Home | History | Annotate | Download | only in html
      1 <html>
      2 <head>
      3 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      4 <title>9.Massif: a heap profiler</title>
      5 <link rel="stylesheet" href="vg_basic.css" type="text/css">
      6 <meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
      7 <link rel="home" href="index.html" title="Valgrind Documentation">
      8 <link rel="up" href="manual.html" title="Valgrind User Manual">
      9 <link rel="prev" href="drd-manual.html" title="8.DRD: a thread error detector">
     10 <link rel="next" href="dh-manual.html" title="10.DHAT: a dynamic heap analysis tool">
     11 </head>
     12 <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
     13 <div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr>
     14 <td width="22px" align="center" valign="middle"><a accesskey="p" href="drd-manual.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td>
     15 <td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td>
     16 <td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td>
     17 <th align="center" valign="middle">Valgrind User Manual</th>
     18 <td width="22px" align="center" valign="middle"><a accesskey="n" href="dh-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td>
     19 </tr></table></div>
     20 <div class="chapter" title="9.Massif: a heap profiler">
     21 <div class="titlepage"><div><div><h2 class="title">
     22 <a name="ms-manual"></a>9.Massif: a heap profiler</h2></div></div></div>
     23 <div class="toc">
     24 <p><b>Table of Contents</b></p>
     25 <dl>
     26 <dt><span class="sect1"><a href="ms-manual.html#ms-manual.overview">9.1. Overview</a></span></dt>
     27 <dt><span class="sect1"><a href="ms-manual.html#ms-manual.using">9.2. Using Massif and ms_print</a></span></dt>
     28 <dd><dl>
     29 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.anexample">9.2.1. An Example Program</a></span></dt>
     30 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.running-massif">9.2.2. Running Massif</a></span></dt>
     31 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.running-ms_print">9.2.3. Running ms_print</a></span></dt>
     32 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.theoutputpreamble">9.2.4. The Output Preamble</a></span></dt>
     33 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.theoutputgraph">9.2.5. The Output Graph</a></span></dt>
     34 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.thesnapshotdetails">9.2.6. The Snapshot Details</a></span></dt>
     35 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.forkingprograms">9.2.7. Forking Programs</a></span></dt>
     36 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.not-measured">9.2.8. Measuring All Memory in a Process</a></span></dt>
     37 <dt><span class="sect2"><a href="ms-manual.html#ms-manual.acting">9.2.9. Acting on Massif's Information</a></span></dt>
     38 </dl></dd>
     39 <dt><span class="sect1"><a href="ms-manual.html#ms-manual.options">9.3. Massif Command-line Options</a></span></dt>
     40 <dt><span class="sect1"><a href="ms-manual.html#ms-manual.clientreqs">9.4. Massif Client Requests</a></span></dt>
     41 <dt><span class="sect1"><a href="ms-manual.html#ms-manual.ms_print-options">9.5. ms_print Command-line Options</a></span></dt>
     42 <dt><span class="sect1"><a href="ms-manual.html#ms-manual.fileformat">9.6. Massif's Output File Format</a></span></dt>
     43 </dl>
     44 </div>
     45 <p>To use this tool, you must specify
     46 <code class="option">--tool=massif</code> on the Valgrind
     47 command line.</p>
     48 <div class="sect1" title="9.1.Overview">
     49 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
     50 <a name="ms-manual.overview"></a>9.1.Overview</h2></div></div></div>
     51 <p>Massif is a heap profiler.  It measures how much heap memory your
     52 program uses.  This includes both the useful space, and the extra bytes
     53 allocated for book-keeping and alignment purposes.  It can also
     54 measure the size of your program's stack(s), although it does not do so by
     55 default.</p>
     56 <p>Heap profiling can help you reduce the amount of memory your program
     57 uses.  On modern machines with virtual memory, this provides the following
     58 benefits:</p>
     59 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
     60 <li class="listitem"><p>It can speed up your program -- a smaller
     61     program will interact better with your machine's caches and
     62     avoid paging.</p></li>
     63 <li class="listitem"><p>If your program uses lots of memory, it will
     64     reduce the chance that it exhausts your machine's swap
     65     space.</p></li>
     66 </ul></div>
     67 <p>Also, there are certain space leaks that aren't detected by
     68 traditional leak-checkers, such as Memcheck's.  That's because
     69 the memory isn't ever actually lost -- a pointer remains to it --
     70 but it's not in use.  Programs that have leaks like this can
     71 unnecessarily increase the amount of memory they are using over
     72 time.  Massif can help identify these leaks.</p>
     73 <p>Importantly, Massif tells you not only how much heap memory your
     74 program is using, it also gives very detailed information that indicates
     75 which parts of your program are responsible for allocating the heap memory.
