Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Initialization.h"
     16 #include "clang/Sema/Lookup.h"
     17 #include "clang/Sema/CXXFieldCollector.h"
     18 #include "clang/Sema/Scope.h"
     19 #include "clang/Sema/ScopeInfo.h"
     20 #include "TypeLocBuilder.h"
     21 #include "clang/AST/APValue.h"
     22 #include "clang/AST/ASTConsumer.h"
     23 #include "clang/AST/ASTContext.h"
     24 #include "clang/AST/CXXInheritance.h"
     25 #include "clang/AST/DeclCXX.h"
     26 #include "clang/AST/DeclObjC.h"
     27 #include "clang/AST/DeclTemplate.h"
     28 #include "clang/AST/EvaluatedExprVisitor.h"
     29 #include "clang/AST/ExprCXX.h"
     30 #include "clang/AST/StmtCXX.h"
     31 #include "clang/AST/CharUnits.h"
     32 #include "clang/Sema/DeclSpec.h"
     33 #include "clang/Sema/ParsedTemplate.h"
     34 #include "clang/Parse/ParseDiagnostic.h"
     35 #include "clang/Basic/PartialDiagnostic.h"
     36 #include "clang/Sema/DelayedDiagnostic.h"
     37 #include "clang/Basic/SourceManager.h"
     38 #include "clang/Basic/TargetInfo.h"
     39 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
     40 #include "clang/Lex/Preprocessor.h"
     41 #include "clang/Lex/HeaderSearch.h"
     42 #include "clang/Lex/ModuleLoader.h"
     43 #include "llvm/ADT/Triple.h"
     44 #include <algorithm>
     45 #include <cstring>
     46 #include <functional>
     47 using namespace clang;
     48 using namespace sema;
     49 
     50 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
     51   if (OwnedType) {
     52     Decl *Group[2] = { OwnedType, Ptr };
     53     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
     54   }
     55 
     56   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
     57 }
     58 
     59 /// \brief If the identifier refers to a type name within this scope,
     60 /// return the declaration of that type.
     61 ///
     62 /// This routine performs ordinary name lookup of the identifier II
     63 /// within the given scope, with optional C++ scope specifier SS, to
     64 /// determine whether the name refers to a type. If so, returns an
     65 /// opaque pointer (actually a QualType) corresponding to that
     66 /// type. Otherwise, returns NULL.
     67 ///
     68 /// If name lookup results in an ambiguity, this routine will complain
     69 /// and then return NULL.
     70 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
     71                              Scope *S, CXXScopeSpec *SS,
     72                              bool isClassName, bool HasTrailingDot,
     73                              ParsedType ObjectTypePtr,
     74                              bool WantNontrivialTypeSourceInfo,
     75                              IdentifierInfo **CorrectedII) {
     76   // Determine where we will perform name lookup.
     77   DeclContext *LookupCtx = 0;
     78   if (ObjectTypePtr) {
     79     QualType ObjectType = ObjectTypePtr.get();
     80     if (ObjectType->isRecordType())
     81       LookupCtx = computeDeclContext(ObjectType);
     82   } else if (SS && SS->isNotEmpty()) {
     83     LookupCtx = computeDeclContext(*SS, false);
     84 
     85     if (!LookupCtx) {
     86       if (isDependentScopeSpecifier(*SS)) {
     87         // C++ [temp.res]p3:
     88         //   A qualified-id that refers to a type and in which the
     89         //   nested-name-specifier depends on a template-parameter (14.6.2)
     90         //   shall be prefixed by the keyword typename to indicate that the
     91         //   qualified-id denotes a type, forming an
     92         //   elaborated-type-specifier (7.1.5.3).
     93         //
     94         // We therefore do not perform any name lookup if the result would
     95         // refer to a member of an unknown specialization.
     96         if (!isClassName)
     97           return ParsedType();
     98 
     99         // We know from the grammar that this name refers to a type,
    100         // so build a dependent node to describe the type.
    101         if (WantNontrivialTypeSourceInfo)
    102           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
    103 
    104         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
    105         QualType T =
    106           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
    107                             II, NameLoc);
    108 
    109           return ParsedType::make(T);
    110       }
    111 
    112       return ParsedType();
    113     }
    114 
    115     if (!LookupCtx->isDependentContext() &&
    116         RequireCompleteDeclContext(*SS, LookupCtx))
    117       return ParsedType();
    118   }
    119 
    120   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
    121   // lookup for class-names.
    122   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
    123                                       LookupOrdinaryName;
    124   LookupResult Result(*this, &II, NameLoc, Kind);
    125   if (LookupCtx) {
    126     // Perform "qualified" name lookup into the declaration context we
    127     // computed, which is either the type of the base of a member access
    128     // expression or the declaration context associated with a prior
    129     // nested-name-specifier.
    130     LookupQualifiedName(Result, LookupCtx);
    131 
    132     if (ObjectTypePtr && Result.empty()) {
    133       // C++ [basic.lookup.classref]p3:
    134       //   If the unqualified-id is ~type-name, the type-name is looked up
    135       //   in the context of the entire postfix-expression. If the type T of
    136       //   the object expression is of a class type C, the type-name is also
    137       //   looked up in the scope of class C. At least one of the lookups shall
    138       //   find a name that refers to (possibly cv-qualified) T.
    139       LookupName(Result, S);
    140     }
    141   } else {
    142     // Perform unqualified name lookup.
    143     LookupName(Result, S);
    144   }
    145 
    146   NamedDecl *IIDecl = 0;
    147   switch (Result.getResultKind()) {
    148   case LookupResult::NotFound:
    149   case LookupResult::NotFoundInCurrentInstantiation:
    150     if (CorrectedII) {
    151       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
    152                                               Kind, S, SS, 0, false,
    153                                               Sema::CTC_Type);
    154       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
    155       TemplateTy Template;
    156       bool MemberOfUnknownSpecialization;
    157       UnqualifiedId TemplateName;
    158       TemplateName.setIdentifier(NewII, NameLoc);
    159       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
    160       CXXScopeSpec NewSS, *NewSSPtr = SS;
    161       if (SS && NNS) {
    162         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    163         NewSSPtr = &NewSS;
    164       }
    165       if (Correction && (NNS || NewII != &II) &&
    166           // Ignore a correction to a template type as the to-be-corrected
    167           // identifier is not a template (typo correction for template names
    168           // is handled elsewhere).
    169           !(getLangOptions().CPlusPlus && NewSSPtr &&
    170             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
    171                            false, Template, MemberOfUnknownSpecialization))) {
    172         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
    173                                     isClassName, HasTrailingDot, ObjectTypePtr,
    174                                     WantNontrivialTypeSourceInfo);
    175         if (Ty) {
    176           std::string CorrectedStr(Correction.getAsString(getLangOptions()));
    177           std::string CorrectedQuotedStr(
    178               Correction.getQuoted(getLangOptions()));
    179           Diag(NameLoc, diag::err_unknown_typename_suggest)
    180               << Result.getLookupName() << CorrectedQuotedStr
    181               << FixItHint::CreateReplacement(SourceRange(NameLoc),
    182                                               CorrectedStr);
    183           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
    184             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    185               << CorrectedQuotedStr;
    186 
    187           if (SS && NNS)
    188             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
    189           *CorrectedII = NewII;
    190           return Ty;
    191         }
    192       }
    193     }
    194     // If typo correction failed or was not performed, fall through
    195   case LookupResult::FoundOverloaded:
    196   case LookupResult::FoundUnresolvedValue:
    197     Result.suppressDiagnostics();
    198     return ParsedType();
    199 
    200   case LookupResult::Ambiguous:
    201     // Recover from type-hiding ambiguities by hiding the type.  We'll
    202     // do the lookup again when looking for an object, and we can
    203     // diagnose the error then.  If we don't do this, then the error
    204     // about hiding the type will be immediately followed by an error
    205     // that only makes sense if the identifier was treated like a type.
    206     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
    207       Result.suppressDiagnostics();
    208       return ParsedType();
    209     }
    210 
    211     // Look to see if we have a type anywhere in the list of results.
    212     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
    213          Res != ResEnd; ++Res) {
    214       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
    215         if (!IIDecl ||
    216             (*Res)->getLocation().getRawEncoding() <
    217               IIDecl->getLocation().getRawEncoding())
    218           IIDecl = *Res;
    219       }
    220     }
    221 
    222     if (!IIDecl) {
    223       // None of the entities we found is a type, so there is no way
    224       // to even assume that the result is a type. In this case, don't
    225       // complain about the ambiguity. The parser will either try to
    226       // perform this lookup again (e.g., as an object name), which
    227       // will produce the ambiguity, or will complain that it expected
    228       // a type name.
    229       Result.suppressDiagnostics();
    230       return ParsedType();
    231     }
    232 
    233     // We found a type within the ambiguous lookup; diagnose the
    234     // ambiguity and then return that type. This might be the right
    235     // answer, or it might not be, but it suppresses any attempt to
    236     // perform the name lookup again.
    237     break;
    238 
    239   case LookupResult::Found:
    240     IIDecl = Result.getFoundDecl();
    241     break;
    242   }
    243 
    244   assert(IIDecl && "Didn't find decl");
    245 
    246   QualType T;
    247   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    248     DiagnoseUseOfDecl(IIDecl, NameLoc);
    249 
    250     if (T.isNull())
    251       T = Context.getTypeDeclType(TD);
    252 
    253     if (SS && SS->isNotEmpty()) {
    254       if (WantNontrivialTypeSourceInfo) {
    255         // Construct a type with type-source information.
    256         TypeLocBuilder Builder;
    257         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    258 
    259         T = getElaboratedType(ETK_None, *SS, T);
    260         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    261         ElabTL.setKeywordLoc(SourceLocation());
    262         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
    263         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    264       } else {
    265         T = getElaboratedType(ETK_None, *SS, T);
    266       }
    267     }
    268   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    269     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    270     if (!HasTrailingDot)
    271       T = Context.getObjCInterfaceType(IDecl);
    272   }
    273 
    274   if (T.isNull()) {
    275     // If it's not plausibly a type, suppress diagnostics.
    276     Result.suppressDiagnostics();
    277     return ParsedType();
    278   }
    279   return ParsedType::make(T);
    280 }
    281 
    282 /// isTagName() - This method is called *for error recovery purposes only*
    283 /// to determine if the specified name is a valid tag name ("struct foo").  If
    284 /// so, this returns the TST for the tag corresponding to it (TST_enum,
    285 /// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
    286 /// where the user forgot to specify the tag.
    287 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
    288   // Do a tag name lookup in this scope.
    289   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
    290   LookupName(R, S, false);
    291   R.suppressDiagnostics();
    292   if (R.getResultKind() == LookupResult::Found)
    293     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
    294       switch (TD->getTagKind()) {
    295       default:         return DeclSpec::TST_unspecified;
    296       case TTK_Struct: return DeclSpec::TST_struct;
    297       case TTK_Union:  return DeclSpec::TST_union;
    298       case TTK_Class:  return DeclSpec::TST_class;
    299       case TTK_Enum:   return DeclSpec::TST_enum;
    300       }
    301     }
    302 
    303   return DeclSpec::TST_unspecified;
    304 }
    305 
    306 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
    307 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
    308 /// then downgrade the missing typename error to a warning.
    309 /// This is needed for MSVC compatibility; Example:
    310 /// @code
    311 /// template<class T> class A {
    312 /// public:
    313 ///   typedef int TYPE;
    314 /// };
    315 /// template<class T> class B : public A<T> {
    316 /// public:
    317 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
    318 /// };
    319 /// @endcode
    320 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
    321   if (CurContext->isRecord()) {
    322     const Type *Ty = SS->getScopeRep()->getAsType();
    323 
    324     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    325     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
    326           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
    327       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
    328         return true;
    329     return S->isFunctionPrototypeScope();
    330   }
    331   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
    332 }
    333 
    334 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
    335                                    SourceLocation IILoc,
    336                                    Scope *S,
    337                                    CXXScopeSpec *SS,
    338                                    ParsedType &SuggestedType) {
    339   // We don't have anything to suggest (yet).
    340   SuggestedType = ParsedType();
    341 
    342   // There may have been a typo in the name of the type. Look up typo
    343   // results, in case we have something that we can suggest.
    344   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
    345                                              LookupOrdinaryName, S, SS, NULL,
    346                                              false, CTC_Type)) {
    347     std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
    348     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
    349 
    350     if (Corrected.isKeyword()) {
    351       // We corrected to a keyword.
    352       // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
    353       Diag(IILoc, diag::err_unknown_typename_suggest)
    354         << &II << CorrectedQuotedStr;
    355       return true;
    356     } else {
    357       NamedDecl *Result = Corrected.getCorrectionDecl();
    358       if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
    359           !Result->isInvalidDecl()) {
    360         // We found a similarly-named type or interface; suggest that.
    361         if (!SS || !SS->isSet())
    362           Diag(IILoc, diag::err_unknown_typename_suggest)
    363             << &II << CorrectedQuotedStr
    364             << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    365         else if (DeclContext *DC = computeDeclContext(*SS, false))
    366           Diag(IILoc, diag::err_unknown_nested_typename_suggest)
    367             << &II << DC << CorrectedQuotedStr << SS->getRange()
    368             << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    369         else
    370           llvm_unreachable("could not have corrected a typo here");
    371 
    372         Diag(Result->getLocation(), diag::note_previous_decl)
    373           << CorrectedQuotedStr;
    374 
    375         SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
    376                                     false, false, ParsedType(),
    377                                     /*NonTrivialTypeSourceInfo=*/true);
    378         return true;
    379       }
    380     }
    381   }
    382 
    383   if (getLangOptions().CPlusPlus) {
    384     // See if II is a class template that the user forgot to pass arguments to.
    385     UnqualifiedId Name;
    386     Name.setIdentifier(&II, IILoc);
    387     CXXScopeSpec EmptySS;
    388     TemplateTy TemplateResult;
    389     bool MemberOfUnknownSpecialization;
    390     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
    391                        Name, ParsedType(), true, TemplateResult,
    392                        MemberOfUnknownSpecialization) == TNK_Type_template) {
    393       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
    394       Diag(IILoc, diag::err_template_missing_args) << TplName;
    395       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
    396         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
    397           << TplDecl->getTemplateParameters()->getSourceRange();
    398       }
    399       return true;
    400     }
    401   }
    402 
    403   // FIXME: Should we move the logic that tries to recover from a missing tag
    404   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
    405 
    406   if (!SS || (!SS->isSet() && !SS->isInvalid()))
    407     Diag(IILoc, diag::err_unknown_typename) << &II;
    408   else if (DeclContext *DC = computeDeclContext(*SS, false))
    409     Diag(IILoc, diag::err_typename_nested_not_found)
    410       << &II << DC << SS->getRange();
    411   else if (isDependentScopeSpecifier(*SS)) {
    412     unsigned DiagID = diag::err_typename_missing;
    413     if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
    414       DiagID = diag::warn_typename_missing;
    415 
    416     Diag(SS->getRange().getBegin(), DiagID)
    417       << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
    418       << SourceRange(SS->getRange().getBegin(), IILoc)
    419       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    420     SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
    421   } else {
    422     assert(SS && SS->isInvalid() &&
    423            "Invalid scope specifier has already been diagnosed");
    424   }
    425 
    426   return true;
    427 }
    428 
    429 /// \brief Determine whether the given result set contains either a type name
    430 /// or
    431 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
    432   bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
    433                        NextToken.is(tok::less);
    434 
    435   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    436     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
    437       return true;
    438 
    439     if (CheckTemplate && isa<TemplateDecl>(*I))
    440       return true;
    441   }
    442 
    443   return false;
    444 }
    445 
    446 Sema::NameClassification Sema::ClassifyName(Scope *S,
    447                                             CXXScopeSpec &SS,
    448                                             IdentifierInfo *&Name,
    449                                             SourceLocation NameLoc,
    450                                             const Token &NextToken) {
    451   DeclarationNameInfo NameInfo(Name, NameLoc);
    452   ObjCMethodDecl *CurMethod = getCurMethodDecl();
    453 
    454   if (NextToken.is(tok::coloncolon)) {
    455     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
    456                                 QualType(), false, SS, 0, false);
    457 
    458   }
    459 
    460   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
    461   LookupParsedName(Result, S, &SS, !CurMethod);
    462 
    463   // Perform lookup for Objective-C instance variables (including automatically
    464   // synthesized instance variables), if we're in an Objective-C method.
    465   // FIXME: This lookup really, really needs to be folded in to the normal
    466   // unqualified lookup mechanism.
    467   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    468     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
    469     if (E.get() || E.isInvalid())
    470       return E;
    471   }
    472 
    473   bool SecondTry = false;
    474   bool IsFilteredTemplateName = false;
    475 
    476 Corrected:
    477   switch (Result.getResultKind()) {
    478   case LookupResult::NotFound:
    479     // If an unqualified-id is followed by a '(', then we have a function
    480     // call.
    481     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
    482       // In C++, this is an ADL-only call.
    483       // FIXME: Reference?
    484       if (getLangOptions().CPlusPlus)
    485         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
    486 
    487       // C90 6.3.2.2:
    488       //   If the expression that precedes the parenthesized argument list in a
    489       //   function call consists solely of an identifier, and if no
    490       //   declaration is visible for this identifier, the identifier is
    491       //   implicitly declared exactly as if, in the innermost block containing
    492       //   the function call, the declaration
    493       //
    494       //     extern int identifier ();
    495       //
    496       //   appeared.
    497       //
    498       // We also allow this in C99 as an extension.
    499       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
    500         Result.addDecl(D);
    501         Result.resolveKind();
    502         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
    503       }
    504     }
    505 
    506     // In C, we first see whether there is a tag type by the same name, in
    507     // which case it's likely that the user just forget to write "enum",
    508     // "struct", or "union".
    509     if (!getLangOptions().CPlusPlus && !SecondTry) {
    510       Result.clear(LookupTagName);
    511       LookupParsedName(Result, S, &SS);
    512       if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
    513         const char *TagName = 0;
    514         const char *FixItTagName = 0;
    515         switch (Tag->getTagKind()) {
    516           case TTK_Class:
    517             TagName = "class";
    518             FixItTagName = "class ";
    519             break;
    520 
    521           case TTK_Enum:
    522             TagName = "enum";
    523             FixItTagName = "enum ";
    524             break;
    525 
    526           case TTK_Struct:
    527             TagName = "struct";
    528             FixItTagName = "struct ";
    529             break;
    530 
    531           case TTK_Union:
    532             TagName = "union";
    533             FixItTagName = "union ";
    534             break;
    535         }
    536 
    537         Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
    538           << Name << TagName << getLangOptions().CPlusPlus
    539           << FixItHint::CreateInsertion(NameLoc, FixItTagName);
    540         break;
    541       }
    542 
    543       Result.clear(LookupOrdinaryName);
    544     }
    545 
    546     // Perform typo correction to determine if there is another name that is
    547     // close to this name.
    548     if (!SecondTry) {
    549       SecondTry = true;
    550       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
    551                                                  Result.getLookupKind(), S, &SS)) {
    552         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
    553         unsigned QualifiedDiag = diag::err_no_member_suggest;
    554         std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
    555         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
    556 
    557         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
    558         NamedDecl *UnderlyingFirstDecl
    559           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
    560         if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
    561             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
    562           UnqualifiedDiag = diag::err_no_template_suggest;
    563           QualifiedDiag = diag::err_no_member_template_suggest;
    564         } else if (UnderlyingFirstDecl &&
    565                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
    566                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
    567                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
    568            UnqualifiedDiag = diag::err_unknown_typename_suggest;
    569            QualifiedDiag = diag::err_unknown_nested_typename_suggest;
    570          }
    571 
    572         if (SS.isEmpty())
    573           Diag(NameLoc, UnqualifiedDiag)
    574             << Name << CorrectedQuotedStr
    575             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    576         else
    577           Diag(NameLoc, QualifiedDiag)
    578             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
    579             << SS.getRange()
    580             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    581 
    582         // Update the name, so that the caller has the new name.
    583         Name = Corrected.getCorrectionAsIdentifierInfo();
    584 
    585         // Also update the LookupResult...
    586         // FIXME: This should probably go away at some point
    587         Result.clear();
    588         Result.setLookupName(Corrected.getCorrection());
    589         if (FirstDecl) Result.addDecl(FirstDecl);
    590 
    591         // Typo correction corrected to a keyword.
    592         if (Corrected.isKeyword())
    593           return Corrected.getCorrectionAsIdentifierInfo();
    594 
    595         if (FirstDecl)
    596           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    597             << CorrectedQuotedStr;
    598 
    599         // If we found an Objective-C instance variable, let
    600         // LookupInObjCMethod build the appropriate expression to
    601         // reference the ivar.
    602         // FIXME: This is a gross hack.
    603         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
    604           Result.clear();
    605           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
    606           return move(E);
    607         }
    608 
    609         goto Corrected;
    610       }
    611     }
    612 
    613     // We failed to correct; just fall through and let the parser deal with it.
    614     Result.suppressDiagnostics();
    615     return NameClassification::Unknown();
    616 
    617   case LookupResult::NotFoundInCurrentInstantiation:
    618     // We performed name lookup into the current instantiation, and there were
    619     // dependent bases, so we treat this result the same way as any other
    620     // dependent nested-name-specifier.
    621 
    622     // C++ [temp.res]p2:
    623     //   A name used in a template declaration or definition and that is
    624     //   dependent on a template-parameter is assumed not to name a type
    625     //   unless the applicable name lookup finds a type name or the name is
    626     //   qualified by the keyword typename.
    627     //
    628     // FIXME: If the next token is '<', we might want to ask the parser to
    629     // perform some heroics to see if we actually have a
    630     // template-argument-list, which would indicate a missing 'template'
    631     // keyword here.
    632     return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
    633 
    634   case LookupResult::Found:
    635   case LookupResult::FoundOverloaded:
    636   case LookupResult::FoundUnresolvedValue:
    637     break;
    638 
    639   case LookupResult::Ambiguous:
    640     if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
    641         hasAnyAcceptableTemplateNames(Result)) {
    642       // C++ [temp.local]p3:
    643       //   A lookup that finds an injected-class-name (10.2) can result in an
    644       //   ambiguity in certain cases (for example, if it is found in more than
    645       //   one base class). If all of the injected-class-names that are found
    646       //   refer to specializations of the same class template, and if the name
    647       //   is followed by a template-argument-list, the reference refers to the
    648       //   class template itself and not a specialization thereof, and is not
    649       //   ambiguous.
    650       //
    651       // This filtering can make an ambiguous result into an unambiguous one,
    652       // so try again after filtering out template names.
    653       FilterAcceptableTemplateNames(Result);
    654       if (!Result.isAmbiguous()) {
    655         IsFilteredTemplateName = true;
    656         break;
    657       }
    658     }
    659 
    660     // Diagnose the ambiguity and return an error.
    661     return NameClassification::Error();
    662   }
    663 
    664   if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
    665       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
    666     // C++ [temp.names]p3:
    667     //   After name lookup (3.4) finds that a name is a template-name or that
    668     //   an operator-function-id or a literal- operator-id refers to a set of
    669     //   overloaded functions any member of which is a function template if
    670     //   this is followed by a <, the < is always taken as the delimiter of a
    671     //   template-argument-list and never as the less-than operator.
    672     if (!IsFilteredTemplateName)
    673       FilterAcceptableTemplateNames(Result);
    674 
    675     if (!Result.empty()) {
    676       bool IsFunctionTemplate;
    677       TemplateName Template;
    678       if (Result.end() - Result.begin() > 1) {
    679         IsFunctionTemplate = true;
    680         Template = Context.getOverloadedTemplateName(Result.begin(),
    681                                                      Result.end());
    682       } else {
    683         TemplateDecl *TD
    684           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
    685         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
    686 
    687         if (SS.isSet() && !SS.isInvalid())
    688           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
    689                                                     /*TemplateKeyword=*/false,
    690                                                       TD);
    691         else
    692           Template = TemplateName(TD);
    693       }
    694 
    695       if (IsFunctionTemplate) {
    696         // Function templates always go through overload resolution, at which
    697         // point we'll perform the various checks (e.g., accessibility) we need
    698         // to based on which function we selected.
    699         Result.suppressDiagnostics();
    700 
    701         return NameClassification::FunctionTemplate(Template);
    702       }
    703 
    704       return NameClassification::TypeTemplate(Template);
    705     }
    706   }
    707 
    708   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
    709   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
    710     DiagnoseUseOfDecl(Type, NameLoc);
    711     QualType T = Context.getTypeDeclType(Type);
    712     return ParsedType::make(T);
    713   }
    714 
    715   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
    716   if (!Class) {
    717     // FIXME: It's unfortunate that we don't have a Type node for handling this.
    718     if (ObjCCompatibleAliasDecl *Alias
    719                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
    720       Class = Alias->getClassInterface();
    721   }
    722 
    723   if (Class) {
    724     DiagnoseUseOfDecl(Class, NameLoc);
    725 
    726     if (NextToken.is(tok::period)) {
    727       // Interface. <something> is parsed as a property reference expression.
    728       // Just return "unknown" as a fall-through for now.
    729       Result.suppressDiagnostics();
    730       return NameClassification::Unknown();
    731     }
    732 
    733     QualType T = Context.getObjCInterfaceType(Class);
    734     return ParsedType::make(T);
    735   }
    736 
    737   if (!Result.empty() && (*Result.begin())->isCXXClassMember())
    738     return BuildPossibleImplicitMemberExpr(SS, Result, 0);
    739 
    740   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
    741   return BuildDeclarationNameExpr(SS, Result, ADL);
    742 }
    743 
    744 // Determines the context to return to after temporarily entering a
    745 // context.  This depends in an unnecessarily complicated way on the
    746 // exact ordering of callbacks from the parser.
    747 DeclContext *Sema::getContainingDC(DeclContext *DC) {
    748 
    749   // Functions defined inline within classes aren't parsed until we've
    750   // finished parsing the top-level class, so the top-level class is
    751   // the context we'll need to return to.
    752   if (isa<FunctionDecl>(DC)) {
    753     DC = DC->getLexicalParent();
    754 
    755     // A function not defined within a class will always return to its
    756     // lexical context.
    757     if (!isa<CXXRecordDecl>(DC))
    758       return DC;
    759 
    760     // A C++ inline method/friend is parsed *after* the topmost class
    761     // it was declared in is fully parsed ("complete");  the topmost
    762     // class is the context we need to return to.
    763     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
    764       DC = RD;
    765 
    766     // Return the declaration context of the topmost class the inline method is
    767     // declared in.
    768     return DC;
    769   }
    770 
    771   return DC->getLexicalParent();
    772 }
    773 
    774 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
    775   assert(getContainingDC(DC) == CurContext &&
    776       "The next DeclContext should be lexically contained in the current one.");
    777   CurContext = DC;
    778   S->setEntity(DC);
    779 }
    780 
    781 void Sema::PopDeclContext() {
    782   assert(CurContext && "DeclContext imbalance!");
    783 
    784   CurContext = getContainingDC(CurContext);
    785   assert(CurContext && "Popped translation unit!");
    786 }
    787 
    788 /// EnterDeclaratorContext - Used when we must lookup names in the context
    789 /// of a declarator's nested name specifier.
    790 ///
    791 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
    792   // C++0x [basic.lookup.unqual]p13:
    793   //   A name used in the definition of a static data member of class
    794   //   X (after the qualified-id of the static member) is looked up as
    795   //   if the name was used in a member function of X.
    796   // C++0x [basic.lookup.unqual]p14:
    797   //   If a variable member of a namespace is defined outside of the
    798   //   scope of its namespace then any name used in the definition of
    799   //   the variable member (after the declarator-id) is looked up as
    800   //   if the definition of the variable member occurred in its
    801   //   namespace.
    802   // Both of these imply that we should push a scope whose context
    803   // is the semantic context of the declaration.  We can't use
    804   // PushDeclContext here because that context is not necessarily
    805   // lexically contained in the current context.  Fortunately,
    806   // the containing scope should have the appropriate information.
    807 
    808   assert(!S->getEntity() && "scope already has entity");
    809 
    810 #ifndef NDEBUG
    811   Scope *Ancestor = S->getParent();
    812   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    813   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
    814 #endif
    815 
    816   CurContext = DC;
    817   S->setEntity(DC);
    818 }
    819 
    820 void Sema::ExitDeclaratorContext(Scope *S) {
    821   assert(S->getEntity() == CurContext && "Context imbalance!");
    822 
    823   // Switch back to the lexical context.  The safety of this is
    824   // enforced by an assert in EnterDeclaratorContext.
    825   Scope *Ancestor = S->getParent();
    826   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    827   CurContext = (DeclContext*) Ancestor->getEntity();
    828 
    829   // We don't need to do anything with the scope, which is going to
    830   // disappear.
    831 }
    832 
    833 
    834 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
    835   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    836   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
    837     // We assume that the caller has already called
    838     // ActOnReenterTemplateScope
    839     FD = TFD->getTemplatedDecl();
    840   }
    841   if (!FD)
    842     return;
    843 
    844   PushDeclContext(S, FD);
    845   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
    846     ParmVarDecl *Param = FD->getParamDecl(P);
    847     // If the parameter has an identifier, then add it to the scope
    848     if (Param->getIdentifier()) {
    849       S->AddDecl(Param);
    850       IdResolver.AddDecl(Param);
    851     }
    852   }
    853 }
    854 
    855 
    856 /// \brief Determine whether we allow overloading of the function
    857 /// PrevDecl with another declaration.
    858 ///
    859 /// This routine determines whether overloading is possible, not
    860 /// whether some new function is actually an overload. It will return
    861 /// true in C++ (where we can always provide overloads) or, as an
    862 /// extension, in C when the previous function is already an
    863 /// overloaded function declaration or has the "overloadable"
    864 /// attribute.
    865 static bool AllowOverloadingOfFunction(LookupResult &Previous,
    866                                        ASTContext &Context) {
    867   if (Context.getLangOptions().CPlusPlus)
    868     return true;
    869 
    870   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
    871     return true;
    872 
    873   return (Previous.getResultKind() == LookupResult::Found
    874           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
    875 }
    876 
    877 /// Add this decl to the scope shadowed decl chains.
    878 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
    879   // Move up the scope chain until we find the nearest enclosing
    880   // non-transparent context. The declaration will be introduced into this
    881   // scope.
    882   while (S->getEntity() &&
    883          ((DeclContext *)S->getEntity())->isTransparentContext())
    884     S = S->getParent();
    885 
    886   // Add scoped declarations into their context, so that they can be
    887   // found later. Declarations without a context won't be inserted
    888   // into any context.
    889   if (AddToContext)
    890     CurContext->addDecl(D);
    891 
    892   // Out-of-line definitions shouldn't be pushed into scope in C++.
    893   // Out-of-line variable and function definitions shouldn't even in C.
    894   if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
    895       D->isOutOfLine() &&
    896       !D->getDeclContext()->getRedeclContext()->Equals(
    897         D->getLexicalDeclContext()->getRedeclContext()))
    898     return;
    899 
    900   // Template instantiations should also not be pushed into scope.
    901   if (isa<FunctionDecl>(D) &&
    902       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
    903     return;
    904 
    905   // If this replaces anything in the current scope,
    906   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
    907                                IEnd = IdResolver.end();
    908   for (; I != IEnd; ++I) {
    909     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
    910       S->RemoveDecl(*I);
    911       IdResolver.RemoveDecl(*I);
    912 
    913       // Should only need to replace one decl.
    914       break;
    915     }
    916   }
    917 
    918   S->AddDecl(D);
    919 
    920   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
    921     // Implicitly-generated labels may end up getting generated in an order that
    922     // isn't strictly lexical, which breaks name lookup. Be careful to insert
    923     // the label at the appropriate place in the identifier chain.
