371 // context, and the function. Set them up explicitly. 372 for (int i = StandardFrameConstants::kCallerPCOffset; 373 ok && i >= StandardFrameConstants::kMarkerOffset; 374 i -= kPointerSize) { 375 uint32_t input_value = input_->GetFrameSlot(input_offset); 376 if (FLAG_trace_osr) { 377 const char* name = "UNKNOWN"; 378 switch (i) { 379 case StandardFrameConstants::kCallerPCOffset: 380 name = "caller's pc"; 381 break; 382 case StandardFrameConstants::kCallerFPOffset: 383 name = "fp"; 384 break; 385 case StandardFrameConstants::kContextOffset: 386 name = "context"; 387 break; 388 case StandardFrameConstants::kMarkerOffset: 389 name = "function"; 390 break; 391 } 392 PrintF(" [esp + %d] <- 0x%08x ; [esp + %d] (fixed part - %s)\n", 393 output_offset, 394 input_value, 395 input_offset, 396 name); 397 } 398 output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset)); 399 input_offset -= kPointerSize; 400 output_offset -= kPointerSize; 401 } 402 403 // Translate the rest of the frame. 404 while (ok && input_offset >= 0) { 405 ok = DoOsrTranslateCommand(&iterator, &input_offset); 406 } 407 408 // If translation of any command failed, continue using the input frame. 409 if (!ok) { 410 delete output_[0]; 411 output_[0] = input_; 412 output_[0]->SetPc(reinterpret_cast<uint32_t>(from_)); 413 } else { 414 // Setup the frame pointer and the context pointer. 415 output_[0]->SetRegister(ebp.code(), input_->GetRegister(ebp.code())); 416 output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code())); 417 418 unsigned pc_offset = data->OsrPcOffset()->value(); 419 uint32_t pc = reinterpret_cast<uint32_t>( 420 optimized_code_->entry() + pc_offset); 421 output_[0]->SetPc(pc); 422 } 423 Code* continuation = 424 function->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR); 425 output_[0]->SetContinuation( 426 reinterpret_cast<uint32_t>(continuation->entry())); 427 428 if (FLAG_trace_osr) { 429 PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ", 430 ok ? "finished" : "aborted", 431 reinterpret_cast<intptr_t>(function)); 432 function->PrintName(); 433 PrintF(" => pc=0x%0x]\n", output_[0]->GetPc()); 434 } 435 } 436 437 438 void Deoptimizer::DoComputeFrame(TranslationIterator* iterator, 439 int frame_index) { 440 // Read the ast node id, function, and frame height for this output frame. 441 Translation::Opcode opcode = 442 static_cast<Translation::Opcode>(iterator->Next()); 443 USE(opcode); 444 ASSERT(Translation::FRAME == opcode); 445 int node_id = iterator->Next(); 446 JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); 447 unsigned height = iterator->Next(); 448 unsigned height_in_bytes = height * kPointerSize; 449 if (FLAG_trace_deopt) { 450 PrintF(" translating "); 451 function->PrintName(); 452 PrintF(" => node=%d, height=%d\n", node_id, height_in_bytes); 453 } 454 455 // The 'fixed' part of the frame consists of the incoming parameters and 456 // the part described by JavaScriptFrameConstants. 457 unsigned fixed_frame_size = ComputeFixedSize(function); 458 unsigned input_frame_size = input_->GetFrameSize(); 459 unsigned output_frame_size = height_in_bytes + fixed_frame_size; 460 461 // Allocate and store the output frame description. 462 FrameDescription* output_frame = 463 new(output_frame_size) FrameDescription(output_frame_size, function); 464 465 bool is_bottommost = (0 == frame_index); 466 bool is_topmost = (output_count_ - 1 == frame_index); 467 ASSERT(frame_index >= 0 && frame_index < output_count_); 468 ASSERT(output_[frame_index] == NULL); 469 output_[frame_index] = output_frame; 470 471 // The top address for the bottommost output frame can be computed from 472 // the input frame pointer and the output frame's height. For all 473 // subsequent output frames, it can be computed from the previous one's 474 // top address and the current frame's size. 475 uint32_t top_address; 476 if (is_bottommost) { 477 // 2 = context and function in the frame. 