     76 </p>
     77 </div>
     78 <div class="sect1" title="9.2.Using Massif and ms_print">
     79 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
     80 <a name="ms-manual.using"></a>9.2.Using Massif and ms_print</h2></div></div></div>
     81 <p>First off, as for the other Valgrind tools, you should compile with
     82 debugging info (the <code class="option">-g</code> option).  It shouldn't
     83 matter much what optimisation level you compile your program with, as this
     84 is unlikely to affect the heap memory usage.</p>
     85 <p>Then, you need to run Massif itself to gather the profiling
     86 information, and then run ms_print to present it in a readable way.</p>
     87 <div class="sect2" title="9.2.1.An Example Program">
     88 <div class="titlepage"><div><div><h3 class="title">
     89 <a name="ms-manual.anexample"></a>9.2.1.An Example Program</h3></div></div></div>
     90 <p>An example will make things clear.  Consider the following C program
     91 (annotated with line numbers) which allocates a number of different blocks
     92 on the heap.</p>
     93 <pre class="screen">
     94  1      #include &lt;stdlib.h&gt;
     95  2
     96  3      void g(void)
     97  4      {
     98  5         malloc(4000);
     99  6      }
    100  7
    101  8      void f(void)
    102  9      {
    103 10         malloc(2000);
    104 11         g();
    105 12      }
    106 13
    107 14      int main(void)
    108 15      {
    109 16         int i;
    110 17         int* a[10];
    111 18
    112 19         for (i = 0; i &lt; 10; i++) {
    113 20            a[i] = malloc(1000);
    114 21         }
    115 22
    116 23         f();
    117 24
    118 25         g();
    119 26
    120 27         for (i = 0; i &lt; 10; i++) {
    121 28            free(a[i]);
    122 29         }
    123 30
    124 31         return 0;
    125 32      }
    126 </pre>
    127 </div>
    128 <div class="sect2" title="9.2.2.Running Massif">
    129 <div class="titlepage"><div><div><h3 class="title">
    130 <a name="ms-manual.running-massif"></a>9.2.2.Running Massif</h3></div></div></div>
    131 <p>To gather heap profiling information about the program
    132 <code class="computeroutput">prog</code>, type:</p>
    133 <pre class="screen">
    134 valgrind --tool=massif prog
    135 </pre>
    136 <p>The program will execute (slowly).  Upon completion, no summary
    137 statistics are printed to Valgrind's commentary;  all of Massif's profiling
    138 data is written to a file.  By default, this file is called
    139 <code class="filename">massif.out.&lt;pid&gt;</code>, where
    140 <code class="filename">&lt;pid&gt;</code> is the process ID, although this filename
    141 can be changed with the <code class="option">--massif-out-file</code> option.</p>
    142 </div>
    143 <div class="sect2" title="9.2.3.Running ms_print">
    144 <div class="titlepage"><div><div><h3 class="title">
    145 <a name="ms-manual.running-ms_print"></a>9.2.3.Running ms_print</h3></div></div></div>
    146 <p>To see the information gathered by Massif in an easy-to-read form, use
    147 ms_print.  If the output file's name is
    148 <code class="filename">massif.out.12345</code>, type:</p>
    149 <pre class="screen">
    150 ms_print massif.out.12345</pre>
    151 <p>ms_print will produce (a) a graph showing the memory consumption over
    152 the program's execution, and (b) detailed information about the responsible
    153 allocation sites at various points in the program, including the point of
    154 peak memory allocation.  The use of a separate script for presenting the
    155 results is deliberate:  it separates the data gathering from its
    156 presentation, and means that new methods of presenting the data can be added in
    157 the future.</p>
    158 </div>
    159 <div class="sect2" title="9.2.4.The Output Preamble">
    160 <div class="titlepage"><div><div><h3 class="title">
    161 <a name="ms-manual.theoutputpreamble"></a>9.2.4.The Output Preamble</h3></div></div></div>
    162 <p>After running this program under Massif, the first part of ms_print's
    163 output contains a preamble which just states how the program, Massif and
    164 ms_print were each invoked:</p>
    165 <pre class="screen">
    166 --------------------------------------------------------------------------------
    167 Command:            example
    168 Massif arguments:   (none)
    169 ms_print arguments: massif.out.12797
    170 --------------------------------------------------------------------------------
    171 </pre>
    172 </div>
    173 <div class="sect2" title="9.2.5.The Output Graph">
    174 <div class="titlepage"><div><div><h3 class="title">
    175 <a name="ms-manual.theoutputgraph"></a>9.2.5.The Output Graph</h3></div></div></div>
    176 <p>The next part is the graph that shows how memory consumption occurred
    177 as the program executed:</p>
    178 <pre class="screen">
    179     KB
    180 19.63^                                                                       #
    181      |                                                                       #
    182      |                                                                       #
    183      |                                                                       #
    184      |                                                                       #
    185      |                                                                       #
    186      |                                                                       #
    187      |                                                                       #
    188      |                                                                       #
    189      |                                                                       #
    190      |                                                                       #
    191      |                                                                       #
    192      |                                                                       #
    193      |                                                                       #
    194      |                                                                       #
    195      |                                                                       #
    196      |                                                                       #
    197      |                                                                      :#
    198      |                                                                      :#
    199      |                                                                      :#
    200    0 +-----------------------------------------------------------------------&gt;ki     0                                                                   113.4
    201 
    202 
    203 Number of snapshots: 25
    204  Detailed snapshots: [9, 14 (peak), 24]
    205 </pre>
    206 <p>Why is most of the graph empty, with only a couple of bars at the very
    207 end?  By default, Massif uses "instructions executed" as the unit of time.