    924     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
    925       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
    926       if (IDC == CurContext) {
    927         if (!S->isDeclScope(*I))
    928           continue;
    929       } else if (IDC->Encloses(CurContext))
    930         break;
    931     }
    932 
    933     IdResolver.InsertDeclAfter(I, D);
    934   } else {
    935     IdResolver.AddDecl(D);
    936   }
    937 }
    938 
    939 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
    940                          bool ExplicitInstantiationOrSpecialization) {
    941   return IdResolver.isDeclInScope(D, Ctx, Context, S,
    942                                   ExplicitInstantiationOrSpecialization);
    943 }
    944 
    945 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
    946   DeclContext *TargetDC = DC->getPrimaryContext();
    947   do {
    948     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
    949       if (ScopeDC->getPrimaryContext() == TargetDC)
    950         return S;
    951   } while ((S = S->getParent()));
    952 
    953   return 0;
    954 }
    955 
    956 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
    957                                             DeclContext*,
    958                                             ASTContext&);
    959 
    960 /// Filters out lookup results that don't fall within the given scope
    961 /// as determined by isDeclInScope.
    962 void Sema::FilterLookupForScope(LookupResult &R,
    963                                 DeclContext *Ctx, Scope *S,
    964                                 bool ConsiderLinkage,
    965                                 bool ExplicitInstantiationOrSpecialization) {
    966   LookupResult::Filter F = R.makeFilter();
    967   while (F.hasNext()) {
    968     NamedDecl *D = F.next();
    969 
    970     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
    971       continue;
    972 
    973     if (ConsiderLinkage &&
    974         isOutOfScopePreviousDeclaration(D, Ctx, Context))
    975       continue;
    976 
    977     F.erase();
    978   }
    979 
    980   F.done();
    981 }
    982 
    983 static bool isUsingDecl(NamedDecl *D) {
    984   return isa<UsingShadowDecl>(D) ||
    985          isa<UnresolvedUsingTypenameDecl>(D) ||
    986          isa<UnresolvedUsingValueDecl>(D);
    987 }
    988 
    989 /// Removes using shadow declarations from the lookup results.
    990 static void RemoveUsingDecls(LookupResult &R) {
    991   LookupResult::Filter F = R.makeFilter();
    992   while (F.hasNext())
    993     if (isUsingDecl(F.next()))
    994       F.erase();
    995 
    996   F.done();
    997 }
    998 
    999 /// \brief Check for this common pattern:
   1000 /// @code
   1001 /// class S {
   1002 ///   S(const S&); // DO NOT IMPLEMENT
   1003 ///   void operator=(const S&); // DO NOT IMPLEMENT
   1004 /// };
   1005 /// @endcode
   1006 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
   1007   // FIXME: Should check for private access too but access is set after we get
   1008   // the decl here.
   1009   if (D->doesThisDeclarationHaveABody())
   1010     return false;
   1011 
   1012   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
   1013     return CD->isCopyConstructor();
   1014   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   1015     return Method->isCopyAssignmentOperator();
   1016   return false;
   1017 }
   1018 
   1019 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
   1020   assert(D);
   1021 
   1022   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1023     return false;
   1024 
   1025   // Ignore class templates.
   1026   if (D->getDeclContext()->isDependentContext() ||
   1027       D->getLexicalDeclContext()->isDependentContext())
   1028     return false;
   1029 
   1030   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1031     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1032       return false;
   1033 
   1034     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   1035       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
   1036         return false;
   1037     } else {
   1038       // 'static inline' functions are used in headers; don't warn.
   1039       if (FD->getStorageClass() == SC_Static &&
   1040           FD->isInlineSpecified())
   1041         return false;
   1042     }
   1043 
   1044     if (FD->doesThisDeclarationHaveABody() &&
   1045         Context.DeclMustBeEmitted(FD))
   1046       return false;
   1047   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1048     if (!VD->isFileVarDecl() ||
   1049         VD->getType().isConstant(Context) ||
   1050         Context.DeclMustBeEmitted(VD))
   1051       return false;
   1052 
   1053     if (VD->isStaticDataMember() &&
   1054         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1055       return false;
   1056 
   1057   } else {
   1058     return false;
   1059   }
   1060 
   1061   // Only warn for unused decls internal to the translation unit.
   1062   if (D->getLinkage() == ExternalLinkage)
   1063     return false;
   1064 
   1065   return true;
   1066 }
   1067 
   1068 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
   1069   if (!D)
   1070     return;
   1071 
   1072   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1073     const FunctionDecl *First = FD->getFirstDeclaration();
   1074     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1075       return; // First should already be in the vector.
   1076   }
   1077 
   1078   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1079     const VarDecl *First = VD->getFirstDeclaration();
   1080     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1081       return; // First should already be in the vector.
   1082   }
   1083 
   1084    if (ShouldWarnIfUnusedFileScopedDecl(D))
   1085      UnusedFileScopedDecls.push_back(D);
   1086  }
   1087 
   1088 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
   1089   if (D->isInvalidDecl())
   1090     return false;
   1091 
   1092   if (D->isUsed() || D->hasAttr<UnusedAttr>())
   1093     return false;
   1094 
   1095   if (isa<LabelDecl>(D))
   1096     return true;
   1097 
   1098   // White-list anything that isn't a local variable.
   1099   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
   1100       !D->getDeclContext()->isFunctionOrMethod())
   1101     return false;
   1102 
   1103   // Types of valid local variables should be complete, so this should succeed.
   1104   if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
   1105 
   1106     // White-list anything with an __attribute__((unused)) type.
   1107     QualType Ty = VD->getType();
   1108 
   1109     // Only look at the outermost level of typedef.
   1110     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
   1111       if (TT->getDecl()->hasAttr<UnusedAttr>())
   1112         return false;
   1113     }
   1114 
   1115     // If we failed to complete the type for some reason, or if the type is
   1116     // dependent, don't diagnose the variable.
   1117     if (Ty->isIncompleteType() || Ty->isDependentType())
   1118       return false;
   1119 
   1120     if (const TagType *TT = Ty->getAs<TagType>()) {
   1121       const TagDecl *Tag = TT->getDecl();
   1122       if (Tag->hasAttr<UnusedAttr>())
   1123         return false;
   1124 
   1125       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
   1126         // FIXME: Checking for the presence of a user-declared constructor
   1127         // isn't completely accurate; we'd prefer to check that the initializer
   1128         // has no side effects.
   1129         if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
   1130           return false;
   1131       }
   1132     }
   1133 
   1134     // TODO: __attribute__((unused)) templates?
   1135   }
   1136 
   1137   return true;
   1138 }
   1139 
   1140 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
   1141                                      FixItHint &Hint) {
   1142   if (isa<LabelDecl>(D)) {
   1143     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
   1144                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
   1145     if (AfterColon.isInvalid())
   1146       return;
   1147     Hint = FixItHint::CreateRemoval(CharSourceRange::
   1148                                     getCharRange(D->getLocStart(), AfterColon));
   1149   }
   1150   return;
   1151 }
   1152 
   1153 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
   1154 /// unless they are marked attr(unused).
   1155 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
   1156   FixItHint Hint;
   1157   if (!ShouldDiagnoseUnusedDecl(D))
   1158     return;
   1159 
   1160   GenerateFixForUnusedDecl(D, Context, Hint);
   1161 
   1162   unsigned DiagID;
   1163   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
   1164     DiagID = diag::warn_unused_exception_param;
   1165   else if (isa<LabelDecl>(D))
   1166     DiagID = diag::warn_unused_label;
   1167   else
   1168     DiagID = diag::warn_unused_variable;
   1169 
   1170   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
   1171 }
   1172 
   1173 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
   1174   // Verify that we have no forward references left.  If so, there was a goto
   1175   // or address of a label taken, but no definition of it.  Label fwd
   1176   // definitions are indicated with a null substmt.
   1177   if (L->getStmt() == 0)
   1178     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
   1179 }
   1180 
   1181 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
   1182   if (S->decl_empty()) return;
   1183   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
   1184          "Scope shouldn't contain decls!");
   1185 
   1186   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
   1187        I != E; ++I) {
   1188     Decl *TmpD = (*I);
   1189     assert(TmpD && "This decl didn't get pushed??");
   1190 
   1191     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
   1192     NamedDecl *D = cast<NamedDecl>(TmpD);
   1193 
   1194     if (!D->getDeclName()) continue;
   1195 
   1196     // Diagnose unused variables in this scope.
   1197     if (!S->hasErrorOccurred())
   1198       DiagnoseUnusedDecl(D);
   1199 
   1200     // If this was a forward reference to a label, verify it was defined.
   1201     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
   1202       CheckPoppedLabel(LD, *this);
   1203 
   1204     // Remove this name from our lexical scope.
   1205     IdResolver.RemoveDecl(D);
   1206   }
   1207 }
   1208 
   1209 /// \brief Look for an Objective-C class in the translation unit.
   1210 ///
   1211 /// \param Id The name of the Objective-C class we're looking for. If
   1212 /// typo-correction fixes this name, the Id will be updated
   1213 /// to the fixed name.
   1214 ///
   1215 /// \param IdLoc The location of the name in the translation unit.
   1216 ///
   1217 /// \param TypoCorrection If true, this routine will attempt typo correction
   1218 /// if there is no class with the given name.
   1219 ///
   1220 /// \returns The declaration of the named Objective-C class, or NULL if the
   1221 /// class could not be found.
   1222 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
   1223                                               SourceLocation IdLoc,
   1224                                               bool DoTypoCorrection) {
   1225   // The third "scope" argument is 0 since we aren't enabling lazy built-in
   1226   // creation from this context.
   1227   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
   1228 
   1229   if (!IDecl && DoTypoCorrection) {
   1230     // Perform typo correction at the given location, but only if we
   1231     // find an Objective-C class name.
   1232     TypoCorrection C;
   1233     if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
   1234                          TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
   1235         (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
   1236       Diag(IdLoc, diag::err_undef_interface_suggest)
   1237         << Id << IDecl->getDeclName()
   1238         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
   1239       Diag(IDecl->getLocation(), diag::note_previous_decl)
   1240         << IDecl->getDeclName();
   1241 
   1242       Id = IDecl->getIdentifier();
   1243     }
   1244   }
   1245 
   1246   return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
   1247 }
   1248 
   1249 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
   1250 /// from S, where a non-field would be declared. This routine copes
   1251 /// with the difference between C and C++ scoping rules in structs and
   1252 /// unions. For example, the following code is well-formed in C but
   1253 /// ill-formed in C++:
   1254 /// @code
   1255 /// struct S6 {
   1256 ///   enum { BAR } e;
   1257 /// };
   1258 ///
   1259 /// void test_S6() {
   1260 ///   struct S6 a;
   1261 ///   a.e = BAR;
   1262 /// }
   1263 /// @endcode
   1264 /// For the declaration of BAR, this routine will return a different
   1265 /// scope. The scope S will be the scope of the unnamed enumeration
   1266 /// within S6. In C++, this routine will return the scope associated
   1267 /// with S6, because the enumeration's scope is a transparent
   1268 /// context but structures can contain non-field names. In C, this
   1269 /// routine will return the translation unit scope, since the
   1270 /// enumeration's scope is a transparent context and structures cannot
   1271 /// contain non-field names.
   1272 Scope *Sema::getNonFieldDeclScope(Scope *S) {
   1273   while (((S->getFlags() & Scope::DeclScope) == 0) ||
   1274          (S->getEntity() &&
   1275           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
   1276          (S->isClassScope() && !getLangOptions().CPlusPlus))
   1277     S = S->getParent();
   1278   return S;
   1279 }
   1280 
   1281 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
   1282 /// file scope.  lazily create a decl for it. ForRedeclaration is true
   1283 /// if we're creating this built-in in anticipation of redeclaring the
   1284 /// built-in.
   1285 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
   1286                                      Scope *S, bool ForRedeclaration,
   1287                                      SourceLocation Loc) {
   1288   Builtin::ID BID = (Builtin::ID)bid;
   1289 
   1290   ASTContext::GetBuiltinTypeError Error;
   1291   QualType R = Context.GetBuiltinType(BID, Error);
   1292   switch (Error) {
   1293   case ASTContext::GE_None:
   1294     // Okay
   1295     break;
   1296 
   1297   case ASTContext::GE_Missing_stdio:
   1298     if (ForRedeclaration)
   1299       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
   1300         << Context.BuiltinInfo.GetName(BID);
   1301     return 0;
   1302 
   1303   case ASTContext::GE_Missing_setjmp:
   1304     if (ForRedeclaration)
   1305       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
   1306         << Context.BuiltinInfo.GetName(BID);
   1307     return 0;
   1308   }
   1309 
   1310   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   1311     Diag(Loc, diag::ext_implicit_lib_function_decl)
   1312       << Context.BuiltinInfo.GetName(BID)
   1313       << R;
   1314     if (Context.BuiltinInfo.getHeaderName(BID) &&
   1315         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
   1316           != DiagnosticsEngine::Ignored)
   1317       Diag(Loc, diag::note_please_include_header)
   1318         << Context.BuiltinInfo.getHeaderName(BID)
   1319         << Context.BuiltinInfo.GetName(BID);
   1320   }
   1321 
   1322   FunctionDecl *New = FunctionDecl::Create(Context,
   1323                                            Context.getTranslationUnitDecl(),
   1324                                            Loc, Loc, II, R, /*TInfo=*/0,
   1325                                            SC_Extern,
   1326                                            SC_None, false,
   1327                                            /*hasPrototype=*/true);
   1328   New->setImplicit();
   1329 
   1330   // Create Decl objects for each parameter, adding them to the
   1331   // FunctionDecl.
   1332   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
   1333     SmallVector<ParmVarDecl*, 16> Params;
   1334     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
   1335       ParmVarDecl *parm =
   1336         ParmVarDecl::Create(Context, New, SourceLocation(),
   1337                             SourceLocation(), 0,
   1338                             FT->getArgType(i), /*TInfo=*/0,
   1339                             SC_None, SC_None, 0);
   1340       parm->setScopeInfo(0, i);
   1341       Params.push_back(parm);
   1342     }
   1343     New->setParams(Params);
   1344   }
   1345 
   1346   AddKnownFunctionAttributes(New);
   1347 
   1348   // TUScope is the translation-unit scope to insert this function into.
   1349   // FIXME: This is hideous. We need to teach PushOnScopeChains to
   1350   // relate Scopes to DeclContexts, and probably eliminate CurContext
   1351   // entirely, but we're not there yet.
   1352   DeclContext *SavedContext = CurContext;
   1353   CurContext = Context.getTranslationUnitDecl();
   1354   PushOnScopeChains(New, TUScope);
   1355   CurContext = SavedContext;
   1356   return New;
   1357 }
   1358 
   1359 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
   1360 /// same name and scope as a previous declaration 'Old'.  Figure out
   1361 /// how to resolve this situation, merging decls or emitting
   1362 /// diagnostics as appropriate. If there was an error, set New to be invalid.
   1363 ///
   1364 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
   1365   // If the new decl is known invalid already, don't bother doing any
   1366   // merging checks.
   1367   if (New->isInvalidDecl()) return;
   1368 
   1369   // Allow multiple definitions for ObjC built-in typedefs.
   1370   // FIXME: Verify the underlying types are equivalent!
   1371   if (getLangOptions().ObjC1) {
   1372     const IdentifierInfo *TypeID = New->getIdentifier();
   1373     switch (TypeID->getLength()) {
   1374     default: break;
   1375     case 2:
   1376       if (!TypeID->isStr("id"))
   1377         break;
   1378       Context.setObjCIdRedefinitionType(New->getUnderlyingType());
   1379       // Install the built-in type for 'id', ignoring the current definition.
   1380       New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
   1381       return;
   1382     case 5:
   1383       if (!TypeID->isStr("Class"))
   1384         break;
   1385       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
   1386       // Install the built-in type for 'Class', ignoring the current definition.
   1387       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
   1388       return;
   1389     case 3:
   1390       if (!TypeID->isStr("SEL"))
   1391         break;
   1392       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
   1393       // Install the built-in type for 'SEL', ignoring the current definition.
   1394       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
   1395       return;
   1396     }
   1397     // Fall through - the typedef name was not a builtin type.
   1398   }
   1399 
   1400   // Verify the old decl was also a type.
   1401   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
   1402   if (!Old) {
   1403     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1404       << New->getDeclName();
   1405 
   1406     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
   1407     if (OldD->getLocation().isValid())
   1408       Diag(OldD->getLocation(), diag::note_previous_definition);
   1409 
   1410     return New->setInvalidDecl();
   1411   }
   1412 
   1413   // If the old declaration is invalid, just give up here.
   1414   if (Old->isInvalidDecl())
   1415     return New->setInvalidDecl();
   1416 
   1417   // Determine the "old" type we'll use for checking and diagnostics.
   1418   QualType OldType;
   1419   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
   1420     OldType = OldTypedef->getUnderlyingType();
   1421   else
   1422     OldType = Context.getTypeDeclType(Old);
   1423 
   1424   // If the typedef types are not identical, reject them in all languages and
   1425   // with any extensions enabled.
   1426 
   1427   if (OldType != New->getUnderlyingType() &&
   1428       Context.getCanonicalType(OldType) !=
   1429       Context.getCanonicalType(New->getUnderlyingType())) {
   1430     int Kind = 0;
   1431     if (isa<TypeAliasDecl>(Old))
   1432       Kind = 1;
   1433     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
   1434       << Kind << New->getUnderlyingType() << OldType;
   1435     if (Old->getLocation().isValid())
   1436       Diag(Old->getLocation(), diag::note_previous_definition);
   1437     return New->setInvalidDecl();
   1438   }
   1439 
   1440   // The types match.  Link up the redeclaration chain if the old
   1441   // declaration was a typedef.
   1442   // FIXME: this is a potential source of weirdness if the type
   1443   // spellings don't match exactly.
   1444   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
   1445     New->setPreviousDeclaration(Typedef);
   1446 
   1447   // __module_private__ is propagated to later declarations.
   1448   if (Old->isModulePrivate())
   1449     New->setModulePrivate();
   1450   else if (New->isModulePrivate())
   1451     diagnoseModulePrivateRedeclaration(New, Old);
   1452 
   1453   if (getLangOptions().MicrosoftExt)
   1454     return;
   1455 
   1456   if (getLangOptions().CPlusPlus) {
   1457     // C++ [dcl.typedef]p2:
   1458     //   In a given non-class scope, a typedef specifier can be used to
   1459     //   redefine the name of any type declared in that scope to refer
   1460     //   to the type to which it already refers.
   1461     if (!isa<CXXRecordDecl>(CurContext))
   1462       return;
   1463 
   1464     // C++0x [dcl.typedef]p4:
   1465     //   In a given class scope, a typedef specifier can be used to redefine
   1466     //   any class-name declared in that scope that is not also a typedef-name
   1467     //   to refer to the type to which it already refers.
   1468     //
   1469     // This wording came in via DR424, which was a correction to the
   1470     // wording in DR56, which accidentally banned code like:
   1471     //
   1472     //   struct S {
   1473     //     typedef struct A { } A;
   1474     //   };
   1475     //
   1476     // in the C++03 standard. We implement the C++0x semantics, which
   1477     // allow the above but disallow
   1478     //
   1479     //   struct S {
   1480     //     typedef int I;
   1481     //     typedef int I;
   1482     //   };
   1483     //
   1484     // since that was the intent of DR56.
   1485     if (!isa<TypedefNameDecl>(Old))
   1486       return;
   1487 
   1488     Diag(New->getLocation(), diag::err_redefinition)
   1489       << New->getDeclName();
   1490     Diag(Old->getLocation(), diag::note_previous_definition);
   1491     return New->setInvalidDecl();
   1492   }
   1493 
   1494   // If we have a redefinition of a typedef in C, emit a warning.  This warning
   1495   // is normally mapped to an error, but can be controlled with
   1496   // -Wtypedef-redefinition.  If either the original or the redefinition is
   1497   // in a system header, don't emit this for compatibility with GCC.
   1498   if (getDiagnostics().getSuppressSystemWarnings() &&
   1499       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
   1500        Context.getSourceManager().isInSystemHeader(New->getLocation())))
   1501     return;
   1502 
   1503   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
   1504     << New->getDeclName();
   1505   Diag(Old->getLocation(), diag::note_previous_definition);
   1506   return;
   1507 }
   1508 
   1509 /// DeclhasAttr - returns true if decl Declaration already has the target
   1510 /// attribute.
   1511 static bool
   1512 DeclHasAttr(const Decl *D, const Attr *A) {
   1513   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
   1514   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
   1515   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
   1516     if ((*i)->getKind() == A->getKind()) {
   1517       if (Ann) {
   1518         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
   1519           return true;
   1520         continue;
   1521       }
   1522       // FIXME: Don't hardcode this check
   1523       if (OA && isa<OwnershipAttr>(*i))
   1524         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
   1525       return true;
   1526     }
   1527 
   1528   return false;
   1529 }
   1530 
   1531 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
   1532 static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
   1533                                 ASTContext &C, bool mergeDeprecation = true) {
   1534   if (!oldDecl->hasAttrs())
   1535     return;
   1536 
   1537   bool foundAny = newDecl->hasAttrs();
   1538 
   1539   // Ensure that any moving of objects within the allocated map is done before
   1540   // we process them.
   1541   if (!foundAny) newDecl->setAttrs(AttrVec());
   1542 
   1543   for (specific_attr_iterator<InheritableAttr>
   1544        i = oldDecl->specific_attr_begin<InheritableAttr>(),
   1545        e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
   1546     // Ignore deprecated/unavailable/availability attributes if requested.
   1547     if (!mergeDeprecation &&
   1548         (isa<DeprecatedAttr>(*i) ||
   1549          isa<UnavailableAttr>(*i) ||
   1550          isa<AvailabilityAttr>(*i)))
   1551       continue;
   1552 
   1553     if (!DeclHasAttr(newDecl, *i)) {
   1554       InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
   1555       newAttr->setInherited(true);
   1556       newDecl->addAttr(newAttr);
   1557       foundAny = true;
   1558     }
   1559   }
   1560 
   1561   if (!foundAny) newDecl->dropAttrs();
   1562 }
   1563 
   1564 /// mergeParamDeclAttributes - Copy attributes from the old parameter
   1565 /// to the new one.
   1566 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
   1567                                      const ParmVarDecl *oldDecl,
   1568                                      ASTContext &C) {
   1569   if (!oldDecl->hasAttrs())
   1570     return;
   1571 
   1572   bool foundAny = newDecl->hasAttrs();
   1573 
   1574   // Ensure that any moving of objects within the allocated map is
   1575   // done before we process them.
   1576   if (!foundAny) newDecl->setAttrs(AttrVec());
   1577 
   1578   for (specific_attr_iterator<InheritableParamAttr>
   1579        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
   1580        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
   1581     if (!DeclHasAttr(newDecl, *i)) {
   1582       InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
   1583       newAttr->setInherited(true);
   1584       newDecl->addAttr(newAttr);
   1585       foundAny = true;
   1586     }
   1587   }
   1588 
   1589   if (!foundAny) newDecl->dropAttrs();
   1590 }
   1591 
   1592 namespace {
   1593 
   1594 /// Used in MergeFunctionDecl to keep track of function parameters in
   1595 /// C.
   1596 struct GNUCompatibleParamWarning {
   1597   ParmVarDecl *OldParm;
   1598   ParmVarDecl *NewParm;
   1599   QualType PromotedType;
   1600 };
   1601 
   1602 }
   1603 
   1604 /// getSpecialMember - get the special member enum for a method.
   1605 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
   1606   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
   1607     if (Ctor->isDefaultConstructor())
   1608       return Sema::CXXDefaultConstructor;
   1609 
   1610     if (Ctor->isCopyConstructor())
   1611       return Sema::CXXCopyConstructor;
   1612 
   1613     if (Ctor->isMoveConstructor())
   1614       return Sema::CXXMoveConstructor;
   1615   } else if (isa<CXXDestructorDecl>(MD)) {
   1616     return Sema::CXXDestructor;
   1617   } else if (MD->isCopyAssignmentOperator()) {
   1618     return Sema::CXXCopyAssignment;
   1619   } else if (MD->isMoveAssignmentOperator()) {
   1620     return Sema::CXXMoveAssignment;
   1621   }
   1622 
   1623   return Sema::CXXInvalid;
   1624 }
   1625 
   1626 /// canRedefineFunction - checks if a function can be redefined. Currently,
   1627 /// only extern inline functions can be redefined, and even then only in
   1628 /// GNU89 mode.
   1629 static bool canRedefineFunction(const FunctionDecl *FD,
   1630                                 const LangOptions& LangOpts) {
   1631   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
   1632           !LangOpts.CPlusPlus &&
   1633           FD->isInlineSpecified() &&
   1634           FD->getStorageClass() == SC_Extern);
   1635 }
   1636 
   1637 /// MergeFunctionDecl - We just parsed a function 'New' from
   1638 /// declarator D which has the same name and scope as a previous
   1639 /// declaration 'Old'.  Figure out how to resolve this situation,
   1640 /// merging decls or emitting diagnostics as appropriate.
   1641 ///
   1642 /// In C++, New and Old must be declarations that are not
   1643 /// overloaded. Use IsOverload to determine whether New and Old are
   1644 /// overloaded, and to select the Old declaration that New should be
   1645 /// merged with.
   1646 ///
   1647 /// Returns true if there was an error, false otherwise.
   1648 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
   1649   // Verify the old decl was also a function.
   1650   FunctionDecl *Old = 0;
   1651   if (FunctionTemplateDecl *OldFunctionTemplate
   1652         = dyn_cast<FunctionTemplateDecl>(OldD))
   1653     Old = OldFunctionTemplate->getTemplatedDecl();
   1654   else
   1655     Old = dyn_cast<FunctionDecl>(OldD);
   1656   if (!Old) {
   1657     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
   1658       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
   1659       Diag(Shadow->getTargetDecl()->getLocation(),
   1660            diag::note_using_decl_target);
   1661       Diag(Shadow->getUsingDecl()->getLocation(),
   1662            diag::note_using_decl) << 0;
   1663       return true;
   1664     }
   1665 
   1666     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1667       << New->getDeclName();
   1668     Diag(OldD->getLocation(), diag::note_previous_definition);
   1669     return true;
   1670   }
   1671 
   1672   // Determine whether the previous declaration was a definition,
   1673   // implicit declaration, or a declaration.
   1674   diag::kind PrevDiag;
   1675   if (Old->isThisDeclarationADefinition())
   1676     PrevDiag = diag::note_previous_definition;
   1677   else if (Old->isImplicit())
   1678     PrevDiag = diag::note_previous_implicit_declaration;
   1679   else
   1680     PrevDiag = diag::note_previous_declaration;
   1681 
   1682   QualType OldQType = Context.getCanonicalType(Old->getType());
   1683   QualType NewQType = Context.getCanonicalType(New->getType());
   1684 
   1685   // Don't complain about this if we're in GNU89 mode and the old function
   1686   // is an extern inline function.
   1687   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
   1688       New->getStorageClass() == SC_Static &&
   1689       Old->getStorageClass() != SC_Static &&
   1690       !canRedefineFunction(Old, getLangOptions())) {
   1691     if (getLangOptions().MicrosoftExt) {
   1692       Diag(New->getLocation(), diag::warn_static_non_static) << New;
   1693       Diag(Old->getLocation(), PrevDiag);
   1694     } else {
   1695       Diag(New->getLocation(), diag::err_static_non_static) << New;
   1696       Diag(Old->getLocation(), PrevDiag);
   1697       return true;
   1698     }
   1699   }
   1700 
   1701   // If a function is first declared with a calling convention, but is
   1702   // later declared or defined without one, the second decl assumes the
   1703   // calling convention of the first.
   1704   //
   1705   // For the new decl, we have to look at the NON-canonical type to tell the
   1706   // difference between a function that really doesn't have a calling
   1707   // convention and one that is declared cdecl. That's because in
   1708   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
   1709   // because it is the default calling convention.
   1710   //
   1711   // Note also that we DO NOT return at this point, because we still have
   1712   // other tests to run.
   1713   const FunctionType *OldType = cast<FunctionType>(OldQType);
   1714   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
   1715   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
   1716   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
   1717   bool RequiresAdjustment = false;
   1718   if (OldTypeInfo.getCC() != CC_Default &&
   1719       NewTypeInfo.getCC() == CC_Default) {
   1720     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   1721     RequiresAdjustment = true;
   1722   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
   1723                                      NewTypeInfo.getCC())) {
   1724     // Calling conventions really aren't compatible, so complain.
   1725     Diag(New->getLocation(), diag::err_cconv_change)
   1726       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
   1727       << (OldTypeInfo.getCC() == CC_Default)
   1728       << (OldTypeInfo.getCC() == CC_Default ? "" :
   1729           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
   1730     Diag(Old->getLocation(), diag::note_previous_declaration);
   1731     return true;
   1732   }
   1733 
   1734   // FIXME: diagnose the other way around?
   1735   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
   1736     NewTypeInfo = NewTypeInfo.withNoReturn(true);
   1737     RequiresAdjustment = true;
   1738   }
   1739 
   1740   // Merge regparm attribute.
   1741   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
   1742       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
   1743     if (NewTypeInfo.getHasRegParm()) {
   1744       Diag(New->getLocation(), diag::err_regparm_mismatch)
   1745         << NewType->getRegParmType()
   1746         << OldType->getRegParmType();
   1747       Diag(Old->getLocation(), diag::note_previous_declaration);
   1748       return true;
   1749     }
   1750 
   1751     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
   1752     RequiresAdjustment = true;
   1753   }
   1754 
   1755   // Merge ns_returns_retained attribute.
   1756   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
   1757     if (NewTypeInfo.getProducesResult()) {
   1758       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
   1759       Diag(Old->getLocation(), diag::note_previous_declaration);
   1760       return true;
   1761     }
   1762 
   1763     NewTypeInfo = NewTypeInfo.withProducesResult(true);
   1764     RequiresAdjustment = true;
   1765   }
   1766 
   1767   if (RequiresAdjustment) {
   1768     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
   1769     New->setType(QualType(NewType, 0));
   1770     NewQType = Context.getCanonicalType(New->getType());
   1771   }
   1772 
   1773   if (getLangOptions().CPlusPlus) {
   1774     // (C++98 13.1p2):
   1775     //   Certain function declarations cannot be overloaded:
   1776     //     -- Function declarations that differ only in the return type
   1777     //        cannot be overloaded.
   1778     QualType OldReturnType = OldType->getResultType();
   1779     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
   1780     QualType ResQT;
   1781     if (OldReturnType != NewReturnType) {
   1782       if (NewReturnType->isObjCObjectPointerType()
   1783           && OldReturnType->isObjCObjectPointerType())
   1784         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
   1785       if (ResQT.isNull()) {
   1786         if (New->isCXXClassMember() && New->isOutOfLine())
   1787           Diag(New->getLocation(),
   1788                diag::err_member_def_does_not_match_ret_type) << New;
   1789         else
   1790           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
   1791         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1792         return true;
   1793       }
   1794       else
   1795         NewQType = ResQT;
   1796     }
   1797 
   1798     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
   1799     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
   1800     if (OldMethod && NewMethod) {
   1801       // Preserve triviality.
   1802       NewMethod->setTrivial(OldMethod->isTrivial());
   1803 
   1804       // MSVC allows explicit template specialization at class scope:
   1805       // 2 CXMethodDecls referring to the same function will be injected.
   1806       // We don't want a redeclartion error.
   1807       bool IsClassScopeExplicitSpecialization =
   1808                               OldMethod->isFunctionTemplateSpecialization() &&
   1809                               NewMethod->isFunctionTemplateSpecialization();
   1810       bool isFriend = NewMethod->getFriendObjectKind();
   1811 
   1812       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
   1813           !IsClassScopeExplicitSpecialization) {
   1814         //    -- Member function declarations with the same name and the
   1815         //       same parameter types cannot be overloaded if any of them
   1816         //       is a static member function declaration.