478 top_address = 479 input_->GetRegister(ebp.code()) - (2 * kPointerSize) - height_in_bytes; 480 } else { 481 top_address = output_[frame_index - 1]->GetTop() - output_frame_size; 482 } 483 output_frame->SetTop(top_address); 484 485 // Compute the incoming parameter translation. 486 int parameter_count = function->shared()->formal_parameter_count() + 1; 487 unsigned output_offset = output_frame_size; 488 unsigned input_offset = input_frame_size; 489 for (int i = 0; i < parameter_count; ++i) { 490 output_offset -= kPointerSize; 491 DoTranslateCommand(iterator, frame_index, output_offset); 492 } 493 input_offset -= (parameter_count * kPointerSize); 494 495 // There are no translation commands for the caller's pc and fp, the 496 // context, and the function. Synthesize their values and set them up 497 // explicitly. 498 // 499 // The caller's pc for the bottommost output frame is the same as in the 500 // input frame. For all subsequent output frames, it can be read from the 501 // previous one. This frame's pc can be computed from the non-optimized 502 // function code and AST id of the bailout. 503 output_offset -= kPointerSize; 504 input_offset -= kPointerSize; 505 intptr_t value; 506 if (is_bottommost) { 507 value = input_->GetFrameSlot(input_offset); 508 } else { 509 value = output_[frame_index - 1]->GetPc(); 510 } 511 output_frame->SetFrameSlot(output_offset, value); 512 if (FLAG_trace_deopt) { 513 PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n", 514 top_address + output_offset, output_offset, value); 515 } 516 517 // The caller's frame pointer for the bottommost output frame is the same 518 // as in the input frame. For all subsequent output frames, it can be 519 // read from the previous one. Also compute and set this frame's frame 520 // pointer. 521 output_offset -= kPointerSize; 522 input_offset -= kPointerSize; 523 if (is_bottommost) { 524 value = input_->GetFrameSlot(input_offset); 525 } else { 526 value = output_[frame_index - 1]->GetFp(); 527 } 528 output_frame->SetFrameSlot(output_offset, value); 529 intptr_t fp_value = top_address + output_offset; 530 ASSERT(!is_bottommost || input_->GetRegister(ebp.code()) == fp_value); 531 output_frame->SetFp(fp_value); 532 if (is_topmost) output_frame->SetRegister(ebp.code(), fp_value); 533 if (FLAG_trace_deopt) { 534 PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n", 535 fp_value, output_offset, value); 536 } 537 538 // For the bottommost output frame the context can be gotten from the input 539 // frame. For all subsequent output frames it can be gotten from the function 540 // so long as we don't inline functions that need local contexts. 541 output_offset -= kPointerSize; 542 input_offset -= kPointerSize; 543 if (is_bottommost) { 544 value = input_->GetFrameSlot(input_offset); 545 } else { 546 value = reinterpret_cast<uint32_t>(function->context()); 547 } 548 output_frame->SetFrameSlot(output_offset, value); 549 if (is_topmost) output_frame->SetRegister(esi.code(), value); 550 if (FLAG_trace_deopt) { 551 PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context\n", 552 top_address + output_offset, output_offset, value); 553 } 554 555 // The function was mentioned explicitly in the BEGIN_FRAME. 556 output_offset -= kPointerSize; 557 input_offset -= kPointerSize; 558 value = reinterpret_cast<uint32_t>(function); 559 // The function for the bottommost output frame should also agree with the 560 // input frame. 561 ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value); 562 output_frame->SetFrameSlot(output_offset, value); 563 if (FLAG_trace_deopt) { 564 PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function\n", 565 top_address + output_offset, output_offset, value); 566 } 567 568 // Translate the rest of the frame. 