    208 For very short-run programs such as the example, most of the executed
    209 instructions involve the loading and dynamic linking of the program.  The
    210 execution of <code class="computeroutput">main</code> (and thus the heap
    211 allocations) only occur at the very end.  For a short-running program like
    212 this, we can use the <code class="option">--time-unit=B</code> option
    213 to specify that we want the time unit to instead be the number of bytes
    214 allocated/deallocated on the heap and stack(s).</p>
    215 <p>If we re-run the program under Massif with this option, and then
    216 re-run ms_print, we get this more useful graph:</p>
    217 <pre class="screen">
    218 19.63^                                               ###                      
    219      |                                               #                        
    220      |                                               #  ::                    
    221      |                                               #  : :::                 
    222      |                                      :::::::::#  : :  ::               
    223      |                                      :        #  : :  : ::             
    224      |                                      :        #  : :  : : :::          
    225      |                                      :        #  : :  : : :  ::        
    226      |                            :::::::::::        #  : :  : : :  : :::     
    227      |                            :         :        #  : :  : : :  : :  ::   
    228      |                        :::::         :        #  : :  : : :  : :  : :: 
    229      |                     @@@:   :         :        #  : :  : : :  : :  : : @
    230      |                   ::@  :   :         :        #  : :  : : :  : :  : : @
    231      |                :::: @  :   :         :        #  : :  : : :  : :  : : @
    232      |              :::  : @  :   :         :        #  : :  : : :  : :  : : @
    233      |            ::: :  : @  :   :         :        #  : :  : : :  : :  : : @
    234      |         :::: : :  : @  :   :         :        #  : :  : : :  : :  : : @
    235      |       :::  : : :  : @  :   :         :        #  : :  : : :  : :  : : @
    236      |    :::: :  : : :  : @  :   :         :        #  : :  : : :  : :  : : @
    237      |  :::  : :  : : :  : @  :   :         :        #  : :  : : :  : :  : : @
    238    0 +-----------------------------------------------------------------------&gt;KB     0                                                                   29.48
    239 
    240 Number of snapshots: 25
    241  Detailed snapshots: [9, 14 (peak), 24]
    242 </pre>
    243 <p>The size of the graph can be changed with ms_print's
    244 <code class="option">--x</code> and <code class="option">--y</code> options.  Each vertical bar
    245 represents a snapshot, i.e. a measurement of the memory usage at a certain
    246 point in time.  If the next snapshot is more than one column away, a
    247 horizontal line of characters is drawn from the top of the snapshot to just
    248 before the next snapshot column.  The text at the bottom show that 25
    249 snapshots were taken for this program, which is one per heap
    250 allocation/deallocation, plus a couple of extras.  Massif starts by taking
    251 snapshots for every heap allocation/deallocation, but as a program runs for
    252 longer, it takes snapshots less frequently.  It also discards older
    253 snapshots as the program goes on;  when it reaches the maximum number of
    254 snapshots (100 by default, although changeable with the
    255 <code class="option">--max-snapshots</code> option) half of them are
    256 deleted.  This means that a reasonable number of snapshots are always
    257 maintained.</p>
    258 <p>Most snapshots are <span class="emphasis"><em>normal</em></span>, and only basic
    259 information is recorded for them.  Normal snapshots are represented in the
    260 graph by bars consisting of ':' characters.</p>
    261 <p>Some snapshots are <span class="emphasis"><em>detailed</em></span>.  Information about
    262 where allocations happened are recorded for these snapshots, as we will see
    263 shortly.  Detailed snapshots are represented in the graph by bars consisting
    264 of '@' characters.  The text at the bottom show that 3 detailed
    265 snapshots were taken for this program (snapshots 9, 14 and 24).  By default,
    266 every 10th snapshot is detailed, although this can be changed via the
    267 <code class="option">--detailed-freq</code> option.</p>
    268 <p>Finally, there is at most one <span class="emphasis"><em>peak</em></span> snapshot.  The
    269 peak snapshot is a detailed snapshot, and records the point where memory
    270 consumption was greatest.  The peak snapshot is represented in the graph by
    271 a bar consisting of '#' characters.  The text at the bottom shows
    272 that snapshot 14 was the peak.</p>
    273 <p>Massif's determination of when the peak occurred can be wrong, for
    274 two reasons.</p>
    275 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    276 <li class="listitem"><p>Peak snapshots are only ever taken after a deallocation
    277   happens.  This avoids lots of unnecessary peak snapshot recordings
    278   (imagine what happens if your program allocates a lot of heap blocks in
    279   succession, hitting a new peak every time).  But it means that if your
    280   program never deallocates any blocks, no peak will be recorded.  It also
    281   means that if your program does deallocate blocks but later allocates to a
    282   higher peak without subsequently deallocating, the reported peak will be
    283   too low.
    284   </p></li>
    285 <li class="listitem"><p>Even with this behaviour, recording the peak accurately
    286   is slow.  So by default Massif records a peak whose size is within 1% of
    287   the size of the true peak.  This inaccuracy in the peak measurement can be
    288   changed with the <code class="option">--peak-inaccuracy</code> option.</p></li>
    289 </ul></div>
