Home | History | Annotate | Download | only in crypto
      1 /*
      2  * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208)
      3  * Copyright (c) 2006-2007 <j (at) w1.fi>
      4  *
      5  * This program is free software; you can redistribute it and/or modify
      6  * it under the terms of the GNU General Public License version 2 as
      7  * published by the Free Software Foundation.
      8  *
      9  * Alternatively, this software may be distributed under the terms of BSD
     10  * license.
     11  *
     12  * See README and COPYING for more details.
     13  *
     14  * This file implements an example authentication algorithm defined for 3GPP
     15  * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
     16  * EAP-AKA to be tested properly with real USIM cards.
     17  *
     18  * This implementations assumes that the r1..r5 and c1..c5 constants defined in
     19  * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
     20  * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
     21  * be AES (Rijndael).
     22  */
     23 
     24 #include "includes.h"
     25 
     26 #include "common.h"
     27 #include "crypto/aes_wrap.h"
     28 #include "milenage.h"
     29 
     30 
     31 /**
     32  * milenage_f1 - Milenage f1 and f1* algorithms
     33  * @opc: OPc = 128-bit value derived from OP and K
     34  * @k: K = 128-bit subscriber key
     35  * @_rand: RAND = 128-bit random challenge
     36  * @sqn: SQN = 48-bit sequence number
     37  * @amf: AMF = 16-bit authentication management field
     38  * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL
     39  * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL
     40  * Returns: 0 on success, -1 on failure
     41  */
     42 int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand,
     43 		const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s)
     44 {
     45 	u8 tmp1[16], tmp2[16], tmp3[16];
     46 	int i;
     47 
     48 	/* tmp1 = TEMP = E_K(RAND XOR OP_C) */
     49 	for (i = 0; i < 16; i++)
     50 		tmp1[i] = _rand[i] ^ opc[i];
     51 	if (aes_128_encrypt_block(k, tmp1, tmp1))
     52 		return -1;
     53 
     54 	/* tmp2 = IN1 = SQN || AMF || SQN || AMF */
     55 	os_memcpy(tmp2, sqn, 6);
     56 	os_memcpy(tmp2 + 6, amf, 2);
     57 	os_memcpy(tmp2 + 8, tmp2, 8);
     58 
     59 	/* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
     60 
     61 	/* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */
     62 	for (i = 0; i < 16; i++)
     63 		tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];
     64 	/* XOR with TEMP = E_K(RAND XOR OP_C) */
     65 	for (i = 0; i < 16; i++)
     66 		tmp3[i] ^= tmp1[i];
     67 	/* XOR with c1 (= ..00, i.e., NOP) */
     68 
     69 	/* f1 || f1* = E_K(tmp3) XOR OP_c */
     70 	if (aes_128_encrypt_block(k, tmp3, tmp1))
     71 		return -1;
     72 	for (i = 0; i < 16; i++)
     73 		tmp1[i] ^= opc[i];
     74 	if (mac_a)
     75 		os_memcpy(mac_a, tmp1, 8); /* f1 */
     76 	if (mac_s)
     77 		os_memcpy(mac_s, tmp1 + 8, 8); /* f1* */
     78 	return 0;
     79 }
     80 
     81 
     82 /**
     83  * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
     84  * @opc: OPc = 128-bit value derived from OP and K
     85  * @k: K = 128-bit subscriber key
     86  * @_rand: RAND = 128-bit random challenge
     87  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
     88  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
     89  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
     90  * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL
     91  * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL
     92  * Returns: 0 on success, -1 on failure
     93  */
     94 int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand,
     95 		   u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar)
     96 {
     97 	u8 tmp1[16], tmp2[16], tmp3[16];
     98 	int i;
     99 
    100 	/* tmp2 = TEMP = E_K(RAND XOR OP_C) */
    101 	for (i = 0; i < 16; i++)
    102 		tmp1[i] = _rand[i] ^ opc[i];
    103 	if (aes_128_encrypt_block(k, tmp1, tmp2))
