Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright (C) 2005 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ANDROID_SORTED_VECTOR_H
     18 #define ANDROID_SORTED_VECTOR_H
     19 
     20 #include <assert.h>
     21 #include <stdint.h>
     22 #include <sys/types.h>
     23 
     24 #include <utils/Vector.h>
     25 #include <utils/VectorImpl.h>
     26 #include <utils/TypeHelpers.h>
     27 
     28 // ---------------------------------------------------------------------------
     29 
     30 namespace android {
     31 
     32 template <class TYPE>
     33 class SortedVector : private SortedVectorImpl
     34 {
     35     friend class Vector<TYPE>;
     36 
     37 public:
     38             typedef TYPE    value_type;
     39 
     40     /*!
     41      * Constructors and destructors
     42      */
     43 
     44                             SortedVector();
     45                             SortedVector(const SortedVector<TYPE>& rhs);
     46     virtual                 ~SortedVector();
     47 
     48     /*! copy operator */
     49     const SortedVector<TYPE>&   operator = (const SortedVector<TYPE>& rhs) const;
     50     SortedVector<TYPE>&         operator = (const SortedVector<TYPE>& rhs);
     51 
     52     /*
     53      * empty the vector
     54      */
     55 
     56     inline  void            clear()             { VectorImpl::clear(); }
     57 
     58     /*!
     59      * vector stats
     60      */
     61 
     62     //! returns number of items in the vector
     63     inline  size_t          size() const                { return VectorImpl::size(); }
     64     //! returns wether or not the vector is empty
     65     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
     66     //! returns how many items can be stored without reallocating the backing store
     67     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
     68     //! setst the capacity. capacity can never be reduced less than size()
     69     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
     70 
     71     /*!
     72      * C-style array access
     73      */
     74 
     75     //! read-only C-style access
     76     inline  const TYPE*     array() const;
     77 
     78     //! read-write C-style access. BE VERY CAREFUL when modifying the array
     79     //! you ust keep it sorted! You usually don't use this function.
     80             TYPE*           editArray();
     81 
     82             //! finds the index of an item
     83             ssize_t         indexOf(const TYPE& item) const;
     84 
     85             //! finds where this item should be inserted
     86             size_t          orderOf(const TYPE& item) const;
     87 
     88 
     89     /*!
     90      * accessors
     91      */
     92 
     93     //! read-only access to an item at a given index
     94     inline  const TYPE&     operator [] (size_t index) const;
     95     //! alternate name for operator []
     96     inline  const TYPE&     itemAt(size_t index) const;
     97     //! stack-usage of the vector. returns the top of the stack (last element)
     98             const TYPE&     top() const;
     99     //! same as operator [], but allows to access the vector backward (from the end) with a negative index
    100             const TYPE&     mirrorItemAt(ssize_t index) const;
    101 
    102     /*!
    103      * modifing the array
    104      */
    105 
    106             //! add an item in the right place (and replace the one that is there)
    107             ssize_t         add(const TYPE& item);
    108 
    109             //! editItemAt() MUST NOT change the order of this item
    110             TYPE&           editItemAt(size_t index) {
    111                 return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
    112             }
    113 
    114             //! merges a vector into this one
    115             ssize_t         merge(const Vector<TYPE>& vector);
    116             ssize_t         merge(const SortedVector<TYPE>& vector);
    117 
    118             //! removes an item
    119             ssize_t         remove(const TYPE&);
    120 
    121     //! remove several items
    122     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
    123     //! remove one item
    124     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
    125 
    126 protected:
    127     virtual void    do_construct(void* storage, size_t num) const;
    128     virtual void    do_destroy(void* storage, size_t num) const;
    129     virtual void    do_copy(void* dest, const void* from, size_t num) const;
    130     virtual void    do_splat(void* dest, const void* item, size_t num) const;
    131     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
    132     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
    133     virtual int     do_compare(const void* lhs, const void* rhs) const;
    134 };
    135 
    136 
    137 // ---------------------------------------------------------------------------
    138 // No user serviceable parts from here...