   1817         if (OldMethod->isStatic() || NewMethod->isStatic()) {
   1818           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
   1819           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1820           return true;
   1821         }
   1822 
   1823         // C++ [class.mem]p1:
   1824         //   [...] A member shall not be declared twice in the
   1825         //   member-specification, except that a nested class or member
   1826         //   class template can be declared and then later defined.
   1827         unsigned NewDiag;
   1828         if (isa<CXXConstructorDecl>(OldMethod))
   1829           NewDiag = diag::err_constructor_redeclared;
   1830         else if (isa<CXXDestructorDecl>(NewMethod))
   1831           NewDiag = diag::err_destructor_redeclared;
   1832         else if (isa<CXXConversionDecl>(NewMethod))
   1833           NewDiag = diag::err_conv_function_redeclared;
   1834         else
   1835           NewDiag = diag::err_member_redeclared;
   1836 
   1837         Diag(New->getLocation(), NewDiag);
   1838         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1839 
   1840       // Complain if this is an explicit declaration of a special
   1841       // member that was initially declared implicitly.
   1842       //
   1843       // As an exception, it's okay to befriend such methods in order
   1844       // to permit the implicit constructor/destructor/operator calls.
   1845       } else if (OldMethod->isImplicit()) {
   1846         if (isFriend) {
   1847           NewMethod->setImplicit();
   1848         } else {
   1849           Diag(NewMethod->getLocation(),
   1850                diag::err_definition_of_implicitly_declared_member)
   1851             << New << getSpecialMember(OldMethod);
   1852           return true;
   1853         }
   1854       } else if (OldMethod->isExplicitlyDefaulted()) {
   1855         Diag(NewMethod->getLocation(),
   1856              diag::err_definition_of_explicitly_defaulted_member)
   1857           << getSpecialMember(OldMethod);
   1858         return true;
   1859       }
   1860     }
   1861 
   1862     // (C++98 8.3.5p3):
   1863     //   All declarations for a function shall agree exactly in both the
   1864     //   return type and the parameter-type-list.
   1865     // We also want to respect all the extended bits except noreturn.
   1866 
   1867     // noreturn should now match unless the old type info didn't have it.
   1868     QualType OldQTypeForComparison = OldQType;
   1869     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
   1870       assert(OldQType == QualType(OldType, 0));
   1871       const FunctionType *OldTypeForComparison
   1872         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
   1873       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
   1874       assert(OldQTypeForComparison.isCanonical());
   1875     }
   1876 
   1877     if (OldQTypeForComparison == NewQType)
   1878       return MergeCompatibleFunctionDecls(New, Old);
   1879 
   1880     // Fall through for conflicting redeclarations and redefinitions.
   1881   }
   1882 
   1883   // C: Function types need to be compatible, not identical. This handles
   1884   // duplicate function decls like "void f(int); void f(enum X);" properly.
   1885   if (!getLangOptions().CPlusPlus &&
   1886       Context.typesAreCompatible(OldQType, NewQType)) {
   1887     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
   1888     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
   1889     const FunctionProtoType *OldProto = 0;
   1890     if (isa<FunctionNoProtoType>(NewFuncType) &&
   1891         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
   1892       // The old declaration provided a function prototype, but the
   1893       // new declaration does not. Merge in the prototype.
   1894       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
   1895       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
   1896                                                  OldProto->arg_type_end());
   1897       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
   1898                                          ParamTypes.data(), ParamTypes.size(),
   1899                                          OldProto->getExtProtoInfo());
   1900       New->setType(NewQType);
   1901       New->setHasInheritedPrototype();
   1902 
   1903       // Synthesize a parameter for each argument type.
   1904       SmallVector<ParmVarDecl*, 16> Params;
   1905       for (FunctionProtoType::arg_type_iterator
   1906              ParamType = OldProto->arg_type_begin(),
   1907              ParamEnd = OldProto->arg_type_end();
   1908            ParamType != ParamEnd; ++ParamType) {
   1909         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
   1910                                                  SourceLocation(),
   1911                                                  SourceLocation(), 0,
   1912                                                  *ParamType, /*TInfo=*/0,
   1913                                                  SC_None, SC_None,
   1914                                                  0);
   1915         Param->setScopeInfo(0, Params.size());
   1916         Param->setImplicit();
   1917         Params.push_back(Param);
   1918       }
   1919 
   1920       New->setParams(Params);
   1921     }
   1922 
   1923     return MergeCompatibleFunctionDecls(New, Old);
   1924   }
   1925 
   1926   // GNU C permits a K&R definition to follow a prototype declaration
   1927   // if the declared types of the parameters in the K&R definition
   1928   // match the types in the prototype declaration, even when the
   1929   // promoted types of the parameters from the K&R definition differ
   1930   // from the types in the prototype. GCC then keeps the types from
   1931   // the prototype.
   1932   //
   1933   // If a variadic prototype is followed by a non-variadic K&R definition,
   1934   // the K&R definition becomes variadic.  This is sort of an edge case, but
   1935   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
   1936   // C99 6.9.1p8.
   1937   if (!getLangOptions().CPlusPlus &&
   1938       Old->hasPrototype() && !New->hasPrototype() &&
   1939       New->getType()->getAs<FunctionProtoType>() &&
   1940       Old->getNumParams() == New->getNumParams()) {
   1941     SmallVector<QualType, 16> ArgTypes;
   1942     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
   1943     const FunctionProtoType *OldProto
   1944       = Old->getType()->getAs<FunctionProtoType>();
   1945     const FunctionProtoType *NewProto
   1946       = New->getType()->getAs<FunctionProtoType>();
   1947 
   1948     // Determine whether this is the GNU C extension.
   1949     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
   1950                                                NewProto->getResultType());
   1951     bool LooseCompatible = !MergedReturn.isNull();
   1952     for (unsigned Idx = 0, End = Old->getNumParams();
   1953          LooseCompatible && Idx != End; ++Idx) {
   1954       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
   1955       ParmVarDecl *NewParm = New->getParamDecl(Idx);
   1956       if (Context.typesAreCompatible(OldParm->getType(),
   1957                                      NewProto->getArgType(Idx))) {
   1958         ArgTypes.push_back(NewParm->getType());
   1959       } else if (Context.typesAreCompatible(OldParm->getType(),
   1960                                             NewParm->getType(),
   1961                                             /*CompareUnqualified=*/true)) {
   1962         GNUCompatibleParamWarning Warn
   1963           = { OldParm, NewParm, NewProto->getArgType(Idx) };
   1964         Warnings.push_back(Warn);
   1965         ArgTypes.push_back(NewParm->getType());
   1966       } else
   1967         LooseCompatible = false;
   1968     }
   1969 
   1970     if (LooseCompatible) {
   1971       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
   1972         Diag(Warnings[Warn].NewParm->getLocation(),
   1973              diag::ext_param_promoted_not_compatible_with_prototype)
   1974           << Warnings[Warn].PromotedType
   1975           << Warnings[Warn].OldParm->getType();
   1976         if (Warnings[Warn].OldParm->getLocation().isValid())
   1977           Diag(Warnings[Warn].OldParm->getLocation(),
   1978                diag::note_previous_declaration);
   1979       }
   1980 
   1981       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
   1982                                            ArgTypes.size(),
   1983                                            OldProto->getExtProtoInfo()));
   1984       return MergeCompatibleFunctionDecls(New, Old);
   1985     }
   1986 
   1987     // Fall through to diagnose conflicting types.
   1988   }
   1989 
   1990   // A function that has already been declared has been redeclared or defined
   1991   // with a different type- show appropriate diagnostic
   1992   if (unsigned BuiltinID = Old->getBuiltinID()) {
   1993     // The user has declared a builtin function with an incompatible
   1994     // signature.
   1995     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   1996       // The function the user is redeclaring is a library-defined
   1997       // function like 'malloc' or 'printf'. Warn about the
   1998       // redeclaration, then pretend that we don't know about this
   1999       // library built-in.
   2000       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
   2001       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
   2002         << Old << Old->getType();
   2003       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
   2004       Old->setInvalidDecl();
   2005       return false;
   2006     }
   2007 
   2008     PrevDiag = diag::note_previous_builtin_declaration;
   2009   }
   2010 
   2011   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
   2012   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2013   return true;
   2014 }
   2015 
   2016 /// \brief Completes the merge of two function declarations that are
   2017 /// known to be compatible.
   2018 ///
   2019 /// This routine handles the merging of attributes and other
   2020 /// properties of function declarations form the old declaration to
   2021 /// the new declaration, once we know that New is in fact a
   2022 /// redeclaration of Old.
   2023 ///
   2024 /// \returns false
   2025 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
   2026   // Merge the attributes
   2027   mergeDeclAttributes(New, Old, Context);
   2028 
   2029   // Merge the storage class.
   2030   if (Old->getStorageClass() != SC_Extern &&
   2031       Old->getStorageClass() != SC_None)
   2032     New->setStorageClass(Old->getStorageClass());
   2033 
   2034   // Merge "pure" flag.
   2035   if (Old->isPure())
   2036     New->setPure();
   2037 
   2038   // __module_private__ is propagated to later declarations.
   2039   if (Old->isModulePrivate())
   2040     New->setModulePrivate();
   2041   else if (New->isModulePrivate())
   2042     diagnoseModulePrivateRedeclaration(New, Old);
   2043 
   2044   // Merge attributes from the parameters.  These can mismatch with K&R
   2045   // declarations.
   2046   if (New->getNumParams() == Old->getNumParams())
   2047     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
   2048       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
   2049                                Context);
   2050 
   2051   if (getLangOptions().CPlusPlus)
   2052     return MergeCXXFunctionDecl(New, Old);
   2053 
   2054   return false;
   2055 }
   2056 
   2057 
   2058 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
   2059                                 const ObjCMethodDecl *oldMethod) {
   2060   // We don't want to merge unavailable and deprecated attributes
   2061   // except from interface to implementation.
   2062   bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
   2063 
   2064   // Merge the attributes.
   2065   mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
   2066 
   2067   // Merge attributes from the parameters.
   2068   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
   2069   for (ObjCMethodDecl::param_iterator
   2070          ni = newMethod->param_begin(), ne = newMethod->param_end();
   2071        ni != ne; ++ni, ++oi)
   2072     mergeParamDeclAttributes(*ni, *oi, Context);
   2073 
   2074   CheckObjCMethodOverride(newMethod, oldMethod, true);
   2075 }
   2076 
   2077 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
   2078 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
   2079 /// emitting diagnostics as appropriate.
   2080 ///
   2081 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
   2082 /// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
   2083 /// check them before the initializer is attached.
   2084 ///
   2085 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
   2086   if (New->isInvalidDecl() || Old->isInvalidDecl())
   2087     return;
   2088 
   2089   QualType MergedT;
   2090   if (getLangOptions().CPlusPlus) {
   2091     AutoType *AT = New->getType()->getContainedAutoType();
   2092     if (AT && !AT->isDeduced()) {
   2093       // We don't know what the new type is until the initializer is attached.
   2094       return;
   2095     } else if (Context.hasSameType(New->getType(), Old->getType())) {
   2096       // These could still be something that needs exception specs checked.
   2097       return MergeVarDeclExceptionSpecs(New, Old);
   2098     }
   2099     // C++ [basic.link]p10:
   2100     //   [...] the types specified by all declarations referring to a given
   2101     //   object or function shall be identical, except that declarations for an
   2102     //   array object can specify array types that differ by the presence or
   2103     //   absence of a major array bound (8.3.4).
   2104     else if (Old->getType()->isIncompleteArrayType() &&
   2105              New->getType()->isArrayType()) {
   2106       CanQual<ArrayType> OldArray
   2107         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
   2108       CanQual<ArrayType> NewArray
   2109         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
   2110       if (OldArray->getElementType() == NewArray->getElementType())
   2111         MergedT = New->getType();
   2112     } else if (Old->getType()->isArrayType() &&
   2113              New->getType()->isIncompleteArrayType()) {
   2114       CanQual<ArrayType> OldArray
   2115         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
   2116       CanQual<ArrayType> NewArray
   2117         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
   2118       if (OldArray->getElementType() == NewArray->getElementType())
   2119         MergedT = Old->getType();
   2120     } else if (New->getType()->isObjCObjectPointerType()
   2121                && Old->getType()->isObjCObjectPointerType()) {
   2122         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
   2123                                                         Old->getType());
   2124     }
   2125   } else {
   2126     MergedT = Context.mergeTypes(New->getType(), Old->getType());
   2127   }
   2128   if (MergedT.isNull()) {
   2129     Diag(New->getLocation(), diag::err_redefinition_different_type)
   2130       << New->getDeclName();
   2131     Diag(Old->getLocation(), diag::note_previous_definition);
   2132     return New->setInvalidDecl();
   2133   }
   2134   New->setType(MergedT);
   2135 }
   2136 
   2137 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
   2138 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
   2139 /// situation, merging decls or emitting diagnostics as appropriate.
   2140 ///
   2141 /// Tentative definition rules (C99 6.9.2p2) are checked by
   2142 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
   2143 /// definitions here, since the initializer hasn't been attached.
   2144 ///
   2145 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
   2146   // If the new decl is already invalid, don't do any other checking.
   2147   if (New->isInvalidDecl())
   2148     return;
   2149 
   2150   // Verify the old decl was also a variable.
   2151   VarDecl *Old = 0;
   2152   if (!Previous.isSingleResult() ||
   2153       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
   2154     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2155       << New->getDeclName();
   2156     Diag(Previous.getRepresentativeDecl()->getLocation(),
   2157          diag::note_previous_definition);
   2158     return New->setInvalidDecl();
   2159   }
   2160 
   2161   // C++ [class.mem]p1:
   2162   //   A member shall not be declared twice in the member-specification [...]
   2163   //
   2164   // Here, we need only consider static data members.
   2165   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
   2166     Diag(New->getLocation(), diag::err_duplicate_member)
   2167       << New->getIdentifier();
   2168     Diag(Old->getLocation(), diag::note_previous_declaration);
   2169     New->setInvalidDecl();
   2170   }
   2171 
   2172   mergeDeclAttributes(New, Old, Context);
   2173   // Warn if an already-declared variable is made a weak_import in a subsequent declaration
   2174   if (New->getAttr<WeakImportAttr>() &&
   2175       Old->getStorageClass() == SC_None &&
   2176       !Old->getAttr<WeakImportAttr>()) {
   2177     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
   2178     Diag(Old->getLocation(), diag::note_previous_definition);
   2179     // Remove weak_import attribute on new declaration.
   2180     New->dropAttr<WeakImportAttr>();
   2181   }
   2182 
   2183   // Merge the types.
   2184   MergeVarDeclTypes(New, Old);
   2185   if (New->isInvalidDecl())
   2186     return;
   2187 
   2188   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
   2189   if (New->getStorageClass() == SC_Static &&
   2190       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
   2191     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
   2192     Diag(Old->getLocation(), diag::note_previous_definition);
   2193     return New->setInvalidDecl();
   2194   }
   2195   // C99 6.2.2p4:
   2196   //   For an identifier declared with the storage-class specifier
   2197   //   extern in a scope in which a prior declaration of that
   2198   //   identifier is visible,23) if the prior declaration specifies
   2199   //   internal or external linkage, the linkage of the identifier at
   2200   //   the later declaration is the same as the linkage specified at
   2201   //   the prior declaration. If no prior declaration is visible, or
   2202   //   if the prior declaration specifies no linkage, then the
   2203   //   identifier has external linkage.
   2204   if (New->hasExternalStorage() && Old->hasLinkage())
   2205     /* Okay */;
   2206   else if (New->getStorageClass() != SC_Static &&
   2207            Old->getStorageClass() == SC_Static) {
   2208     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
   2209     Diag(Old->getLocation(), diag::note_previous_definition);
   2210     return New->setInvalidDecl();
   2211   }
   2212 
   2213   // Check if extern is followed by non-extern and vice-versa.
   2214   if (New->hasExternalStorage() &&
   2215       !Old->hasLinkage() && Old->isLocalVarDecl()) {
   2216     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
   2217     Diag(Old->getLocation(), diag::note_previous_definition);
   2218     return New->setInvalidDecl();
   2219   }
   2220   if (Old->hasExternalStorage() &&
   2221       !New->hasLinkage() && New->isLocalVarDecl()) {
   2222     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
   2223     Diag(Old->getLocation(), diag::note_previous_definition);
   2224     return New->setInvalidDecl();
   2225   }
   2226 
   2227   // __module_private__ is propagated to later declarations.
   2228   if (Old->isModulePrivate())
   2229     New->setModulePrivate();
   2230   else if (New->isModulePrivate())
   2231     diagnoseModulePrivateRedeclaration(New, Old);
   2232 
   2233   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
   2234 
   2235   // FIXME: The test for external storage here seems wrong? We still
   2236   // need to check for mismatches.
   2237   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
   2238       // Don't complain about out-of-line definitions of static members.
   2239       !(Old->getLexicalDeclContext()->isRecord() &&
   2240         !New->getLexicalDeclContext()->isRecord())) {
   2241     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
   2242     Diag(Old->getLocation(), diag::note_previous_definition);
   2243     return New->setInvalidDecl();
   2244   }
   2245 
   2246   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
   2247     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
   2248     Diag(Old->getLocation(), diag::note_previous_definition);
   2249   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
   2250     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
   2251     Diag(Old->getLocation(), diag::note_previous_definition);
   2252   }
   2253 
   2254   // C++ doesn't have tentative definitions, so go right ahead and check here.
   2255   const VarDecl *Def;
   2256   if (getLangOptions().CPlusPlus &&
   2257       New->isThisDeclarationADefinition() == VarDecl::Definition &&
   2258       (Def = Old->getDefinition())) {
   2259     Diag(New->getLocation(), diag::err_redefinition)
   2260       << New->getDeclName();
   2261     Diag(Def->getLocation(), diag::note_previous_definition);
   2262     New->setInvalidDecl();
   2263     return;
   2264   }
   2265   // c99 6.2.2 P4.
   2266   // For an identifier declared with the storage-class specifier extern in a
   2267   // scope in which a prior declaration of that identifier is visible, if
   2268   // the prior declaration specifies internal or external linkage, the linkage
   2269   // of the identifier at the later declaration is the same as the linkage
   2270   // specified at the prior declaration.
   2271   // FIXME. revisit this code.
   2272   if (New->hasExternalStorage() &&
   2273       Old->getLinkage() == InternalLinkage &&
   2274       New->getDeclContext() == Old->getDeclContext())
   2275     New->setStorageClass(Old->getStorageClass());
   2276 
   2277   // Keep a chain of previous declarations.
   2278   New->setPreviousDeclaration(Old);
   2279 
   2280   // Inherit access appropriately.
   2281   New->setAccess(Old->getAccess());
   2282 }
   2283 
   2284 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   2285 /// no declarator (e.g. "struct foo;") is parsed.
   2286 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   2287                                        DeclSpec &DS) {
   2288   return ParsedFreeStandingDeclSpec(S, AS, DS,
   2289                                     MultiTemplateParamsArg(*this, 0, 0));
   2290 }
   2291 
   2292 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   2293 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
   2294 /// parameters to cope with template friend declarations.
   2295 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   2296                                        DeclSpec &DS,
   2297                                        MultiTemplateParamsArg TemplateParams) {
   2298   Decl *TagD = 0;
   2299   TagDecl *Tag = 0;
   2300   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
   2301       DS.getTypeSpecType() == DeclSpec::TST_struct ||
   2302       DS.getTypeSpecType() == DeclSpec::TST_union ||
   2303       DS.getTypeSpecType() == DeclSpec::TST_enum) {
   2304     TagD = DS.getRepAsDecl();
   2305 
   2306     if (!TagD) // We probably had an error
   2307       return 0;
   2308 
   2309     // Note that the above type specs guarantee that the
   2310     // type rep is a Decl, whereas in many of the others
   2311     // it's a Type.
   2312     Tag = dyn_cast<TagDecl>(TagD);
   2313   }
   2314 
   2315   if (Tag)
   2316     Tag->setFreeStanding();
   2317 
   2318   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   2319     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
   2320     // or incomplete types shall not be restrict-qualified."
   2321     if (TypeQuals & DeclSpec::TQ_restrict)
   2322       Diag(DS.getRestrictSpecLoc(),
   2323            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
   2324            << DS.getSourceRange();
   2325   }
   2326 
   2327   if (DS.isConstexprSpecified()) {
   2328     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
   2329     // and definitions of functions and variables.
   2330     if (Tag)
   2331       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
   2332         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   2333             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   2334             DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
   2335     else
   2336       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
   2337     // Don't emit warnings after this error.
   2338     return TagD;
   2339   }
   2340 
   2341   if (DS.isFriendSpecified()) {
   2342     // If we're dealing with a decl but not a TagDecl, assume that
   2343     // whatever routines created it handled the friendship aspect.
   2344     if (TagD && !Tag)
   2345       return 0;
   2346     return ActOnFriendTypeDecl(S, DS, TemplateParams);
   2347   }
   2348 
   2349   // Track whether we warned about the fact that there aren't any
   2350   // declarators.
   2351   bool emittedWarning = false;
   2352 
   2353   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
   2354     ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
   2355 
   2356     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
   2357         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
   2358       if (getLangOptions().CPlusPlus ||
   2359           Record->getDeclContext()->isRecord())
   2360         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
   2361 
   2362       Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
   2363         << DS.getSourceRange();
   2364       emittedWarning = true;
   2365     }
   2366   }
   2367 
   2368   // Check for Microsoft C extension: anonymous struct.
   2369   if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
   2370       CurContext->isRecord() &&
   2371       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
   2372     // Handle 2 kinds of anonymous struct:
   2373     //   struct STRUCT;
   2374     // and
   2375     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
   2376     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
   2377     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
   2378         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
   2379          DS.getRepAsType().get()->isStructureType())) {
   2380       Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
   2381         << DS.getSourceRange();
   2382       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
   2383     }
   2384   }
   2385 
   2386   if (getLangOptions().CPlusPlus &&
   2387       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
   2388     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
   2389       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
   2390           !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
   2391         Diag(Enum->getLocation(), diag::ext_no_declarators)
   2392           << DS.getSourceRange();
   2393         emittedWarning = true;
   2394       }
   2395 
   2396   // Skip all the checks below if we have a type error.
   2397   if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
   2398 
   2399   if (!DS.isMissingDeclaratorOk()) {
   2400     // Warn about typedefs of enums without names, since this is an
   2401     // extension in both Microsoft and GNU.
   2402     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
   2403         Tag && isa<EnumDecl>(Tag)) {
   2404       Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
   2405         << DS.getSourceRange();
   2406       return Tag;
   2407     }
   2408 
   2409     Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
   2410       << DS.getSourceRange();
   2411     emittedWarning = true;
   2412   }
   2413 
   2414   // We're going to complain about a bunch of spurious specifiers;
   2415   // only do this if we're declaring a tag, because otherwise we
   2416   // should be getting diag::ext_no_declarators.
   2417   if (emittedWarning || (TagD && TagD->isInvalidDecl()))
   2418     return TagD;
   2419 
   2420   // Note that a linkage-specification sets a storage class, but
   2421   // 'extern "C" struct foo;' is actually valid and not theoretically
   2422   // useless.
   2423   if (DeclSpec::SCS scs = DS.getStorageClassSpec())
   2424     if (!DS.isExternInLinkageSpec())
   2425       Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
   2426         << DeclSpec::getSpecifierName(scs);
   2427 
   2428   if (DS.isThreadSpecified())
   2429     Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
   2430   if (DS.getTypeQualifiers()) {
   2431     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   2432       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
   2433     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   2434       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
   2435     // Restrict is covered above.
   2436   }
   2437   if (DS.isInlineSpecified())
   2438     Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
   2439   if (DS.isVirtualSpecified())
   2440     Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
   2441   if (DS.isExplicitSpecified())
   2442     Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
   2443 
   2444   if (DS.isModulePrivateSpecified() &&
   2445       Tag && Tag->getDeclContext()->isFunctionOrMethod())
   2446     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
   2447       << Tag->getTagKind()
   2448       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
   2449 
   2450   // FIXME: Warn on useless attributes
   2451 
   2452   return TagD;
   2453 }
   2454 
   2455 /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
   2456 /// builds a statement for it and returns it so it is evaluated.
   2457 StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
   2458   StmtResult R;
   2459   if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
   2460     Expr *Exp = DS.getRepAsExpr();
   2461     QualType Ty = Exp->getType();
   2462     if (Ty->isPointerType()) {
   2463       do
   2464         Ty = Ty->getAs<PointerType>()->getPointeeType();
   2465       while (Ty->isPointerType());
   2466     }
   2467     if (Ty->isVariableArrayType()) {
   2468       R = ActOnExprStmt(MakeFullExpr(Exp));
   2469     }
   2470   }
   2471   return R;
   2472 }
   2473 
   2474 /// We are trying to inject an anonymous member into the given scope;
   2475 /// check if there's an existing declaration that can't be overloaded.
   2476 ///
   2477 /// \return true if this is a forbidden redeclaration
   2478 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
   2479                                          Scope *S,
   2480                                          DeclContext *Owner,
   2481                                          DeclarationName Name,
   2482                                          SourceLocation NameLoc,
   2483                                          unsigned diagnostic) {
   2484   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
   2485                  Sema::ForRedeclaration);
   2486   if (!SemaRef.LookupName(R, S)) return false;
   2487 
   2488   if (R.getAsSingle<TagDecl>())
   2489     return false;
   2490 
   2491   // Pick a representative declaration.
   2492   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
   2493   assert(PrevDecl && "Expected a non-null Decl");
   2494 
   2495   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
   2496     return false;
   2497 
   2498   SemaRef.Diag(NameLoc, diagnostic) << Name;
   2499   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   2500 
   2501   return true;
   2502 }
   2503 
   2504 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
   2505 /// anonymous struct or union AnonRecord into the owning context Owner
   2506 /// and scope S. This routine will be invoked just after we realize
   2507 /// that an unnamed union or struct is actually an anonymous union or
   2508 /// struct, e.g.,
   2509 ///
   2510 /// @code
   2511 /// union {
   2512 ///   int i;
   2513 ///   float f;
   2514 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
   2515 ///    // f into the surrounding scope.x
   2516 /// @endcode
   2517 ///
   2518 /// This routine is recursive, injecting the names of nested anonymous
   2519 /// structs/unions into the owning context and scope as well.
   2520 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
   2521                                                 DeclContext *Owner,
   2522                                                 RecordDecl *AnonRecord,
   2523                                                 AccessSpecifier AS,
   2524                               SmallVector<NamedDecl*, 2> &Chaining,
   2525                                                       bool MSAnonStruct) {
   2526   unsigned diagKind
   2527     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
   2528                             : diag::err_anonymous_struct_member_redecl;
   2529 
   2530   bool Invalid = false;
   2531 
   2532   // Look every FieldDecl and IndirectFieldDecl with a name.
   2533   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
   2534                                DEnd = AnonRecord->decls_end();
   2535        D != DEnd; ++D) {
   2536     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
   2537         cast<NamedDecl>(*D)->getDeclName()) {
   2538       ValueDecl *VD = cast<ValueDecl>(*D);
   2539       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
   2540                                        VD->getLocation(), diagKind)) {
   2541         // C++ [class.union]p2:
   2542         //   The names of the members of an anonymous union shall be
   2543         //   distinct from the names of any other entity in the
   2544         //   scope in which the anonymous union is declared.
   2545         Invalid = true;
   2546       } else {
   2547         // C++ [class.union]p2:
   2548         //   For the purpose of name lookup, after the anonymous union
   2549         //   definition, the members of the anonymous union are
   2550         //   considered to have been defined in the scope in which the
   2551         //   anonymous union is declared.
   2552         unsigned OldChainingSize = Chaining.size();
   2553         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
   2554           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
   2555                PE = IF->chain_end(); PI != PE; ++PI)
   2556             Chaining.push_back(*PI);
   2557         else
   2558           Chaining.push_back(VD);
   2559 
   2560         assert(Chaining.size() >= 2);
   2561         NamedDecl **NamedChain =
   2562           new (SemaRef.Context)NamedDecl*[Chaining.size()];
   2563         for (unsigned i = 0; i < Chaining.size(); i++)
   2564           NamedChain[i] = Chaining[i];
   2565 
   2566         IndirectFieldDecl* IndirectField =
   2567           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
   2568                                     VD->getIdentifier(), VD->getType(),
   2569                                     NamedChain, Chaining.size());
   2570 
   2571         IndirectField->setAccess(AS);
   2572         IndirectField->setImplicit();
   2573         SemaRef.PushOnScopeChains(IndirectField, S);
   2574 
   2575         // That includes picking up the appropriate access specifier.
   2576         if (AS != AS_none) IndirectField->setAccess(AS);
   2577 
   2578         Chaining.resize(OldChainingSize);
   2579       }
   2580     }
   2581   }
   2582 
   2583   return Invalid;
   2584 }
   2585 
   2586 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
   2587 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
   2588 /// illegal input values are mapped to SC_None.
   2589 static StorageClass
   2590 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
   2591   switch (StorageClassSpec) {
   2592   case DeclSpec::SCS_unspecified:    return SC_None;
   2593   case DeclSpec::SCS_extern:         return SC_Extern;
   2594   case DeclSpec::SCS_static:         return SC_Static;
   2595   case DeclSpec::SCS_auto:           return SC_Auto;
   2596   case DeclSpec::SCS_register:       return SC_Register;
   2597   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   2598     // Illegal SCSs map to None: error reporting is up to the caller.
   2599   case DeclSpec::SCS_mutable:        // Fall through.
   2600   case DeclSpec::SCS_typedef:        return SC_None;
   2601   }
   2602   llvm_unreachable("unknown storage class specifier");
   2603 }
   2604 
   2605 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
   2606 /// a StorageClass. Any error reporting is up to the caller:
   2607 /// illegal input values are mapped to SC_None.
   2608 static StorageClass
   2609 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
   2610   switch (StorageClassSpec) {
   2611   case DeclSpec::SCS_unspecified:    return SC_None;
   2612   case DeclSpec::SCS_extern:         return SC_Extern;
   2613   case DeclSpec::SCS_static:         return SC_Static;
   2614   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   2615     // Illegal SCSs map to None: error reporting is up to the caller.
   2616   case DeclSpec::SCS_auto:           // Fall through.
   2617   case DeclSpec::SCS_mutable:        // Fall through.
   2618   case DeclSpec::SCS_register:       // Fall through.
   2619   case DeclSpec::SCS_typedef:        return SC_None;
   2620   }
   2621   llvm_unreachable("unknown storage class specifier");
   2622 }
   2623 
   2624 /// BuildAnonymousStructOrUnion - Handle the declaration of an
   2625 /// anonymous structure or union. Anonymous unions are a C++ feature
   2626 /// (C++ [class.union]) and a GNU C extension; anonymous structures
   2627 /// are a GNU C and GNU C++ extension.
   2628 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
   2629                                              AccessSpecifier AS,
   2630                                              RecordDecl *Record) {
   2631   DeclContext *Owner = Record->getDeclContext();
   2632 
   2633   // Diagnose whether this anonymous struct/union is an extension.
   2634   if (Record->isUnion() && !getLangOptions().CPlusPlus)
   2635     Diag(Record->getLocation(), diag::ext_anonymous_union);
   2636   else if (!Record->isUnion())
   2637     Diag(Record->getLocation(), diag::ext_anonymous_struct);
   2638 
   2639   // C and C++ require different kinds of checks for anonymous
   2640   // structs/unions.
   2641   bool Invalid = false;
   2642   if (getLangOptions().CPlusPlus) {
   2643     const char* PrevSpec = 0;
   2644     unsigned DiagID;
   2645     // C++ [class.union]p3:
   2646     //   Anonymous unions declared in a named namespace or in the
   2647     //   global namespace shall be declared static.