569 for (unsigned i = 0; i < height; ++i) { 570 output_offset -= kPointerSize; 571 DoTranslateCommand(iterator, frame_index, output_offset); 572 } 573 ASSERT(0 == output_offset); 574 575 // Compute this frame's PC, state, and continuation. 576 Code* non_optimized_code = function->shared()->code(); 577 FixedArray* raw_data = non_optimized_code->deoptimization_data(); 578 DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data); 579 Address start = non_optimized_code->instruction_start(); 580 unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared()); 581 unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state); 582 uint32_t pc_value = reinterpret_cast<uint32_t>(start + pc_offset); 583 output_frame->SetPc(pc_value); 584 585 FullCodeGenerator::State state = 586 FullCodeGenerator::StateField::decode(pc_and_state); 587 output_frame->SetState(Smi::FromInt(state)); 588 589 // Set the continuation for the topmost frame. 590 if (is_topmost) { 591 Builtins* builtins = isolate_->builtins(); 592 Code* continuation = (bailout_type_ == EAGER) 593 ? builtins->builtin(Builtins::kNotifyDeoptimized) 594 : builtins->builtin(Builtins::kNotifyLazyDeoptimized); 595 output_frame->SetContinuation( 596 reinterpret_cast<uint32_t>(continuation->entry())); 597 } 598 599 if (output_count_ - 1 == frame_index) iterator->Done(); 600 } 601 602 603 #define __ masm()-> 604 605 void Deoptimizer::EntryGenerator::Generate() { 606 GeneratePrologue(); 607 CpuFeatures::Scope scope(SSE2); 608 609 Isolate* isolate = masm()->isolate(); 610 611 // Save all general purpose registers before messing with them. 612 const int kNumberOfRegisters = Register::kNumRegisters; 613 614 const int kDoubleRegsSize = kDoubleSize * 615 XMMRegister::kNumAllocatableRegisters; 616 __ sub(Operand(esp), Immediate(kDoubleRegsSize)); 617 for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { 618 XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); 619 int offset = i * kDoubleSize; 620 __ movdbl(Operand(esp, offset), xmm_reg); 621 } 622 623 __ pushad(); 624 625 const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize + 626 kDoubleRegsSize; 627 628 // Get the bailout id from the stack. 629 __ mov(ebx, Operand(esp, kSavedRegistersAreaSize)); 630 631 // Get the address of the location in the code object if possible 632 // and compute the fp-to-sp delta in register edx. 633 if (type() == EAGER) { 634 __ Set(ecx, Immediate(0)); 635 __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); 636 } else { 637 __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); 638 __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize)); 639 } 640 __ sub(edx, Operand(ebp)); 641 __ neg(edx); 642 643 // Allocate a new deoptimizer object. 644 __ PrepareCallCFunction(6, eax); 645 __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); 646 __ mov(Operand(esp, 0 * kPointerSize), eax); // Function. 647 __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type. 648 __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id. 649 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0. 650 __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta. 651 __ mov(Operand(esp, 5 * kPointerSize), 652 Immediate(ExternalReference::isolate_address())); 653 __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate), 6); 654 655 // Preserve deoptimizer object in register eax and get the input 656 // frame descriptor pointer. 657 __ mov(ebx, Operand(eax, Deoptimizer::input_offset())); 658 659 // Fill in the input registers. 660 for (int i = kNumberOfRegisters - 1; i >= 0; i--) { 661 int offset = (i * kPointerSize) + FrameDescription::registers_offset(); 662 __ pop(Operand(ebx, offset)); 663 } 664 665 // Fill in the double input registers. 