Home | History | Annotate | Download | only in include
      1 /* Define control and data flow tables, and regsets.
      2    Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
      3    2005, 2006, 2007, 2008 Free Software Foundation, Inc.
      4 
      5 This file is part of GCC.
      6 
      7 GCC is free software; you can redistribute it and/or modify it under
      8 the terms of the GNU General Public License as published by the Free
      9 Software Foundation; either version 3, or (at your option) any later
     10 version.
     11 
     12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
     13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
     14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     15 for more details.
     16 
     17 You should have received a copy of the GNU General Public License
     18 along with GCC; see the file COPYING3.  If not see
     19 <http://www.gnu.org/licenses/>.  */
     20 
     21 #ifndef GCC_BASIC_BLOCK_H
     22 #define GCC_BASIC_BLOCK_H
     23 
     24 #include "bitmap.h"
     25 #include "sbitmap.h"
     26 #include "varray.h"
     27 #include "partition.h"
     28 #include "hard-reg-set.h"
     29 #include "predict.h"
     30 #include "vec.h"
     31 #include "function.h"
     32 
     33 /* Head of register set linked list.  */
     34 typedef bitmap_head regset_head;
     35 
     36 /* A pointer to a regset_head.  */
     37 typedef bitmap regset;
     38 
     39 /* Allocate a register set with oballoc.  */
     40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
     41 
     42 /* Do any cleanup needed on a regset when it is no longer used.  */
     43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
     44 
     45 /* Initialize a new regset.  */
     46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
     47 
     48 /* Clear a register set by freeing up the linked list.  */
     49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
     50 
     51 /* Copy a register set to another register set.  */
     52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
     53 
     54 /* Compare two register sets.  */
     55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
     56 
     57 /* `and' a register set with a second register set.  */
     58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
     59 
     60 /* `and' the complement of a register set with a register set.  */
     61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
     62 
     63 /* Inclusive or a register set with a second register set.  */
     64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
     65 
     66 /* Exclusive or a register set with a second register set.  */
     67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
     68 
     69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2.  */
     70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
     71   bitmap_ior_and_compl_into (TO, FROM1, FROM2)
     72 
     73 /* Clear a single register in a register set.  */
     74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
     75 
     76 /* Set a single register in a register set.  */
     77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
     78 
     79 /* Return true if a register is set in a register set.  */
     80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
     81 
     82 /* Copy the hard registers in a register set to the hard register set.  */
     83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
     84 #define REG_SET_TO_HARD_REG_SET(TO, FROM)				\
     85 do {									\
     86   CLEAR_HARD_REG_SET (TO);						\
     87   reg_set_to_hard_reg_set (&TO, FROM);					\
     88 } while (0)
     89 
     90 typedef bitmap_iterator reg_set_iterator;
     91 
     92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
     93    register number and executing CODE for all registers that are set.  */
     94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI)	\
     95   EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
     96 
     97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
     98    REGNUM to the register number and executing CODE for all registers that are
     99    set in the first regset and not set in the second.  */
    100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
    101   EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
    102 
    103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
    104    REGNUM to the register number and executing CODE for all registers that are
    105    set in both regsets.  */
    106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
    107   EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)	\
    108 
    109 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
    110    in dataflow more conveniently.  */
    111 
    112 extern regset regs_invalidated_by_call_regset;
    113 
    114 /* Type we use to hold basic block counters.  Should be at least
    115    64bit.  Although a counter cannot be negative, we use a signed
    116    type, because erroneous negative counts can be generated when the
    117    flow graph is manipulated by various optimizations.  A signed type
    118    makes those easy to detect.  */
    119 typedef HOST_WIDEST_INT gcov_type;
    120 
    121 /* Control flow edge information.  */
    122 struct edge_def GTY(())
    123 {
    124   /* The two blocks at the ends of the edge.  */
    125   struct basic_block_def *src;
    126   struct basic_block_def *dest;
    127 
    128   /* Instructions queued on the edge.  */
    129   union edge_def_insns {
    130     gimple_seq GTY ((tag ("true"))) g;
    131     rtx GTY ((tag ("false"))) r;
    132   } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
    133 
    134   /* Auxiliary info specific to a pass.  */
    135   PTR GTY ((skip (""))) aux;
    136 
    137   /* Location of any goto implicit in the edge and associated BLOCK.  */
    138   tree goto_block;
    139   location_t goto_locus;
    140 
    141   /* The index number corresponding to this edge in the edge vector
    142      dest->preds.  */
    143   unsigned int dest_idx;
    144 
    145   int flags;			/* see EDGE_* below  */