   2648     if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
   2649         (isa<TranslationUnitDecl>(Owner) ||
   2650          (isa<NamespaceDecl>(Owner) &&
   2651           cast<NamespaceDecl>(Owner)->getDeclName()))) {
   2652       Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
   2653       Invalid = true;
   2654 
   2655       // Recover by adding 'static'.
   2656       DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
   2657                              PrevSpec, DiagID);
   2658     }
   2659     // C++ [class.union]p3:
   2660     //   A storage class is not allowed in a declaration of an
   2661     //   anonymous union in a class scope.
   2662     else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
   2663              isa<RecordDecl>(Owner)) {
   2664       Diag(DS.getStorageClassSpecLoc(),
   2665            diag::err_anonymous_union_with_storage_spec);
   2666       Invalid = true;
   2667 
   2668       // Recover by removing the storage specifier.
   2669       DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, SourceLocation(),
   2670                              PrevSpec, DiagID);
   2671     }
   2672 
   2673     // Ignore const/volatile/restrict qualifiers.
   2674     if (DS.getTypeQualifiers()) {
   2675       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   2676         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   2677           << Record->isUnion() << 0
   2678           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
   2679       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   2680         Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   2681           << Record->isUnion() << 1
   2682           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
   2683       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
   2684         Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   2685           << Record->isUnion() << 2
   2686           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
   2687 
   2688       DS.ClearTypeQualifiers();
   2689     }
   2690 
   2691     // C++ [class.union]p2:
   2692     //   The member-specification of an anonymous union shall only
   2693     //   define non-static data members. [Note: nested types and
   2694     //   functions cannot be declared within an anonymous union. ]
   2695     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
   2696                                  MemEnd = Record->decls_end();
   2697          Mem != MemEnd; ++Mem) {
   2698       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
   2699         // C++ [class.union]p3:
   2700         //   An anonymous union shall not have private or protected
   2701         //   members (clause 11).
   2702         assert(FD->getAccess() != AS_none);
   2703         if (FD->getAccess() != AS_public) {
   2704           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
   2705             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
   2706           Invalid = true;
   2707         }
   2708 
   2709         // C++ [class.union]p1
   2710         //   An object of a class with a non-trivial constructor, a non-trivial
   2711         //   copy constructor, a non-trivial destructor, or a non-trivial copy
   2712         //   assignment operator cannot be a member of a union, nor can an
   2713         //   array of such objects.
   2714         if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
   2715           Invalid = true;
   2716       } else if ((*Mem)->isImplicit()) {
   2717         // Any implicit members are fine.
   2718       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
   2719         // This is a type that showed up in an
   2720         // elaborated-type-specifier inside the anonymous struct or
   2721         // union, but which actually declares a type outside of the
   2722         // anonymous struct or union. It's okay.
   2723       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
   2724         if (!MemRecord->isAnonymousStructOrUnion() &&
   2725             MemRecord->getDeclName()) {
   2726           // Visual C++ allows type definition in anonymous struct or union.
   2727           if (getLangOptions().MicrosoftExt)
   2728             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
   2729               << (int)Record->isUnion();
   2730           else {
   2731             // This is a nested type declaration.
   2732             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
   2733               << (int)Record->isUnion();
   2734             Invalid = true;
   2735           }
   2736         }
   2737       } else if (isa<AccessSpecDecl>(*Mem)) {
   2738         // Any access specifier is fine.
   2739       } else {
   2740         // We have something that isn't a non-static data
   2741         // member. Complain about it.
   2742         unsigned DK = diag::err_anonymous_record_bad_member;
   2743         if (isa<TypeDecl>(*Mem))
   2744           DK = diag::err_anonymous_record_with_type;
   2745         else if (isa<FunctionDecl>(*Mem))
   2746           DK = diag::err_anonymous_record_with_function;
   2747         else if (isa<VarDecl>(*Mem))
   2748           DK = diag::err_anonymous_record_with_static;
   2749 
   2750         // Visual C++ allows type definition in anonymous struct or union.
   2751         if (getLangOptions().MicrosoftExt &&
   2752             DK == diag::err_anonymous_record_with_type)
   2753           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
   2754             << (int)Record->isUnion();
   2755         else {
   2756           Diag((*Mem)->getLocation(), DK)
   2757               << (int)Record->isUnion();
   2758           Invalid = true;
   2759         }
   2760       }
   2761     }
   2762   }
   2763 
   2764   if (!Record->isUnion() && !Owner->isRecord()) {
   2765     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
   2766       << (int)getLangOptions().CPlusPlus;
   2767     Invalid = true;
   2768   }
   2769 
   2770   // Mock up a declarator.
   2771   Declarator Dc(DS, Declarator::MemberContext);
   2772   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   2773   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
   2774 
   2775   // Create a declaration for this anonymous struct/union.
   2776   NamedDecl *Anon = 0;
   2777   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
   2778     Anon = FieldDecl::Create(Context, OwningClass,
   2779                              DS.getSourceRange().getBegin(),
   2780                              Record->getLocation(),
   2781                              /*IdentifierInfo=*/0,
   2782                              Context.getTypeDeclType(Record),
   2783                              TInfo,
   2784                              /*BitWidth=*/0, /*Mutable=*/false,
   2785                              /*HasInit=*/false);
   2786     Anon->setAccess(AS);
   2787     if (getLangOptions().CPlusPlus)
   2788       FieldCollector->Add(cast<FieldDecl>(Anon));
   2789   } else {
   2790     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
   2791     assert(SCSpec != DeclSpec::SCS_typedef &&
   2792            "Parser allowed 'typedef' as storage class VarDecl.");
   2793     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
   2794     if (SCSpec == DeclSpec::SCS_mutable) {
   2795       // mutable can only appear on non-static class members, so it's always
   2796       // an error here
   2797       Diag(Record->getLocation(), diag::err_mutable_nonmember);
   2798       Invalid = true;
   2799       SC = SC_None;
   2800     }
   2801     SCSpec = DS.getStorageClassSpecAsWritten();
   2802     VarDecl::StorageClass SCAsWritten
   2803       = StorageClassSpecToVarDeclStorageClass(SCSpec);
   2804 
   2805     Anon = VarDecl::Create(Context, Owner,
   2806                            DS.getSourceRange().getBegin(),
   2807                            Record->getLocation(), /*IdentifierInfo=*/0,
   2808                            Context.getTypeDeclType(Record),
   2809                            TInfo, SC, SCAsWritten);
   2810 
   2811     // Default-initialize the implicit variable. This initialization will be
   2812     // trivial in almost all cases, except if a union member has an in-class
   2813     // initializer:
   2814     //   union { int n = 0; };
   2815     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
   2816   }
   2817   Anon->setImplicit();
   2818 
   2819   // Add the anonymous struct/union object to the current
   2820   // context. We'll be referencing this object when we refer to one of
   2821   // its members.
   2822   Owner->addDecl(Anon);
   2823 
   2824   // Inject the members of the anonymous struct/union into the owning
   2825   // context and into the identifier resolver chain for name lookup
   2826   // purposes.
   2827   SmallVector<NamedDecl*, 2> Chain;
   2828   Chain.push_back(Anon);
   2829 
   2830   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
   2831                                           Chain, false))
   2832     Invalid = true;
   2833 
   2834   // Mark this as an anonymous struct/union type. Note that we do not
   2835   // do this until after we have already checked and injected the
   2836   // members of this anonymous struct/union type, because otherwise
   2837   // the members could be injected twice: once by DeclContext when it
   2838   // builds its lookup table, and once by
   2839   // InjectAnonymousStructOrUnionMembers.
   2840   Record->setAnonymousStructOrUnion(true);
   2841 
   2842   if (Invalid)
   2843     Anon->setInvalidDecl();
   2844 
   2845   return Anon;
   2846 }
   2847 
   2848 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
   2849 /// Microsoft C anonymous structure.
   2850 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
   2851 /// Example:
   2852 ///
   2853 /// struct A { int a; };
   2854 /// struct B { struct A; int b; };
   2855 ///
   2856 /// void foo() {
   2857 ///   B var;
   2858 ///   var.a = 3;
   2859 /// }
   2860 ///
   2861 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
   2862                                            RecordDecl *Record) {
   2863 
   2864   // If there is no Record, get the record via the typedef.
   2865   if (!Record)
   2866     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
   2867 
   2868   // Mock up a declarator.
   2869   Declarator Dc(DS, Declarator::TypeNameContext);
   2870   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   2871   assert(TInfo && "couldn't build declarator info for anonymous struct");
   2872 
   2873   // Create a declaration for this anonymous struct.
   2874   NamedDecl* Anon = FieldDecl::Create(Context,
   2875                              cast<RecordDecl>(CurContext),
   2876                              DS.getSourceRange().getBegin(),
   2877                              DS.getSourceRange().getBegin(),
   2878                              /*IdentifierInfo=*/0,
   2879                              Context.getTypeDeclType(Record),
   2880                              TInfo,
   2881                              /*BitWidth=*/0, /*Mutable=*/false,
   2882                              /*HasInit=*/false);
   2883   Anon->setImplicit();
   2884 
   2885   // Add the anonymous struct object to the current context.
   2886   CurContext->addDecl(Anon);
   2887 
   2888   // Inject the members of the anonymous struct into the current
   2889   // context and into the identifier resolver chain for name lookup
   2890   // purposes.
   2891   SmallVector<NamedDecl*, 2> Chain;
   2892   Chain.push_back(Anon);
   2893 
   2894   if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
   2895                                           Record->getDefinition(),
   2896                                           AS_none, Chain, true))
   2897     Anon->setInvalidDecl();
   2898 
   2899   return Anon;
   2900 }
   2901 
   2902 /// GetNameForDeclarator - Determine the full declaration name for the
   2903 /// given Declarator.
   2904 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
   2905   return GetNameFromUnqualifiedId(D.getName());
   2906 }
   2907 
   2908 /// \brief Retrieves the declaration name from a parsed unqualified-id.
   2909 DeclarationNameInfo
   2910 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
   2911   DeclarationNameInfo NameInfo;
   2912   NameInfo.setLoc(Name.StartLocation);
   2913 
   2914   switch (Name.getKind()) {
   2915 
   2916   case UnqualifiedId::IK_ImplicitSelfParam:
   2917   case UnqualifiedId::IK_Identifier:
   2918     NameInfo.setName(Name.Identifier);
   2919     NameInfo.setLoc(Name.StartLocation);
   2920     return NameInfo;
   2921 
   2922   case UnqualifiedId::IK_OperatorFunctionId:
   2923     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
   2924                                            Name.OperatorFunctionId.Operator));
   2925     NameInfo.setLoc(Name.StartLocation);
   2926     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
   2927       = Name.OperatorFunctionId.SymbolLocations[0];
   2928     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
   2929       = Name.EndLocation.getRawEncoding();
   2930     return NameInfo;
   2931 
   2932   case UnqualifiedId::IK_LiteralOperatorId:
   2933     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
   2934                                                            Name.Identifier));
   2935     NameInfo.setLoc(Name.StartLocation);
   2936     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
   2937     return NameInfo;
   2938 
   2939   case UnqualifiedId::IK_ConversionFunctionId: {
   2940     TypeSourceInfo *TInfo;
   2941     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
   2942     if (Ty.isNull())
   2943       return DeclarationNameInfo();
   2944     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
   2945                                                Context.getCanonicalType(Ty)));
   2946     NameInfo.setLoc(Name.StartLocation);
   2947     NameInfo.setNamedTypeInfo(TInfo);
   2948     return NameInfo;
   2949   }
   2950 
   2951   case UnqualifiedId::IK_ConstructorName: {
   2952     TypeSourceInfo *TInfo;
   2953     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
   2954     if (Ty.isNull())
   2955       return DeclarationNameInfo();
   2956     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   2957                                               Context.getCanonicalType(Ty)));
   2958     NameInfo.setLoc(Name.StartLocation);
   2959     NameInfo.setNamedTypeInfo(TInfo);
   2960     return NameInfo;
   2961   }
   2962 
   2963   case UnqualifiedId::IK_ConstructorTemplateId: {
   2964     // In well-formed code, we can only have a constructor
   2965     // template-id that refers to the current context, so go there
   2966     // to find the actual type being constructed.
   2967     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
   2968     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
   2969       return DeclarationNameInfo();
   2970 
   2971     // Determine the type of the class being constructed.
   2972     QualType CurClassType = Context.getTypeDeclType(CurClass);
   2973 
   2974     // FIXME: Check two things: that the template-id names the same type as
   2975     // CurClassType, and that the template-id does not occur when the name
   2976     // was qualified.
   2977 
   2978     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   2979                                     Context.getCanonicalType(CurClassType)));
   2980     NameInfo.setLoc(Name.StartLocation);
   2981     // FIXME: should we retrieve TypeSourceInfo?
   2982     NameInfo.setNamedTypeInfo(0);
   2983     return NameInfo;
   2984   }
   2985 
   2986   case UnqualifiedId::IK_DestructorName: {
   2987     TypeSourceInfo *TInfo;
   2988     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
   2989     if (Ty.isNull())
   2990       return DeclarationNameInfo();
   2991     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
   2992                                               Context.getCanonicalType(Ty)));
   2993     NameInfo.setLoc(Name.StartLocation);
   2994     NameInfo.setNamedTypeInfo(TInfo);
   2995     return NameInfo;
   2996   }
   2997 
   2998   case UnqualifiedId::IK_TemplateId: {
   2999     TemplateName TName = Name.TemplateId->Template.get();
   3000     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
   3001     return Context.getNameForTemplate(TName, TNameLoc);
   3002   }
   3003 
   3004   } // switch (Name.getKind())
   3005 
   3006   llvm_unreachable("Unknown name kind");
   3007 }
   3008 
   3009 static QualType getCoreType(QualType Ty) {
   3010   do {
   3011     if (Ty->isPointerType() || Ty->isReferenceType())
   3012       Ty = Ty->getPointeeType();
   3013     else if (Ty->isArrayType())
   3014       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
   3015     else
   3016       return Ty.withoutLocalFastQualifiers();
   3017   } while (true);
   3018 }
   3019 
   3020 /// hasSimilarParameters - Determine whether the C++ functions Declaration
   3021 /// and Definition have "nearly" matching parameters. This heuristic is
   3022 /// used to improve diagnostics in the case where an out-of-line function
   3023 /// definition doesn't match any declaration within the class or namespace.
   3024 /// Also sets Params to the list of indices to the parameters that differ
   3025 /// between the declaration and the definition. If hasSimilarParameters
   3026 /// returns true and Params is empty, then all of the parameters match.
   3027 static bool hasSimilarParameters(ASTContext &Context,
   3028                                      FunctionDecl *Declaration,
   3029                                      FunctionDecl *Definition,
   3030                                      llvm::SmallVectorImpl<unsigned> &Params) {
   3031   Params.clear();
   3032   if (Declaration->param_size() != Definition->param_size())
   3033     return false;
   3034   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
   3035     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
   3036     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
   3037 
   3038     // The parameter types are identical
   3039     if (Context.hasSameType(DefParamTy, DeclParamTy))
   3040       continue;
   3041 
   3042     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
   3043     QualType DefParamBaseTy = getCoreType(DefParamTy);
   3044     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
   3045     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
   3046 
   3047     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
   3048         (DeclTyName && DeclTyName == DefTyName))
   3049       Params.push_back(Idx);
   3050     else  // The two parameters aren't even close
   3051       return false;
   3052   }
   3053 
   3054   return true;
   3055 }
   3056 
   3057 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
   3058 /// declarator needs to be rebuilt in the current instantiation.
   3059 /// Any bits of declarator which appear before the name are valid for
   3060 /// consideration here.  That's specifically the type in the decl spec
   3061 /// and the base type in any member-pointer chunks.
   3062 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
   3063                                                     DeclarationName Name) {
   3064   // The types we specifically need to rebuild are:
   3065   //   - typenames, typeofs, and decltypes
   3066   //   - types which will become injected class names
   3067   // Of course, we also need to rebuild any type referencing such a
   3068   // type.  It's safest to just say "dependent", but we call out a
   3069   // few cases here.
   3070 
   3071   DeclSpec &DS = D.getMutableDeclSpec();
   3072   switch (DS.getTypeSpecType()) {
   3073   case DeclSpec::TST_typename:
   3074   case DeclSpec::TST_typeofType:
   3075   case DeclSpec::TST_decltype:
   3076   case DeclSpec::TST_underlyingType:
   3077   case DeclSpec::TST_atomic: {
   3078     // Grab the type from the parser.
   3079     TypeSourceInfo *TSI = 0;
   3080     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
   3081     if (T.isNull() || !T->isDependentType()) break;
   3082 
   3083     // Make sure there's a type source info.  This isn't really much
   3084     // of a waste; most dependent types should have type source info
   3085     // attached already.
   3086     if (!TSI)
   3087       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
   3088 
   3089     // Rebuild the type in the current instantiation.
   3090     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
   3091     if (!TSI) return true;
   3092 
   3093     // Store the new type back in the decl spec.
   3094     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
   3095     DS.UpdateTypeRep(LocType);
   3096     break;
   3097   }
   3098 
   3099   case DeclSpec::TST_typeofExpr: {
   3100     Expr *E = DS.getRepAsExpr();
   3101     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
   3102     if (Result.isInvalid()) return true;
   3103     DS.UpdateExprRep(Result.get());
   3104     break;
   3105   }
   3106 
   3107   default:
   3108     // Nothing to do for these decl specs.
   3109     break;
   3110   }
   3111 
   3112   // It doesn't matter what order we do this in.
   3113   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   3114     DeclaratorChunk &Chunk = D.getTypeObject(I);
   3115 
   3116     // The only type information in the declarator which can come
   3117     // before the declaration name is the base type of a member
   3118     // pointer.
   3119     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
   3120       continue;
   3121 
   3122     // Rebuild the scope specifier in-place.
   3123     CXXScopeSpec &SS = Chunk.Mem.Scope();
   3124     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
   3125       return true;
   3126   }
   3127 
   3128   return false;
   3129 }
   3130 
   3131 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
   3132   D.setFunctionDefinition(false);
   3133   return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
   3134 }
   3135 
   3136 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
   3137 ///   If T is the name of a class, then each of the following shall have a
   3138 ///   name different from T:
   3139 ///     - every static data member of class T;
   3140 ///     - every member function of class T
   3141 ///     - every member of class T that is itself a type;
   3142 /// \returns true if the declaration name violates these rules.
   3143 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
   3144                                    DeclarationNameInfo NameInfo) {
   3145   DeclarationName Name = NameInfo.getName();
   3146 
   3147   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
   3148     if (Record->getIdentifier() && Record->getDeclName() == Name) {
   3149       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
   3150       return true;
   3151     }
   3152 
   3153   return false;
   3154 }
   3155 
   3156 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
   3157                              MultiTemplateParamsArg TemplateParamLists) {
   3158   // TODO: consider using NameInfo for diagnostic.
   3159   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   3160   DeclarationName Name = NameInfo.getName();
   3161 
   3162   // All of these full declarators require an identifier.  If it doesn't have
   3163   // one, the ParsedFreeStandingDeclSpec action should be used.
   3164   if (!Name) {
   3165     if (!D.isInvalidType())  // Reject this if we think it is valid.
   3166       Diag(D.getDeclSpec().getSourceRange().getBegin(),
   3167            diag::err_declarator_need_ident)
   3168         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
   3169     return 0;
   3170   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
   3171     return 0;
   3172 
   3173   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   3174   // we find one that is.
   3175   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   3176          (S->getFlags() & Scope::TemplateParamScope) != 0)
   3177     S = S->getParent();
   3178 
   3179   DeclContext *DC = CurContext;
   3180   if (D.getCXXScopeSpec().isInvalid())
   3181     D.setInvalidType();
   3182   else if (D.getCXXScopeSpec().isSet()) {
   3183     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
   3184                                         UPPC_DeclarationQualifier))
   3185       return 0;
   3186 
   3187     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
   3188     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
   3189     if (!DC) {
   3190       // If we could not compute the declaration context, it's because the
   3191       // declaration context is dependent but does not refer to a class,
   3192       // class template, or class template partial specialization. Complain
   3193       // and return early, to avoid the coming semantic disaster.
   3194       Diag(D.getIdentifierLoc(),
   3195            diag::err_template_qualified_declarator_no_match)
   3196         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
   3197         << D.getCXXScopeSpec().getRange();
   3198       return 0;
   3199     }
   3200     bool IsDependentContext = DC->isDependentContext();
   3201 
   3202     if (!IsDependentContext &&
   3203         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
   3204       return 0;
   3205 
   3206     if (isa<CXXRecordDecl>(DC)) {
   3207       if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
   3208         Diag(D.getIdentifierLoc(),
   3209              diag::err_member_def_undefined_record)
   3210           << Name << DC << D.getCXXScopeSpec().getRange();
   3211         D.setInvalidType();
   3212       } else if (isa<CXXRecordDecl>(CurContext) &&
   3213                  !D.getDeclSpec().isFriendSpecified()) {
   3214         // The user provided a superfluous scope specifier inside a class
   3215         // definition:
   3216         //
   3217         // class X {
   3218         //   void X::f();
   3219         // };
   3220         if (CurContext->Equals(DC))
   3221           Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
   3222             << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
   3223         else
   3224           Diag(D.getIdentifierLoc(), diag::err_member_qualification)
   3225             << Name << D.getCXXScopeSpec().getRange();
   3226 
   3227         // Pretend that this qualifier was not here.
   3228         D.getCXXScopeSpec().clear();
   3229       }
   3230     }
   3231 
   3232     // Check whether we need to rebuild the type of the given
   3233     // declaration in the current instantiation.
   3234     if (EnteringContext && IsDependentContext &&
   3235         TemplateParamLists.size() != 0) {
   3236       ContextRAII SavedContext(*this, DC);
   3237       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
   3238         D.setInvalidType();
   3239     }
   3240   }
   3241 
   3242   if (DiagnoseClassNameShadow(DC, NameInfo))
   3243     // If this is a typedef, we'll end up spewing multiple diagnostics.
   3244     // Just return early; it's safer.
   3245     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   3246       return 0;
   3247 
   3248   NamedDecl *New;
   3249 
   3250   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3251   QualType R = TInfo->getType();
   3252 
   3253   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   3254                                       UPPC_DeclarationType))
   3255     D.setInvalidType();
   3256 
   3257   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   3258                         ForRedeclaration);
   3259 
   3260   // See if this is a redefinition of a variable in the same scope.
   3261   if (!D.getCXXScopeSpec().isSet()) {
   3262     bool IsLinkageLookup = false;
   3263 
   3264     // If the declaration we're planning to build will be a function
   3265     // or object with linkage, then look for another declaration with
   3266     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
   3267     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   3268       /* Do nothing*/;
   3269     else if (R->isFunctionType()) {
   3270       if (CurContext->isFunctionOrMethod() ||
   3271           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   3272         IsLinkageLookup = true;
   3273     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
   3274       IsLinkageLookup = true;
   3275     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
   3276              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   3277       IsLinkageLookup = true;
   3278 
   3279     if (IsLinkageLookup)
   3280       Previous.clear(LookupRedeclarationWithLinkage);
   3281 
   3282     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
   3283   } else { // Something like "int foo::x;"
   3284     LookupQualifiedName(Previous, DC);
   3285 
   3286     // Don't consider using declarations as previous declarations for
   3287     // out-of-line members.
   3288     RemoveUsingDecls(Previous);
   3289 
   3290     // C++ 7.3.1.2p2:
   3291     // Members (including explicit specializations of templates) of a named
   3292     // namespace can also be defined outside that namespace by explicit
   3293     // qualification of the name being defined, provided that the entity being
   3294     // defined was already declared in the namespace and the definition appears
   3295     // after the point of declaration in a namespace that encloses the
   3296     // declarations namespace.
   3297     //
   3298     // Note that we only check the context at this point. We don't yet
   3299     // have enough information to make sure that PrevDecl is actually
   3300     // the declaration we want to match. For example, given:
   3301     //
   3302     //   class X {
   3303     //     void f();
   3304     //     void f(float);
   3305     //   };
   3306     //
   3307     //   void X::f(int) { } // ill-formed
   3308     //
   3309     // In this case, PrevDecl will point to the overload set
   3310     // containing the two f's declared in X, but neither of them
   3311     // matches.
   3312 
   3313     // First check whether we named the global scope.
   3314     if (isa<TranslationUnitDecl>(DC)) {
   3315       Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
   3316         << Name << D.getCXXScopeSpec().getRange();
   3317     } else {
   3318       DeclContext *Cur = CurContext;
   3319       while (isa<LinkageSpecDecl>(Cur))
   3320         Cur = Cur->getParent();
   3321       if (!Cur->Encloses(DC)) {
   3322         // The qualifying scope doesn't enclose the original declaration.
   3323         // Emit diagnostic based on current scope.
   3324         SourceLocation L = D.getIdentifierLoc();
   3325         SourceRange R = D.getCXXScopeSpec().getRange();
   3326         if (isa<FunctionDecl>(Cur))
   3327           Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
   3328         else
   3329           Diag(L, diag::err_invalid_declarator_scope)
   3330             << Name << cast<NamedDecl>(DC) << R;
   3331         D.setInvalidType();
   3332       }
   3333     }
   3334   }
   3335 
   3336   if (Previous.isSingleResult() &&
   3337       Previous.getFoundDecl()->isTemplateParameter()) {
   3338     // Maybe we will complain about the shadowed template parameter.
   3339     if (!D.isInvalidType())
   3340       if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
   3341                                           Previous.getFoundDecl()))
   3342         D.setInvalidType();
   3343 
   3344     // Just pretend that we didn't see the previous declaration.
   3345     Previous.clear();
   3346   }
   3347 
   3348   // In C++, the previous declaration we find might be a tag type
   3349   // (class or enum). In this case, the new declaration will hide the
   3350   // tag type. Note that this does does not apply if we're declaring a
   3351   // typedef (C++ [dcl.typedef]p4).
   3352   if (Previous.isSingleTagDecl() &&
   3353       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
   3354     Previous.clear();
   3355 
   3356   bool AddToScope = true;
   3357   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   3358     if (TemplateParamLists.size()) {
   3359       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
   3360       return 0;
   3361     }
   3362 
   3363     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
   3364   } else if (R->isFunctionType()) {
   3365     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
   3366                                   move(TemplateParamLists),
   3367                                   AddToScope);
   3368   } else {
   3369     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
   3370                                   move(TemplateParamLists));
   3371   }
   3372 
   3373   if (New == 0)
   3374     return 0;
   3375 
   3376   // If this has an identifier and is not an invalid redeclaration or
   3377   // function template specialization, add it to the scope stack.
   3378   if (New->getDeclName() && AddToScope &&
   3379        !(D.isRedeclaration() && New->isInvalidDecl()))
   3380     PushOnScopeChains(New, S);
   3381 
   3382   return New;
   3383 }
   3384 
   3385 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
   3386 /// types into constant array types in certain situations which would otherwise
   3387 /// be errors (for GCC compatibility).
   3388 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
   3389                                                     ASTContext &Context,
   3390                                                     bool &SizeIsNegative,
   3391                                                     llvm::APSInt &Oversized) {
   3392   // This method tries to turn a variable array into a constant
   3393   // array even when the size isn't an ICE.  This is necessary
   3394   // for compatibility with code that depends on gcc's buggy
   3395   // constant expression folding, like struct {char x[(int)(char*)2];}
   3396   SizeIsNegative = false;
   3397   Oversized = 0;
   3398 
   3399   if (T->isDependentType())
   3400     return QualType();
   3401 
   3402   QualifierCollector Qs;
   3403   const Type *Ty = Qs.strip(T);
   3404 
   3405   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
   3406     QualType Pointee = PTy->getPointeeType();
   3407     QualType FixedType =
   3408         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
   3409                                             Oversized);
   3410     if (FixedType.isNull()) return FixedType;
   3411     FixedType = Context.getPointerType(FixedType);
   3412     return Qs.apply(Context, FixedType);
   3413   }
   3414   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
   3415     QualType Inner = PTy->getInnerType();
   3416     QualType FixedType =
   3417         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
   3418                                             Oversized);
   3419     if (FixedType.isNull()) return FixedType;
   3420     FixedType = Context.getParenType(FixedType);
   3421     return Qs.apply(Context, FixedType);
   3422   }
   3423 
   3424   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
   3425   if (!VLATy)
   3426     return QualType();
   3427   // FIXME: We should probably handle this case
   3428   if (VLATy->getElementType()->isVariablyModifiedType())
   3429     return QualType();
   3430 
   3431   Expr::EvalResult EvalResult;
   3432   if (!VLATy->getSizeExpr() ||
   3433       !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
   3434       !EvalResult.Val.isInt())
   3435     return QualType();
   3436 
   3437   // Check whether the array size is negative.
   3438   llvm::APSInt &Res = EvalResult.Val.getInt();
   3439   if (Res.isSigned() && Res.isNegative()) {
   3440     SizeIsNegative = true;
   3441     return QualType();
   3442   }
   3443 
   3444   // Check whether the array is too large to be addressed.
   3445   unsigned ActiveSizeBits
   3446     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
   3447                                               Res);
   3448   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   3449     Oversized = Res;
   3450     return QualType();
   3451   }
   3452 
   3453   return Context.getConstantArrayType(VLATy->getElementType(),
   3454                                       Res, ArrayType::Normal, 0);
   3455 }
   3456 
   3457 /// \brief Register the given locally-scoped external C declaration so
   3458 /// that it can be found later for redeclarations
   3459 void
   3460 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
   3461                                        const LookupResult &Previous,
   3462                                        Scope *S) {
   3463   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
   3464          "Decl is not a locally-scoped decl!");
   3465   // Note that we have a locally-scoped external with this name.
   3466   LocallyScopedExternalDecls[ND->getDeclName()] = ND;
   3467 
   3468   if (!Previous.isSingleResult())
   3469     return;
   3470 
   3471   NamedDecl *PrevDecl = Previous.getFoundDecl();
   3472 
   3473   // If there was a previous declaration of this variable, it may be
   3474   // in our identifier chain. Update the identifier chain with the new
   3475   // declaration.
   3476   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
   3477     // The previous declaration was found on the identifer resolver
   3478     // chain, so remove it from its scope.
   3479 
   3480     if (S->isDeclScope(PrevDecl)) {
   3481       // Special case for redeclarations in the SAME scope.
   3482       // Because this declaration is going to be added to the identifier chain
   3483       // later, we should temporarily take it OFF the chain.
   3484       IdResolver.RemoveDecl(ND);
   3485 
   3486     } else {
   3487       // Find the scope for the original declaration.
   3488       while (S && !S->isDeclScope(PrevDecl))
   3489         S = S->getParent();
   3490     }
   3491 
   3492     if (S)
   3493       S->RemoveDecl(PrevDecl);
   3494   }
   3495 }
   3496 
   3497 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
   3498 Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
   3499   if (ExternalSource) {
   3500     // Load locally-scoped external decls from the external source.
   3501     SmallVector<NamedDecl *, 4> Decls;
   3502     ExternalSource->ReadLocallyScopedExternalDecls(Decls);
   3503     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
   3504       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   3505         = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
   3506       if (Pos == LocallyScopedExternalDecls.end())
   3507         LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
   3508     }
   3509   }
   3510 
   3511   return LocallyScopedExternalDecls.find(Name);
   3512 }
   3513 
   3514 /// \brief Diagnose function specifiers on a declaration of an identifier that
   3515 /// does not identify a function.