666 int double_regs_offset = FrameDescription::double_registers_offset(); 667 for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { 668 int dst_offset = i * kDoubleSize + double_regs_offset; 669 int src_offset = i * kDoubleSize; 670 __ movdbl(xmm0, Operand(esp, src_offset)); 671 __ movdbl(Operand(ebx, dst_offset), xmm0); 672 } 673 674 // Remove the bailout id and the double registers from the stack. 675 if (type() == EAGER) { 676 __ add(Operand(esp), Immediate(kDoubleRegsSize + kPointerSize)); 677 } else { 678 __ add(Operand(esp), Immediate(kDoubleRegsSize + 2 * kPointerSize)); 679 } 680 681 // Compute a pointer to the unwinding limit in register ecx; that is 682 // the first stack slot not part of the input frame. 683 __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); 684 __ add(ecx, Operand(esp)); 685 686 // Unwind the stack down to - but not including - the unwinding 687 // limit and copy the contents of the activation frame to the input 688 // frame description. 689 __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset())); 690 Label pop_loop; 691 __ bind(&pop_loop); 692 __ pop(Operand(edx, 0)); 693 __ add(Operand(edx), Immediate(sizeof(uint32_t))); 694 __ cmp(ecx, Operand(esp)); 695 __ j(not_equal, &pop_loop); 696 697 // Compute the output frame in the deoptimizer. 698 __ push(eax); 699 __ PrepareCallCFunction(1, ebx); 700 __ mov(Operand(esp, 0 * kPointerSize), eax); 701 __ CallCFunction( 702 ExternalReference::compute_output_frames_function(isolate), 1); 703 __ pop(eax); 704 705 // Replace the current frame with the output frames. 706 Label outer_push_loop, inner_push_loop; 707 // Outer loop state: eax = current FrameDescription**, edx = one past the 708 // last FrameDescription**. 709 __ mov(edx, Operand(eax, Deoptimizer::output_count_offset())); 710 __ mov(eax, Operand(eax, Deoptimizer::output_offset())); 711 __ lea(edx, Operand(eax, edx, times_4, 0)); 712 __ bind(&outer_push_loop); 713 // Inner loop state: ebx = current FrameDescription*, ecx = loop index. 714 __ mov(ebx, Operand(eax, 0)); 715 __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); 716 __ bind(&inner_push_loop); 717 __ sub(Operand(ecx), Immediate(sizeof(uint32_t))); 718 __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset())); 719 __ test(ecx, Operand(ecx)); 720 __ j(not_zero, &inner_push_loop); 721 __ add(Operand(eax), Immediate(kPointerSize)); 722 __ cmp(eax, Operand(edx)); 723 __ j(below, &outer_push_loop); 724 725 // In case of OSR, we have to restore the XMM registers. 726 if (type() == OSR) { 727 for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { 728 XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); 729 int src_offset = i * kDoubleSize + double_regs_offset; 730 __ movdbl(xmm_reg, Operand(ebx, src_offset)); 731 } 732 } 733 734 // Push state, pc, and continuation from the last output frame. 735 if (type() != OSR) { 736 __ push(Operand(ebx, FrameDescription::state_offset())); 737 } 738 __ push(Operand(ebx, FrameDescription::pc_offset())); 739 __ push(Operand(ebx, FrameDescription::continuation_offset())); 740 741 742 // Push the registers from the last output frame. 743 for (int i = 0; i < kNumberOfRegisters; i++) { 744 int offset = (i * kPointerSize) + FrameDescription::registers_offset(); 745 __ push(Operand(ebx, offset)); 746 } 747 748 // Restore the registers from the stack. 749 __ popad(); 750 751 // Return to the continuation point. 752 __ ret(0); 753 } 754 755 756 void Deoptimizer::TableEntryGenerator::GeneratePrologue() { 757 // Create a sequence of deoptimization entries. 758 Label done; 759 for (int i = 0; i < count(); i++) { 760 int start = masm()->pc_offset(); 761 USE(start); 762 __ push_imm32(i); 763 __ jmp(&done); 764 ASSERT(masm()->pc_offset() - start == table_entry_size_); 765 } 766 __ bind(&done); 767 } 768 769 #undef __ 770 771 772 } } // namespace v8::internal 773 774 #endif // V8_TARGET_ARCH_IA32 775