1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_VECTOR_H 18 #define ANDROID_VECTOR_H 19 20 #include <new> 21 #include <stdint.h> 22 #include <sys/types.h> 23 24 #include <utils/Log.h> 25 #include <utils/VectorImpl.h> 26 #include <utils/TypeHelpers.h> 27 28 // --------------------------------------------------------------------------- 29 30 namespace android { 31 32 template <typename TYPE> 33 class SortedVector; 34 35 /*! 36 * The main templated vector class ensuring type safety 37 * while making use of VectorImpl. 38 * This is the class users want to use. 39 */ 40 41 template <class TYPE> 42 class Vector : private VectorImpl 43 { 44 public: 45 typedef TYPE value_type; 46 47 /*! 48 * Constructors and destructors 49 */ 50 51 Vector(); 52 Vector(const Vector<TYPE>& rhs); 53 explicit Vector(const SortedVector<TYPE>& rhs); 54 virtual ~Vector(); 55 56 /*! copy operator */ 57 const Vector<TYPE>& operator = (const Vector<TYPE>& rhs) const; 58 Vector<TYPE>& operator = (const Vector<TYPE>& rhs); 59 60 const Vector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const; 61 Vector<TYPE>& operator = (const SortedVector<TYPE>& rhs); 62 63 /* 64 * empty the vector 65 */ 66 67 inline void clear() { VectorImpl::clear(); } 68 69 /*! 70 * vector stats 71 */ 72 73 //! returns number of items in the vector 74 inline size_t size() const { return VectorImpl::size(); } 75 //! returns wether or not the vector is empty 76 inline bool isEmpty() const { return VectorImpl::isEmpty(); } 77 //! returns how many items can be stored without reallocating the backing store 78 inline size_t capacity() const { return VectorImpl::capacity(); } 79 //! setst the capacity. capacity can never be reduced less than size() 80 inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); } 81 82 /*! 83 * C-style array access 84 */ 85 86 //! read-only C-style access 87 inline const TYPE* array() const; 88 //! read-write C-style access 89 TYPE* editArray(); 90 91 /*! 92 * accessors 93 */ 94 95 //! read-only access to an item at a given index 96 inline const TYPE& operator [] (size_t index) const; 97 //! alternate name for operator [] 98 inline const TYPE& itemAt(size_t index) const; 99 //! stack-usage of the vector. returns the top of the stack (last element) 100 const TYPE& top() const; 101 //! same as operator [], but allows to access the vector backward (from the end) with a negative index 102 const TYPE& mirrorItemAt(ssize_t index) const; 103 104 /*! 105 * modifing the array 106 */ 107 108 //! copy-on write support, grants write access to an item 109 TYPE& editItemAt(size_t index); 110 //! grants right acces to the top of the stack (last element) 111 TYPE& editTop(); 112 113 /*! 114 * append/insert another vector 115 */ 116 117 //! insert another vector at a given index 118 ssize_t insertVectorAt(const Vector<TYPE>& vector, size_t index); 119 120 //! append another vector at the end of this one 121 ssize_t appendVector(const Vector<TYPE>& vector); 122 123 124 //! insert an array at a given index 125 ssize_t insertArrayAt(const TYPE* array, size_t index, size_t length); 126 127 //! append an array at the end of this vector 128 ssize_t appendArray(const TYPE* array, size_t length); 129 130 /*! 131 * add/insert/replace items 132 */ 133 134 //! insert one or several items initialized with their default constructor 135 inline ssize_t insertAt(size_t index, size_t numItems = 1); 136 //! insert one or several items initialized from a prototype item 137 ssize_t insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1); 138 //! pop the top of the stack (removes the last element). No-op if the stack's empty 139 inline void pop(); 140 //! pushes an item initialized with its default constructor 141 inline void push(); 142 //! pushes an item on the top of the stack 143 void push(const TYPE& item); 144 //! same as push() but returns the index the item was added at (or an error) 145 inline ssize_t add(); 146 //! same as push() but returns the index the item was added at (or an error) 147 ssize_t add(const TYPE& item); 148 //! replace an item with a new one initialized with its default constructor 149 inline ssize_t replaceAt(size_t index); 150 //! replace an item with a new one 151 ssize_t replaceAt(const TYPE& item, size_t index); 152 153 /*! 