   3516 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
   3517   // FIXME: We should probably indicate the identifier in question to avoid
   3518   // confusion for constructs like "inline int a(), b;"
   3519   if (D.getDeclSpec().isInlineSpecified())
   3520     Diag(D.getDeclSpec().getInlineSpecLoc(),
   3521          diag::err_inline_non_function);
   3522 
   3523   if (D.getDeclSpec().isVirtualSpecified())
   3524     Diag(D.getDeclSpec().getVirtualSpecLoc(),
   3525          diag::err_virtual_non_function);
   3526 
   3527   if (D.getDeclSpec().isExplicitSpecified())
   3528     Diag(D.getDeclSpec().getExplicitSpecLoc(),
   3529          diag::err_explicit_non_function);
   3530 }
   3531 
   3532 NamedDecl*
   3533 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
   3534                              TypeSourceInfo *TInfo, LookupResult &Previous) {
   3535   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
   3536   if (D.getCXXScopeSpec().isSet()) {
   3537     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
   3538       << D.getCXXScopeSpec().getRange();
   3539     D.setInvalidType();
   3540     // Pretend we didn't see the scope specifier.
   3541     DC = CurContext;
   3542     Previous.clear();
   3543   }
   3544 
   3545   if (getLangOptions().CPlusPlus) {
   3546     // Check that there are no default arguments (C++ only).
   3547     CheckExtraCXXDefaultArguments(D);
   3548   }
   3549 
   3550   DiagnoseFunctionSpecifiers(D);
   3551 
   3552   if (D.getDeclSpec().isThreadSpecified())
   3553     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   3554   if (D.getDeclSpec().isConstexprSpecified())
   3555     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   3556       << 1;
   3557 
   3558   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
   3559     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
   3560       << D.getName().getSourceRange();
   3561     return 0;
   3562   }
   3563 
   3564   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
   3565   if (!NewTD) return 0;
   3566 
   3567   // Handle attributes prior to checking for duplicates in MergeVarDecl
   3568   ProcessDeclAttributes(S, NewTD, D);
   3569 
   3570   CheckTypedefForVariablyModifiedType(S, NewTD);
   3571 
   3572   bool Redeclaration = D.isRedeclaration();
   3573   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
   3574   D.setRedeclaration(Redeclaration);
   3575   return ND;
   3576 }
   3577 
   3578 void
   3579 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
   3580   // C99 6.7.7p2: If a typedef name specifies a variably modified type
   3581   // then it shall have block scope.
   3582   // Note that variably modified types must be fixed before merging the decl so
   3583   // that redeclarations will match.
   3584   QualType T = NewTD->getUnderlyingType();
   3585   if (T->isVariablyModifiedType()) {
   3586     getCurFunction()->setHasBranchProtectedScope();
   3587 
   3588     if (S->getFnParent() == 0) {
   3589       bool SizeIsNegative;
   3590       llvm::APSInt Oversized;
   3591       QualType FixedTy =
   3592           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
   3593                                               Oversized);
   3594       if (!FixedTy.isNull()) {
   3595         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
   3596         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
   3597       } else {
   3598         if (SizeIsNegative)
   3599           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
   3600         else if (T->isVariableArrayType())
   3601           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
   3602         else if (Oversized.getBoolValue())
   3603           Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
   3604         else
   3605           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
   3606         NewTD->setInvalidDecl();
   3607       }
   3608     }
   3609   }
   3610 }
   3611 
   3612 
   3613 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
   3614 /// declares a typedef-name, either using the 'typedef' type specifier or via
   3615 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
   3616 NamedDecl*
   3617 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
   3618                            LookupResult &Previous, bool &Redeclaration) {
   3619   // Merge the decl with the existing one if appropriate. If the decl is
   3620   // in an outer scope, it isn't the same thing.
   3621   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
   3622                        /*ExplicitInstantiationOrSpecialization=*/false);
   3623   if (!Previous.empty()) {
   3624     Redeclaration = true;
   3625     MergeTypedefNameDecl(NewTD, Previous);
   3626   }
   3627 
   3628   // If this is the C FILE type, notify the AST context.
   3629   if (IdentifierInfo *II = NewTD->getIdentifier())
   3630     if (!NewTD->isInvalidDecl() &&
   3631         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   3632       if (II->isStr("FILE"))
   3633         Context.setFILEDecl(NewTD);
   3634       else if (II->isStr("jmp_buf"))
   3635         Context.setjmp_bufDecl(NewTD);
   3636       else if (II->isStr("sigjmp_buf"))
   3637         Context.setsigjmp_bufDecl(NewTD);
   3638       else if (II->isStr("__builtin_va_list"))
   3639         Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
   3640     }
   3641 
   3642   return NewTD;
   3643 }
   3644 
   3645 /// \brief Determines whether the given declaration is an out-of-scope
   3646 /// previous declaration.
   3647 ///
   3648 /// This routine should be invoked when name lookup has found a
   3649 /// previous declaration (PrevDecl) that is not in the scope where a
   3650 /// new declaration by the same name is being introduced. If the new
   3651 /// declaration occurs in a local scope, previous declarations with
   3652 /// linkage may still be considered previous declarations (C99
   3653 /// 6.2.2p4-5, C++ [basic.link]p6).
   3654 ///
   3655 /// \param PrevDecl the previous declaration found by name
   3656 /// lookup
   3657 ///
   3658 /// \param DC the context in which the new declaration is being
   3659 /// declared.
   3660 ///
   3661 /// \returns true if PrevDecl is an out-of-scope previous declaration
   3662 /// for a new delcaration with the same name.
   3663 static bool
   3664 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
   3665                                 ASTContext &Context) {
   3666   if (!PrevDecl)
   3667     return false;
   3668 
   3669   if (!PrevDecl->hasLinkage())
   3670     return false;
   3671 
   3672   if (Context.getLangOptions().CPlusPlus) {
   3673     // C++ [basic.link]p6:
   3674     //   If there is a visible declaration of an entity with linkage
   3675     //   having the same name and type, ignoring entities declared
   3676     //   outside the innermost enclosing namespace scope, the block
   3677     //   scope declaration declares that same entity and receives the
   3678     //   linkage of the previous declaration.
   3679     DeclContext *OuterContext = DC->getRedeclContext();
   3680     if (!OuterContext->isFunctionOrMethod())
   3681       // This rule only applies to block-scope declarations.
   3682       return false;
   3683 
   3684     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
   3685     if (PrevOuterContext->isRecord())
   3686       // We found a member function: ignore it.
   3687       return false;
   3688 
   3689     // Find the innermost enclosing namespace for the new and
   3690     // previous declarations.
   3691     OuterContext = OuterContext->getEnclosingNamespaceContext();
   3692     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
   3693 
   3694     // The previous declaration is in a different namespace, so it
   3695     // isn't the same function.
   3696     if (!OuterContext->Equals(PrevOuterContext))
   3697       return false;
   3698   }
   3699 
   3700   return true;
   3701 }
   3702 
   3703 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
   3704   CXXScopeSpec &SS = D.getCXXScopeSpec();
   3705   if (!SS.isSet()) return;
   3706   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
   3707 }
   3708 
   3709 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
   3710   QualType type = decl->getType();
   3711   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   3712   if (lifetime == Qualifiers::OCL_Autoreleasing) {
   3713     // Various kinds of declaration aren't allowed to be __autoreleasing.
   3714     unsigned kind = -1U;
   3715     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   3716       if (var->hasAttr<BlocksAttr>())
   3717         kind = 0; // __block
   3718       else if (!var->hasLocalStorage())
   3719         kind = 1; // global
   3720     } else if (isa<ObjCIvarDecl>(decl)) {
   3721       kind = 3; // ivar
   3722     } else if (isa<FieldDecl>(decl)) {
   3723       kind = 2; // field
   3724     }
   3725 
   3726     if (kind != -1U) {
   3727       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
   3728         << kind;
   3729     }
   3730   } else if (lifetime == Qualifiers::OCL_None) {
   3731     // Try to infer lifetime.
   3732     if (!type->isObjCLifetimeType())
   3733       return false;
   3734 
   3735     lifetime = type->getObjCARCImplicitLifetime();
   3736     type = Context.getLifetimeQualifiedType(type, lifetime);
   3737     decl->setType(type);
   3738   }
   3739 
   3740   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   3741     // Thread-local variables cannot have lifetime.
   3742     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
   3743         var->isThreadSpecified()) {
   3744       Diag(var->getLocation(), diag::err_arc_thread_ownership)
   3745         << var->getType();
   3746       return true;
   3747     }
   3748   }
   3749 
   3750   return false;
   3751 }
   3752 
   3753 NamedDecl*
   3754 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   3755                               TypeSourceInfo *TInfo, LookupResult &Previous,
   3756                               MultiTemplateParamsArg TemplateParamLists) {
   3757   QualType R = TInfo->getType();
   3758   DeclarationName Name = GetNameForDeclarator(D).getName();
   3759 
   3760   // Check that there are no default arguments (C++ only).
   3761   if (getLangOptions().CPlusPlus)
   3762     CheckExtraCXXDefaultArguments(D);
   3763 
   3764   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
   3765   assert(SCSpec != DeclSpec::SCS_typedef &&
   3766          "Parser allowed 'typedef' as storage class VarDecl.");
   3767   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
   3768   if (SCSpec == DeclSpec::SCS_mutable) {
   3769     // mutable can only appear on non-static class members, so it's always
   3770     // an error here
   3771     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
   3772     D.setInvalidType();
   3773     SC = SC_None;
   3774   }
   3775   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
   3776   VarDecl::StorageClass SCAsWritten
   3777     = StorageClassSpecToVarDeclStorageClass(SCSpec);
   3778 
   3779   IdentifierInfo *II = Name.getAsIdentifierInfo();
   3780   if (!II) {
   3781     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
   3782       << Name;
   3783     return 0;
   3784   }
   3785 
   3786   DiagnoseFunctionSpecifiers(D);
   3787 
   3788   if (!DC->isRecord() && S->getFnParent() == 0) {
   3789     // C99 6.9p2: The storage-class specifiers auto and register shall not
   3790     // appear in the declaration specifiers in an external declaration.
   3791     if (SC == SC_Auto || SC == SC_Register) {
   3792 
   3793       // If this is a register variable with an asm label specified, then this
   3794       // is a GNU extension.
   3795       if (SC == SC_Register && D.getAsmLabel())
   3796         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
   3797       else
   3798         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
   3799       D.setInvalidType();
   3800     }
   3801   }
   3802 
   3803   if (getLangOptions().OpenCL) {
   3804     // Set up the special work-group-local storage class for variables in the
   3805     // OpenCL __local address space.
   3806     if (R.getAddressSpace() == LangAS::opencl_local)
   3807       SC = SC_OpenCLWorkGroupLocal;
   3808   }
   3809 
   3810   bool isExplicitSpecialization = false;
   3811   VarDecl *NewVD;
   3812   if (!getLangOptions().CPlusPlus) {
   3813     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
   3814                             D.getIdentifierLoc(), II,
   3815                             R, TInfo, SC, SCAsWritten);
   3816 
   3817     if (D.isInvalidType())
   3818       NewVD->setInvalidDecl();
   3819   } else {
   3820     if (DC->isRecord() && !CurContext->isRecord()) {
   3821       // This is an out-of-line definition of a static data member.
   3822       if (SC == SC_Static) {
   3823         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   3824              diag::err_static_out_of_line)
   3825           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   3826       } else if (SC == SC_None)
   3827         SC = SC_Static;
   3828     }
   3829     if (SC == SC_Static) {
   3830       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
   3831         if (RD->isLocalClass())
   3832           Diag(D.getIdentifierLoc(),
   3833                diag::err_static_data_member_not_allowed_in_local_class)
   3834             << Name << RD->getDeclName();
   3835 
   3836         // C++ [class.union]p1: If a union contains a static data member,
   3837         // the program is ill-formed.
   3838         //
   3839         // We also disallow static data members in anonymous structs.
   3840         if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
   3841           Diag(D.getIdentifierLoc(),
   3842                diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
   3843             << Name << RD->isUnion();
   3844       }
   3845     }
   3846 
   3847     // Match up the template parameter lists with the scope specifier, then
   3848     // determine whether we have a template or a template specialization.
   3849     isExplicitSpecialization = false;
   3850     bool Invalid = false;
   3851     if (TemplateParameterList *TemplateParams
   3852         = MatchTemplateParametersToScopeSpecifier(
   3853                                   D.getDeclSpec().getSourceRange().getBegin(),
   3854                                                   D.getIdentifierLoc(),
   3855                                                   D.getCXXScopeSpec(),
   3856                                                   TemplateParamLists.get(),
   3857                                                   TemplateParamLists.size(),
   3858                                                   /*never a friend*/ false,
   3859                                                   isExplicitSpecialization,
   3860                                                   Invalid)) {
   3861       if (TemplateParams->size() > 0) {
   3862         // There is no such thing as a variable template.
   3863         Diag(D.getIdentifierLoc(), diag::err_template_variable)
   3864           << II
   3865           << SourceRange(TemplateParams->getTemplateLoc(),
   3866                          TemplateParams->getRAngleLoc());
   3867         return 0;
   3868       } else {
   3869         // There is an extraneous 'template<>' for this variable. Complain
   3870         // about it, but allow the declaration of the variable.
   3871         Diag(TemplateParams->getTemplateLoc(),
   3872              diag::err_template_variable_noparams)
   3873           << II
   3874           << SourceRange(TemplateParams->getTemplateLoc(),
   3875                          TemplateParams->getRAngleLoc());
   3876       }
   3877     }
   3878 
   3879     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
   3880                             D.getIdentifierLoc(), II,
   3881                             R, TInfo, SC, SCAsWritten);
   3882 
   3883     // If this decl has an auto type in need of deduction, make a note of the
   3884     // Decl so we can diagnose uses of it in its own initializer.
   3885     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
   3886         R->getContainedAutoType())
   3887       ParsingInitForAutoVars.insert(NewVD);
   3888 
   3889     if (D.isInvalidType() || Invalid)
   3890       NewVD->setInvalidDecl();
   3891 
   3892     SetNestedNameSpecifier(NewVD, D);
   3893 
   3894     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
   3895       NewVD->setTemplateParameterListsInfo(Context,
   3896                                            TemplateParamLists.size(),
   3897                                            TemplateParamLists.release());
   3898     }
   3899 
   3900     if (D.getDeclSpec().isConstexprSpecified()) {
   3901       // FIXME: once we know whether there's an initializer, apply this to
   3902       // static data members too.
   3903       if (!NewVD->isStaticDataMember() &&
   3904           !NewVD->isThisDeclarationADefinition()) {
   3905         // 'constexpr' is redundant and ill-formed on a non-defining declaration
   3906         // of a variable. Suggest replacing it with 'const' if appropriate.
   3907         SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
   3908         SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
   3909         // If the declarator is complex, we need to move the keyword to the
   3910         // innermost chunk as we switch it from 'constexpr' to 'const'.
   3911         int Kind = DeclaratorChunk::Paren;
   3912         for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   3913           Kind = D.getTypeObject(I).Kind;
   3914           if (Kind != DeclaratorChunk::Paren)
   3915             break;
   3916         }
   3917         if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
   3918             Kind == DeclaratorChunk::Reference)
   3919           Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
   3920             << FixItHint::CreateRemoval(ConstexprRange);
   3921         else if (Kind == DeclaratorChunk::Paren)
   3922           Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
   3923             << FixItHint::CreateReplacement(ConstexprRange, "const");
   3924         else
   3925           Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
   3926             << FixItHint::CreateRemoval(ConstexprRange)
   3927             << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
   3928       } else {
   3929         NewVD->setConstexpr(true);
   3930       }
   3931     }
   3932   }
   3933 
   3934   // Set the lexical context. If the declarator has a C++ scope specifier, the
   3935   // lexical context will be different from the semantic context.
   3936   NewVD->setLexicalDeclContext(CurContext);
   3937 
   3938   if (D.getDeclSpec().isThreadSpecified()) {
   3939     if (NewVD->hasLocalStorage())
   3940       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
   3941     else if (!Context.getTargetInfo().isTLSSupported())
   3942       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
   3943     else
   3944       NewVD->setThreadSpecified(true);
   3945   }
   3946 
   3947   if (D.getDeclSpec().isModulePrivateSpecified()) {
   3948     if (isExplicitSpecialization)
   3949       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   3950         << 2
   3951         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   3952     else if (NewVD->hasLocalStorage())
   3953       Diag(NewVD->getLocation(), diag::err_module_private_local)
   3954         << 0 << NewVD->getDeclName()
   3955         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   3956         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   3957     else
   3958       NewVD->setModulePrivate();
   3959   }
   3960 
   3961   // Handle attributes prior to checking for duplicates in MergeVarDecl
   3962   ProcessDeclAttributes(S, NewVD, D);
   3963 
   3964   // In auto-retain/release, infer strong retension for variables of
   3965   // retainable type.
   3966   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
   3967     NewVD->setInvalidDecl();
   3968 
   3969   // Handle GNU asm-label extension (encoded as an attribute).
   3970   if (Expr *E = (Expr*)D.getAsmLabel()) {
   3971     // The parser guarantees this is a string.
   3972     StringLiteral *SE = cast<StringLiteral>(E);
   3973     StringRef Label = SE->getString();
   3974     if (S->getFnParent() != 0) {
   3975       switch (SC) {
   3976       case SC_None:
   3977       case SC_Auto:
   3978         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
   3979         break;
   3980       case SC_Register:
   3981         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
   3982           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   3983         break;
   3984       case SC_Static:
   3985       case SC_Extern:
   3986       case SC_PrivateExtern:
   3987       case SC_OpenCLWorkGroupLocal:
   3988         break;
   3989       }
   3990     }
   3991 
   3992     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
   3993                                                 Context, Label));
   3994   }
   3995 
   3996   // Diagnose shadowed variables before filtering for scope.
   3997   if (!D.getCXXScopeSpec().isSet())
   3998     CheckShadow(S, NewVD, Previous);
   3999 
   4000   // Don't consider existing declarations that are in a different
   4001   // scope and are out-of-semantic-context declarations (if the new
   4002   // declaration has linkage).
   4003   FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
   4004                        isExplicitSpecialization);
   4005 
   4006   if (!getLangOptions().CPlusPlus) {
   4007     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   4008   } else {
   4009     // Merge the decl with the existing one if appropriate.
   4010     if (!Previous.empty()) {
   4011       if (Previous.isSingleResult() &&
   4012           isa<FieldDecl>(Previous.getFoundDecl()) &&
   4013           D.getCXXScopeSpec().isSet()) {
   4014         // The user tried to define a non-static data member
   4015         // out-of-line (C++ [dcl.meaning]p1).
   4016         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
   4017           << D.getCXXScopeSpec().getRange();
   4018         Previous.clear();
   4019         NewVD->setInvalidDecl();
   4020       }
   4021     } else if (D.getCXXScopeSpec().isSet()) {
   4022       // No previous declaration in the qualifying scope.
   4023       Diag(D.getIdentifierLoc(), diag::err_no_member)
   4024         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
   4025         << D.getCXXScopeSpec().getRange();
   4026       NewVD->setInvalidDecl();
   4027     }
   4028 
   4029     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   4030 
   4031     // This is an explicit specialization of a static data member. Check it.
   4032     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
   4033         CheckMemberSpecialization(NewVD, Previous))
   4034       NewVD->setInvalidDecl();
   4035   }
   4036 
   4037   // attributes declared post-definition are currently ignored
   4038   // FIXME: This should be handled in attribute merging, not
   4039   // here.
   4040   if (Previous.isSingleResult()) {
   4041     VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
   4042     if (Def && (Def = Def->getDefinition()) &&
   4043         Def != NewVD && D.hasAttributes()) {
   4044       Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
   4045       Diag(Def->getLocation(), diag::note_previous_definition);
   4046     }
   4047   }
   4048 
   4049   // If this is a locally-scoped extern C variable, update the map of
   4050   // such variables.
   4051   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
   4052       !NewVD->isInvalidDecl())
   4053     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
   4054 
   4055   // If there's a #pragma GCC visibility in scope, and this isn't a class
   4056   // member, set the visibility of this variable.
   4057   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
   4058     AddPushedVisibilityAttribute(NewVD);
   4059 
   4060   MarkUnusedFileScopedDecl(NewVD);
   4061 
   4062   return NewVD;
   4063 }
   4064 
   4065 /// \brief Diagnose variable or built-in function shadowing.  Implements
   4066 /// -Wshadow.
   4067 ///
   4068 /// This method is called whenever a VarDecl is added to a "useful"
   4069 /// scope.
   4070 ///
   4071 /// \param S the scope in which the shadowing name is being declared
   4072 /// \param R the lookup of the name
   4073 ///
   4074 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
   4075   // Return if warning is ignored.
   4076   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
   4077         DiagnosticsEngine::Ignored)
   4078     return;
   4079 
   4080   // Don't diagnose declarations at file scope.
   4081   if (D->hasGlobalStorage())
   4082     return;
   4083 
   4084   DeclContext *NewDC = D->getDeclContext();
   4085 
   4086   // Only diagnose if we're shadowing an unambiguous field or variable.
   4087   if (R.getResultKind() != LookupResult::Found)
   4088     return;
   4089 
   4090   NamedDecl* ShadowedDecl = R.getFoundDecl();
   4091   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
   4092     return;
   4093 
   4094   // Fields are not shadowed by variables in C++ static methods.
   4095   if (isa<FieldDecl>(ShadowedDecl))
   4096     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
   4097       if (MD->isStatic())
   4098         return;
   4099 
   4100   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
   4101     if (shadowedVar->isExternC()) {
   4102       // For shadowing external vars, make sure that we point to the global
   4103       // declaration, not a locally scoped extern declaration.
   4104       for (VarDecl::redecl_iterator
   4105              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
   4106            I != E; ++I)
   4107         if (I->isFileVarDecl()) {
   4108           ShadowedDecl = *I;
   4109           break;
   4110         }
   4111     }
   4112 
   4113   DeclContext *OldDC = ShadowedDecl->getDeclContext();
   4114 
   4115   // Only warn about certain kinds of shadowing for class members.
   4116   if (NewDC && NewDC->isRecord()) {
   4117     // In particular, don't warn about shadowing non-class members.
   4118     if (!OldDC->isRecord())
   4119       return;
   4120 
   4121     // TODO: should we warn about static data members shadowing
   4122     // static data members from base classes?
   4123 
   4124     // TODO: don't diagnose for inaccessible shadowed members.
   4125     // This is hard to do perfectly because we might friend the
   4126     // shadowing context, but that's just a false negative.
   4127   }
   4128 
   4129   // Determine what kind of declaration we're shadowing.
   4130   unsigned Kind;
   4131   if (isa<RecordDecl>(OldDC)) {
   4132     if (isa<FieldDecl>(ShadowedDecl))
   4133       Kind = 3; // field
   4134     else
   4135       Kind = 2; // static data member
   4136   } else if (OldDC->isFileContext())
   4137     Kind = 1; // global
   4138   else
   4139     Kind = 0; // local
   4140 
   4141   DeclarationName Name = R.getLookupName();
   4142 
   4143   // Emit warning and note.
   4144   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
   4145   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   4146 }
   4147 
   4148 /// \brief Check -Wshadow without the advantage of a previous lookup.
   4149 void Sema::CheckShadow(Scope *S, VarDecl *D) {
   4150   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
   4151         DiagnosticsEngine::Ignored)
   4152     return;
   4153 
   4154   LookupResult R(*this, D->getDeclName(), D->getLocation(),
   4155                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   4156   LookupName(R, S);
   4157   CheckShadow(S, D, R);
   4158 }
   4159 
   4160 /// \brief Perform semantic checking on a newly-created variable
   4161 /// declaration.
   4162 ///
   4163 /// This routine performs all of the type-checking required for a
   4164 /// variable declaration once it has been built. It is used both to
   4165 /// check variables after they have been parsed and their declarators
   4166 /// have been translated into a declaration, and to check variables
   4167 /// that have been instantiated from a template.
   4168 ///
   4169 /// Sets NewVD->isInvalidDecl() if an error was encountered.
   4170 ///
   4171 /// Returns true if the variable declaration is a redeclaration.
   4172 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
   4173                                     LookupResult &Previous) {
   4174   // If the decl is already known invalid, don't check it.
   4175   if (NewVD->isInvalidDecl())
   4176     return false;
   4177 
   4178   QualType T = NewVD->getType();
   4179 
   4180   if (T->isObjCObjectType()) {
   4181     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
   4182       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
   4183     T = Context.getObjCObjectPointerType(T);
   4184     NewVD->setType(T);
   4185   }
   4186 
   4187   // Emit an error if an address space was applied to decl with local storage.
   4188   // This includes arrays of objects with address space qualifiers, but not
   4189   // automatic variables that point to other address spaces.
   4190   // ISO/IEC TR 18037 S5.1.2
   4191   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
   4192     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
   4193     NewVD->setInvalidDecl();
   4194     return false;
   4195   }
   4196 
   4197   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
   4198       && !NewVD->hasAttr<BlocksAttr>()) {
   4199     if (getLangOptions().getGC() != LangOptions::NonGC)
   4200       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
   4201     else
   4202       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
   4203   }
   4204 
   4205   bool isVM = T->isVariablyModifiedType();
   4206   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
   4207       NewVD->hasAttr<BlocksAttr>())
   4208     getCurFunction()->setHasBranchProtectedScope();
   4209 
   4210   if ((isVM && NewVD->hasLinkage()) ||
   4211       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
   4212     bool SizeIsNegative;
   4213     llvm::APSInt Oversized;
   4214     QualType FixedTy =
   4215         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
   4216                                             Oversized);
   4217 
   4218     if (FixedTy.isNull() && T->isVariableArrayType()) {
   4219       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
   4220       // FIXME: This won't give the correct result for
   4221       // int a[10][n];
   4222       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
   4223 
   4224       if (NewVD->isFileVarDecl())
   4225         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
   4226         << SizeRange;
   4227       else if (NewVD->getStorageClass() == SC_Static)
   4228         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
   4229         << SizeRange;
   4230       else
   4231         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
   4232         << SizeRange;
   4233       NewVD->setInvalidDecl();
   4234       return false;
   4235     }
   4236 
   4237     if (FixedTy.isNull()) {
   4238       if (NewVD->isFileVarDecl())
   4239         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
   4240       else
   4241         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
   4242       NewVD->setInvalidDecl();
   4243       return false;
   4244     }
   4245 
   4246     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
   4247     NewVD->setType(FixedTy);
   4248   }
   4249 
   4250   if (Previous.empty() && NewVD->isExternC()) {
   4251     // Since we did not find anything by this name and we're declaring
   4252     // an extern "C" variable, look for a non-visible extern "C"
   4253     // declaration with the same name.
   4254     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   4255       = findLocallyScopedExternalDecl(NewVD->getDeclName());
   4256     if (Pos != LocallyScopedExternalDecls.end())
   4257       Previous.addDecl(Pos->second);
   4258   }
   4259 
   4260   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
   4261     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
   4262       << T;
   4263     NewVD->setInvalidDecl();
   4264     return false;
   4265   }
   4266 
   4267   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
   4268     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
   4269     NewVD->setInvalidDecl();
   4270     return false;
   4271   }
   4272 
   4273   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
   4274     Diag(NewVD->getLocation(), diag::err_block_on_vm);
   4275     NewVD->setInvalidDecl();
   4276     return false;
   4277   }
   4278 
   4279   // Function pointers and references cannot have qualified function type, only
   4280   // function pointer-to-members can do that.
   4281   QualType Pointee;
   4282   unsigned PtrOrRef = 0;
   4283   if (const PointerType *Ptr = T->getAs<PointerType>())
   4284     Pointee = Ptr->getPointeeType();
   4285   else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
   4286     Pointee = Ref->getPointeeType();
   4287     PtrOrRef = 1;
   4288   }
   4289   if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
   4290       Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
   4291     Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
   4292         << PtrOrRef;
   4293     NewVD->setInvalidDecl();
   4294     return false;
   4295   }
   4296 
   4297   if (!Previous.empty()) {
   4298     MergeVarDecl(NewVD, Previous);
   4299     return true;
   4300   }
   4301   return false;
   4302 }
   4303 
   4304 /// \brief Data used with FindOverriddenMethod
   4305 struct FindOverriddenMethodData {
   4306   Sema *S;
   4307   CXXMethodDecl *Method;
   4308 };
   4309 
   4310 /// \brief Member lookup function that determines whether a given C++
   4311 /// method overrides a method in a base class, to be used with
   4312 /// CXXRecordDecl::lookupInBases().
   4313 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
   4314                                  CXXBasePath &Path,
   4315                                  void *UserData) {
   4316   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   4317 
   4318   FindOverriddenMethodData *Data
   4319     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
   4320 
   4321   DeclarationName Name = Data->Method->getDeclName();
   4322 
   4323   // FIXME: Do we care about other names here too?
   4324   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4325     // We really want to find the base class destructor here.
   4326     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
   4327     CanQualType CT = Data->S->Context.getCanonicalType(T);
   4328 
   4329     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
   4330   }
   4331 
   4332   for (Path.Decls = BaseRecord->lookup(Name);
   4333        Path.Decls.first != Path.Decls.second;
   4334        ++Path.Decls.first) {
   4335     NamedDecl *D = *Path.Decls.first;
   4336     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   4337       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
   4338         return true;
   4339     }
   4340   }
   4341 
   4342   return false;
   4343 }
   4344 
   4345 /// AddOverriddenMethods - See if a method overrides any in the base classes,
   4346 /// and if so, check that it's a valid override and remember it.
   4347 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   4348   // Look for virtual methods in base classes that this method might override.
   4349   CXXBasePaths Paths;
   4350   FindOverriddenMethodData Data;
   4351   Data.Method = MD;
   4352   Data.S = this;
   4353   bool AddedAny = false;
   4354   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
   4355     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
   4356          E = Paths.found_decls_end(); I != E; ++I) {
   4357       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
   4358         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
   4359         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
   4360             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
   4361             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
   4362           AddedAny = true;
   4363         }
   4364       }
   4365     }
   4366   }
   4367 
   4368   return AddedAny;
   4369 }
   4370 
   4371 namespace {
   4372   // Struct for holding all of the extra arguments needed by
   4373   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
   4374   struct ActOnFDArgs {
   4375     Scope *S;
   4376     Declarator &D;
   4377     MultiTemplateParamsArg TemplateParamLists;
   4378     bool AddToScope;
   4379   };
   4380 }
   4381 
   4382 /// \brief Generate diagnostics for an invalid function redeclaration.
   4383 ///
   4384 /// This routine handles generating the diagnostic messages for an invalid
   4385 /// function redeclaration, including finding possible similar declarations
   4386 /// or performing typo correction if there are no previous declarations with
   4387 /// the same name.
   4388 ///
   4389 /// Returns a NamedDecl iff typo correction was performed and substituting in
   4390 /// the new declaration name does not cause new errors.
   4391 static NamedDecl* DiagnoseInvalidRedeclaration(
   4392     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
   4393     ActOnFDArgs &ExtraArgs) {
   4394   NamedDecl *Result = NULL;
   4395   DeclarationName Name = NewFD->getDeclName();
   4396   DeclContext *NewDC = NewFD->getDeclContext();
   4397   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
   4398                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   4399   llvm::SmallVector<unsigned, 1> MismatchedParams;
   4400   llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
   4401   TypoCorrection Correction;
   4402   bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
   4403                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
   4404   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
   4405                                   : diag::err_member_def_does_not_match;
   4406 
   4407   NewFD->setInvalidDecl();
   4408   SemaRef.LookupQualifiedName(Prev, NewDC);
   4409   assert(!Prev.isAmbiguous() &&
   4410          "Cannot have an ambiguity in previous-declaration lookup");
   4411   if (!Prev.empty()) {
   4412     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
   4413          Func != FuncEnd; ++Func) {
   4414       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
   4415       if (FD &&
   4416           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   4417         // Add 1 to the index so that 0 can mean the mismatch didn't
   4418         // involve a parameter
   4419         unsigned ParamNum =
   4420             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
   4421         NearMatches.push_back(std::make_pair(FD, ParamNum));
   4422       }
   4423     }
   4424   // If the qualified name lookup yielded nothing, try typo correction
   4425   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
   4426                                          Prev.getLookupKind(), 0, 0, NewDC)) &&
   4427              Correction.getCorrection() != Name) {
   4428     // Trap errors.