    104 		return -1;
    105 
    106 	/* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
    107 	/* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
    108 	/* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
    109 	/* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
    110 
    111 	/* f2 and f5 */
    112 	/* rotate by r2 (= 0, i.e., NOP) */
    113 	for (i = 0; i < 16; i++)
    114 		tmp1[i] = tmp2[i] ^ opc[i];
    115 	tmp1[15] ^= 1; /* XOR c2 (= ..01) */
    116 	/* f5 || f2 = E_K(tmp1) XOR OP_c */
    117 	if (aes_128_encrypt_block(k, tmp1, tmp3))
    118 		return -1;
    119 	for (i = 0; i < 16; i++)
    120 		tmp3[i] ^= opc[i];
    121 	if (res)
    122 		os_memcpy(res, tmp3 + 8, 8); /* f2 */
    123 	if (ak)
    124 		os_memcpy(ak, tmp3, 6); /* f5 */
    125 
    126 	/* f3 */
    127 	if (ck) {
    128 		/* rotate by r3 = 0x20 = 4 bytes */
    129 		for (i = 0; i < 16; i++)
    130 			tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];
    131 		tmp1[15] ^= 2; /* XOR c3 (= ..02) */
    132 		if (aes_128_encrypt_block(k, tmp1, ck))
    133 			return -1;
    134 		for (i = 0; i < 16; i++)
    135 			ck[i] ^= opc[i];
    136 	}
    137 
    138 	/* f4 */
    139 	if (ik) {
    140 		/* rotate by r4 = 0x40 = 8 bytes */
    141 		for (i = 0; i < 16; i++)
    142 			tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];
    143 		tmp1[15] ^= 4; /* XOR c4 (= ..04) */
    144 		if (aes_128_encrypt_block(k, tmp1, ik))
    145 			return -1;
    146 		for (i = 0; i < 16; i++)
    147 			ik[i] ^= opc[i];
    148 	}
    149 
    150 	/* f5* */
    151 	if (akstar) {
    152 		/* rotate by r5 = 0x60 = 12 bytes */
    153 		for (i = 0; i < 16; i++)
    154 			tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];
    155 		tmp1[15] ^= 8; /* XOR c5 (= ..08) */
    156 		if (aes_128_encrypt_block(k, tmp1, tmp1))
    157 			return -1;
    158 		for (i = 0; i < 6; i++)
    159 			akstar[i] = tmp1[i] ^ opc[i];
    160 	}
    161 
    162 	return 0;
    163 }
    164 
    165 
    166 /**
    167  * milenage_generate - Generate AKA AUTN,IK,CK,RES
    168  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
    169  * @amf: AMF = 16-bit authentication management field
    170  * @k: K = 128-bit subscriber key
    171  * @sqn: SQN = 48-bit sequence number
    172  * @_rand: RAND = 128-bit random challenge
    173  * @autn: Buffer for AUTN = 128-bit authentication token
    174  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
    175  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
    176  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
    177  * @res_len: Max length for res; set to used length or 0 on failure
    178  */
    179 void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k,
    180 		       const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik,
    181 		       u8 *ck, u8 *res, size_t *res_len)
    182 {
    183 	int i;
    184 	u8 mac_a[8], ak[6];
    185 
    186 	if (*res_len < 8) {
    187 		*res_len = 0;
    188 		return;
    189 	}
    190 	if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) ||
    191 	    milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) {
    192 		*res_len = 0;
    193 		return;
    194 	}
    195 	*res_len = 8;
    196 
    197 	/* AUTN = (SQN ^ AK) || AMF || MAC */
    198 	for (i = 0; i < 6; i++)
    199 		autn[i] = sqn[i] ^ ak[i];
    200 	os_memcpy(autn + 6, amf, 2);
    201 	os_memcpy(autn + 8, mac_a, 8);
    202 }
    203 
    204 
    205 /**
    206  * milenage_auts - Milenage AUTS validation
    207  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
    208  * @k: K = 128-bit subscriber key
    209  * @_rand: RAND = 128-bit random challenge
    210  * @auts: AUTS = 112-bit authentication token from client
    211  * @sqn: Buffer for SQN = 48-bit sequence number
    212  * Returns: 0 = success (sqn filled), -1 on failure
    213  */
    214 int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts,
    215 		  u8 *sqn)
    216 {
    217 	u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
    218 	u8 ak[6], mac_s[8];
    219 	int i;
    220 