    146   int probability;		/* biased by REG_BR_PROB_BASE */
    147   gcov_type count;		/* Expected number of executions calculated
    148 				   in profile.c  */
    149 };
    150 
    151 typedef struct edge_def *edge;
    152 typedef const struct edge_def *const_edge;
    153 DEF_VEC_P(edge);
    154 DEF_VEC_ALLOC_P(edge,gc);
    155 DEF_VEC_ALLOC_P(edge,heap);
    156 
    157 #define EDGE_FALLTHRU		1	/* 'Straight line' flow */
    158 #define EDGE_ABNORMAL		2	/* Strange flow, like computed
    159 					   label, or eh */
    160 #define EDGE_ABNORMAL_CALL	4	/* Call with abnormal exit
    161 					   like an exception, or sibcall */
    162 #define EDGE_EH			8	/* Exception throw */
    163 #define EDGE_FAKE		16	/* Not a real edge (profile.c) */
    164 #define EDGE_DFS_BACK		32	/* A backwards edge */
    165 #define EDGE_CAN_FALLTHRU	64	/* Candidate for straight line
    166 					   flow.  */
    167 #define EDGE_IRREDUCIBLE_LOOP	128	/* Part of irreducible loop.  */
    168 #define EDGE_SIBCALL		256	/* Edge from sibcall to exit.  */
    169 #define EDGE_LOOP_EXIT		512	/* Exit of a loop.  */
    170 #define EDGE_TRUE_VALUE		1024	/* Edge taken when controlling
    171 					   predicate is nonzero.  */
    172 #define EDGE_FALSE_VALUE	2048	/* Edge taken when controlling
    173 					   predicate is zero.  */
    174 #define EDGE_EXECUTABLE		4096	/* Edge is executable.  Only
    175 					   valid during SSA-CCP.  */
    176 #define EDGE_CROSSING		8192    /* Edge crosses between hot
    177 					   and cold sections, when we
    178 					   do partitioning.  */
    179 #define EDGE_ALL_FLAGS	       16383
    180 
    181 #define EDGE_COMPLEX	(EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
    182 
    183 /* Counter summary from the last set of coverage counts read by
    184    profile.c.  */
    185 extern const struct gcov_ctr_summary *profile_info;
    186 
    187 /* Declared in cfgloop.h.  */
    188 struct loop;
    189 
    190 /* Declared in tree-flow.h.  */
    191 struct edge_prediction;
    192 struct rtl_bb_info;
    193 
    194 /* A basic block is a sequence of instructions with only entry and
    195    only one exit.  If any one of the instructions are executed, they
    196    will all be executed, and in sequence from first to last.
    197 
    198    There may be COND_EXEC instructions in the basic block.  The
    199    COND_EXEC *instructions* will be executed -- but if the condition
    200    is false the conditionally executed *expressions* will of course
    201    not be executed.  We don't consider the conditionally executed
    202    expression (which might have side-effects) to be in a separate
    203    basic block because the program counter will always be at the same
    204    location after the COND_EXEC instruction, regardless of whether the
    205    condition is true or not.
    206 
    207    Basic blocks need not start with a label nor end with a jump insn.
    208    For example, a previous basic block may just "conditionally fall"
    209    into the succeeding basic block, and the last basic block need not
    210    end with a jump insn.  Block 0 is a descendant of the entry block.
    211 
    212    A basic block beginning with two labels cannot have notes between
    213    the labels.
    214 
    215    Data for jump tables are stored in jump_insns that occur in no
    216    basic block even though these insns can follow or precede insns in
    217    basic blocks.  */
    218 
    219 enum sample_profile_confidence
    220 {
    221   LOW_CONFIDENCE = 0,
    222   NORMAL_CONFIDENCE,
    223   HIGH_CONFIDENCE
    224 };
    225 
    226 /* Basic block information indexed by block number.  */
    227 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
    228 {
    229   /* The edges into and out of the block.  */
    230   VEC(edge,gc) *preds;
    231   VEC(edge,gc) *succs;
    232 
    233   /* Auxiliary info specific to a pass.  */
    234   PTR GTY ((skip (""))) aux;
    235 
    236   /* Innermost loop containing the block.  */
    237   struct loop *loop_father;
    238 
    239   /* The dominance and postdominance information node.  */
    240   struct et_node * GTY ((skip (""))) dom[2];
    241 
    242   /* Previous and next blocks in the chain.  */
    243   struct basic_block_def *prev_bb;
    244   struct basic_block_def *next_bb;
    245 
    246   union basic_block_il_dependent {
    247       struct gimple_bb_info * GTY ((tag ("0"))) gimple;
    248       struct rtl_bb_info * GTY ((tag ("1"))) rtl;
    249     } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
    250 
    251   /* Expected number of executions: calculated in profile.c.  */
    252   gcov_type count;
    253 
    254   /* Confidence level for the profile */
    255   enum sample_profile_confidence confidence;
    256 
    257   /* The index of this block.  */
    258   int index;
    259 
    260   /* The loop depth of this block.  */
    261   int loop_depth;
    262 
    263   /* Expected frequency.  Normalized to be in range 0 to BB_FREQ_MAX.  */
    264   int frequency;
    265 
    266   /* Various flags.  See BB_* below.  */
    267   int flags;
    268 };
    269 
    270 struct rtl_bb_info GTY(())
    271 {
    272   /* The first and last insns of the block.  */
    273   rtx head_;
    274   rtx end_;
    275 
    276   /* In CFGlayout mode points to insn notes/jumptables to be placed just before
    277      and after the block.   */
    278   rtx header;
    279   rtx footer;
    280 
    281   /* This field is used by the bb-reorder and tracer passes.  */
    282   int visited;
    283 };
    284 
    285 struct gimple_bb_info GTY(())
    286 {
    287   /* Sequence of statements in this block.  */
    288   gimple_seq seq;
    289 
    290   /* PHI nodes for this block.  */
    291   gimple_seq phi_nodes;
    292 };
    293 
    294 typedef struct basic_block_def *basic_block;
    295 typedef const struct basic_block_def *const_basic_block;
    296 
    297 DEF_VEC_P(basic_block);
    298 DEF_VEC_ALLOC_P(basic_block,gc);
    299 DEF_VEC_ALLOC_P(basic_block,heap);
    300 
    301 #define BB_FREQ_MAX 10000
    302 
    303 /* Masks for basic_block.flags.