   4429     Sema::SFINAETrap Trap(SemaRef);
   4430 
   4431     // Set up everything for the call to ActOnFunctionDeclarator
   4432     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
   4433                               ExtraArgs.D.getIdentifierLoc());
   4434     Previous.clear();
   4435     Previous.setLookupName(Correction.getCorrection());
   4436     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
   4437                                     CDeclEnd = Correction.end();
   4438          CDecl != CDeclEnd; ++CDecl) {
   4439       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   4440       if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
   4441                                      MismatchedParams)) {
   4442         Previous.addDecl(FD);
   4443       }
   4444     }
   4445     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
   4446     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
   4447     // pieces need to verify the typo-corrected C++ declaraction and hopefully
   4448     // eliminate the need for the parameter pack ExtraArgs.
   4449     Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
   4450                                              NewFD->getDeclContext(),
   4451                                              NewFD->getTypeSourceInfo(),
   4452                                              Previous,
   4453                                              ExtraArgs.TemplateParamLists,
   4454                                              ExtraArgs.AddToScope);
   4455     if (Trap.hasErrorOccurred()) {
   4456       // Pretend the typo correction never occurred
   4457       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
   4458                                 ExtraArgs.D.getIdentifierLoc());
   4459       ExtraArgs.D.setRedeclaration(wasRedeclaration);
   4460       Previous.clear();
   4461       Previous.setLookupName(Name);
   4462       Result = NULL;
   4463     } else {
   4464       for (LookupResult::iterator Func = Previous.begin(),
   4465                                FuncEnd = Previous.end();
   4466            Func != FuncEnd; ++Func) {
   4467         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
   4468           NearMatches.push_back(std::make_pair(FD, 0));
   4469       }
   4470     }
   4471     if (NearMatches.empty()) {
   4472       // Ignore the correction if it didn't yield any close FunctionDecl matches
   4473       Correction = TypoCorrection();
   4474     } else {
   4475       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
   4476                              : diag::err_member_def_does_not_match_suggest;
   4477     }
   4478   }
   4479 
   4480   if (Correction)
   4481     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   4482         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
   4483         << FixItHint::CreateReplacement(
   4484             NewFD->getLocation(),
   4485             Correction.getAsString(SemaRef.getLangOptions()));
   4486   else
   4487     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   4488         << Name << NewDC << NewFD->getLocation();
   4489 
   4490   bool NewFDisConst = false;
   4491   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
   4492     NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
   4493 
   4494   for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
   4495        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
   4496        NearMatch != NearMatchEnd; ++NearMatch) {
   4497     FunctionDecl *FD = NearMatch->first;
   4498     bool FDisConst = false;
   4499     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   4500       FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
   4501 
   4502     if (unsigned Idx = NearMatch->second) {
   4503       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
   4504       SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
   4505              diag::note_member_def_close_param_match)
   4506           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
   4507     } else if (Correction) {
   4508       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
   4509           << Correction.getQuoted(SemaRef.getLangOptions());
   4510     } else if (FDisConst != NewFDisConst) {
   4511       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
   4512           << NewFDisConst << FD->getSourceRange().getEnd();
   4513     } else
   4514       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
   4515   }
   4516   return Result;
   4517 }
   4518 
   4519 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
   4520   switch (D.getDeclSpec().getStorageClassSpec()) {
   4521   default: llvm_unreachable("Unknown storage class!");
   4522   case DeclSpec::SCS_auto:
   4523   case DeclSpec::SCS_register:
   4524   case DeclSpec::SCS_mutable:
   4525     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4526                  diag::err_typecheck_sclass_func);
   4527     D.setInvalidType();
   4528     break;
   4529   case DeclSpec::SCS_unspecified: break;
   4530   case DeclSpec::SCS_extern: return SC_Extern;
   4531   case DeclSpec::SCS_static: {
   4532     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   4533       // C99 6.7.1p5:
   4534       //   The declaration of an identifier for a function that has
   4535       //   block scope shall have no explicit storage-class specifier
   4536       //   other than extern
   4537       // See also (C++ [dcl.stc]p4).
   4538       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4539                    diag::err_static_block_func);
   4540       break;
   4541     } else
   4542       return SC_Static;
   4543   }
   4544   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   4545   }
   4546 
   4547   // No explicit storage class has already been returned
   4548   return SC_None;
   4549 }
   4550 
   4551 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
   4552                                            DeclContext *DC, QualType &R,
   4553                                            TypeSourceInfo *TInfo,
   4554                                            FunctionDecl::StorageClass SC,
   4555                                            bool &IsVirtualOkay) {
   4556   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
   4557   DeclarationName Name = NameInfo.getName();
   4558 
   4559   FunctionDecl *NewFD = 0;
   4560   bool isInline = D.getDeclSpec().isInlineSpecified();
   4561   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
   4562   FunctionDecl::StorageClass SCAsWritten
   4563     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
   4564 
   4565   if (!SemaRef.getLangOptions().CPlusPlus) {
   4566     // Determine whether the function was written with a
   4567     // prototype. This true when:
   4568     //   - there is a prototype in the declarator, or
   4569     //   - the type R of the function is some kind of typedef or other reference
   4570     //     to a type name (which eventually refers to a function type).
   4571     bool HasPrototype =
   4572       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
   4573       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
   4574 
   4575     NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getSourceRange().getBegin(),
   4576                                  NameInfo, R, TInfo, SC, SCAsWritten, isInline,
   4577                                  HasPrototype);
   4578     if (D.isInvalidType())
   4579       NewFD->setInvalidDecl();
   4580 
   4581     // Set the lexical context.
   4582     NewFD->setLexicalDeclContext(SemaRef.CurContext);
   4583 
   4584     return NewFD;
   4585   }
   4586 
   4587   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   4588   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   4589 
   4590   // Check that the return type is not an abstract class type.
   4591   // For record types, this is done by the AbstractClassUsageDiagnoser once
   4592   // the class has been completely parsed.
   4593   if (!DC->isRecord() &&
   4594       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
   4595                                      R->getAs<FunctionType>()->getResultType(),
   4596                                      diag::err_abstract_type_in_decl,
   4597                                      SemaRef.AbstractReturnType))
   4598     D.setInvalidType();
   4599 
   4600   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
   4601     // This is a C++ constructor declaration.
   4602     assert(DC->isRecord() &&
   4603            "Constructors can only be declared in a member context");
   4604 
   4605     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
   4606     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   4607                                       D.getSourceRange().getBegin(), NameInfo,
   4608                                       R, TInfo, isExplicit, isInline,
   4609                                       /*isImplicitlyDeclared=*/false,
   4610                                       isConstexpr);
   4611 
   4612   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4613     // This is a C++ destructor declaration.
   4614     if (DC->isRecord()) {
   4615       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
   4616       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
   4617       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
   4618                                         SemaRef.Context, Record,
   4619                                         D.getSourceRange().getBegin(),
   4620                                         NameInfo, R, TInfo, isInline,
   4621                                         /*isImplicitlyDeclared=*/false);
   4622 
   4623       // If the class is complete, then we now create the implicit exception
   4624       // specification. If the class is incomplete or dependent, we can't do
   4625       // it yet.
   4626       if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
   4627           Record->getDefinition() && !Record->isBeingDefined() &&
   4628           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
   4629         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
   4630       }
   4631 
   4632       IsVirtualOkay = true;
   4633       return NewDD;
   4634 
   4635     } else {
   4636       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
   4637       D.setInvalidType();
   4638 
   4639       // Create a FunctionDecl to satisfy the function definition parsing
   4640       // code path.
   4641       return FunctionDecl::Create(SemaRef.Context, DC,
   4642                                   D.getSourceRange().getBegin(),
   4643                                   D.getIdentifierLoc(), Name, R, TInfo,
   4644                                   SC, SCAsWritten, isInline,
   4645                                   /*hasPrototype=*/true, isConstexpr);
   4646     }
   4647 
   4648   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   4649     if (!DC->isRecord()) {
   4650       SemaRef.Diag(D.getIdentifierLoc(),
   4651            diag::err_conv_function_not_member);
   4652       return 0;
   4653     }
   4654 
   4655     SemaRef.CheckConversionDeclarator(D, R, SC);
   4656     IsVirtualOkay = true;
   4657     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   4658                                      D.getSourceRange().getBegin(), NameInfo,
   4659                                      R, TInfo, isInline, isExplicit,
   4660                                      isConstexpr, SourceLocation());
   4661 
   4662   } else if (DC->isRecord()) {
   4663     // If the name of the function is the same as the name of the record,
   4664     // then this must be an invalid constructor that has a return type.
   4665     // (The parser checks for a return type and makes the declarator a
   4666     // constructor if it has no return type).
   4667     if (Name.getAsIdentifierInfo() &&
   4668         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
   4669       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
   4670         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   4671         << SourceRange(D.getIdentifierLoc());
   4672       return 0;
   4673     }
   4674 
   4675     bool isStatic = SC == SC_Static;
   4676 
   4677     // [class.free]p1:
   4678     // Any allocation function for a class T is a static member
   4679     // (even if not explicitly declared static).
   4680     if (Name.getCXXOverloadedOperator() == OO_New ||
   4681         Name.getCXXOverloadedOperator() == OO_Array_New)
   4682       isStatic = true;
   4683 
   4684     // [class.free]p6 Any deallocation function for a class X is a static member
   4685     // (even if not explicitly declared static).
   4686     if (Name.getCXXOverloadedOperator() == OO_Delete ||
   4687         Name.getCXXOverloadedOperator() == OO_Array_Delete)
   4688       isStatic = true;
   4689 
   4690     IsVirtualOkay = !isStatic;
   4691 
   4692     // This is a C++ method declaration.
   4693     return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   4694                                  D.getSourceRange().getBegin(), NameInfo, R,
   4695                                  TInfo, isStatic, SCAsWritten, isInline,
   4696                                  isConstexpr, SourceLocation());
   4697 
   4698   } else {
   4699     // Determine whether the function was written with a
   4700     // prototype. This true when:
   4701     //   - we're in C++ (where every function has a prototype),
   4702     return FunctionDecl::Create(SemaRef.Context, DC,
   4703                                 D.getSourceRange().getBegin(),
   4704                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
   4705                                 true/*HasPrototype*/, isConstexpr);
   4706   }
   4707 }
   4708 
   4709 NamedDecl*
   4710 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   4711                               TypeSourceInfo *TInfo, LookupResult &Previous,
   4712                               MultiTemplateParamsArg TemplateParamLists,
   4713                               bool &AddToScope) {
   4714   QualType R = TInfo->getType();
   4715 
   4716   assert(R.getTypePtr()->isFunctionType());
   4717 
   4718   // TODO: consider using NameInfo for diagnostic.
   4719   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   4720   DeclarationName Name = NameInfo.getName();
   4721   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
   4722 
   4723   if (D.getDeclSpec().isThreadSpecified())
   4724     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   4725 
   4726   // Do not allow returning a objc interface by-value.
   4727   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
   4728     Diag(D.getIdentifierLoc(),
   4729          diag::err_object_cannot_be_passed_returned_by_value) << 0
   4730     << R->getAs<FunctionType>()->getResultType()
   4731     << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
   4732 
   4733     QualType T = R->getAs<FunctionType>()->getResultType();
   4734     T = Context.getObjCObjectPointerType(T);
   4735     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
   4736       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   4737       R = Context.getFunctionType(T, FPT->arg_type_begin(),
   4738                                   FPT->getNumArgs(), EPI);
   4739     }
   4740     else if (isa<FunctionNoProtoType>(R))
   4741       R = Context.getFunctionNoProtoType(T);
   4742   }
   4743 
   4744   bool isFriend = false;
   4745   FunctionTemplateDecl *FunctionTemplate = 0;
   4746   bool isExplicitSpecialization = false;
   4747   bool isFunctionTemplateSpecialization = false;
   4748   bool isDependentClassScopeExplicitSpecialization = false;
   4749   bool isVirtualOkay = false;
   4750 
   4751   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
   4752                                               isVirtualOkay);
   4753   if (!NewFD) return 0;
   4754 
   4755   if (getLangOptions().CPlusPlus) {
   4756     bool isInline = D.getDeclSpec().isInlineSpecified();
   4757     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   4758     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   4759     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   4760     isFriend = D.getDeclSpec().isFriendSpecified();
   4761     if (isFriend && !isInline && D.isFunctionDefinition()) {
   4762       // C++ [class.friend]p5
   4763       //   A function can be defined in a friend declaration of a
   4764       //   class . . . . Such a function is implicitly inline.
   4765       NewFD->setImplicitlyInline();
   4766     }
   4767 
   4768     SetNestedNameSpecifier(NewFD, D);
   4769     isExplicitSpecialization = false;
   4770     isFunctionTemplateSpecialization = false;
   4771     if (D.isInvalidType())
   4772       NewFD->setInvalidDecl();
   4773 
   4774     // Set the lexical context. If the declarator has a C++
   4775     // scope specifier, or is the object of a friend declaration, the
   4776     // lexical context will be different from the semantic context.
   4777     NewFD->setLexicalDeclContext(CurContext);
   4778 
   4779     // Match up the template parameter lists with the scope specifier, then
   4780     // determine whether we have a template or a template specialization.
   4781     bool Invalid = false;
   4782     if (TemplateParameterList *TemplateParams
   4783           = MatchTemplateParametersToScopeSpecifier(
   4784                                   D.getDeclSpec().getSourceRange().getBegin(),
   4785                                   D.getIdentifierLoc(),
   4786                                   D.getCXXScopeSpec(),
   4787                                   TemplateParamLists.get(),
   4788                                   TemplateParamLists.size(),
   4789                                   isFriend,
   4790                                   isExplicitSpecialization,
   4791                                   Invalid)) {
   4792       if (TemplateParams->size() > 0) {
   4793         // This is a function template
   4794 
   4795         // Check that we can declare a template here.
   4796         if (CheckTemplateDeclScope(S, TemplateParams))
   4797           return 0;
   4798 
   4799         // A destructor cannot be a template.
   4800         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4801           Diag(NewFD->getLocation(), diag::err_destructor_template);
   4802           return 0;
   4803         }
   4804 
   4805         // If we're adding a template to a dependent context, we may need to
   4806         // rebuilding some of the types used within the template parameter list,
   4807         // now that we know what the current instantiation is.
   4808         if (DC->isDependentContext()) {
   4809           ContextRAII SavedContext(*this, DC);
   4810           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
   4811             Invalid = true;
   4812         }
   4813 
   4814 
   4815         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
   4816                                                         NewFD->getLocation(),
   4817                                                         Name, TemplateParams,
   4818                                                         NewFD);
   4819         FunctionTemplate->setLexicalDeclContext(CurContext);
   4820         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
   4821 
   4822         // For source fidelity, store the other template param lists.
   4823         if (TemplateParamLists.size() > 1) {
   4824           NewFD->setTemplateParameterListsInfo(Context,
   4825                                                TemplateParamLists.size() - 1,
   4826                                                TemplateParamLists.release());
   4827         }
   4828       } else {
   4829         // This is a function template specialization.
   4830         isFunctionTemplateSpecialization = true;
   4831         // For source fidelity, store all the template param lists.
   4832         NewFD->setTemplateParameterListsInfo(Context,
   4833                                              TemplateParamLists.size(),
   4834                                              TemplateParamLists.release());
   4835 
   4836         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
   4837         if (isFriend) {
   4838           // We want to remove the "template<>", found here.
   4839           SourceRange RemoveRange = TemplateParams->getSourceRange();
   4840 
   4841           // If we remove the template<> and the name is not a
   4842           // template-id, we're actually silently creating a problem:
   4843           // the friend declaration will refer to an untemplated decl,
   4844           // and clearly the user wants a template specialization.  So
   4845           // we need to insert '<>' after the name.
   4846           SourceLocation InsertLoc;
   4847           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   4848             InsertLoc = D.getName().getSourceRange().getEnd();
   4849             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
   4850           }
   4851 
   4852           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
   4853             << Name << RemoveRange
   4854             << FixItHint::CreateRemoval(RemoveRange)
   4855             << FixItHint::CreateInsertion(InsertLoc, "<>");
   4856         }
   4857       }
   4858     }
   4859     else {
   4860       // All template param lists were matched against the scope specifier:
   4861       // this is NOT (an explicit specialization of) a template.
   4862       if (TemplateParamLists.size() > 0)
   4863         // For source fidelity, store all the template param lists.
   4864         NewFD->setTemplateParameterListsInfo(Context,
   4865                                              TemplateParamLists.size(),
   4866                                              TemplateParamLists.release());
   4867     }
   4868 
   4869     if (Invalid) {
   4870       NewFD->setInvalidDecl();
   4871       if (FunctionTemplate)
   4872         FunctionTemplate->setInvalidDecl();
   4873     }
   4874 
   4875     // C++ [dcl.fct.spec]p5:
   4876     //   The virtual specifier shall only be used in declarations of
   4877     //   nonstatic class member functions that appear within a
   4878     //   member-specification of a class declaration; see 10.3.
   4879     //
   4880     if (isVirtual && !NewFD->isInvalidDecl()) {
   4881       if (!isVirtualOkay) {
   4882         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   4883              diag::err_virtual_non_function);
   4884       } else if (!CurContext->isRecord()) {
   4885         // 'virtual' was specified outside of the class.
   4886         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   4887              diag::err_virtual_out_of_class)
   4888           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   4889       } else if (NewFD->getDescribedFunctionTemplate()) {
   4890         // C++ [temp.mem]p3:
   4891         //  A member function template shall not be virtual.
   4892         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   4893              diag::err_virtual_member_function_template)
   4894           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   4895       } else {
   4896         // Okay: Add virtual to the method.
   4897         NewFD->setVirtualAsWritten(true);
   4898       }
   4899     }
   4900 
   4901     // C++ [dcl.fct.spec]p3:
   4902     //  The inline specifier shall not appear on a block scope function declaration.
   4903     if (isInline && !NewFD->isInvalidDecl()) {
   4904       if (CurContext->isFunctionOrMethod()) {
   4905         // 'inline' is not allowed on block scope function declaration.
   4906         Diag(D.getDeclSpec().getInlineSpecLoc(),
   4907              diag::err_inline_declaration_block_scope) << Name
   4908           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   4909       }
   4910     }
   4911 
   4912     // C++ [dcl.fct.spec]p6:
   4913     //  The explicit specifier shall be used only in the declaration of a
   4914     //  constructor or conversion function within its class definition; see 12.3.1
   4915     //  and 12.3.2.
   4916     if (isExplicit && !NewFD->isInvalidDecl()) {
   4917       if (!CurContext->isRecord()) {
   4918         // 'explicit' was specified outside of the class.
   4919         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   4920              diag::err_explicit_out_of_class)
   4921           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   4922       } else if (!isa<CXXConstructorDecl>(NewFD) &&
   4923                  !isa<CXXConversionDecl>(NewFD)) {
   4924         // 'explicit' was specified on a function that wasn't a constructor
   4925         // or conversion function.
   4926         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   4927              diag::err_explicit_non_ctor_or_conv_function)
   4928           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   4929       }
   4930     }
   4931 
   4932     if (isConstexpr) {
   4933       // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
   4934       // are implicitly inline.
   4935       NewFD->setImplicitlyInline();
   4936 
   4937       // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
   4938       // be either constructors or to return a literal type. Therefore,
   4939       // destructors cannot be declared constexpr.
   4940       if (isa<CXXDestructorDecl>(NewFD))
   4941         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
   4942     }
   4943 
   4944     // If __module_private__ was specified, mark the function accordingly.
   4945     if (D.getDeclSpec().isModulePrivateSpecified()) {
   4946       if (isFunctionTemplateSpecialization) {
   4947         SourceLocation ModulePrivateLoc
   4948           = D.getDeclSpec().getModulePrivateSpecLoc();
   4949         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
   4950           << 0
   4951           << FixItHint::CreateRemoval(ModulePrivateLoc);
   4952       } else {
   4953         NewFD->setModulePrivate();
   4954         if (FunctionTemplate)
   4955           FunctionTemplate->setModulePrivate();
   4956       }
   4957     }
   4958 
   4959     if (isFriend) {
   4960       // For now, claim that the objects have no previous declaration.
   4961       if (FunctionTemplate) {
   4962         FunctionTemplate->setObjectOfFriendDecl(false);
   4963         FunctionTemplate->setAccess(AS_public);
   4964       }
   4965       NewFD->setObjectOfFriendDecl(false);
   4966       NewFD->setAccess(AS_public);
   4967     }
   4968 
   4969     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
   4970         D.isFunctionDefinition()) {
   4971       // A method is implicitly inline if it's defined in its class
   4972       // definition.
   4973       NewFD->setImplicitlyInline();
   4974     }
   4975 
   4976     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
   4977         !CurContext->isRecord()) {
   4978       // C++ [class.static]p1:
   4979       //   A data or function member of a class may be declared static
   4980       //   in a class definition, in which case it is a static member of
   4981       //   the class.
   4982 
   4983       // Complain about the 'static' specifier if it's on an out-of-line
   4984       // member function definition.
   4985       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4986            diag::err_static_out_of_line)
   4987         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   4988     }
   4989   }
   4990 
   4991   // Filter out previous declarations that don't match the scope.
   4992   FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
   4993                        isExplicitSpecialization ||
   4994                        isFunctionTemplateSpecialization);
   4995 
   4996   // Handle GNU asm-label extension (encoded as an attribute).
   4997   if (Expr *E = (Expr*) D.getAsmLabel()) {
   4998     // The parser guarantees this is a string.
   4999     StringLiteral *SE = cast<StringLiteral>(E);
   5000     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
   5001                                                 SE->getString()));
   5002   }
   5003 
   5004   // Copy the parameter declarations from the declarator D to the function
   5005   // declaration NewFD, if they are available.  First scavenge them into Params.
   5006   SmallVector<ParmVarDecl*, 16> Params;
   5007   if (D.isFunctionDeclarator()) {
   5008     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   5009 
   5010     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
   5011     // function that takes no arguments, not a function that takes a
   5012     // single void argument.
   5013     // We let through "const void" here because Sema::GetTypeForDeclarator
   5014     // already checks for that case.
   5015     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
   5016         FTI.ArgInfo[0].Param &&
   5017         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
   5018       // Empty arg list, don't push any params.
   5019       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
   5020 
   5021       // In C++, the empty parameter-type-list must be spelled "void"; a
   5022       // typedef of void is not permitted.
   5023       if (getLangOptions().CPlusPlus &&
   5024           Param->getType().getUnqualifiedType() != Context.VoidTy) {
   5025         bool IsTypeAlias = false;
   5026         if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
   5027           IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
   5028         else if (const TemplateSpecializationType *TST =
   5029                    Param->getType()->getAs<TemplateSpecializationType>())
   5030           IsTypeAlias = TST->isTypeAlias();
   5031         Diag(Param->getLocation(), diag::err_param_typedef_of_void)
   5032           << IsTypeAlias;
   5033       }
   5034     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
   5035       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
   5036         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   5037         assert(Param->getDeclContext() != NewFD && "Was set before ?");
   5038         Param->setDeclContext(NewFD);
   5039         Params.push_back(Param);
   5040 
   5041         if (Param->isInvalidDecl())
   5042           NewFD->setInvalidDecl();
   5043       }
   5044     }
   5045 
   5046   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
   5047     // When we're declaring a function with a typedef, typeof, etc as in the
   5048     // following example, we'll need to synthesize (unnamed)
   5049     // parameters for use in the declaration.
   5050     //
   5051     // @code
   5052     // typedef void fn(int);
   5053     // fn f;
   5054     // @endcode
   5055 
   5056     // Synthesize a parameter for each argument type.
   5057     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
   5058          AE = FT->arg_type_end(); AI != AE; ++AI) {
   5059       ParmVarDecl *Param =
   5060         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
   5061       Param->setScopeInfo(0, Params.size());
   5062       Params.push_back(Param);
   5063     }
   5064   } else {
   5065     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
   5066            "Should not need args for typedef of non-prototype fn");
   5067   }
   5068 
   5069   // Finally, we know we have the right number of parameters, install them.
   5070   NewFD->setParams(Params);
   5071 
   5072   // Process the non-inheritable attributes on this declaration.
   5073   ProcessDeclAttributes(S, NewFD, D,
   5074                         /*NonInheritable=*/true, /*Inheritable=*/false);
   5075 
   5076   if (!getLangOptions().CPlusPlus) {
   5077     // Perform semantic checking on the function declaration.
   5078     bool isExplicitSpecialization=false;
   5079     if (!NewFD->isInvalidDecl()) {
   5080       if (NewFD->getResultType()->isVariablyModifiedType()) {
   5081         // Functions returning a variably modified type violate C99 6.7.5.2p2
   5082         // because all functions have linkage.
   5083         Diag(NewFD->getLocation(), diag::err_vm_func_decl);
   5084         NewFD->setInvalidDecl();
   5085       } else {
   5086         if (NewFD->isMain())
   5087           CheckMain(NewFD, D.getDeclSpec());
   5088         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   5089                                                     isExplicitSpecialization));
   5090       }
   5091     }
   5092     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   5093             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   5094            "previous declaration set still overloaded");
   5095   } else {
   5096     // If the declarator is a template-id, translate the parser's template
   5097     // argument list into our AST format.
   5098     bool HasExplicitTemplateArgs = false;
   5099     TemplateArgumentListInfo TemplateArgs;
   5100     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   5101       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   5102       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   5103       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   5104       ASTTemplateArgsPtr TemplateArgsPtr(*this,
   5105                                          TemplateId->getTemplateArgs(),
   5106                                          TemplateId->NumArgs);
   5107       translateTemplateArguments(TemplateArgsPtr,
   5108                                  TemplateArgs);
   5109       TemplateArgsPtr.release();
   5110 
   5111       HasExplicitTemplateArgs = true;
   5112 
   5113       if (NewFD->isInvalidDecl()) {
   5114         HasExplicitTemplateArgs = false;
   5115       } else if (FunctionTemplate) {
   5116         // Function template with explicit template arguments.
   5117         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
   5118           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
   5119 
   5120         HasExplicitTemplateArgs = false;
   5121       } else if (!isFunctionTemplateSpecialization &&
   5122                  !D.getDeclSpec().isFriendSpecified()) {
   5123         // We have encountered something that the user meant to be a
   5124         // specialization (because it has explicitly-specified template
   5125         // arguments) but that was not introduced with a "template<>" (or had
   5126         // too few of them).
   5127         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
   5128           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
   5129           << FixItHint::CreateInsertion(
   5130                                         D.getDeclSpec().getSourceRange().getBegin(),
   5131                                                   "template<> ");
   5132         isFunctionTemplateSpecialization = true;
   5133       } else {
   5134         // "friend void foo<>(int);" is an implicit specialization decl.
   5135         isFunctionTemplateSpecialization = true;
   5136       }
   5137     } else if (isFriend && isFunctionTemplateSpecialization) {
   5138       // This combination is only possible in a recovery case;  the user
   5139       // wrote something like:
   5140       //   template <> friend void foo(int);
   5141       // which we're recovering from as if the user had written:
   5142       //   friend void foo<>(int);
   5143       // Go ahead and fake up a template id.
   5144       HasExplicitTemplateArgs = true;
   5145         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
   5146       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
   5147     }
   5148 
   5149     // If it's a friend (and only if it's a friend), it's possible
   5150     // that either the specialized function type or the specialized
   5151     // template is dependent, and therefore matching will fail.  In
   5152     // this case, don't check the specialization yet.
   5153     bool InstantiationDependent = false;
   5154     if (isFunctionTemplateSpecialization && isFriend &&
   5155         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
   5156          TemplateSpecializationType::anyDependentTemplateArguments(
   5157             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
   5158             InstantiationDependent))) {
   5159       assert(HasExplicitTemplateArgs &&
   5160              "friend function specialization without template args");
   5161       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
   5162                                                        Previous))
   5163         NewFD->setInvalidDecl();
   5164     } else if (isFunctionTemplateSpecialization) {
   5165       if (CurContext->isDependentContext() && CurContext->isRecord()
   5166           && !isFriend) {
   5167         isDependentClassScopeExplicitSpecialization = true;
   5168         Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
   5169           diag::ext_function_specialization_in_class :
   5170           diag::err_function_specialization_in_class)
   5171           << NewFD->getDeclName();
   5172       } else if (CheckFunctionTemplateSpecialization(NewFD,
   5173                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
   5174                                                      Previous))
   5175         NewFD->setInvalidDecl();
   5176 
   5177       // C++ [dcl.stc]p1:
   5178       //   A storage-class-specifier shall not be specified in an explicit
   5179       //   specialization (14.7.3)
   5180       if (SC != SC_None) {
   5181         if (SC != NewFD->getStorageClass())
   5182           Diag(NewFD->getLocation(),
   5183                diag::err_explicit_specialization_inconsistent_storage_class)
   5184             << SC
   5185             << FixItHint::CreateRemoval(
   5186                                       D.getDeclSpec().getStorageClassSpecLoc());
   5187 
   5188         else
   5189           Diag(NewFD->getLocation(),
   5190                diag::ext_explicit_specialization_storage_class)
   5191             << FixItHint::CreateRemoval(
   5192                                       D.getDeclSpec().getStorageClassSpecLoc());
   5193       }
   5194 
   5195     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
   5196       if (CheckMemberSpecialization(NewFD, Previous))
   5197           NewFD->setInvalidDecl();
   5198     }
   5199 
   5200     // Perform semantic checking on the function declaration.
   5201     if (!isDependentClassScopeExplicitSpecialization) {
   5202       if (NewFD->isInvalidDecl()) {
   5203         // If this is a class member, mark the class invalid immediately.
   5204         // This avoids some consistency errors later.
   5205         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
   5206           methodDecl->getParent()->setInvalidDecl();
   5207       } else {
   5208         if (NewFD->isMain())
   5209           CheckMain(NewFD, D.getDeclSpec());
   5210         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   5211                                                     isExplicitSpecialization));
   5212       }
   5213     }
   5214 
   5215     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   5216             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   5217            "previous declaration set still overloaded");
   5218 
   5219     if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
   5220         !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
   5221       NewFD->setInvalidDecl();
   5222 
   5223     NamedDecl *PrincipalDecl = (FunctionTemplate
   5224                                 ? cast<NamedDecl>(FunctionTemplate)
   5225                                 : NewFD);
   5226 
   5227     if (isFriend && D.isRedeclaration()) {
   5228       AccessSpecifier Access = AS_public;
   5229       if (!NewFD->isInvalidDecl())
   5230         Access = NewFD->getPreviousDeclaration()->getAccess();
   5231 
   5232       NewFD->setAccess(Access);
   5233       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
   5234 
   5235       PrincipalDecl->setObjectOfFriendDecl(true);
   5236     }
   5237 
   5238     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
   5239         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
   5240       PrincipalDecl->setNonMemberOperator();
   5241 
   5242     // If we have a function template, check the template parameter
   5243     // list. This will check and merge default template arguments.
   5244     if (FunctionTemplate) {
   5245       FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
   5246       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
   5247                                  PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
   5248                             D.getDeclSpec().isFriendSpecified()
   5249                               ? (D.isFunctionDefinition()
   5250                                    ? TPC_FriendFunctionTemplateDefinition
   5251                                    : TPC_FriendFunctionTemplate)
   5252                               : (D.getCXXScopeSpec().isSet() &&
   5253                                  DC && DC->isRecord() &&
   5254                                  DC->isDependentContext())
   5255                                   ? TPC_ClassTemplateMember
   5256                                   : TPC_FunctionTemplate);
   5257     }
   5258 
   5259     if (NewFD->isInvalidDecl()) {
   5260       // Ignore all the rest of this.
   5261     } else if (!D.isRedeclaration()) {
   5262       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
   5263                                        AddToScope };
   5264       // Fake up an access specifier if it's supposed to be a class member.