    290 <p>The following graph is from an execution of Konqueror, the KDE web
    291 browser.  It shows what graphs for larger programs look like.</p>
    292 <pre class="screen">
    293     MB
    294 3.952^                                                                    # 
    295      |                                                                   @#:
    296      |                                                                 :@@#:
    297      |                                                            @@::::@@#: 
    298      |                                                            @ :: :@@#::
    299      |                                                          @@@ :: :@@#::
    300      |                                                       @@:@@@ :: :@@#::
    301      |                                                    :::@ :@@@ :: :@@#::
    302      |                                                    : :@ :@@@ :: :@@#::
    303      |                                                  :@: :@ :@@@ :: :@@#:: 
    304      |                                                @@:@: :@ :@@@ :: :@@#:::
    305      |                           :       ::         ::@@:@: :@ :@@@ :: :@@#:::
    306      |                        :@@:    ::::: ::::@@@:::@@:@: :@ :@@@ :: :@@#:::
    307      |                     ::::@@:  ::: ::::::: @  :::@@:@: :@ :@@@ :: :@@#:::
    308      |                    @: ::@@:  ::: ::::::: @  :::@@:@: :@ :@@@ :: :@@#:::
    309      |                    @: ::@@:  ::: ::::::: @  :::@@:@: :@ :@@@ :: :@@#:::
    310      |                    @: ::@@:::::: ::::::: @  :::@@:@: :@ :@@@ :: :@@#:::
    311      |                ::@@@: ::@@:: ::: ::::::: @  :::@@:@: :@ :@@@ :: :@@#:::
    312      |             :::::@ @: ::@@:: ::: ::::::: @  :::@@:@: :@ :@@@ :: :@@#:::
    313      |           @@:::::@ @: ::@@:: ::: ::::::: @  :::@@:@: :@ :@@@ :: :@@#:::
    314    0 +-----------------------------------------------------------------------&gt;Mi
    315      0                                                                   626.4
    316 
    317 Number of snapshots: 63
    318  Detailed snapshots: [3, 4, 10, 11, 15, 16, 29, 33, 34, 36, 39, 41,
    319                       42, 43, 44, 49, 50, 51, 53, 55, 56, 57 (peak)]
    320 </pre>
    321 <p>Note that the larger size units are KB, MB, GB, etc.  As is typical
    322 for memory measurements, these are based on a multiplier of 1024, rather
    323 than the standard SI multiplier of 1000.  Strictly speaking, they should be
    324 written KiB, MiB, GiB, etc.</p>
    325 </div>
    326 <div class="sect2" title="9.2.6.The Snapshot Details">
    327 <div class="titlepage"><div><div><h3 class="title">
    328 <a name="ms-manual.thesnapshotdetails"></a>9.2.6.The Snapshot Details</h3></div></div></div>
    329 <p>Returning to our example, the graph is followed by the detailed
    330 information for each snapshot.  The first nine snapshots are normal, so only
    331 a small amount of information is recorded for each one:</p>
    332 <pre class="screen">
    333 --------------------------------------------------------------------------------
    334   n        time(B)         total(B)   useful-heap(B) extra-heap(B)    stacks(B)
    335 --------------------------------------------------------------------------------
    336   0              0                0                0             0            0
    337   1          1,008            1,008            1,000             8            0
    338   2          2,016            2,016            2,000            16            0
    339   3          3,024            3,024            3,000            24            0
    340   4          4,032            4,032            4,000            32            0
    341   5          5,040            5,040            5,000            40            0
    342   6          6,048            6,048            6,000            48            0
    343   7          7,056            7,056            7,000            56            0
    344   8          8,064            8,064            8,000            64            0
    345 </pre>
    346 <p>Each normal snapshot records several things.</p>
    347 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    348 <li class="listitem"><p>Its number.</p></li>
    349 <li class="listitem"><p>The time it was taken. In this case, the time unit is
    350   bytes, due to the use of
    351   <code class="option">--time-unit=B</code>.</p></li>
    352 <li class="listitem"><p>The total memory consumption at that point.</p></li>
    353 <li class="listitem"><p>The number of useful heap bytes allocated at that point.
    354   This reflects the number of bytes asked for by the
    355   program.</p></li>
    356 <li class="listitem">
    357 <p>The number of extra heap bytes allocated at that point.
    358   This reflects the number of bytes allocated in excess of what the program
    359   asked for.  There are two sources of extra heap bytes.</p>
    360 <p>First, every heap block has administrative bytes associated with it.
    361   The exact number of administrative bytes depends on the details of the
    362   allocator.  By default Massif assumes 8 bytes per block, as can be seen
    363   from the example, but this number can be changed via the
    364   <code class="option">--heap-admin</code> option.</p>
    365 <p>Second, allocators often round up the number of bytes asked for to a
    366   larger number, usually 8 or 16.  This is required to ensure that elements
    367   within the block are suitably aligned.  If N bytes are asked for, Massif
    368   rounds N up to the nearest multiple of the value specified by the
    369   <code class="option"><a class="xref" href="manual-core.html#opt.alignment">--alignment</a></code> option.
    370   </p>
    371 </li>
    372 <li class="listitem"><p>The size of the stack(s).  By default, stack profiling is
    373   off as it slows Massif down greatly.  Therefore, the stack column is zero
    374   in the example.  Stack profiling can be turned on with the
    375   <code class="option">--stacks=yes</code> option.  