    304 
    305    BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
    306    the compilation, so they are never cleared.
    307 
    308    All other flags may be cleared by clear_bb_flags().  It is generally
    309    a bad idea to rely on any flags being up-to-date.  */
    310 
    311 enum bb_flags
    312 {
    313   /* Only set on blocks that have just been created by create_bb.  */
    314   BB_NEW = 1 << 0,
    315 
    316   /* Set by find_unreachable_blocks.  Do not rely on this being set in any
    317      pass.  */
    318   BB_REACHABLE = 1 << 1,
    319 
    320   /* Set for blocks in an irreducible loop by loop analysis.  */
    321   BB_IRREDUCIBLE_LOOP = 1 << 2,
    322 
    323   /* Set on blocks that may actually not be single-entry single-exit block.  */
    324   BB_SUPERBLOCK = 1 << 3,
    325 
    326   /* Set on basic blocks that the scheduler should not touch.  This is used
    327      by SMS to prevent other schedulers from messing with the loop schedule.  */
    328   BB_DISABLE_SCHEDULE = 1 << 4,
    329 
    330   /* Set on blocks that should be put in a hot section.  */
    331   BB_HOT_PARTITION = 1 << 5,
    332 
    333   /* Set on blocks that should be put in a cold section.  */
    334   BB_COLD_PARTITION = 1 << 6,
    335 
    336   /* Set on block that was duplicated.  */
    337   BB_DUPLICATED = 1 << 7,
    338 
    339   /* Set if the label at the top of this block is the target of a non-local goto.  */
    340   BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
    341 
    342   /* Set on blocks that are in RTL format.  */
    343   BB_RTL = 1 << 9 ,
    344 
    345   /* Set on blocks that are forwarder blocks.
    346      Only used in cfgcleanup.c.  */
    347   BB_FORWARDER_BLOCK = 1 << 10,
    348 
    349   /* Set on blocks that cannot be threaded through.
    350      Only used in cfgcleanup.c.  */
    351   BB_NONTHREADABLE_BLOCK = 1 << 11
    352 };
    353 
    354 /* Dummy flag for convenience in the hot/cold partitioning code.  */
    355 #define BB_UNPARTITIONED	0
    356 
    357 /* Partitions, to be used when partitioning hot and cold basic blocks into
    358    separate sections.  */
    359 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
    360 #define BB_SET_PARTITION(bb, part) do {					\
    361   basic_block bb_ = (bb);						\
    362   bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))	\
    363 		| (part));						\
    364 } while (0)
    365 
    366 #define BB_COPY_PARTITION(dstbb, srcbb) \
    367   BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
    368 
    369 /* State of dominance information.  */
    370 
    371 enum dom_state
    372 {
    373   DOM_NONE,		/* Not computed at all.  */
    374   DOM_NO_FAST_QUERY,	/* The data is OK, but the fast query data are not usable.  */
    375   DOM_OK		/* Everything is ok.  */
    376 };
    377 
    378 /* A structure to group all the per-function control flow graph data.
    379    The x_* prefixing is necessary because otherwise references to the
    380    fields of this struct are interpreted as the defines for backward
    381    source compatibility following the definition of this struct.  */
    382 struct control_flow_graph GTY(())
    383 {
    384   /* Block pointers for the exit and entry of a function.