   5265       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
   5266         NewFD->setAccess(AS_public);
   5267 
   5268       // Qualified decls generally require a previous declaration.
   5269       if (D.getCXXScopeSpec().isSet()) {
   5270         // ...with the major exception of templated-scope or
   5271         // dependent-scope friend declarations.
   5272 
   5273         // TODO: we currently also suppress this check in dependent
   5274         // contexts because (1) the parameter depth will be off when
   5275         // matching friend templates and (2) we might actually be
   5276         // selecting a friend based on a dependent factor.  But there
   5277         // are situations where these conditions don't apply and we
   5278         // can actually do this check immediately.
   5279         if (isFriend &&
   5280             (TemplateParamLists.size() ||
   5281              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
   5282              CurContext->isDependentContext())) {
   5283           // ignore these
   5284         } else {
   5285           // The user tried to provide an out-of-line definition for a
   5286           // function that is a member of a class or namespace, but there
   5287           // was no such member function declared (C++ [class.mfct]p2,
   5288           // C++ [namespace.memdef]p2). For example:
   5289           //
   5290           // class X {
   5291           //   void f() const;
   5292           // };
   5293           //
   5294           // void X::f() { } // ill-formed
   5295           //
   5296           // Complain about this problem, and attempt to suggest close
   5297           // matches (e.g., those that differ only in cv-qualifiers and
   5298           // whether the parameter types are references).
   5299 
   5300           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
   5301                                                                NewFD,
   5302                                                                ExtraArgs)) {
   5303             AddToScope = ExtraArgs.AddToScope;
   5304             return Result;
   5305           }
   5306         }
   5307 
   5308         // Unqualified local friend declarations are required to resolve
   5309         // to something.
   5310       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
   5311         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
   5312                                                              NewFD,
   5313                                                              ExtraArgs)) {
   5314           AddToScope = ExtraArgs.AddToScope;
   5315           return Result;
   5316         }
   5317       }
   5318 
   5319     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
   5320                !isFriend && !isFunctionTemplateSpecialization &&
   5321                !isExplicitSpecialization) {
   5322       // An out-of-line member function declaration must also be a
   5323       // definition (C++ [dcl.meaning]p1).
   5324       // Note that this is not the case for explicit specializations of
   5325       // function templates or member functions of class templates, per
   5326       // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
   5327       // for compatibility with old SWIG code which likes to generate them.
   5328       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
   5329         << D.getCXXScopeSpec().getRange();
   5330     }
   5331   }
   5332 
   5333 
   5334   // Handle attributes. We need to have merged decls when handling attributes
   5335   // (for example to check for conflicts, etc).
   5336   // FIXME: This needs to happen before we merge declarations. Then,
   5337   // let attribute merging cope with attribute conflicts.
   5338   ProcessDeclAttributes(S, NewFD, D,
   5339                         /*NonInheritable=*/false, /*Inheritable=*/true);
   5340 
   5341   // attributes declared post-definition are currently ignored
   5342   // FIXME: This should happen during attribute merging
   5343   if (D.isRedeclaration() && Previous.isSingleResult()) {
   5344     const FunctionDecl *Def;
   5345     FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
   5346     if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
   5347       Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
   5348       Diag(Def->getLocation(), diag::note_previous_definition);
   5349     }
   5350   }
   5351 
   5352   AddKnownFunctionAttributes(NewFD);
   5353 
   5354   if (NewFD->hasAttr<OverloadableAttr>() &&
   5355       !NewFD->getType()->getAs<FunctionProtoType>()) {
   5356     Diag(NewFD->getLocation(),
   5357          diag::err_attribute_overloadable_no_prototype)
   5358       << NewFD;
   5359 
   5360     // Turn this into a variadic function with no parameters.
   5361     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
   5362     FunctionProtoType::ExtProtoInfo EPI;
   5363     EPI.Variadic = true;
   5364     EPI.ExtInfo = FT->getExtInfo();
   5365 
   5366     QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
   5367     NewFD->setType(R);
   5368   }
   5369 
   5370   // If there's a #pragma GCC visibility in scope, and this isn't a class
   5371   // member, set the visibility of this function.
   5372   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
   5373     AddPushedVisibilityAttribute(NewFD);
   5374 
   5375   // If there's a #pragma clang arc_cf_code_audited in scope, consider
   5376   // marking the function.
   5377   AddCFAuditedAttribute(NewFD);
   5378 
   5379   // If this is a locally-scoped extern C function, update the
   5380   // map of such names.
   5381   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
   5382       && !NewFD->isInvalidDecl())
   5383     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
   5384 
   5385   // Set this FunctionDecl's range up to the right paren.
   5386   NewFD->setRangeEnd(D.getSourceRange().getEnd());
   5387 
   5388   if (getLangOptions().CPlusPlus) {
   5389     if (FunctionTemplate) {
   5390       if (NewFD->isInvalidDecl())
   5391         FunctionTemplate->setInvalidDecl();
   5392       return FunctionTemplate;
   5393     }
   5394   }
   5395 
   5396   MarkUnusedFileScopedDecl(NewFD);
   5397 
   5398   if (getLangOptions().CUDA)
   5399     if (IdentifierInfo *II = NewFD->getIdentifier())
   5400       if (!NewFD->isInvalidDecl() &&
   5401           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   5402         if (II->isStr("cudaConfigureCall")) {
   5403           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
   5404             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
   5405 
   5406           Context.setcudaConfigureCallDecl(NewFD);
   5407         }
   5408       }
   5409 
   5410   // Here we have an function template explicit specialization at class scope.
   5411   // The actually specialization will be postponed to template instatiation
   5412   // time via the ClassScopeFunctionSpecializationDecl node.
   5413   if (isDependentClassScopeExplicitSpecialization) {
   5414     ClassScopeFunctionSpecializationDecl *NewSpec =
   5415                          ClassScopeFunctionSpecializationDecl::Create(
   5416                                 Context, CurContext,  SourceLocation(),
   5417                                 cast<CXXMethodDecl>(NewFD));
   5418     CurContext->addDecl(NewSpec);
   5419     AddToScope = false;
   5420   }
   5421 
   5422   return NewFD;
   5423 }
   5424 
   5425 /// \brief Perform semantic checking of a new function declaration.
   5426 ///
   5427 /// Performs semantic analysis of the new function declaration
   5428 /// NewFD. This routine performs all semantic checking that does not
   5429 /// require the actual declarator involved in the declaration, and is
   5430 /// used both for the declaration of functions as they are parsed
   5431 /// (called via ActOnDeclarator) and for the declaration of functions
   5432 /// that have been instantiated via C++ template instantiation (called
   5433 /// via InstantiateDecl).
   5434 ///
   5435 /// \param IsExplicitSpecialiation whether this new function declaration is
   5436 /// an explicit specialization of the previous declaration.
   5437 ///
   5438 /// This sets NewFD->isInvalidDecl() to true if there was an error.
   5439 ///
   5440 /// Returns true if the function declaration is a redeclaration.
   5441 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
   5442                                     LookupResult &Previous,
   5443                                     bool IsExplicitSpecialization) {
   5444   assert(!NewFD->getResultType()->isVariablyModifiedType()
   5445          && "Variably modified return types are not handled here");
   5446 
   5447   // Check for a previous declaration of this name.
   5448   if (Previous.empty() && NewFD->isExternC()) {
   5449     // Since we did not find anything by this name and we're declaring
   5450     // an extern "C" function, look for a non-visible extern "C"
   5451     // declaration with the same name.
   5452     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   5453       = findLocallyScopedExternalDecl(NewFD->getDeclName());
   5454     if (Pos != LocallyScopedExternalDecls.end())
   5455       Previous.addDecl(Pos->second);
   5456   }
   5457 
   5458   bool Redeclaration = false;
   5459 
   5460   // Merge or overload the declaration with an existing declaration of
   5461   // the same name, if appropriate.
   5462   if (!Previous.empty()) {
   5463     // Determine whether NewFD is an overload of PrevDecl or
   5464     // a declaration that requires merging. If it's an overload,
   5465     // there's no more work to do here; we'll just add the new
   5466     // function to the scope.
   5467 
   5468     NamedDecl *OldDecl = 0;
   5469     if (!AllowOverloadingOfFunction(Previous, Context)) {
   5470       Redeclaration = true;
   5471       OldDecl = Previous.getFoundDecl();
   5472     } else {
   5473       switch (CheckOverload(S, NewFD, Previous, OldDecl,
   5474                             /*NewIsUsingDecl*/ false)) {
   5475       case Ovl_Match:
   5476         Redeclaration = true;
   5477         break;
   5478 
   5479       case Ovl_NonFunction:
   5480         Redeclaration = true;
   5481         break;
   5482 
   5483       case Ovl_Overload:
   5484         Redeclaration = false;
   5485         break;
   5486       }
   5487 
   5488       if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   5489         // If a function name is overloadable in C, then every function
   5490         // with that name must be marked "overloadable".
   5491         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   5492           << Redeclaration << NewFD;
   5493         NamedDecl *OverloadedDecl = 0;
   5494         if (Redeclaration)
   5495           OverloadedDecl = OldDecl;
   5496         else if (!Previous.empty())
   5497           OverloadedDecl = Previous.getRepresentativeDecl();
   5498         if (OverloadedDecl)
   5499           Diag(OverloadedDecl->getLocation(),
   5500                diag::note_attribute_overloadable_prev_overload);
   5501         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
   5502                                                         Context));
   5503       }
   5504     }
   5505 
   5506     if (Redeclaration) {
   5507       // NewFD and OldDecl represent declarations that need to be
   5508       // merged.
   5509       if (MergeFunctionDecl(NewFD, OldDecl)) {
   5510         NewFD->setInvalidDecl();
   5511         return Redeclaration;
   5512       }
   5513 
   5514       Previous.clear();
   5515       Previous.addDecl(OldDecl);
   5516 
   5517       if (FunctionTemplateDecl *OldTemplateDecl
   5518                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
   5519         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
   5520         FunctionTemplateDecl *NewTemplateDecl
   5521           = NewFD->getDescribedFunctionTemplate();
   5522         assert(NewTemplateDecl && "Template/non-template mismatch");
   5523         if (CXXMethodDecl *Method
   5524               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
   5525           Method->setAccess(OldTemplateDecl->getAccess());
   5526           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
   5527         }
   5528 
   5529         // If this is an explicit specialization of a member that is a function
   5530         // template, mark it as a member specialization.
   5531         if (IsExplicitSpecialization &&
   5532             NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
   5533           NewTemplateDecl->setMemberSpecialization();
   5534           assert(OldTemplateDecl->isMemberSpecialization());
   5535         }
   5536 
   5537         if (OldTemplateDecl->isModulePrivate())
   5538           NewTemplateDecl->setModulePrivate();
   5539 
   5540       } else {
   5541         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
   5542           NewFD->setAccess(OldDecl->getAccess());
   5543         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
   5544       }
   5545     }
   5546   }
   5547 
   5548   // Semantic checking for this function declaration (in isolation).
   5549   if (getLangOptions().CPlusPlus) {
   5550     // C++-specific checks.
   5551     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
   5552       CheckConstructor(Constructor);
   5553     } else if (CXXDestructorDecl *Destructor =
   5554                 dyn_cast<CXXDestructorDecl>(NewFD)) {
   5555       CXXRecordDecl *Record = Destructor->getParent();
   5556       QualType ClassType = Context.getTypeDeclType(Record);
   5557 
   5558       // FIXME: Shouldn't we be able to perform this check even when the class
   5559       // type is dependent? Both gcc and edg can handle that.
   5560       if (!ClassType->isDependentType()) {
   5561         DeclarationName Name
   5562           = Context.DeclarationNames.getCXXDestructorName(
   5563                                         Context.getCanonicalType(ClassType));
   5564         if (NewFD->getDeclName() != Name) {
   5565           Diag(NewFD->getLocation(), diag::err_destructor_name);
   5566           NewFD->setInvalidDecl();
   5567           return Redeclaration;
   5568         }
   5569       }
   5570     } else if (CXXConversionDecl *Conversion
   5571                = dyn_cast<CXXConversionDecl>(NewFD)) {
   5572       ActOnConversionDeclarator(Conversion);
   5573     }
   5574 
   5575     // Find any virtual functions that this function overrides.
   5576     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
   5577       if (!Method->isFunctionTemplateSpecialization() &&
   5578           !Method->getDescribedFunctionTemplate()) {
   5579         if (AddOverriddenMethods(Method->getParent(), Method)) {
   5580           // If the function was marked as "static", we have a problem.
   5581           if (NewFD->getStorageClass() == SC_Static) {
   5582             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
   5583               << NewFD->getDeclName();
   5584             for (CXXMethodDecl::method_iterator
   5585                       Overridden = Method->begin_overridden_methods(),
   5586                    OverriddenEnd = Method->end_overridden_methods();
   5587                  Overridden != OverriddenEnd;
   5588                  ++Overridden) {
   5589               Diag((*Overridden)->getLocation(),
   5590                    diag::note_overridden_virtual_function);
   5591             }
   5592           }
   5593         }
   5594       }
   5595     }
   5596 
   5597     // Extra checking for C++ overloaded operators (C++ [over.oper]).
   5598     if (NewFD->isOverloadedOperator() &&
   5599         CheckOverloadedOperatorDeclaration(NewFD)) {
   5600       NewFD->setInvalidDecl();
   5601       return Redeclaration;
   5602     }
   5603 
   5604     // Extra checking for C++0x literal operators (C++0x [over.literal]).
   5605     if (NewFD->getLiteralIdentifier() &&
   5606         CheckLiteralOperatorDeclaration(NewFD)) {
   5607       NewFD->setInvalidDecl();
   5608       return Redeclaration;
   5609     }
   5610 
   5611     // In C++, check default arguments now that we have merged decls. Unless
   5612     // the lexical context is the class, because in this case this is done
   5613     // during delayed parsing anyway.
   5614     if (!CurContext->isRecord())
   5615       CheckCXXDefaultArguments(NewFD);
   5616 
   5617     // If this function declares a builtin function, check the type of this
   5618     // declaration against the expected type for the builtin.
   5619     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
   5620       ASTContext::GetBuiltinTypeError Error;
   5621       QualType T = Context.GetBuiltinType(BuiltinID, Error);
   5622       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
   5623         // The type of this function differs from the type of the builtin,
   5624         // so forget about the builtin entirely.
   5625         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
   5626       }
   5627     }
   5628   }
   5629   return Redeclaration;
   5630 }
   5631 
   5632 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
   5633   // C++ [basic.start.main]p3:  A program that declares main to be inline
   5634   //   or static is ill-formed.
   5635   // C99 6.7.4p4:  In a hosted environment, the inline function specifier
   5636   //   shall not appear in a declaration of main.
   5637   // static main is not an error under C99, but we should warn about it.
   5638   if (FD->getStorageClass() == SC_Static)
   5639     Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
   5640          ? diag::err_static_main : diag::warn_static_main)
   5641       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   5642   if (FD->isInlineSpecified())
   5643     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
   5644       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
   5645 
   5646   QualType T = FD->getType();
   5647   assert(T->isFunctionType() && "function decl is not of function type");
   5648   const FunctionType* FT = T->getAs<FunctionType>();
   5649 
   5650   if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
   5651     Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
   5652     FD->setInvalidDecl(true);
   5653   }
   5654 
   5655   // Treat protoless main() as nullary.
   5656   if (isa<FunctionNoProtoType>(FT)) return;
   5657 
   5658   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
   5659   unsigned nparams = FTP->getNumArgs();
   5660   assert(FD->getNumParams() == nparams);
   5661 
   5662   bool HasExtraParameters = (nparams > 3);
   5663 
   5664   // Darwin passes an undocumented fourth argument of type char**.  If
   5665   // other platforms start sprouting these, the logic below will start
   5666   // getting shifty.
   5667   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
   5668     HasExtraParameters = false;
   5669 
   5670   if (HasExtraParameters) {
   5671     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
   5672     FD->setInvalidDecl(true);
   5673     nparams = 3;
   5674   }
   5675 
   5676   // FIXME: a lot of the following diagnostics would be improved
   5677   // if we had some location information about types.
   5678 
   5679   QualType CharPP =
   5680     Context.getPointerType(Context.getPointerType(Context.CharTy));
   5681   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
   5682 
   5683   for (unsigned i = 0; i < nparams; ++i) {
   5684     QualType AT = FTP->getArgType(i);
   5685 
   5686     bool mismatch = true;
   5687 
   5688     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
   5689       mismatch = false;
   5690     else if (Expected[i] == CharPP) {
   5691       // As an extension, the following forms are okay:
   5692       //   char const **
   5693       //   char const * const *
   5694       //   char * const *
   5695 
   5696       QualifierCollector qs;
   5697       const PointerType* PT;
   5698       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
   5699           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
   5700           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
   5701         qs.removeConst();
   5702         mismatch = !qs.empty();
   5703       }
   5704     }
   5705 
   5706     if (mismatch) {
   5707       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
   5708       // TODO: suggest replacing given type with expected type
   5709       FD->setInvalidDecl(true);
   5710     }
   5711   }
   5712 
   5713   if (nparams == 1 && !FD->isInvalidDecl()) {
   5714     Diag(FD->getLocation(), diag::warn_main_one_arg);
   5715   }
   5716 
   5717   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   5718     Diag(FD->getLocation(), diag::err_main_template_decl);
   5719     FD->setInvalidDecl();
   5720   }
   5721 }
   5722 
   5723 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
   5724   // FIXME: Need strict checking.  In C89, we need to check for
   5725   // any assignment, increment, decrement, function-calls, or
   5726   // commas outside of a sizeof.  In C99, it's the same list,
   5727   // except that the aforementioned are allowed in unevaluated
   5728   // expressions.  Everything else falls under the
   5729   // "may accept other forms of constant expressions" exception.
   5730   // (We never end up here for C++, so the constant expression
   5731   // rules there don't matter.)
   5732   if (Init->isConstantInitializer(Context, false))
   5733     return false;
   5734   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
   5735     << Init->getSourceRange();
   5736   return true;
   5737 }
   5738 
   5739 namespace {
   5740   // Visits an initialization expression to see if OrigDecl is evaluated in
   5741   // its own initialization and throws a warning if it does.
   5742   class SelfReferenceChecker
   5743       : public EvaluatedExprVisitor<SelfReferenceChecker> {
   5744     Sema &S;
   5745     Decl *OrigDecl;
   5746     bool isRecordType;
   5747     bool isPODType;
   5748 
   5749   public:
   5750     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
   5751 
   5752     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
   5753                                                     S(S), OrigDecl(OrigDecl) {
   5754       isPODType = false;
   5755       isRecordType = false;
   5756       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
   5757         isPODType = VD->getType().isPODType(S.Context);
   5758         isRecordType = VD->getType()->isRecordType();
   5759       }
   5760     }
   5761 
   5762     void VisitExpr(Expr *E) {
   5763       if (isa<ObjCMessageExpr>(*E)) return;
   5764       if (isRecordType) {
   5765         Expr *expr = E;
   5766         if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   5767           ValueDecl *VD = ME->getMemberDecl();
   5768           if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
   5769           expr = ME->getBase();
   5770         }
   5771         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
   5772           HandleDeclRefExpr(DRE);
   5773           return;
   5774         }
   5775       }
   5776       Inherited::VisitExpr(E);
   5777     }
   5778 
   5779     void VisitMemberExpr(MemberExpr *E) {
   5780       if (E->getType()->canDecayToPointerType()) return;
   5781       if (isa<FieldDecl>(E->getMemberDecl()))
   5782         if (DeclRefExpr *DRE
   5783               = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
   5784           HandleDeclRefExpr(DRE);
   5785           return;
   5786         }
   5787       Inherited::VisitMemberExpr(E);
   5788     }
   5789 
   5790     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   5791       if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
   5792           (isRecordType && E->getCastKind() == CK_NoOp)) {
   5793         Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
   5794         if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
   5795           SubExpr = ME->getBase()->IgnoreParenImpCasts();
   5796         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
   5797           HandleDeclRefExpr(DRE);
   5798           return;
   5799         }
   5800       }
   5801       Inherited::VisitImplicitCastExpr(E);
   5802     }
   5803 
   5804     void VisitUnaryOperator(UnaryOperator *E) {
   5805       // For POD record types, addresses of its own members are well-defined.
   5806       if (isRecordType && isPODType) return;
   5807       Inherited::VisitUnaryOperator(E);
   5808     }
   5809 
   5810     void HandleDeclRefExpr(DeclRefExpr *DRE) {
   5811       Decl* ReferenceDecl = DRE->getDecl();
   5812       if (OrigDecl != ReferenceDecl) return;
   5813       LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
   5814                           Sema::NotForRedeclaration);
   5815       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
   5816                             S.PDiag(diag::warn_uninit_self_reference_in_init)
   5817                               << Result.getLookupName()
   5818                               << OrigDecl->getLocation()
   5819                               << DRE->getSourceRange());
   5820     }
   5821   };
   5822 }
   5823 
   5824 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
   5825 void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
   5826   SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
   5827 }
   5828 
   5829 /// AddInitializerToDecl - Adds the initializer Init to the
   5830 /// declaration dcl. If DirectInit is true, this is C++ direct
   5831 /// initialization rather than copy initialization.
   5832 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
   5833                                 bool DirectInit, bool TypeMayContainAuto) {
   5834   // If there is no declaration, there was an error parsing it.  Just ignore
   5835   // the initializer.
   5836   if (RealDecl == 0 || RealDecl->isInvalidDecl())
   5837     return;
   5838 
   5839   // Check for self-references within variable initializers.
   5840   if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
   5841     // Variables declared within a function/method body are handled
   5842     // by a dataflow analysis.
   5843     if (!vd->hasLocalStorage() && !vd->isStaticLocal())
   5844       CheckSelfReference(RealDecl, Init);
   5845   }
   5846   else {
   5847     CheckSelfReference(RealDecl, Init);
   5848   }
   5849 
   5850   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
   5851     // With declarators parsed the way they are, the parser cannot
   5852     // distinguish between a normal initializer and a pure-specifier.
   5853     // Thus this grotesque test.
   5854     IntegerLiteral *IL;
   5855     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
   5856         Context.getCanonicalType(IL->getType()) == Context.IntTy)
   5857       CheckPureMethod(Method, Init->getSourceRange());
   5858     else {
   5859       Diag(Method->getLocation(), diag::err_member_function_initialization)
   5860         << Method->getDeclName() << Init->getSourceRange();
   5861       Method->setInvalidDecl();
   5862     }
   5863     return;
   5864   }
   5865 
   5866   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   5867   if (!VDecl) {
   5868     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
   5869     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   5870     RealDecl->setInvalidDecl();
   5871     return;
   5872   }
   5873 
   5874   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   5875   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
   5876     TypeSourceInfo *DeducedType = 0;
   5877     if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
   5878       Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
   5879         << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   5880         << Init->getSourceRange();
   5881     if (!DeducedType) {
   5882       RealDecl->setInvalidDecl();
   5883       return;
   5884     }
   5885     VDecl->setTypeSourceInfo(DeducedType);
   5886     VDecl->setType(DeducedType->getType());
   5887 
   5888     // In ARC, infer lifetime.
   5889     if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   5890       VDecl->setInvalidDecl();
   5891 
   5892     // If this is a redeclaration, check that the type we just deduced matches
   5893     // the previously declared type.
   5894     if (VarDecl *Old = VDecl->getPreviousDeclaration())
   5895       MergeVarDeclTypes(VDecl, Old);
   5896   }
   5897 
   5898 
   5899   // A definition must end up with a complete type, which means it must be
   5900   // complete with the restriction that an array type might be completed by the
   5901   // initializer; note that later code assumes this restriction.
   5902   QualType BaseDeclType = VDecl->getType();
   5903   if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
   5904     BaseDeclType = Array->getElementType();
   5905   if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
   5906                           diag::err_typecheck_decl_incomplete_type)) {
   5907     RealDecl->setInvalidDecl();
   5908     return;
   5909   }
   5910 
   5911   // The variable can not have an abstract class type.
   5912   if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   5913                              diag::err_abstract_type_in_decl,
   5914                              AbstractVariableType))
   5915     VDecl->setInvalidDecl();
   5916 
   5917   const VarDecl *Def;
   5918   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   5919     Diag(VDecl->getLocation(), diag::err_redefinition)
   5920       << VDecl->getDeclName();
   5921     Diag(Def->getLocation(), diag::note_previous_definition);
   5922     VDecl->setInvalidDecl();
   5923     return;
   5924   }
   5925 
   5926   const VarDecl* PrevInit = 0;
   5927   if (getLangOptions().CPlusPlus) {
   5928     // C++ [class.static.data]p4
   5929     //   If a static data member is of const integral or const
   5930     //   enumeration type, its declaration in the class definition can
   5931     //   specify a constant-initializer which shall be an integral
   5932     //   constant expression (5.19). In that case, the member can appear
   5933     //   in integral constant expressions. The member shall still be
   5934     //   defined in a namespace scope if it is used in the program and the
   5935     //   namespace scope definition shall not contain an initializer.
   5936     //
   5937     // We already performed a redefinition check above, but for static
   5938     // data members we also need to check whether there was an in-class
   5939     // declaration with an initializer.
   5940     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
   5941       Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
   5942       Diag(PrevInit->getLocation(), diag::note_previous_definition);
   5943       return;
   5944     }
   5945 
   5946     if (VDecl->hasLocalStorage())
   5947       getCurFunction()->setHasBranchProtectedScope();
   5948 
   5949     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
   5950       VDecl->setInvalidDecl();
   5951       return;
   5952     }
   5953   }
   5954 
   5955   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
   5956   // a kernel function cannot be initialized."
   5957   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
   5958     Diag(VDecl->getLocation(), diag::err_local_cant_init);
   5959     VDecl->setInvalidDecl();
   5960     return;
   5961   }
   5962 
   5963   // Capture the variable that is being initialized and the style of
   5964   // initialization.
   5965   InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   5966 
   5967   // FIXME: Poor source location information.
   5968   InitializationKind Kind
   5969     = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
   5970                                                    Init->getLocStart(),
   5971                                                    Init->getLocEnd())
   5972                 : InitializationKind::CreateCopy(VDecl->getLocation(),
   5973                                                  Init->getLocStart());
   5974 
   5975   // Get the decls type and save a reference for later, since
   5976   // CheckInitializerTypes may change it.
   5977   QualType DclT = VDecl->getType(), SavT = DclT;
   5978   if (VDecl->isLocalVarDecl()) {
   5979     if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
   5980       Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
   5981       VDecl->setInvalidDecl();
   5982     } else if (!VDecl->isInvalidDecl()) {
   5983       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
   5984       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   5985                                                 MultiExprArg(*this, &Init, 1),
   5986                                                 &DclT);
   5987       if (Result.isInvalid()) {
   5988         VDecl->setInvalidDecl();
   5989         return;
   5990       }
   5991 
   5992       Init = Result.takeAs<Expr>();
   5993 
   5994       // C++ 3.6.2p2, allow dynamic initialization of static initializers.
   5995       // Don't check invalid declarations to avoid emitting useless diagnostics.
   5996       if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
   5997         if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
   5998           CheckForConstantInitializer(Init, DclT);
   5999       }
   6000     }
   6001   } else if (VDecl->isStaticDataMember() &&
   6002              VDecl->getLexicalDeclContext()->isRecord()) {
   6003     // This is an in-class initialization for a static data member, e.g.,
   6004     //
   6005     // struct S {
   6006     //   static const int value = 17;
   6007     // };
   6008 
   6009     // Try to perform the initialization regardless.
   6010     if (!VDecl->isInvalidDecl()) {
   6011       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
   6012       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   6013                                           MultiExprArg(*this, &Init, 1),
   6014                                           &DclT);
   6015       if (Result.isInvalid()) {
   6016         VDecl->setInvalidDecl();
   6017         return;
   6018       }
   6019 
   6020       Init = Result.takeAs<Expr>();
   6021     }
   6022 
   6023     // C++ [class.mem]p4:
   6024     //   A member-declarator can contain a constant-initializer only
   6025     //   if it declares a static member (9.4) of const integral or
   6026     //   const enumeration type, see 9.4.2.
   6027     //
   6028     // C++0x [class.static.data]p3:
   6029     //   If a non-volatile const static data member is of integral or
   6030     //   enumeration type, its declaration in the class definition can
   6031     //   specify a brace-or-equal-initializer in which every initalizer-clause
   6032     //   that is an assignment-expression is a constant expression. A static
   6033     //   data member of literal type can be declared in the class definition
   6034     //   with the constexpr specifier; if so, its declaration shall specify a
   6035     //   brace-or-equal-initializer in which every initializer-clause that is
   6036     //   an assignment-expression is a constant expression.
   6037     QualType T = VDecl->getType();
   6038 
   6039     // Do nothing on dependent types.
   6040     if (T->isDependentType()) {
   6041 
   6042     // Allow any 'static constexpr' members, whether or not they are of literal
   6043     // type. We separately check that the initializer is a constant expression,
   6044     // which implicitly requires the member to be of literal type.
   6045     } else if (VDecl->isConstexpr()) {
   6046 
   6047     // Require constness.
   6048     } else if (!T.isConstQualified()) {
   6049       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
   6050         << Init->getSourceRange();
   6051       VDecl->setInvalidDecl();
   6052 
   6053     // We allow integer constant expressions in all cases.
   6054     } else if (T->isIntegralOrEnumerationType()) {
   6055       // Check whether the expression is a constant expression.
   6056       SourceLocation Loc;
   6057       if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
   6058         // In C++0x, a non-constexpr const static data member with an
   6059         // in-class initializer cannot be volatile.
   6060         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
   6061       else if (Init->isValueDependent())
   6062         ; // Nothing to check.
   6063       else if (Init->isIntegerConstantExpr(Context, &Loc))
   6064         ; // Ok, it's an ICE!
   6065       else if (Init->isEvaluatable(Context)) {
   6066         // If we can constant fold the initializer through heroics, accept it,
   6067         // but report this as a use of an extension for -pedantic.
   6068         Diag(Loc, diag::ext_in_class_initializer_non_constant)
   6069           << Init->getSourceRange();
   6070       } else {
   6071         // Otherwise, this is some crazy unknown case.  Report the issue at the
   6072         // location provided by the isIntegerConstantExpr failed check.
   6073         Diag(Loc, diag::err_in_class_initializer_non_constant)
   6074           << Init->getSourceRange();
   6075         VDecl->setInvalidDecl();
   6076       }
   6077 
   6078     // We allow floating-point constants as an extension.
   6079     } else if (T->isFloatingType()) { // also permits complex, which is ok
   6080       Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
   6081         << T << Init->getSourceRange();
   6082       if (getLangOptions().CPlusPlus0x)
   6083         Diag(VDecl->getLocation(),
   6084              diag::note_in_class_initializer_float_type_constexpr)
   6085           << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   6086 
   6087       if (!Init->isValueDependent() &&
   6088           !Init->isConstantInitializer(Context, false)) {
   6089         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
   6090           << Init->getSourceRange();
   6091         VDecl->setInvalidDecl();
   6092       }
   6093 
   6094     // Suggest adding 'constexpr' in C++0x for literal types.
   6095     } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
   6096       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
   6097         << T << Init->getSourceRange()
   6098         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   6099       VDecl->setConstexpr(true);
   6100 
   6101     } else {
   6102       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
   6103         << T << Init->getSourceRange();
   6104       VDecl->setInvalidDecl();
   6105     }
   6106   } else if (VDecl->isFileVarDecl()) {
   6107     if (VDecl->getStorageClassAsWritten() == SC_Extern &&
   6108         (!getLangOptions().CPlusPlus ||
   6109          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
   6110       Diag(VDecl->getLocation(), diag::warn_extern_init);
   6111     if (!VDecl->isInvalidDecl()) {
   6112       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
   6113       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   6114                                                 MultiExprArg(*this, &Init, 1),
   6115                                                 &DclT);
   6116       if (Result.isInvalid()) {
   6117         VDecl->setInvalidDecl();
   6118         return;
   6119       }
   6120 
   6121       Init = Result.takeAs<Expr>();
   6122     }
   6123 
   6124     // C++ 3.6.2p2, allow dynamic initialization of static initializers.