    139 // ---------------------------------------------------------------------------
    140 
    141 template<class TYPE> inline
    142 SortedVector<TYPE>::SortedVector()
    143     : SortedVectorImpl(sizeof(TYPE),
    144                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
    145                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
    146                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
    147                 )
    148 {
    149 }
    150 
    151 template<class TYPE> inline
    152 SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
    153     : SortedVectorImpl(rhs) {
    154 }
    155 
    156 template<class TYPE> inline
    157 SortedVector<TYPE>::~SortedVector() {
    158     finish_vector();
    159 }
    160 
    161 template<class TYPE> inline
    162 SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
    163     SortedVectorImpl::operator = (rhs);
    164     return *this;
    165 }
    166 
    167 template<class TYPE> inline
    168 const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
    169     SortedVectorImpl::operator = (rhs);
    170     return *this;
    171 }
    172 
    173 template<class TYPE> inline
    174 const TYPE* SortedVector<TYPE>::array() const {
    175     return static_cast<const TYPE *>(arrayImpl());
    176 }
    177 
    178 template<class TYPE> inline
    179 TYPE* SortedVector<TYPE>::editArray() {
    180     return static_cast<TYPE *>(editArrayImpl());
    181 }
    182 
    183 
    184 template<class TYPE> inline
    185 const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
    186     assert( index<size() );
    187     return *(array() + index);
    188 }
    189 
    190 template<class TYPE> inline
    191 const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
    192     return operator[](index);
    193 }
    194 
    195 template<class TYPE> inline
    196 const TYPE& SortedVector<TYPE>::mirrorItemAt(ssize_t index) const {
    197     assert( (index>0 ? index : -index)<size() );
    198     return *(array() + ((index<0) ? (size()-index) : index));
    199 }
    200 
    201 template<class TYPE> inline
    202 const TYPE& SortedVector<TYPE>::top() const {
    203     return *(array() + size() - 1);
    204 }
    205 
    206 template<class TYPE> inline
    207 ssize_t SortedVector<TYPE>::add(const TYPE& item) {
    208     return SortedVectorImpl::add(&item);
    209 }
    210 
    211 template<class TYPE> inline
    212 ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
    213     return SortedVectorImpl::indexOf(&item);
    214 }
    215 
    216 template<class TYPE> inline
    217 size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
    218     return SortedVectorImpl::orderOf(&item);
    219 }
    220 
    221 template<class TYPE> inline
    222 ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
    223     return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
    224 }
    225 
    226 template<class TYPE> inline
    227 ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
    228     return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
    229 }
    230 
    231 template<class TYPE> inline
    232 ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
    233     return SortedVectorImpl::remove(&item);
    234 }
    235 
    236 template<class TYPE> inline
    237 ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
    238     return VectorImpl::removeItemsAt(index, count);
    239 }
    240 
    241 // ---------------------------------------------------------------------------
    242 
    243 template<class TYPE>
    244 void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
    245     construct_type( reinterpret_cast<TYPE*>(storage), num );
    246 }
    247 
    248 template<class TYPE>
    249 void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
    250     destroy_type( reinterpret_cast<TYPE*>(storage), num );
    251 }
    252 
    253 template<class TYPE>
    254 void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
    255     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
    256 }
    257 
    258 template<class TYPE>
    259 void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
    260     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
    261 }
    262 
    263 template<class TYPE>
    264 void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
    265     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
    266 }
    267 
    268 template<class TYPE>
    269 void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
    270     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
    271 }
    272 
    273 template<class TYPE>
    274 int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
    275     return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
    276 }
    277 
    278 }; // namespace android
    279 
    280 
    281 // ---------------------------------------------------------------------------
    282 
    283 #endif // ANDROID_SORTED_VECTOR_H
    284