    385      These are always the head and tail of the basic block list.  */
    386   basic_block x_entry_block_ptr;
    387   basic_block x_exit_block_ptr;
    388 
    389   /* Index by basic block number, get basic block struct info.  */
    390   VEC(basic_block,gc) *x_basic_block_info;
    391 
    392   /* Number of basic blocks in this flow graph.  */
    393   int x_n_basic_blocks;
    394 
    395   /* Number of edges in this flow graph.  */
    396   int x_n_edges;
    397 
    398   /* The first free basic block number.  */
    399   int x_last_basic_block;
    400 
    401   /* Mapping of labels to their associated blocks.  At present
    402      only used for the gimple CFG.  */
    403   VEC(basic_block,gc) *x_label_to_block_map;
    404 
    405   enum profile_status {
    406     PROFILE_ABSENT,
    407     PROFILE_GUESSED,
    408     PROFILE_READ
    409   } x_profile_status;
    410 
    411   /* Whether the dominators and the postdominators are available.  */
    412   enum dom_state x_dom_computed[2];
    413 
    414   /* Number of basic blocks in the dominance tree.  */
    415   unsigned x_n_bbs_in_dom_tree[2];
    416 
    417   /* Maximal number of entities in the single jumptable.  Used to estimate
    418      final flowgraph size.  */
    419   int max_jumptable_ents;
    420 
    421   /* UIDs for LABEL_DECLs.  */
    422   int last_label_uid;
    423 };
    424 
    425 /* Defines for accessing the fields of the CFG structure for function FN.  */
    426 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN)     ((FN)->cfg->x_entry_block_ptr)
    427 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN)	     ((FN)->cfg->x_exit_block_ptr)
    428 #define basic_block_info_for_function(FN)    ((FN)->cfg->x_basic_block_info)
    429 #define n_basic_blocks_for_function(FN)	     ((FN)->cfg->x_n_basic_blocks)
    430 #define n_edges_for_function(FN)	     ((FN)->cfg->x_n_edges)
    431 #define last_basic_block_for_function(FN)    ((FN)->cfg->x_last_basic_block)
    432 #define label_to_block_map_for_function(FN)  ((FN)->cfg->x_label_to_block_map)
    433 #define profile_status_for_function(FN)	     ((FN)->cfg->x_profile_status)
    434 
    435 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
    436   (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
    437 #define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
    438   (VEC_replace (basic_block, basic_block_info_for_function(FN), (N), (BB)))
    439 
    440 /* Defines for textual backward source compatibility.  */
    441 #define ENTRY_BLOCK_PTR		(cfun->cfg->x_entry_block_ptr)
    442 #define EXIT_BLOCK_PTR		(cfun->cfg->x_exit_block_ptr)
    443 #define basic_block_info	(cfun->cfg->x_basic_block_info)
    444 #define n_basic_blocks		(cfun->cfg->x_n_basic_blocks)
    445 #define n_edges			(cfun->cfg->x_n_edges)
    446 #define last_basic_block	(cfun->cfg->x_last_basic_block)
    447 #define label_to_block_map	(cfun->cfg->x_label_to_block_map)
    448 #define profile_status		(cfun->cfg->x_profile_status)
    449 
    450 #define BASIC_BLOCK(N)		(VEC_index (basic_block, basic_block_info, (N)))
    451 #define SET_BASIC_BLOCK(N,BB)	(VEC_replace (basic_block, basic_block_info, (N), (BB)))
    452 
    453 /* For iterating over basic blocks.  */
    454 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
    455   for (BB = FROM; BB != TO; BB = BB->DIR)
    456 
    457 #define FOR_EACH_BB_FN(BB, FN) \
    458   FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
    459 
    460 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
    461 
    462 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
    463   FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
    464 
    465 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
    466 
    467 /* For iterating over insns in basic block.  */
    468 #define FOR_BB_INSNS(BB, INSN)			\
    469   for ((INSN) = BB_HEAD (BB);			\
    470        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
    471        (INSN) = NEXT_INSN (INSN))
    472 
    473 /* For iterating over insns in basic block when we might remove the
    474    current insn.  */
    475 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR)			\
    476   for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL;	\
    477        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
    478        (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
    479 
    480 #define FOR_BB_INSNS_REVERSE(BB, INSN)		\
    481   for ((INSN) = BB_END (BB);			\
    482        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
    483        (INSN) = PREV_INSN (INSN))
    484 
    485 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR)	\
    486   for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL;	\
    487        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
    488        (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
    489 
    490 /* Cycles through _all_ basic blocks, even the fake ones (entry and
    491    exit block).  */
    492 
    493 #define FOR_ALL_BB(BB) \
    494   for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
    495 
    496 #define FOR_ALL_BB_FN(BB, FN) \
    497   for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
    498 
    499 extern bitmap_obstack reg_obstack;