    376   
    377   </p></li>
    378 </ul></div>
    379 <p>The next snapshot is detailed.  As well as the basic counts, it gives
    380 an allocation tree which indicates exactly which pieces of code were
    381 responsible for allocating heap memory:</p>
    382 <pre class="screen">
    383   9          9,072            9,072            9,000            72            0
    384 99.21% (9,000B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    385 -&gt;99.21% (9,000B) 0x804841A: main (example.c:20)
    386 </pre>
    387 <p>The allocation tree can be read from the top down.  The first line
    388 indicates all heap allocation functions such as <code class="function">malloc</code>
    389 and C++ <code class="function">new</code>.  All heap allocations go through these
    390 functions, and so all 9,000 useful bytes (which is 99.21% of all allocated
    391 bytes) go through them.  But how were <code class="function">malloc</code> and new
    392 called?  At this point, every allocation so far has been due to line 20
    393 inside <code class="function">main</code>, hence the second line in the tree.  The
    394 <code class="option">-&gt;</code> indicates that main (line 20) called
    395 <code class="function">malloc</code>.</p>
    396 <p>Let's see what the subsequent output shows happened next:</p>
    397 <pre class="screen">
    398 --------------------------------------------------------------------------------
    399   n        time(B)         total(B)   useful-heap(B) extra-heap(B)    stacks(B)
    400 --------------------------------------------------------------------------------
    401  10         10,080           10,080           10,000            80            0
    402  11         12,088           12,088           12,000            88            0
    403  12         16,096           16,096           16,000            96            0
    404  13         20,104           20,104           20,000           104            0
    405  14         20,104           20,104           20,000           104            0
    406 99.48% (20,000B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    407 -&gt;49.74% (10,000B) 0x804841A: main (example.c:20)
    408 | 
    409 -&gt;39.79% (8,000B) 0x80483C2: g (example.c:5)
    410 | -&gt;19.90% (4,000B) 0x80483E2: f (example.c:11)
    411 | | -&gt;19.90% (4,000B) 0x8048431: main (example.c:23)
    412 | |   
    413 | -&gt;19.90% (4,000B) 0x8048436: main (example.c:25)
    414 |   
    415 -&gt;09.95% (2,000B) 0x80483DA: f (example.c:10)
    416   -&gt;09.95% (2,000B) 0x8048431: main (example.c:23)
    417 </pre>
    418 <p>The first four snapshots are similar to the previous ones.  But then
    419 the global allocation peak is reached, and a detailed snapshot (number 14)
    420 is taken.  Its allocation tree shows that 20,000B of useful heap memory has
    421 been allocated, and the lines and arrows indicate that this is from three
    422 different code locations: line 20, which is responsible for 10,000B
    423 (49.74%);  line 5, which is responsible for 8,000B (39.79%); and line 10,
    424 which is responsible for 2,000B (9.95%).</p>
    425 <p>We can then drill down further in the allocation tree.  For example,
    426 of the 8,000B asked for by line 5, half of it was due to a call from line
    427 11, and half was due to a call from line 25.</p>
    428 <p>In short, Massif collates the stack trace of every single allocation
    429 point in the program into a single tree, which gives a complete picture at
    430 a particular point in time of how and why all heap memory was
    431 allocated.</p>
    432 <p>Note that the tree entries correspond not to functions, but to
    433 individual code locations.  For example, if function <code class="function">A</code>
    434 calls <code class="function">malloc</code>, and function <code class="function">B</code> calls
    435 <code class="function">A</code> twice, once on line 10 and once on line 11, then
    436 the two calls will result in two distinct stack traces in the tree.  In
    437 contrast, if <code class="function">B</code> calls <code class="function">A</code> repeatedly
    438 from line 15 (e.g. due to a loop), then each of those calls will be
    439 represented by the same stack trace in the tree.</p>
    440 <p>Note also that each tree entry with children in the example satisfies an
    441 invariant: the entry's size is equal to the sum of its children's sizes.
    442 For example, the first entry has size 20,000B, and its children have sizes
    443 10,000B, 8,000B, and 2,000B.  In general, this invariant almost always
    444 holds.  However, in rare circumstances stack traces can be malformed, in
    445 which case a stack trace can be a sub-trace of another stack trace.  This
    446 means that some entries in the tree may not satisfy the invariant -- the
    447 entry's size will be greater than the sum of its children's sizes.  This is
    448 not a big problem, but could make the results confusing.  Massif can
    449 sometimes detect when this happens;  if it does, it issues a warning:</p>
    450 <pre class="screen">
    451 Warning: Malformed stack trace detected.  In Massif's output,
    452          the size of an entry's child entries may not sum up
    453          to the entry's size as they normally do.
    454 </pre>
    455 <p>However, Massif does not detect and warn about every such occurrence.
    456 Fortunately, malformed stack traces are rare in practice.</p>
    457 <p>Returning now to ms_print's output, the final part is similar:</p>
    458 <pre class="screen">
    459 --------------------------------------------------------------------------------
    460   n        time(B)         total(B)   useful-heap(B) extra-heap(B)    stacks(B)
    461 --------------------------------------------------------------------------------
    462  15         21,112           19,096           19,000            96            0
    463  16         22,120           18,088           18,000            88            0
    464  17         23,128           17,080           17,000            80            0
    465  18         24,136           16,072           16,000            72            0
    466  19         25,144           15,064           15,000            64            0
    467  20         26,152           14,056           14,000            56            0
    468  21         27,160           13,048           13,000            48            0
    469  22         28,168           12,040           12,000            40            0
    470  23         29,176           11,032           11,000            32            0
    471  24         30,184           10,024           10,000            24            0
    472 99.76% (10,000B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    473 -&gt;79.81% (8,000B) 0x80483C2: g (example.c:5)
    474 | -&gt;39.90% (4,000B) 0x80483E2: f (example.c:11)
    475 | | -&gt;39.90% (4,000B) 0x8048431: main (example.c:23)
    476 | |   
    477 | -&gt;39.90% (4,000B) 0x8048436: main (example.c:25)
    478 |   
    479 -&gt;19.95% (2,000B) 0x80483DA: f (example.c:10)
    480 | -&gt;19.95% (2,000B) 0x8048431: main (example.c:23)
    481 |   
    482 -&gt;00.00% (0B) in 1+ places, all below ms_print's threshold (01.00%)
    483 </pre>
    484 <p>The final detailed snapshot shows how the heap looked at termination.
    485 The 00.00% entry represents the code locations for which memory was
    486 allocated and then freed (line 20 in this case, the memory for which was
    487 freed on line 28).  However, no code location details are given for this
    488 entry;  by default, Massif only records the details for code locations
    489 responsible for more than 1% of useful memory bytes, and ms_print likewise
    490 only prints the details for code locations responsible for more than 1%.