154 * remove items 155 */ 156 157 //! remove several items 158 inline ssize_t removeItemsAt(size_t index, size_t count = 1); 159 //! remove one item 160 inline ssize_t removeAt(size_t index) { return removeItemsAt(index); } 161 162 /*! 163 * sort (stable) the array 164 */ 165 166 typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs); 167 typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state); 168 169 inline status_t sort(compar_t cmp); 170 inline status_t sort(compar_r_t cmp, void* state); 171 172 // for debugging only 173 inline size_t getItemSize() const { return itemSize(); } 174 175 176 /* 177 * these inlines add some level of compatibility with STL. eventually 178 * we should probably turn things around. 179 */ 180 typedef TYPE* iterator; 181 typedef TYPE const* const_iterator; 182 183 inline iterator begin() { return editArray(); } 184 inline iterator end() { return editArray() + size(); } 185 inline const_iterator begin() const { return array(); } 186 inline const_iterator end() const { return array() + size(); } 187 inline void reserve(size_t n) { setCapacity(n); } 188 inline bool empty() const{ return isEmpty(); } 189 inline void push_back(const TYPE& item) { insertAt(item, size()); } 190 inline void push_front(const TYPE& item) { insertAt(item, 0); } 191 inline iterator erase(iterator pos) { 192 return begin() + removeItemsAt(pos-array()); 193 } 194 195 protected: 196 virtual void do_construct(void* storage, size_t num) const; 197 virtual void do_destroy(void* storage, size_t num) const; 198 virtual void do_copy(void* dest, const void* from, size_t num) const; 199 virtual void do_splat(void* dest, const void* item, size_t num) const; 200 virtual void do_move_forward(void* dest, const void* from, size_t num) const; 201 virtual void do_move_backward(void* dest, const void* from, size_t num) const; 202 }; 203 204 205 // --------------------------------------------------------------------------- 206 // No user serviceable parts from here... 207 // --------------------------------------------------------------------------- 208 209 template<class TYPE> inline 210 Vector<TYPE>::Vector() 211 : VectorImpl(sizeof(TYPE), 212 ((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0) 213 |(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0) 214 |(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0)) 215 ) 216 { 217 } 218 219 template<class TYPE> inline 220 Vector<TYPE>::Vector(const Vector<TYPE>& rhs) 221 : VectorImpl(rhs) { 222 } 223 224 template<class TYPE> inline 225 Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs) 226 : VectorImpl(static_cast<const VectorImpl&>(rhs)) { 227 } 228 229 template<class TYPE> inline 230 Vector<TYPE>::~Vector() { 231 finish_vector(); 232 } 233 234 template<class TYPE> inline 235 Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) { 236 VectorImpl::operator = (rhs); 237 return *this; 238 } 239 240 template<class TYPE> inline 241 const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const { 242 VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)); 243 return *this; 244 } 245 246 template<class TYPE> inline 247 Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) { 248 VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)); 249 return *this; 250 } 251 252 template<class TYPE> inline 253 const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const { 254 VectorImpl::operator = (rhs); 255 return *this; 256 } 257 258 template<class TYPE> inline 259 const TYPE* Vector<TYPE>::array() const { 260 return static_cast<const TYPE *>(arrayImpl()); 261 } 262 263 template<class TYPE> inline 264 TYPE* Vector<TYPE>::editArray() { 265 return static_cast<TYPE *>(editArrayImpl()); 266 } 267 268 269 template<class TYPE> inline 270 const TYPE& Vector<TYPE>::operator[](size_t index) const { 271 LOG_FATAL_IF( index>=size(), 272 "itemAt: index %d is past size %d", (int)index, (int)size() ); 273 return *(array() + index); 274 } 275 276 template<class TYPE> inline 277 const TYPE& Vector<TYPE>::itemAt(size_t index) const { 278 return operator[](index); 279 } 280 281 template<class TYPE> inline 282 const