    500 
    501 
    502 /* Stuff for recording basic block info.  */
    504 
    505 #define BB_HEAD(B)      (B)->il.rtl->head_
    506 #define BB_END(B)       (B)->il.rtl->end_
    507 
    508 /* Special block numbers [markers] for entry and exit.  */
    509 #define ENTRY_BLOCK (0)
    510 #define EXIT_BLOCK (1)
    511 
    512 /* The two blocks that are always in the cfg.  */
    513 #define NUM_FIXED_BLOCKS (2)
    514 
    515 
    516 #define BLOCK_NUM(INSN)	      (BLOCK_FOR_INSN (INSN)->index + 0)
    517 #define set_block_for_insn(INSN, BB)  (BLOCK_FOR_INSN (INSN) = BB)
    518 
    519 extern bool profile_info_available_p (void);
    520 extern void compute_bb_for_insn (void);
    521 extern unsigned int free_bb_for_insn (void);
    522 extern void update_bb_for_insn (basic_block);
    523 
    524 extern void insert_insn_on_edge (rtx, edge);
    525 basic_block split_edge_and_insert (edge, rtx);
    526 
    527 extern bool commit_edge_insertions (void);
    528 
    529 extern void remove_fake_edges (void);
    530 extern void remove_fake_exit_edges (void);
    531 extern void add_noreturn_fake_exit_edges (void);
    532 extern void connect_infinite_loops_to_exit (void);
    533 extern edge unchecked_make_edge (basic_block, basic_block, int);
    534 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
    535 extern edge make_edge (basic_block, basic_block, int);
    536 extern edge make_single_succ_edge (basic_block, basic_block, int);
    537 extern void remove_edge_raw (edge);
    538 extern void redirect_edge_succ (edge, basic_block);
    539 extern edge redirect_edge_succ_nodup (edge, basic_block);
    540 extern void redirect_edge_pred (edge, basic_block);
    541 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
    542 extern void clear_bb_flags (void);
    543 extern int post_order_compute (int *, bool, bool);
    544 extern int inverted_post_order_compute (int *);
    545 extern int pre_and_rev_post_order_compute (int *, int *, bool);
    546 extern int dfs_enumerate_from (basic_block, int,
    547 			       bool (*)(const_basic_block, const void *),
    548 			       basic_block *, int, const void *);
    549 extern void compute_dominance_frontiers (bitmap *);
    550 extern bitmap compute_idf (bitmap, bitmap *);
    551 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
    552 extern void dump_edge_info (FILE *, edge, int);
    553 extern void brief_dump_cfg (FILE *);
    554 extern void clear_edges (void);
    555 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
    556 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
    557 					     gcov_type);
    558 
    559 /* Structure to group all of the information to process IF-THEN and
    560    IF-THEN-ELSE blocks for the conditional execution support.  This
    561    needs to be in a public file in case the IFCVT macros call
    562    functions passing the ce_if_block data structure.  */
    563 
    564 typedef struct ce_if_block
    565 {
    566   basic_block test_bb;			/* First test block.  */
    567   basic_block then_bb;			/* THEN block.  */
    568   basic_block else_bb;			/* ELSE block or NULL.  */
    569   basic_block join_bb;			/* Join THEN/ELSE blocks.  */
    570   basic_block last_test_bb;		/* Last bb to hold && or || tests.  */
    571   int num_multiple_test_blocks;		/* # of && and || basic blocks.  */
    572   int num_and_and_blocks;		/* # of && blocks.  */
    573   int num_or_or_blocks;			/* # of || blocks.  */
    574   int num_multiple_test_insns;		/* # of insns in && and || blocks.  */
    575   int and_and_p;			/* Complex test is &&.  */
    576   int num_then_insns;			/* # of insns in THEN block.  */
    577   int num_else_insns;			/* # of insns in ELSE block.  */
    578   int pass;				/* Pass number.  */
    579 
    580 #ifdef IFCVT_EXTRA_FIELDS
    581   IFCVT_EXTRA_FIELDS			/* Any machine dependent fields.  */
    582 #endif
    583 
    584 } ce_if_block_t;
    585 
    586 /* This structure maintains an edge list vector.  */
    587 struct edge_list
    588 {
    589   int num_blocks;
    590   int num_edges;
    591   edge *index_to_edge;
    592 };
    593 
    594 /* The base value for branch probability notes and edge probabilities.  */
    595 #define REG_BR_PROB_BASE  10000
    596 
    597 /* This is the value which indicates no edge is present.  */
    598 #define EDGE_INDEX_NO_EDGE	-1
    599 
    600 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
    601    if there is no edge between the 2 basic blocks.  */
    602 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
    603 
    604 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
    605    block which is either the pred or succ end of the indexed edge.  */
    606 #define INDEX_EDGE_PRED_BB(el, index)	((el)->index_to_edge[(index)]->src)
    607 #define INDEX_EDGE_SUCC_BB(el, index)	((el)->index_to_edge[(index)]->dest)
    608 
    609 /* INDEX_EDGE returns a pointer to the edge.  */
    610 #define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
    611 
    612 /* Number of edges in the compressed edge list.  */
    613 #define NUM_EDGES(el)			((el)->num_edges)
    614 
    615 /* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
    616 #define FALLTHRU_EDGE(bb)		(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
