1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_SORTED_VECTOR_H 18 #define ANDROID_SORTED_VECTOR_H 19 20 #include <assert.h> 21 #include <stdint.h> 22 #include <sys/types.h> 23 24 #include <utils/Vector.h> 25 #include <utils/VectorImpl.h> 26 #include <utils/TypeHelpers.h> 27 28 // --------------------------------------------------------------------------- 29 30 namespace android { 31 32 template <class TYPE> 33 class SortedVector : private SortedVectorImpl 34 { 35 friend class Vector<TYPE>; 36 37 public: 38 typedef TYPE value_type; 39 40 /*! 41 * Constructors and destructors 42 */ 43 44 SortedVector(); 45 SortedVector(const SortedVector<TYPE>& rhs); 46 virtual ~SortedVector(); 47 48 /*! copy operator */ 49 const SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const; 50 SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs); 51 52 /* 53 * empty the vector 54 */ 55 56 inline void clear() { VectorImpl::clear(); } 57 58 /*! 59 * vector stats 60 */ 61 62 //! returns number of items in the vector 63 inline size_t size() const { return VectorImpl::size(); } 64 //! returns wether or not the vector is empty 65 inline bool isEmpty() const { return VectorImpl::isEmpty(); } 66 //! returns how many items can be stored without reallocating the backing store 67 inline size_t capacity() const { return VectorImpl::capacity(); } 68 //! setst the capacity. capacity can never be reduced less than size() 69 inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); } 70 71 /*! 72 * C-style array access 73 */ 74 75 //! read-only C-style access 76 inline const TYPE* array() const; 77 78 //! read-write C-style access. BE VERY CAREFUL when modifying the array 79 //! you ust keep it sorted! You usually don't use this function. 80 TYPE* editArray(); 81 82 //! finds the index of an item 83 ssize_t indexOf(const TYPE& item) const; 84 85 //! finds where this item should be inserted 86 size_t orderOf(const TYPE& item) const; 87 88 89 /*! 90 * accessors 91 */ 92 93 //! read-only access to an item at a given index 94 inline const TYPE& operator [] (size_t index) const; 95 //! alternate name for operator [] 96 inline const TYPE& itemAt(size_t index) const; 97 //! stack-usage of the vector. returns the top of the stack (last element) 98 const TYPE& top() const; 99 //! same as operator [], but allows to access the vector backward (from the end) with a negative index 100 const TYPE& mirrorItemAt(ssize_t index) const; 101 102 /*! 103 * modifing the array 104 */ 105 106 //! add an item in the right place (and replace the one that is there) 107 ssize_t add(const TYPE& item); 108 109 //! editItemAt() MUST NOT change the order of this item 110 TYPE& editItemAt(size_t index) { 111 return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) ); 112 } 113 114 //! merges a vector into this one 115 ssize_t merge(const Vector<TYPE>& vector); 116 ssize_t merge(const SortedVector<TYPE>& vector); 117 118 //! removes an item 119 ssize_t remove(const TYPE&); 120 121 //! remove several items 122 inline ssize_t removeItemsAt(size_t index, size_t count = 1); 123 //! remove one item 124 inline ssize_t removeAt(size_t index) { return removeItemsAt(index); } 125 126 protected: 127 virtual void do_construct(void* storage, size_t num) const; 128 virtual void do_destroy(void* storage, size_t num) const; 129 virtual void do_copy(void* dest, const void* from, size_t num) const; 130 virtual void do_splat(void* dest, const void* item, size_t num) const; 131 virtual void do_move_forward(void* dest, const void* from, size_t num) const; 132 virtual void do_move_backward(void* dest, const void* from, size_t num) const; 133 virtual int do_compare(const void* lhs, const void* rhs) const; 134 }; 135 136 137 // --------------------------------------------------------------------------- 138 // No user serviceable parts from here... 139 // --------------------------------------------------------------------------- 140 141 template<class TYPE> inline 142 SortedVector<TYPE>::SortedVector() 143 : SortedVectorImpl(sizeof(TYPE), 144 ((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0) 145 |(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0) 146 |(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0)) 147 ) 148 { 149 } 150 151 template<class TYPE> inline 152 SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs) 153 : SortedVectorImpl(rhs) { 154 } 155 156 template<class TYPE> inline 157 SortedVector<TYPE>::~SortedVector() { 158 finish_vector(); 159 } 160 161 template<class TYPE> inline 162 SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) { 163 SortedVectorImpl::operator = (rhs); 164 return *this; 165 } 166 167 template<class TYPE> inline 168 const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const { 169 SortedVectorImpl::operator = (rhs); 170 return *this; 171 } 172 173 template<class TYPE> inline 174 const TYPE* SortedVector<TYPE>::array() const { 175 return static_cast<const TYPE *>(arrayImpl()); 176 } 177 178 template<class TYPE> inline 179 TYPE* SortedVector<TYPE>::editArray() { 180 return static_cast<TYPE *>(editArrayImpl()); 181 } 182 183 184 template<class TYPE> inline 185 const TYPE& SortedVector<TYPE>::operator[](size_t index) const { 186 assert( index<size() ); 187 return *(array() + index); 188 } 189 190 template<class TYPE> inline 191 const TYPE& SortedVector<TYPE>::itemAt(size_t index) const { 192 return operator[](index); 193 } 194 195 template<class TYPE> inline 196 const TYPE& SortedVector<TYPE>::mirrorItemAt(ssize_t index) const { 197 assert( (index>0 ? index : -index)<size() ); 198 return *(array() + ((index<0) ? (size()-index) : index)); 199 } 200 201 template<class TYPE> inline 202 const TYPE& SortedVector<TYPE>::top() const { 203 return *(array() + size() - 1); 204 } 205 206 template<class TYPE> inline 207 ssize_t SortedVector<TYPE>::add(const TYPE& item) { 208 return SortedVectorImpl::add(&item); 209 } 210 211 template<class TYPE> inline 212 ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const { 213 return SortedVectorImpl::indexOf(&item); 214 } 215 216 template<class TYPE> inline 217 size_t SortedVector<TYPE>::orderOf(const TYPE& item) const { 218 return SortedVectorImpl::orderOf(&item); 219 } 220 221 template<class TYPE> inline 222 ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) { 223 return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector)); 224 } 225 226 template<class TYPE> inline 227 ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) { 228 return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector)); 229 } 230 231 template<class TYPE> inline 232 ssize_t SortedVector<TYPE>::remove(const TYPE& item) { 233 return SortedVectorImpl::remove(&item); 234 } 235 236 template<class TYPE> inline 237 ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) { 238 return VectorImpl::removeItemsAt(index, count); 239 } 240 241 // --------------------------------------------------------------------------- 242 243 template<class TYPE> 244 void SortedVector<TYPE>::do_construct(void* storage, size_t num) const { 245 construct_type( reinterpret_cast<TYPE*>(storage), num ); 246 } 247 248 template<class TYPE> 249 void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const { 250 destroy_type( reinterpret_cast<TYPE*>(storage), num ); 251 } 252 253 template<class TYPE> 254 void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const { 255 copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 256 } 257 258 template<class TYPE> 259 void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const { 260 splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num ); 261 } 262 263 template<class TYPE> 264 void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const { 265 move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 266 } 267 268 template<class TYPE> 269 void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const { 270 move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 271 } 272 273 template<class TYPE> 274 int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const { 275 return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) ); 276 } 277 278 }; // namespace android 279 280 281 // --------------------------------------------------------------------------- 282 283 #endif // ANDROID_SORTED_VECTOR_H 284