TYPE& Vector<TYPE>::mirrorItemAt(ssize_t index) const { 283 LOG_FATAL_IF( (index>0 ? index : -index)>=size(), 284 "mirrorItemAt: index %d is past size %d", 285 (int)index, (int)size() ); 286 return *(array() + ((index<0) ? (size()-index) : index)); 287 } 288 289 template<class TYPE> inline 290 const TYPE& Vector<TYPE>::top() const { 291 return *(array() + size() - 1); 292 } 293 294 template<class TYPE> inline 295 TYPE& Vector<TYPE>::editItemAt(size_t index) { 296 return *( static_cast<TYPE *>(editItemLocation(index)) ); 297 } 298 299 template<class TYPE> inline 300 TYPE& Vector<TYPE>::editTop() { 301 return *( static_cast<TYPE *>(editItemLocation(size()-1)) ); 302 } 303 304 template<class TYPE> inline 305 ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) { 306 return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index); 307 } 308 309 template<class TYPE> inline 310 ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) { 311 return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector)); 312 } 313 314 template<class TYPE> inline 315 ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) { 316 return VectorImpl::insertArrayAt(array, index, length); 317 } 318 319 template<class TYPE> inline 320 ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) { 321 return VectorImpl::appendArray(array, length); 322 } 323 324 template<class TYPE> inline 325 ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) { 326 return VectorImpl::insertAt(&item, index, numItems); 327 } 328 329 template<class TYPE> inline 330 void Vector<TYPE>::push(const TYPE& item) { 331 return VectorImpl::push(&item); 332 } 333 334 template<class TYPE> inline 335 ssize_t Vector<TYPE>::add(const TYPE& item) { 336 return VectorImpl::add(&item); 337 } 338 339 template<class TYPE> inline 340 ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) { 341 return VectorImpl::replaceAt(&item, index); 342 } 343 344 template<class TYPE> inline 345 ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) { 346 return VectorImpl::insertAt(index, numItems); 347 } 348 349 template<class TYPE> inline 350 void Vector<TYPE>::pop() { 351 VectorImpl::pop(); 352 } 353 354 template<class TYPE> inline 355 void Vector<TYPE>::push() { 356 VectorImpl::push(); 357 } 358 359 template<class TYPE> inline 360 ssize_t Vector<TYPE>::add() { 361 return VectorImpl::add(); 362 } 363 364 template<class TYPE> inline 365 ssize_t Vector<TYPE>::replaceAt(size_t index) { 366 return VectorImpl::replaceAt(index); 367 } 368 369 template<class TYPE> inline 370 ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) { 371 return VectorImpl::removeItemsAt(index, count); 372 } 373 374 template<class TYPE> inline 375 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) { 376 return VectorImpl::sort((VectorImpl::compar_t)cmp); 377 } 378 379 template<class TYPE> inline 380 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) { 381 return VectorImpl::sort((VectorImpl::compar_r_t)cmp, state); 382 } 383 384 // --------------------------------------------------------------------------- 385 386 template<class TYPE> 387 void Vector<TYPE>::do_construct(void* storage, size_t num) const { 388 construct_type( reinterpret_cast<TYPE*>(storage), num ); 389 } 390 391 template<class TYPE> 392 void Vector<TYPE>::do_destroy(void* storage, size_t num) const { 393 destroy_type( reinterpret_cast<TYPE*>(storage), num ); 394 } 395 396 template<class TYPE> 397 void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const { 398 copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 399 } 400 401 template<class TYPE> 402 void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const { 403 splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num ); 404 } 405 406 template<class TYPE> 407 void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const { 408 move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 409 } 410 411 template<class TYPE> 412 void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const { 413 move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 414 } 415 416 }; // namespace android 417 418 419 // --------------------------------------------------------------------------- 420 421 #endif // ANDROID_VECTOR_H 422