    491 The entries that do not meet this threshold are aggregated.  This avoids
    492 filling up the output with large numbers of unimportant entries.  The
    493 thresholds can be changed with the
    494 <code class="option">--threshold</code> option that both Massif and
    495 ms_print support.</p>
    496 </div>
    497 <div class="sect2" title="9.2.7.Forking Programs">
    498 <div class="titlepage"><div><div><h3 class="title">
    499 <a name="ms-manual.forkingprograms"></a>9.2.7.Forking Programs</h3></div></div></div>
    500 <p>If your program forks, the child will inherit all the profiling data that
    501 has been gathered for the parent.</p>
    502 <p>If the output file format string (controlled by
    503 <code class="option">--massif-out-file</code>) does not contain <code class="option">%p</code>, then
    504 the outputs from the parent and child will be intermingled in a single output
    505 file, which will almost certainly make it unreadable by ms_print.</p>
    506 </div>
    507 <div class="sect2" title="9.2.8.Measuring All Memory in a Process">
    508 <div class="titlepage"><div><div><h3 class="title">
    509 <a name="ms-manual.not-measured"></a>9.2.8.Measuring All Memory in a Process</h3></div></div></div>
    510 <p>
    511 It is worth emphasising that by default Massif measures only heap memory, i.e.
    512 memory allocated with
    513 <code class="function">malloc</code>,
    514 <code class="function">calloc</code>,
    515 <code class="function">realloc</code>,
    516 <code class="function">memalign</code>,
    517 <code class="function">new</code>,
    518 <code class="function">new[]</code>,
    519 and a few other, similar functions.  (And it can optionally measure stack
    520 memory, of course.)  This means it does <span class="emphasis"><em>not</em></span> directly
    521 measure memory allocated with lower-level system calls such as
    522 <code class="function">mmap</code>,
    523 <code class="function">mremap</code>, and
    524 <code class="function">brk</code>.  
    525 </p>
    526 <p>
    527 Heap allocation functions such as <code class="function">malloc</code> are built on
    528 top of these system calls.  For example, when needed, an allocator will
    529 typically call <code class="function">mmap</code> to allocate a large chunk of
    530 memory, and then hand over pieces of that memory chunk to the client program
    531 in response to calls to <code class="function">malloc</code> et al.  Massif directly
    532 measures only these higher-level <code class="function">malloc</code> et al calls,
    533 not the lower-level system calls.
    534 </p>
    535 <p>
    536 Furthermore, a client program may use these lower-level system calls
    537 directly to allocate memory.  By default, Massif does not measure these.  Nor
    538 does it measure the size of code, data and BSS segments.  Therefore, the
    539 numbers reported by Massif may be significantly smaller than those reported by
    540 tools such as <code class="filename">top</code> that measure a program's total size in
    541 memory.
    542 </p>
    543 <p>
    544 However, if you wish to measure <span class="emphasis"><em>all</em></span> the memory used by
    545 your program, you can use the <code class="option">--pages-as-heap=yes</code>.  When this
    546 option is enabled, Massif's normal heap block profiling is replaced by
    547 lower-level page profiling.  Every page allocated via
    548 <code class="function">mmap</code> and similar system calls is treated as a distinct
    549 block.  This means that code, data and BSS segments are all measured, as they
    550 are just memory pages.  Even the stack is measured, since it is ultimately
    551 allocated (and extended when necessary) via <code class="function">mmap</code>;  for
    552 this reason <code class="option">--stacks=yes</code> is not allowed in conjunction with
    553 <code class="option">--pages-as-heap=yes</code>.
    554 </p>
    555 <p>
    556 After <code class="option">--pages-as-heap=yes</code> is used, ms_print's output is
    557 mostly unchanged.  One difference is that the start of each detailed snapshot
    558 says:
    559 </p>
    560 <pre class="screen">
    561 (page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc.
    562 </pre>
    563 <p>instead of the usual</p>:
    564 
    565 <pre class="screen">
    566 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    567 </pre>
    568 <p>
    569 The stack traces in the output may be more difficult to read, and interpreting
    570 them may require some detailed understanding of the lower levels of a program
    571 like the memory allocators.  But for some programs having the full information
    572 about memory usage can be very useful.
    573 </p>
    574 </div>
    575 <div class="sect2" title="9.2.9.Acting on Massif's Information">
    576 <div class="titlepage"><div><div><h3 class="title">
    577 <a name="ms-manual.acting"></a>9.2.9.Acting on Massif's Information</h3></div></div></div>
    578 <p>Massif's information is generally fairly easy to act upon.  The
    579 obvious place to start looking is the peak snapshot.</p>
    580 <p>It can also be useful to look at the overall shape of the graph, to
    581 see if memory usage climbs and falls as you expect;  spikes in the graph
    582 might be worth investigating.</p>
    583 <p>The detailed snapshots can get quite large.  It is worth viewing them
    584 in a very wide window.   It's also a good idea to view them with a text
    585 editor.  That makes it easy to scroll up and down while keeping the cursor
    586 in a particular column, which makes following the allocation chains easier.