    617 					 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
    618 
    619 /* BB is assumed to contain conditional jump.  Return the branch edge.  */
    620 #define BRANCH_EDGE(bb)			(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
    621 					 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
    622 
    623 /* Return expected execution frequency of the edge E.  */
    624 #define EDGE_FREQUENCY(e)		(((e)->src->frequency \
    625 					  * (e)->probability \
    626 					  + REG_BR_PROB_BASE / 2) \
    627 					 / REG_BR_PROB_BASE)
    628 
    629 /* Return nonzero if edge is critical.  */
    630 #define EDGE_CRITICAL_P(e)		(EDGE_COUNT ((e)->src->succs) >= 2 \
    631 					 && EDGE_COUNT ((e)->dest->preds) >= 2)
    632 
    633 #define EDGE_COUNT(ev)			VEC_length (edge, (ev))
    634 #define EDGE_I(ev,i)			VEC_index  (edge, (ev), (i))
    635 #define EDGE_PRED(bb,i)			VEC_index  (edge, (bb)->preds, (i))
    636 #define EDGE_SUCC(bb,i)			VEC_index  (edge, (bb)->succs, (i))
    637 
    638 /* Returns true if BB has precisely one successor.  */
    639 
    640 static inline bool
    641 single_succ_p (const_basic_block bb)
    642 {
    643   return EDGE_COUNT (bb->succs) == 1;
    644 }
    645 
    646 /* Returns true if BB has precisely one predecessor.  */
    647 
    648 static inline bool
    649 single_pred_p (const_basic_block bb)
    650 {
    651   return EDGE_COUNT (bb->preds) == 1;
    652 }
    653 
    654 /* Returns the single successor edge of basic block BB.  Aborts if
    655    BB does not have exactly one successor.  */
    656 
    657 static inline edge
    658 single_succ_edge (const_basic_block bb)
    659 {
    660   gcc_assert (single_succ_p (bb));
    661   return EDGE_SUCC (bb, 0);
    662 }
    663 
    664 /* Returns the single predecessor edge of basic block BB.  Aborts
    665    if BB does not have exactly one predecessor.  */
    666 
    667 static inline edge
    668 single_pred_edge (const_basic_block bb)
    669 {
    670   gcc_assert (single_pred_p (bb));
    671   return EDGE_PRED (bb, 0);
    672 }
    673 
    674 /* Returns the single successor block of basic block BB.  Aborts
    675    if BB does not have exactly one successor.  */
    676 
    677 static inline basic_block
    678 single_succ (const_basic_block bb)
    679 {
    680   return single_succ_edge (bb)->dest;
    681 }
    682 
    683 /* Returns the single predecessor block of basic block BB.  Aborts
    684    if BB does not have exactly one predecessor.*/
    685 
    686 static inline basic_block
    687 single_pred (const_basic_block bb)
    688 {
    689   return single_pred_edge (bb)->src;
    690 }
    691 
    692 /* Iterator object for edges.  */
    693 
    694 typedef struct {
    695   unsigned index;
    696   VEC(edge,gc) **container;
    697 } edge_iterator;
    698 
    699 static inline VEC(edge,gc) *
    700 ei_container (edge_iterator i)
    701 {
    702   gcc_assert (i.container);
    703   return *i.container;
    704 }
    705 
    706 #define ei_start(iter) ei_start_1 (&(iter))
    707 #define ei_last(iter) ei_last_1 (&(iter))
    708 
    709 /* Return an iterator pointing to the start of an edge vector.  */
    710 static inline edge_iterator
    711 ei_start_1 (VEC(edge,gc) **ev)
    712 {
    713   edge_iterator i;
    714 
    715   i.index = 0;
    716   i.container = ev;
    717 
    718   return i;
    719 }
    720 
    721 /* Return an iterator pointing to the last element of an edge
    722    vector.  */
    723 static inline edge_iterator
    724 ei_last_1 (VEC(edge,gc) **ev)
    725 {
    726   edge_iterator i;
    727 
    728   i.index = EDGE_COUNT (*ev) - 1;
    729   i.container = ev;
    730 
    731   return i;
    732 }
    733 
    734 /* Is the iterator `i' at the end of the sequence?  */
    735 static inline bool
    736 ei_end_p (edge_iterator i)
    737 {
    738   return (i.index == EDGE_COUNT (ei_container (i)));
    739 }
    740 
    741 /* Is the iterator `i' at one position before the end of the
    742    sequence?  */
    743 static inline bool
    744 ei_one_before_end_p (edge_iterator i)
    745 {
    746   return (i.index + 1 == EDGE_COUNT (ei_container (i)));
    747 }
    748 
    749 /* Advance the iterator to the next element.  */
    750 static inline void
    751 ei_next (edge_iterator *i)
    752 {
    753   gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
    754   i->index++;
    755 }
    756 
    757 /* Move the iterator to the previous element.  */
    758 static inline void
    759 ei_prev (edge_iterator *i)
    760 {
    761   gcc_assert (i->index > 0);
    762   i->index--;
    763 }
    764 
    765 /* Return the edge pointed to by the iterator `i'.  */
    766 static inline edge
    767 ei_edge (edge_iterator i)
    768 {
    769   return EDGE_I (ei_container (i), i.index);
    770 }
    771 
    772 /* Return an edge pointed to by the iterator.  Do it safely so that
    773    NULL is returned when the iterator is pointing at the end of the
    774    sequence.  */
    775 static inline edge
    776 ei_safe_edge (edge_iterator i)
    777 {
    778   return !ei_end_p (i) ? ei_edge (i) : NULL;
    779 }
    780 
    781 /* Return 1 if we should continue to iterate.  Return 0 otherwise.