    221 	if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
    222 		return -1;
    223 	for (i = 0; i < 6; i++)
    224 		sqn[i] = auts[i] ^ ak[i];
    225 	if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) ||
    226 	    memcmp(mac_s, auts + 6, 8) != 0)
    227 		return -1;
    228 	return 0;
    229 }
    230 
    231 
    232 /**
    233  * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
    234  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
    235  * @k: K = 128-bit subscriber key
    236  * @_rand: RAND = 128-bit random challenge
    237  * @sres: Buffer for SRES = 32-bit SRES
    238  * @kc: Buffer for Kc = 64-bit Kc
    239  * Returns: 0 on success, -1 on failure
    240  */
    241 int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc)
    242 {
    243 	u8 res[8], ck[16], ik[16];
    244 	int i;
    245 
    246 	if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL))
    247 		return -1;
    248 
    249 	for (i = 0; i < 8; i++)
    250 		kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];
    251 
    252 #ifdef GSM_MILENAGE_ALT_SRES
    253 	os_memcpy(sres, res, 4);
    254 #else /* GSM_MILENAGE_ALT_SRES */
    255 	for (i = 0; i < 4; i++)
    256 		sres[i] = res[i] ^ res[i + 4];
    257 #endif /* GSM_MILENAGE_ALT_SRES */
    258 	return 0;
    259 }
    260 
    261 
    262 /**
    263  * milenage_generate - Generate AKA AUTN,IK,CK,RES
    264  * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
    265  * @k: K = 128-bit subscriber key
    266  * @sqn: SQN = 48-bit sequence number
    267  * @_rand: RAND = 128-bit random challenge
    268  * @autn: AUTN = 128-bit authentication token
    269  * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
    270  * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
    271  * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
    272  * @res_len: Variable that will be set to RES length
    273  * @auts: 112-bit buffer for AUTS
    274  * Returns: 0 on success, -1 on failure, or -2 on synchronization failure
    275  */
    276 int milenage_check(const u8 *opc, const u8 *k, const u8 *sqn, const u8 *_rand,
    277 		   const u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len,
    278 		   u8 *auts)
    279 {
    280 	int i;
    281 	u8 mac_a[8], ak[6], rx_sqn[6];
    282 	const u8 *amf;
    283 
    284 	wpa_hexdump(MSG_DEBUG, "Milenage: AUTN", autn, 16);
    285 	wpa_hexdump(MSG_DEBUG, "Milenage: RAND", _rand, 16);
    286 
    287 	if (milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL))
    288 		return -1;
    289 
    290 	*res_len = 8;
    291 	wpa_hexdump_key(MSG_DEBUG, "Milenage: RES", res, *res_len);
    292 	wpa_hexdump_key(MSG_DEBUG, "Milenage: CK", ck, 16);
    293 	wpa_hexdump_key(MSG_DEBUG, "Milenage: IK", ik, 16);
    294 	wpa_hexdump_key(MSG_DEBUG, "Milenage: AK", ak, 6);
    295 
    296 	/* AUTN = (SQN ^ AK) || AMF || MAC */
    297 	for (i = 0; i < 6; i++)
    298 		rx_sqn[i] = autn[i] ^ ak[i];
    299 	wpa_hexdump(MSG_DEBUG, "Milenage: SQN", rx_sqn, 6);
    300 
    301 	if (os_memcmp(rx_sqn, sqn, 6) <= 0) {
    302 		u8 auts_amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
    303 		if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
    304 			return -1;
    305 		wpa_hexdump_key(MSG_DEBUG, "Milenage: AK*", ak, 6);
    306 		for (i = 0; i < 6; i++)
    307 			auts[i] = sqn[i] ^ ak[i];
    308 		if (milenage_f1(opc, k, _rand, sqn, auts_amf, NULL, auts + 6))
    309 			return -1;
    310 		wpa_hexdump(MSG_DEBUG, "Milenage: AUTS", auts, 14);
    311 		return -2;
    312 	}
    313 
    314 	amf = autn + 6;
    315 	wpa_hexdump(MSG_DEBUG, "Milenage: AMF", amf, 2);
    316 	if (milenage_f1(opc, k, _rand, rx_sqn, amf, mac_a, NULL))
    317 		return -1;
    318 
    319 	wpa_hexdump(MSG_DEBUG, "Milenage: MAC_A", mac_a, 8);
    320 
    321 	if (os_memcmp(mac_a, autn + 8, 8) != 0) {
    322 		wpa_printf(MSG_DEBUG, "Milenage: MAC mismatch");
    323 		wpa_hexdump(MSG_DEBUG, "Milenage: Received MAC_A",
    324 			    autn + 8, 8);
    325 		return -1;
    326 	}
    327 
    328 	return 0;
    329 }
    330