    587 </p>
    588 </div>
    589 </div>
    590 <div class="sect1" title="9.3.Massif Command-line Options">
    591 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    592 <a name="ms-manual.options"></a>9.3.Massif Command-line Options</h2></div></div></div>
    593 <p>Massif-specific command-line options are:</p>
    594 <div class="variablelist">
    595 <a name="ms.opts.list"></a><dl>
    596 <dt>
    597 <a name="opt.heap"></a><span class="term">
    598       <code class="option">--heap=&lt;yes|no&gt; [default: yes] </code>
    599     </span>
    600 </dt>
    601 <dd><p>Specifies whether heap profiling should be done.</p></dd>
    602 <dt>
    603 <a name="opt.heap-admin"></a><span class="term">
    604       <code class="option">--heap-admin=&lt;size&gt; [default: 8] </code>
    605     </span>
    606 </dt>
    607 <dd><p>If heap profiling is enabled, gives the number of administrative
    608       bytes per block to use.  This should be an estimate of the average,
    609       since it may vary.  For example, the allocator used by
    610       glibc on Linux requires somewhere between 4 to
    611       15 bytes per block, depending on various factors.  That allocator also
    612       requires admin space for freed blocks, but Massif cannot
    613       account for this.</p></dd>
    614 <dt>
    615 <a name="opt.stacks"></a><span class="term">
    616       <code class="option">--stacks=&lt;yes|no&gt; [default: no] </code>
    617     </span>
    618 </dt>
    619 <dd><p>Specifies whether stack profiling should be done.  This option
    620       slows Massif down greatly, and so is off by default.  Note that Massif
    621       assumes that the main stack has size zero at start-up.  This is not
    622       true, but doing otherwise accurately is difficult.  Furthermore,
    623       starting at zero better indicates the size of the part of the main
    624       stack that a user program actually has control over.</p></dd>
    625 <dt>
    626 <a name="opt.pages-as-heap"></a><span class="term">
    627       <code class="option">--pages-as-heap=&lt;yes|no&gt; [default: no] </code>
    628     </span>
    629 </dt>
    630 <dd><p>Tells Massif to profile memory at the page level rather
    631         than at the malloc'd block level.  See above for details.
    632       </p></dd>
    633 <dt>
    634 <a name="opt.depth"></a><span class="term">
    635       <code class="option">--depth=&lt;number&gt; [default: 30] </code>
    636     </span>
    637 </dt>
    638 <dd><p>Maximum depth of the allocation trees recorded for detailed
    639       snapshots.  Increasing it will make Massif run somewhat more slowly,
    640       use more memory, and produce bigger output files.</p></dd>
    641 <dt>
    642 <a name="opt.alloc-fn"></a><span class="term">
    643       <code class="option">--alloc-fn=&lt;name&gt; </code>
    644     </span>
    645 </dt>
    646 <dd>
    647 <p>Functions specified with this option will be treated as though
    648       they were a heap allocation function such as
    649       <code class="function">malloc</code>.  This is useful for functions that are
    650       wrappers to <code class="function">malloc</code> or <code class="function">new</code>,
    651       which can fill up the allocation trees with uninteresting information.
    652       This option can be specified multiple times on the command line, to
    653       name multiple functions.</p>
    654 <p>Note that the named function will only be treated this way if it is
    655       the top entry in a stack trace, or just below another function treated
    656       this way.  For example, if you have a function
    657       <code class="function">malloc1</code> that wraps <code class="function">malloc</code>,
    658       and <code class="function">malloc2</code> that wraps
    659       <code class="function">malloc1</code>, just specifying
    660       <code class="option">--alloc-fn=malloc2</code> will have no effect.  You need to
    661       specify <code class="option">--alloc-fn=malloc1</code> as well.  This is a little
    662       inconvenient, but the reason is that checking for allocation functions
    663       is slow, and it saves a lot of time if Massif can stop looking through
    664       the stack trace entries as soon as it finds one that doesn't match
    665       rather than having to continue through all the entries.</p>
    666 <p>Note that C++ names are demangled.  Note also that overloaded
    667       C++ names must be written in full.  Single quotes may be necessary to
    668       prevent the shell from breaking them up.  For example:
    669 </p>
    670 <pre class="screen">
    671 --alloc-fn='operator new(unsigned, std::nothrow_t const&amp;)'
    672 </pre>
    673 <p>
    674       </p>
    675 </dd>
    676 <dt>
    677 <a name="opt.ignore-fn"></a><span class="term">
    678       <code class="option">--ignore-fn=&lt;name&gt; </code>
    679     </span>
    680 </dt>
    681 <dd>
    682 <p>Any direct heap allocation (i.e. a call to
    683       <code class="function">malloc</code>, <code class="function">new</code>, etc, or a call
    684       to a function named by an <code class="option">--alloc-fn</code>
    685       option) that occurs in a function specified by this option will be
    686       ignored.  This is mostly useful for testing purposes.  This option can
    687       be specified multiple times on the command line, to name multiple
    688       functions.
    689       </p>
    690 <p>Any <code class="function">realloc</code> of an ignored block will
    691       also be ignored, even if the <code class="function">realloc</code> call does
    692       not occur in an ignored function.  This avoids the possibility of
    693       negative heap sizes if ignored blocks are shrunk with
    694       <code class="function">realloc</code>.
    695       </p>
    696 <p>The rules for writing C++ function names are the same as
    697       for <code class="option">--alloc-fn</code> above.
    698       </p>
    699 </dd>
    700 <dt>
    701 <a name="opt.threshold"></a><span class="term">
    702       <code class="option">--threshold=&lt;m.n&gt; [default: 1.0] </code>
    703     </span>
    704 </dt>
    705 <dd><p>The significance threshold for heap allocations, as a
    706       percentage of total memory size.  Allocation tree entries that account
    707       for less than this will be aggregated.  Note that this should be
    708       specified in tandem with ms_print's option of the same name.</p></dd>
    709 <dt>
    710 <a name="opt.peak-inaccuracy"></a><span class="term">
    711       <code class="option">--peak-inaccuracy=&lt;m.n&gt; [default: 1.0] </code>
    712     </span>
    713 </dt>
    714 <dd><p>Massif does not necessarily record the actual global memory
    715       allocation peak;  by default it records a peak only when the global
    716       memory allocation size exceeds the previous peak by at least 1.0%.