    782    *Edge P is set to the next edge if we are to continue to iterate
    783    and NULL otherwise.  */
    784 
    785 static inline bool
    786 ei_cond (edge_iterator ei, edge *p)
    787 {
    788   if (!ei_end_p (ei))
    789     {
    790       *p = ei_edge (ei);
    791       return 1;
    792     }
    793   else
    794     {
    795       *p = NULL;
    796       return 0;
    797     }
    798 }
    799 
    800 /* This macro serves as a convenient way to iterate each edge in a
    801    vector of predecessor or successor edges.  It must not be used when
    802    an element might be removed during the traversal, otherwise
    803    elements will be missed.  Instead, use a for-loop like that shown
    804    in the following pseudo-code:
    805 
    806    FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
    807      {
    808 	IF (e != taken_edge)
    809 	  remove_edge (e);
    810 	ELSE
    811 	  ei_next (&ei);
    812      }
    813 */
    814 
    815 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)	\
    816   for ((ITER) = ei_start ((EDGE_VEC));		\
    817        ei_cond ((ITER), &(EDGE));		\
    818        ei_next (&(ITER)))
    819 
    820 struct edge_list * create_edge_list (void);
    821 void free_edge_list (struct edge_list *);
    822 void print_edge_list (FILE *, struct edge_list *);
    823 void verify_edge_list (FILE *, struct edge_list *);
    824 int find_edge_index (struct edge_list *, basic_block, basic_block);
    825 edge find_edge (basic_block, basic_block);
    826 
    827 #define CLEANUP_EXPENSIVE	1	/* Do relatively expensive optimizations
    828 					   except for edge forwarding */
    829 #define CLEANUP_CROSSJUMP	2	/* Do crossjumping.  */
    830 #define CLEANUP_POST_REGSTACK	4	/* We run after reg-stack and need
    831 					   to care REG_DEAD notes.  */
    832 #define CLEANUP_THREADING	8	/* Do jump threading.  */
    833 #define CLEANUP_NO_INSN_DEL	16	/* Do not try to delete trivially dead
    834 					   insns.  */
    835 #define CLEANUP_CFGLAYOUT	32	/* Do cleanup in cfglayout mode.  */
    836 
    837 /* In lcm.c */
    838 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
    839 				       sbitmap *, sbitmap *, sbitmap **,
    840 				       sbitmap **);
    841 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
    842 					   sbitmap *, sbitmap *,
    843 					   sbitmap *, sbitmap **,
    844 					   sbitmap **);
    845 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
    846 
    847 /* In predict.c */
    848 extern bool maybe_hot_bb_p (const_basic_block);
    849 extern bool maybe_hot_bb_for_func_p (struct function *, const_basic_block);
    850 extern bool maybe_hot_edge_p (edge);
    851 extern bool probably_never_executed_bb_p (const_basic_block);
    852 extern bool optimize_bb_for_size_p (const_basic_block);
    853 extern bool optimize_bb_for_speed_p (const_basic_block);
    854 extern bool optimize_edge_for_size_p (edge);
    855 extern bool optimize_edge_for_speed_p (edge);
    856 extern bool optimize_function_for_size_p (struct function *);
    857 extern bool optimize_function_for_speed_p (struct function *);
    858 extern bool optimize_loop_for_size_p (struct loop *);
    859 extern bool optimize_loop_for_speed_p (struct loop *);
    860 extern bool optimize_loop_nest_for_size_p (struct loop *);
    861 extern bool optimize_loop_nest_for_speed_p (struct loop *);
    862 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
    863 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
    864 extern void gimple_predict_edge (edge, enum br_predictor, int);
    865 extern void rtl_predict_edge (edge, enum br_predictor, int);
    866 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
    867 extern void guess_outgoing_edge_probabilities (basic_block);
    868 extern void remove_predictions_associated_with_edge (edge);
    869 extern bool edge_probability_reliable_p (const_edge);
    870 extern bool br_prob_note_reliable_p (const_rtx);
    871 extern bool predictable_edge_p (edge);
    872 extern unsigned int tree_estimate_probability (void);
    873 
    874 /* In cfg.c  */
    875 extern void dump_regset (regset, FILE *);
    876 extern void debug_regset (regset);
    877 extern void init_flow (struct function *);
    878 extern void debug_bb (basic_block);
    879 extern basic_block debug_bb_n (int);
    880 extern void dump_regset (regset, FILE *);
    881 extern void debug_regset (regset);
    882 extern void expunge_block (basic_block);
    883 extern void link_block (basic_block, basic_block);
    884 extern void unlink_block (basic_block);
    885 extern void compact_blocks (void);
    886 extern basic_block alloc_block (void);
    887 extern void alloc_aux_for_block (basic_block, int);
    888 extern void alloc_aux_for_blocks (int);
    889 extern void clear_aux_for_blocks (void);
    890 extern void free_aux_for_blocks (void);
    891 extern void alloc_aux_for_edge (edge, int);
    892 extern void alloc_aux_for_edges (int);
    893 extern void clear_aux_for_edges (void);
    894 extern void free_aux_for_edges (void);
    895 
    896 /* In cfganal.c  */
    897 extern void find_unreachable_blocks (void);