    717       This is because there can be many local allocation peaks along the way,
    718       and doing a detailed snapshot for every one would be expensive and
    719       wasteful, as all but one of them will be later discarded.  This
    720       inaccuracy can be changed (even to 0.0%) via this option, but Massif
    721       will run drastically slower as the number approaches zero.</p></dd>
    722 <dt>
    723 <a name="opt.time-unit"></a><span class="term">
    724       <code class="option">--time-unit=&lt;i|ms|B&gt; [default: i] </code>
    725     </span>
    726 </dt>
    727 <dd><p>The time unit used for the profiling.  There are three
    728       possibilities: instructions executed (i), which is good for most
    729       cases; real (wallclock) time (ms, i.e. milliseconds), which is
    730       sometimes useful; and bytes allocated/deallocated on the heap and/or
    731       stack (B), which is useful for very short-run programs, and for
    732       testing purposes, because it is the most reproducible across different
    733       machines.</p></dd>
    734 <dt>
    735 <a name="opt.detailed-freq"></a><span class="term">
    736       <code class="option">--detailed-freq=&lt;n&gt; [default: 10] </code>
    737     </span>
    738 </dt>
    739 <dd><p>Frequency of detailed snapshots.  With
    740       <code class="option">--detailed-freq=1</code>, every snapshot is
    741       detailed.</p></dd>
    742 <dt>
    743 <a name="opt.max-snapshots"></a><span class="term">
    744       <code class="option">--max-snapshots=&lt;n&gt; [default: 100] </code>
    745     </span>
    746 </dt>
    747 <dd><p>The maximum number of snapshots recorded.  If set to N, for all
    748       programs except very short-running ones, the final number of snapshots
    749       will be between N/2 and N.</p></dd>
    750 <dt>
    751 <a name="opt.massif-out-file"></a><span class="term">
    752       <code class="option">--massif-out-file=&lt;file&gt; [default: massif.out.%p] </code>
    753     </span>
    754 </dt>
    755 <dd><p>Write the profile data to <code class="computeroutput">file</code>
    756       rather than to the default output file,
    757       <code class="computeroutput">massif.out.&lt;pid&gt;</code>.  The
    758       <code class="option">%p</code> and <code class="option">%q</code> format specifiers can be
    759       used to embed the process ID and/or the contents of an environment
    760       variable in the name, as is the case for the core option
    761       <code class="option"><a class="xref" href="manual-core.html#opt.log-file">--log-file</a></code>.
    762       </p></dd>
    763 </dl>
    764 </div>
    765 </div>
    766 <div class="sect1" title="9.4.Massif Client Requests">
    767 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    768 <a name="ms-manual.clientreqs"></a>9.4.Massif Client Requests</h2></div></div></div>
    769 <p>Massif does not have a <code class="filename">massif.h</code> file, but it does
    770 implement two of the core client requests:
    771 <code class="function">VALGRIND_MALLOCLIKE_BLOCK</code> and
    772 <code class="function">VALGRIND_FREELIKE_BLOCK</code>;  they are described in 
    773 <a class="xref" href="manual-core-adv.html#manual-core-adv.clientreq" title="3.1.The Client Request mechanism">The Client Request mechanism</a>.
    774 </p>
    775 </div>
    776 <div class="sect1" title="9.5.ms_print Command-line Options">
    777 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    778 <a name="ms-manual.ms_print-options"></a>9.5.ms_print Command-line Options</h2></div></div></div>
    779 <p>ms_print's options are:</p>
    780 <div class="variablelist">
    781 <a name="ms_print.opts.list"></a><dl>
    782 <dt><span class="term">
    783       <code class="option">-h --help </code>
    784     </span></dt>
    785 <dd><p>Show the help message.</p></dd>
    786 <dt><span class="term">
    787       <code class="option">--version </code>
    788     </span></dt>
    789 <dd><p>Show the version number.</p></dd>
    790 <dt><span class="term">
    791       <code class="option">--threshold=&lt;m.n&gt; [default: 1.0] </code>
    792     </span></dt>
    793 <dd><p>Same as Massif's <code class="option">--threshold</code> option, but
    794       applied after profiling rather than during.</p></dd>
    795 <dt><span class="term">
    796       <code class="option">--x=&lt;4..1000&gt; [default: 72]</code>
    797     </span></dt>
    798 <dd><p>Width of the graph, in columns.</p></dd>
    799 <dt><span class="term">
    800       <code class="option">--y=&lt;4..1000&gt; [default: 20] </code>
    801     </span></dt>
    802 <dd><p>Height of the graph, in rows.</p></dd>
    803 </dl>
    804 </div>
    805 </div>
    806 <div class="sect1" title="9.6.Massif's Output File Format">
    807 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    808 <a name="ms-manual.fileformat"></a>9.6.Massif's Output File Format</h2></div></div></div>
    809 <p>Massif's file format is plain text (i.e. not binary) and deliberately
    810 easy to read for both humans and machines.  Nonetheless, the exact format
    811 is not described here.  This is because the format is currently very
    812 Massif-specific.  In the future we hope to make the format more general, and
    813 thus suitable for possible use with other tools.  Once this has been done,
    814 the format will be documented here.</p>
    815 </div>
    816 </div>
    817 <div>
    818 <br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer">
    819 <tr>
    820 <td rowspan="2" width="40%" align="left">
    821 <a accesskey="p" href="drd-manual.html">&lt;&lt;8.DRD: a thread error detector</a></td>
    822 <td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td>
    823 <td rowspan="2" width="40%" align="right"><a accesskey="n" href="dh-manual.html">10.DHAT: a dynamic heap analysis tool&gt;&gt;</a>
    824 </td>
    825 </tr>
    826 <tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr>
    827 </table>
    828 </div>
    829 </body>
    830 </html>
    831