    898 extern bool forwarder_block_p (const_basic_block);
    899 extern bool can_fallthru (basic_block, basic_block);
    900 extern bool could_fall_through (basic_block, basic_block);
    901 extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
    902 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
    903 
    904 /* In cfgrtl.c  */
    905 extern basic_block force_nonfallthru (edge);
    906 extern rtx block_label (basic_block);
    907 extern bool purge_all_dead_edges (void);
    908 extern bool purge_dead_edges (basic_block);
    909 
    910 /* In cfgbuild.c.  */
    911 extern void find_many_sub_basic_blocks (sbitmap);
    912 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
    913 extern void find_basic_blocks (rtx);
    914 
    915 /* In cfgcleanup.c.  */
    916 extern bool cleanup_cfg (int);
    917 extern bool delete_unreachable_blocks (void);
    918 
    919 extern bool mark_dfs_back_edges (void);
    920 extern void set_edge_can_fallthru_flag (void);
    921 extern void update_br_prob_note (basic_block);
    922 extern void fixup_abnormal_edges (void);
    923 extern bool inside_basic_block_p (const_rtx);
    924 extern bool control_flow_insn_p (const_rtx);
    925 extern rtx get_last_bb_insn (basic_block);
    926 
    927 /* In bb-reorder.c */
    928 extern void reorder_basic_blocks (void);
    929 
    930 /* In dominance.c */
    931 
    932 enum cdi_direction
    933 {
    934   CDI_DOMINATORS = 1,
    935   CDI_POST_DOMINATORS = 2
    936 };
    937 
    938 extern enum dom_state dom_info_state (enum cdi_direction);
    939 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
    940 extern bool dom_info_available_p (enum cdi_direction);
    941 extern void calculate_dominance_info (enum cdi_direction);
    942 extern void free_dominance_info (enum cdi_direction);
    943 extern basic_block nearest_common_dominator (enum cdi_direction,
    944 					     basic_block, basic_block);
    945 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
    946 						     bitmap);
    947 extern void set_immediate_dominator (enum cdi_direction, basic_block,
    948 				     basic_block);
    949 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
    950 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
    951 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
    952 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
    953 							 basic_block *,
    954 							 unsigned);
    955 extern void add_to_dominance_info (enum cdi_direction, basic_block);
    956 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
    957 basic_block recompute_dominator (enum cdi_direction, basic_block);
    958 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
    959 					   basic_block);
    960 extern void iterate_fix_dominators (enum cdi_direction,
    961 				    VEC (basic_block, heap) *, bool);
    962 extern void verify_dominators (enum cdi_direction);
    963 extern basic_block first_dom_son (enum cdi_direction, basic_block);
    964 extern basic_block next_dom_son (enum cdi_direction, basic_block);
    965 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
    966 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
    967 
    968 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
    969 extern void break_superblocks (void);
    970 extern void relink_block_chain (bool);
    971 extern void check_bb_profile (basic_block, FILE *);
    972 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
    973 extern void init_rtl_bb_info (basic_block);
    974 
    975 extern void initialize_original_copy_tables (void);
    976 extern void free_original_copy_tables (void);
    977 extern void set_bb_original (basic_block, basic_block);
    978 extern basic_block get_bb_original (basic_block);
    979 extern void set_bb_copy (basic_block, basic_block);
    980 extern basic_block get_bb_copy (basic_block);
    981 void set_loop_copy (struct loop *, struct loop *);
    982 struct loop *get_loop_copy (struct loop *);
    983 
    984 
    985 extern rtx insert_insn_end_bb_new (rtx, basic_block);
    986 
    987 #include "cfghooks.h"
    988 
    989 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
    990 static inline bool
    991 bb_has_eh_pred (basic_block bb)
    992 {
    993   edge e;
    994   edge_iterator ei;
    995 
    996   FOR_EACH_EDGE (e, ei, bb->preds)
    997     {
    998       if (e->flags & EDGE_EH)
    999 	return true;
   1000     }
   1001   return false;
   1002 }
   1003 
   1004 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL.  */
   1005 static inline bool
   1006 bb_has_abnormal_pred (basic_block bb)
   1007 {
   1008   edge e;
   1009   edge_iterator ei;
   1010 
   1011   FOR_EACH_EDGE (e, ei, bb->preds)
   1012     {
   1013       if (e->flags & EDGE_ABNORMAL)
   1014 	return true;
   1015     }
   1016   return false;
   1017 }
   1018 
   1019 /* In cfgloopmanip.c.  */
   1020 extern edge mfb_kj_edge;
   1021 extern bool mfb_keep_just (edge);
   1022 
   1023 /* In cfgexpand.c.  */
   1024 extern void rtl_profile_for_bb (basic_block);
   1025 extern void rtl_profile_for_edge (edge);
   1026 extern void default_rtl_profile (void);
   1027 
   1028 #endif /* GCC_BASIC_BLOCK_H */
   1029