   6125     // Don't check invalid declarations to avoid emitting useless diagnostics.
   6126     if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
   6127       // C99 6.7.8p4. All file scoped initializers need to be constant.
   6128       CheckForConstantInitializer(Init, DclT);
   6129     }
   6130   }
   6131   // If the type changed, it means we had an incomplete type that was
   6132   // completed by the initializer. For example:
   6133   //   int ary[] = { 1, 3, 5 };
   6134   // "ary" transitions from a VariableArrayType to a ConstantArrayType.
   6135   if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
   6136     VDecl->setType(DclT);
   6137     Init->setType(DclT);
   6138   }
   6139 
   6140   // Check any implicit conversions within the expression.
   6141   CheckImplicitConversions(Init, VDecl->getLocation());
   6142 
   6143   if (!VDecl->isInvalidDecl())
   6144     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
   6145 
   6146   if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
   6147       !VDecl->getType()->isDependentType() &&
   6148       !Init->isTypeDependent() && !Init->isValueDependent() &&
   6149       !Init->isConstantInitializer(Context,
   6150                                    VDecl->getType()->isReferenceType())) {
   6151     // FIXME: Improve this diagnostic to explain why the initializer is not
   6152     // a constant expression.
   6153     Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
   6154       << VDecl << Init->getSourceRange();
   6155   }
   6156 
   6157   Init = MaybeCreateExprWithCleanups(Init);
   6158   // Attach the initializer to the decl.
   6159   VDecl->setInit(Init);
   6160 
   6161   CheckCompleteVariableDeclaration(VDecl);
   6162 }
   6163 
   6164 /// ActOnInitializerError - Given that there was an error parsing an
   6165 /// initializer for the given declaration, try to return to some form
   6166 /// of sanity.
   6167 void Sema::ActOnInitializerError(Decl *D) {
   6168   // Our main concern here is re-establishing invariants like "a
   6169   // variable's type is either dependent or complete".
   6170   if (!D || D->isInvalidDecl()) return;
   6171 
   6172   VarDecl *VD = dyn_cast<VarDecl>(D);
   6173   if (!VD) return;
   6174 
   6175   // Auto types are meaningless if we can't make sense of the initializer.
   6176   if (ParsingInitForAutoVars.count(D)) {
   6177     D->setInvalidDecl();
   6178     return;
   6179   }
   6180 
   6181   QualType Ty = VD->getType();
   6182   if (Ty->isDependentType()) return;
   6183 
   6184   // Require a complete type.
   6185   if (RequireCompleteType(VD->getLocation(),
   6186                           Context.getBaseElementType(Ty),
   6187                           diag::err_typecheck_decl_incomplete_type)) {
   6188     VD->setInvalidDecl();
   6189     return;
   6190   }
   6191 
   6192   // Require an abstract type.
   6193   if (RequireNonAbstractType(VD->getLocation(), Ty,
   6194                              diag::err_abstract_type_in_decl,
   6195                              AbstractVariableType)) {
   6196     VD->setInvalidDecl();
   6197     return;
   6198   }
   6199 
   6200   // Don't bother complaining about constructors or destructors,
   6201   // though.
   6202 }
   6203 
   6204 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
   6205                                   bool TypeMayContainAuto) {
   6206   // If there is no declaration, there was an error parsing it. Just ignore it.
   6207   if (RealDecl == 0)
   6208     return;
   6209 
   6210   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
   6211     QualType Type = Var->getType();
   6212 
   6213     // C++0x [dcl.spec.auto]p3
   6214     if (TypeMayContainAuto && Type->getContainedAutoType()) {
   6215       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
   6216         << Var->getDeclName() << Type;
   6217       Var->setInvalidDecl();
   6218       return;
   6219     }
   6220 
   6221     // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
   6222     // have an initializer.
   6223     // C++0x [class.static.data]p3: A static data member can be declared with
   6224     // the constexpr specifier; if so, its declaration shall specify
   6225     // a brace-or-equal-initializer.
   6226     //
   6227     // A static data member's definition may inherit an initializer from an
   6228     // in-class declaration.
   6229     if (Var->isConstexpr() && !Var->getAnyInitializer()) {
   6230       Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
   6231         << Var->getDeclName();
   6232       Var->setInvalidDecl();
   6233       return;
   6234     }
   6235 
   6236     switch (Var->isThisDeclarationADefinition()) {
   6237     case VarDecl::Definition:
   6238       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
   6239         break;
   6240 
   6241       // We have an out-of-line definition of a static data member
   6242       // that has an in-class initializer, so we type-check this like
   6243       // a declaration.
   6244       //
   6245       // Fall through
   6246 
   6247     case VarDecl::DeclarationOnly:
   6248       // It's only a declaration.
   6249 
   6250       // Block scope. C99 6.7p7: If an identifier for an object is
   6251       // declared with no linkage (C99 6.2.2p6), the type for the
   6252       // object shall be complete.
   6253       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
   6254           !Var->getLinkage() && !Var->isInvalidDecl() &&
   6255           RequireCompleteType(Var->getLocation(), Type,
   6256                               diag::err_typecheck_decl_incomplete_type))
   6257         Var->setInvalidDecl();
   6258 
   6259       // Make sure that the type is not abstract.
   6260       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   6261           RequireNonAbstractType(Var->getLocation(), Type,
   6262                                  diag::err_abstract_type_in_decl,
   6263                                  AbstractVariableType))
   6264         Var->setInvalidDecl();
   6265       return;
   6266 
   6267     case VarDecl::TentativeDefinition:
   6268       // File scope. C99 6.9.2p2: A declaration of an identifier for an
   6269       // object that has file scope without an initializer, and without a
   6270       // storage-class specifier or with the storage-class specifier "static",
   6271       // constitutes a tentative definition. Note: A tentative definition with
   6272       // external linkage is valid (C99 6.2.2p5).
   6273       if (!Var->isInvalidDecl()) {
   6274         if (const IncompleteArrayType *ArrayT
   6275                                     = Context.getAsIncompleteArrayType(Type)) {
   6276           if (RequireCompleteType(Var->getLocation(),
   6277                                   ArrayT->getElementType(),
   6278                                   diag::err_illegal_decl_array_incomplete_type))
   6279             Var->setInvalidDecl();
   6280         } else if (Var->getStorageClass() == SC_Static) {
   6281           // C99 6.9.2p3: If the declaration of an identifier for an object is
   6282           // a tentative definition and has internal linkage (C99 6.2.2p3), the
   6283           // declared type shall not be an incomplete type.
   6284           // NOTE: code such as the following
   6285           //     static struct s;
   6286           //     struct s { int a; };
   6287           // is accepted by gcc. Hence here we issue a warning instead of
   6288           // an error and we do not invalidate the static declaration.
   6289           // NOTE: to avoid multiple warnings, only check the first declaration.
   6290           if (Var->getPreviousDeclaration() == 0)
   6291             RequireCompleteType(Var->getLocation(), Type,
   6292                                 diag::ext_typecheck_decl_incomplete_type);
   6293         }
   6294       }
   6295 
   6296       // Record the tentative definition; we're done.
   6297       if (!Var->isInvalidDecl())
   6298         TentativeDefinitions.push_back(Var);
   6299       return;
   6300     }
   6301 
   6302     // Provide a specific diagnostic for uninitialized variable
   6303     // definitions with incomplete array type.
   6304     if (Type->isIncompleteArrayType()) {
   6305       Diag(Var->getLocation(),
   6306            diag::err_typecheck_incomplete_array_needs_initializer);
   6307       Var->setInvalidDecl();
   6308       return;
   6309     }
   6310 
   6311     // Provide a specific diagnostic for uninitialized variable
   6312     // definitions with reference type.
   6313     if (Type->isReferenceType()) {
   6314       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
   6315         << Var->getDeclName()
   6316         << SourceRange(Var->getLocation(), Var->getLocation());
   6317       Var->setInvalidDecl();
   6318       return;
   6319     }
   6320 
   6321     // Do not attempt to type-check the default initializer for a
   6322     // variable with dependent type.
   6323     if (Type->isDependentType())
   6324       return;
   6325 
   6326     if (Var->isInvalidDecl())
   6327       return;
   6328 
   6329     if (RequireCompleteType(Var->getLocation(),
   6330                             Context.getBaseElementType(Type),
   6331                             diag::err_typecheck_decl_incomplete_type)) {
   6332       Var->setInvalidDecl();
   6333       return;
   6334     }
   6335 
   6336     // The variable can not have an abstract class type.
   6337     if (RequireNonAbstractType(Var->getLocation(), Type,
   6338                                diag::err_abstract_type_in_decl,
   6339                                AbstractVariableType)) {
   6340       Var->setInvalidDecl();
   6341       return;
   6342     }
   6343 
   6344     // Check for jumps past the implicit initializer.  C++0x
   6345     // clarifies that this applies to a "variable with automatic
   6346     // storage duration", not a "local variable".
   6347     // C++0x [stmt.dcl]p3
   6348     //   A program that jumps from a point where a variable with automatic
   6349     //   storage duration is not in scope to a point where it is in scope is
   6350     //   ill-formed unless the variable has scalar type, class type with a
   6351     //   trivial default constructor and a trivial destructor, a cv-qualified
   6352     //   version of one of these types, or an array of one of the preceding
   6353     //   types and is declared without an initializer.
   6354     if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
   6355       if (const RecordType *Record
   6356             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
   6357         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
   6358         if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
   6359             (getLangOptions().CPlusPlus0x &&
   6360              (!CXXRecord->hasTrivialDefaultConstructor() ||
   6361               !CXXRecord->hasTrivialDestructor())))
   6362           getCurFunction()->setHasBranchProtectedScope();
   6363       }
   6364     }
   6365 
   6366     // C++03 [dcl.init]p9:
   6367     //   If no initializer is specified for an object, and the
   6368     //   object is of (possibly cv-qualified) non-POD class type (or
   6369     //   array thereof), the object shall be default-initialized; if
   6370     //   the object is of const-qualified type, the underlying class
   6371     //   type shall have a user-declared default
   6372     //   constructor. Otherwise, if no initializer is specified for
   6373     //   a non- static object, the object and its subobjects, if
   6374     //   any, have an indeterminate initial value); if the object
   6375     //   or any of its subobjects are of const-qualified type, the
   6376     //   program is ill-formed.
   6377     // C++0x [dcl.init]p11:
   6378     //   If no initializer is specified for an object, the object is
   6379     //   default-initialized; [...].
   6380     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
   6381     InitializationKind Kind
   6382       = InitializationKind::CreateDefault(Var->getLocation());
   6383 
   6384     InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
   6385     ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
   6386                                       MultiExprArg(*this, 0, 0));
   6387     if (Init.isInvalid())
   6388       Var->setInvalidDecl();
   6389     else if (Init.get())
   6390       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
   6391 
   6392     CheckCompleteVariableDeclaration(Var);
   6393   }
   6394 }
   6395 
   6396 void Sema::ActOnCXXForRangeDecl(Decl *D) {
   6397   VarDecl *VD = dyn_cast<VarDecl>(D);
   6398   if (!VD) {
   6399     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
   6400     D->setInvalidDecl();
   6401     return;
   6402   }
   6403 
   6404   VD->setCXXForRangeDecl(true);
   6405 
   6406   // for-range-declaration cannot be given a storage class specifier.
   6407   int Error = -1;
   6408   switch (VD->getStorageClassAsWritten()) {
   6409   case SC_None:
   6410     break;
   6411   case SC_Extern:
   6412     Error = 0;
   6413     break;
   6414   case SC_Static:
   6415     Error = 1;
   6416     break;
   6417   case SC_PrivateExtern:
   6418     Error = 2;
   6419     break;
   6420   case SC_Auto:
   6421     Error = 3;
   6422     break;
   6423   case SC_Register:
   6424     Error = 4;
   6425     break;
   6426   case SC_OpenCLWorkGroupLocal:
   6427     llvm_unreachable("Unexpected storage class");
   6428   }
   6429   if (VD->isConstexpr())
   6430     Error = 5;
   6431   if (Error != -1) {
   6432     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
   6433       << VD->getDeclName() << Error;
   6434     D->setInvalidDecl();
   6435   }
   6436 }
   6437 
   6438 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
   6439   if (var->isInvalidDecl()) return;
   6440 
   6441   // In ARC, don't allow jumps past the implicit initialization of a
   6442   // local retaining variable.
   6443   if (getLangOptions().ObjCAutoRefCount &&
   6444       var->hasLocalStorage()) {
   6445     switch (var->getType().getObjCLifetime()) {
   6446     case Qualifiers::OCL_None:
   6447     case Qualifiers::OCL_ExplicitNone:
   6448     case Qualifiers::OCL_Autoreleasing:
   6449       break;
   6450 
   6451     case Qualifiers::OCL_Weak:
   6452     case Qualifiers::OCL_Strong:
   6453       getCurFunction()->setHasBranchProtectedScope();
   6454       break;
   6455     }
   6456   }
   6457 
   6458   // All the following checks are C++ only.
   6459   if (!getLangOptions().CPlusPlus) return;
   6460 
   6461   QualType baseType = Context.getBaseElementType(var->getType());
   6462   if (baseType->isDependentType()) return;
   6463 
   6464   // __block variables might require us to capture a copy-initializer.
   6465   if (var->hasAttr<BlocksAttr>()) {
   6466     // It's currently invalid to ever have a __block variable with an
   6467     // array type; should we diagnose that here?
   6468 
   6469     // Regardless, we don't want to ignore array nesting when
   6470     // constructing this copy.
   6471     QualType type = var->getType();
   6472 
   6473     if (type->isStructureOrClassType()) {
   6474       SourceLocation poi = var->getLocation();
   6475       Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
   6476       ExprResult result =
   6477         PerformCopyInitialization(
   6478                         InitializedEntity::InitializeBlock(poi, type, false),
   6479                                   poi, Owned(varRef));
   6480       if (!result.isInvalid()) {
   6481         result = MaybeCreateExprWithCleanups(result);
   6482         Expr *init = result.takeAs<Expr>();
   6483         Context.setBlockVarCopyInits(var, init);
   6484       }
   6485     }
   6486   }
   6487 
   6488   // Check for global constructors.
   6489   if (!var->getDeclContext()->isDependentContext() &&
   6490       var->hasGlobalStorage() &&
   6491       !var->isStaticLocal() &&
   6492       var->getInit() &&
   6493       !var->getInit()->isConstantInitializer(Context,
   6494                                              baseType->isReferenceType()))
   6495     Diag(var->getLocation(), diag::warn_global_constructor)
   6496       << var->getInit()->getSourceRange();
   6497 
   6498   // Require the destructor.
   6499   if (const RecordType *recordType = baseType->getAs<RecordType>())
   6500     FinalizeVarWithDestructor(var, recordType);
   6501 }
   6502 
   6503 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
   6504 /// any semantic actions necessary after any initializer has been attached.
   6505 void
   6506 Sema::FinalizeDeclaration(Decl *ThisDecl) {
   6507   // Note that we are no longer parsing the initializer for this declaration.
   6508   ParsingInitForAutoVars.erase(ThisDecl);
   6509 }
   6510 
   6511 Sema::DeclGroupPtrTy
   6512 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
   6513                               Decl **Group, unsigned NumDecls) {
   6514   SmallVector<Decl*, 8> Decls;
   6515 
   6516   if (DS.isTypeSpecOwned())
   6517     Decls.push_back(DS.getRepAsDecl());
   6518 
   6519   for (unsigned i = 0; i != NumDecls; ++i)
   6520     if (Decl *D = Group[i])
   6521       Decls.push_back(D);
   6522 
   6523   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
   6524                               DS.getTypeSpecType() == DeclSpec::TST_auto);
   6525 }
   6526 
   6527 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
   6528 /// group, performing any necessary semantic checking.
   6529 Sema::DeclGroupPtrTy
   6530 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
   6531                            bool TypeMayContainAuto) {
   6532   // C++0x [dcl.spec.auto]p7:
   6533   //   If the type deduced for the template parameter U is not the same in each
   6534   //   deduction, the program is ill-formed.
   6535   // FIXME: When initializer-list support is added, a distinction is needed
   6536   // between the deduced type U and the deduced type which 'auto' stands for.
   6537   //   auto a = 0, b = { 1, 2, 3 };
   6538   // is legal because the deduced type U is 'int' in both cases.
   6539   if (TypeMayContainAuto && NumDecls > 1) {
   6540     QualType Deduced;
   6541     CanQualType DeducedCanon;
   6542     VarDecl *DeducedDecl = 0;
   6543     for (unsigned i = 0; i != NumDecls; ++i) {
   6544       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
   6545         AutoType *AT = D->getType()->getContainedAutoType();
   6546         // Don't reissue diagnostics when instantiating a template.
   6547         if (AT && D->isInvalidDecl())
   6548           break;
   6549         if (AT && AT->isDeduced()) {
   6550           QualType U = AT->getDeducedType();
   6551           CanQualType UCanon = Context.getCanonicalType(U);
   6552           if (Deduced.isNull()) {
   6553             Deduced = U;
   6554             DeducedCanon = UCanon;
   6555             DeducedDecl = D;
   6556           } else if (DeducedCanon != UCanon) {
   6557             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
   6558                  diag::err_auto_different_deductions)
   6559               << Deduced << DeducedDecl->getDeclName()
   6560               << U << D->getDeclName()
   6561               << DeducedDecl->getInit()->getSourceRange()
   6562               << D->getInit()->getSourceRange();
   6563             D->setInvalidDecl();
   6564             break;
   6565           }
   6566         }
   6567       }
   6568     }
   6569   }
   6570 
   6571   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
   6572 }
   6573 
   6574 
   6575 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
   6576 /// to introduce parameters into function prototype scope.
   6577 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
   6578   const DeclSpec &DS = D.getDeclSpec();
   6579 
   6580   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
   6581   VarDecl::StorageClass StorageClass = SC_None;
   6582   VarDecl::StorageClass StorageClassAsWritten = SC_None;
   6583   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   6584     StorageClass = SC_Register;
   6585     StorageClassAsWritten = SC_Register;
   6586   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   6587     Diag(DS.getStorageClassSpecLoc(),
   6588          diag::err_invalid_storage_class_in_func_decl);
   6589     D.getMutableDeclSpec().ClearStorageClassSpecs();
   6590   }
   6591 
   6592   if (D.getDeclSpec().isThreadSpecified())
   6593     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   6594   if (D.getDeclSpec().isConstexprSpecified())
   6595     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   6596       << 0;
   6597 
   6598   DiagnoseFunctionSpecifiers(D);
   6599 
   6600   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   6601   QualType parmDeclType = TInfo->getType();
   6602 
   6603   if (getLangOptions().CPlusPlus) {
   6604     // Check that there are no default arguments inside the type of this
   6605     // parameter.
   6606     CheckExtraCXXDefaultArguments(D);
   6607 
   6608     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   6609     if (D.getCXXScopeSpec().isSet()) {
   6610       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
   6611         << D.getCXXScopeSpec().getRange();
   6612       D.getCXXScopeSpec().clear();
   6613     }
   6614   }
   6615 
   6616   // Ensure we have a valid name
   6617   IdentifierInfo *II = 0;
   6618   if (D.hasName()) {
   6619     II = D.getIdentifier();
   6620     if (!II) {
   6621       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
   6622         << GetNameForDeclarator(D).getName().getAsString();
   6623       D.setInvalidType(true);
   6624     }
   6625   }
   6626 
   6627   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
   6628   if (II) {
   6629     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
   6630                    ForRedeclaration);
   6631     LookupName(R, S);
   6632     if (R.isSingleResult()) {
   6633       NamedDecl *PrevDecl = R.getFoundDecl();
   6634       if (PrevDecl->isTemplateParameter()) {
   6635         // Maybe we will complain about the shadowed template parameter.
   6636         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   6637         // Just pretend that we didn't see the previous declaration.
   6638         PrevDecl = 0;
   6639       } else if (S->isDeclScope(PrevDecl)) {
   6640         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
   6641         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   6642 
   6643         // Recover by removing the name
   6644         II = 0;
   6645         D.SetIdentifier(0, D.getIdentifierLoc());
   6646         D.setInvalidType(true);
   6647       }
   6648     }
   6649   }
   6650 
   6651   // Temporarily put parameter variables in the translation unit, not
   6652   // the enclosing context.  This prevents them from accidentally
   6653   // looking like class members in C++.
   6654   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
   6655                                     D.getSourceRange().getBegin(),
   6656                                     D.getIdentifierLoc(), II,
   6657                                     parmDeclType, TInfo,
   6658                                     StorageClass, StorageClassAsWritten);
   6659 
   6660   if (D.isInvalidType())
   6661     New->setInvalidDecl();
   6662 
   6663   assert(S->isFunctionPrototypeScope());
   6664   assert(S->getFunctionPrototypeDepth() >= 1);
   6665   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
   6666                     S->getNextFunctionPrototypeIndex());
   6667 
   6668   // Add the parameter declaration into this scope.
   6669   S->AddDecl(New);
   6670   if (II)
   6671     IdResolver.AddDecl(New);
   6672 
   6673   ProcessDeclAttributes(S, New, D);
   6674 
   6675   if (D.getDeclSpec().isModulePrivateSpecified())
   6676     Diag(New->getLocation(), diag::err_module_private_local)
   6677       << 1 << New->getDeclName()
   6678       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   6679       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   6680 
   6681   if (New->hasAttr<BlocksAttr>()) {
   6682     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   6683   }
   6684   return New;
   6685 }
   6686 
   6687 /// \brief Synthesizes a variable for a parameter arising from a
   6688 /// typedef.
   6689 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
   6690                                               SourceLocation Loc,
   6691                                               QualType T) {
   6692   /* FIXME: setting StartLoc == Loc.
   6693      Would it be worth to modify callers so as to provide proper source
   6694      location for the unnamed parameters, embedding the parameter's type? */
   6695   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
   6696                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
   6697                                            SC_None, SC_None, 0);
   6698   Param->setImplicit();
   6699   return Param;
   6700 }
   6701 
   6702 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
   6703                                     ParmVarDecl * const *ParamEnd) {
   6704   // Don't diagnose unused-parameter errors in template instantiations; we
   6705   // will already have done so in the template itself.
   6706   if (!ActiveTemplateInstantiations.empty())
   6707     return;
   6708 
   6709   for (; Param != ParamEnd; ++Param) {
   6710     if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
   6711         !(*Param)->hasAttr<UnusedAttr>()) {
   6712       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
   6713         << (*Param)->getDeclName();
   6714     }
   6715   }
   6716 }
   6717 
   6718 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
   6719                                                   ParmVarDecl * const *ParamEnd,
   6720                                                   QualType ReturnTy,
   6721                                                   NamedDecl *D) {
   6722   if (LangOpts.NumLargeByValueCopy == 0) // No check.
   6723     return;
   6724 
   6725   // Warn if the return value is pass-by-value and larger than the specified
   6726   // threshold.
   6727   if (ReturnTy.isPODType(Context)) {
   6728     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
   6729     if (Size > LangOpts.NumLargeByValueCopy)
   6730       Diag(D->getLocation(), diag::warn_return_value_size)
   6731           << D->getDeclName() << Size;
   6732   }
   6733 
   6734   // Warn if any parameter is pass-by-value and larger than the specified
   6735   // threshold.
   6736   for (; Param != ParamEnd; ++Param) {
   6737     QualType T = (*Param)->getType();
   6738     if (!T.isPODType(Context))
   6739       continue;
   6740     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
   6741     if (Size > LangOpts.NumLargeByValueCopy)
   6742       Diag((*Param)->getLocation(), diag::warn_parameter_size)
   6743           << (*Param)->getDeclName() << Size;
   6744   }
   6745 }
   6746 
   6747 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
   6748                                   SourceLocation NameLoc, IdentifierInfo *Name,
   6749                                   QualType T, TypeSourceInfo *TSInfo,
   6750                                   VarDecl::StorageClass StorageClass,
   6751                                   VarDecl::StorageClass StorageClassAsWritten) {
   6752   // In ARC, infer a lifetime qualifier for appropriate parameter types.
   6753   if (getLangOptions().ObjCAutoRefCount &&
   6754       T.getObjCLifetime() == Qualifiers::OCL_None &&
   6755       T->isObjCLifetimeType()) {
   6756 
   6757     Qualifiers::ObjCLifetime lifetime;
   6758 
   6759     // Special cases for arrays:
   6760     //   - if it's const, use __unsafe_unretained
   6761     //   - otherwise, it's an error
   6762     if (T->isArrayType()) {
   6763       if (!T.isConstQualified()) {
   6764         DelayedDiagnostics.add(
   6765             sema::DelayedDiagnostic::makeForbiddenType(
   6766             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
   6767       }
   6768       lifetime = Qualifiers::OCL_ExplicitNone;
   6769     } else {
   6770       lifetime = T->getObjCARCImplicitLifetime();
   6771     }
   6772     T = Context.getLifetimeQualifiedType(T, lifetime);
   6773   }
   6774 
   6775   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
   6776                                          Context.getAdjustedParameterType(T),
   6777                                          TSInfo,
   6778                                          StorageClass, StorageClassAsWritten,
   6779                                          0);
   6780 
   6781   // Parameters can not be abstract class types.
   6782   // For record types, this is done by the AbstractClassUsageDiagnoser once
   6783   // the class has been completely parsed.
   6784   if (!CurContext->isRecord() &&
   6785       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
   6786                              AbstractParamType))
   6787     New->setInvalidDecl();
   6788 
   6789   // Parameter declarators cannot be interface types. All ObjC objects are
   6790   // passed by reference.
   6791   if (T->isObjCObjectType()) {
   6792     Diag(NameLoc,
   6793          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
   6794       << FixItHint::CreateInsertion(NameLoc, "*");
   6795     T = Context.getObjCObjectPointerType(T);
   6796     New->setType(T);
   6797   }
   6798 
   6799   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   6800   // duration shall not be qualified by an address-space qualifier."
   6801   // Since all parameters have automatic store duration, they can not have
   6802   // an address space.
   6803   if (T.getAddressSpace() != 0) {
   6804     Diag(NameLoc, diag::err_arg_with_address_space);
   6805     New->setInvalidDecl();
   6806   }
   6807 
   6808   return New;
   6809 }
   6810 
   6811 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
   6812                                            SourceLocation LocAfterDecls) {
   6813   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   6814 
   6815   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
   6816   // for a K&R function.
   6817   if (!FTI.hasPrototype) {
   6818     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
   6819       --i;
   6820       if (FTI.ArgInfo[i].Param == 0) {
   6821         llvm::SmallString<256> Code;
   6822         llvm::raw_svector_ostream(Code) << "  int "
   6823                                         << FTI.ArgInfo[i].Ident->getName()
   6824                                         << ";\n";
   6825         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
   6826           << FTI.ArgInfo[i].Ident
   6827           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
   6828 
   6829         // Implicitly declare the argument as type 'int' for lack of a better
   6830         // type.
   6831         AttributeFactory attrs;
   6832         DeclSpec DS(attrs);
   6833         const char* PrevSpec; // unused
   6834         unsigned DiagID; // unused
   6835         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
   6836                            PrevSpec, DiagID);
   6837         Declarator ParamD(DS, Declarator::KNRTypeListContext);
   6838         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
   6839         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
   6840       }
   6841     }
   6842   }
   6843 }
   6844 
   6845 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
   6846                                          Declarator &D) {
   6847   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
   6848   assert(D.isFunctionDeclarator() && "Not a function declarator!");
   6849   Scope *ParentScope = FnBodyScope->getParent();
   6850 
   6851   D.setFunctionDefinition(true);
   6852   Decl *DP = HandleDeclarator(ParentScope, D,
   6853                               MultiTemplateParamsArg(*this));
   6854   return ActOnStartOfFunctionDef(FnBodyScope, DP);
   6855 }
   6856 
   6857 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
   6858   // Don't warn about invalid declarations.
   6859   if (FD->isInvalidDecl())
   6860     return false;
   6861 
   6862   // Or declarations that aren't global.
   6863   if (!FD->isGlobal())
   6864     return false;
   6865 
   6866   // Don't warn about C++ member functions.
   6867   if (isa<CXXMethodDecl>(FD))
   6868     return false;
   6869 
   6870   // Don't warn about 'main'.
   6871   if (FD->isMain())
   6872     return false;
   6873 
   6874   // Don't warn about inline functions.
   6875   if (FD->isInlined())
   6876     return false;
   6877 
   6878   // Don't warn about function templates.
   6879   if (FD->getDescribedFunctionTemplate())
   6880     return false;
   6881 
   6882   // Don't warn about function template specializations.
   6883   if (FD->isFunctionTemplateSpecialization())
   6884     return false;
   6885 
   6886   bool MissingPrototype = true;
   6887   for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
   6888        Prev; Prev = Prev->getPreviousDeclaration()) {
   6889     // Ignore any declarations that occur in function or method
   6890     // scope, because they aren't visible from the header.
   6891     if (Prev->getDeclContext()->isFunctionOrMethod())
   6892       continue;
   6893 
   6894     MissingPrototype = !Prev->getType()->isFunctionProtoType();
   6895     break;
   6896   }
   6897 
   6898   return MissingPrototype;
   6899 }
   6900 
   6901 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
   6902   // Don't complain if we're in GNU89 mode and the previous definition
   6903   // was an extern inline function.
   6904   const FunctionDecl *Definition;
   6905   if (FD->isDefined(Definition) &&
   6906       !canRedefineFunction(Definition, getLangOptions())) {
   6907     if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
   6908         Definition->getStorageClass() == SC_Extern)
   6909       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
   6910         << FD->getDeclName() << getLangOptions().CPlusPlus;
   6911     else
   6912       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
   6913     Diag(Definition->getLocation(), diag::note_previous_definition);
   6914   }
   6915 }
   6916 
   6917 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
   6918   // Clear the last template instantiation error context.
   6919   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
   6920 
   6921   if (!D)
   6922     return D;
   6923   FunctionDecl *FD = 0;
   6924 
   6925   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   6926     FD = FunTmpl->getTemplatedDecl();
   6927   else
   6928     FD = cast<FunctionDecl>(D);
   6929 
   6930   // Enter a new function scope
   6931   PushFunctionScope();
   6932 
   6933   // See if this is a redefinition.
   6934   if (!FD->isLateTemplateParsed())
   6935     CheckForFunctionRedefinition(FD);
   6936 
   6937   // Builtin functions cannot be defined.
   6938   if (unsigned BuiltinID = FD->getBuiltinID()) {
   6939     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   6940       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
   6941       FD->setInvalidDecl();
   6942     }
   6943   }
   6944 
   6945   // The return type of a function definition must be complete
   6946   // (C99 6.9.1p3, C++ [dcl.fct]p6).
   6947   QualType ResultType = FD->getResultType();
   6948   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
   6949       !FD->isInvalidDecl() &&
   6950       RequireCompleteType(FD->getLocation(), ResultType,
   6951                           diag::err_func_def_incomplete_result))
   6952     FD->setInvalidDecl();
   6953 
   6954   // GNU warning -Wmissing-prototypes:
   6955   //   Warn if a global function is defined without a previous
   6956   //   prototype declaration. This warning is issued even if the
   6957   //   definition itself provides a prototype. The aim is to detect
   6958   //   global functions that fail to be declared in header files.
   6959   if (ShouldWarnAboutMissingPrototype(FD))
   6960     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
   6961 
   6962   if (FnBodyScope)
   6963     PushDeclContext(FnBodyScope, FD);
   6964 
   6965   // Check the validity of our function parameters
   6966   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
   6967                            /*CheckParameterNames=*/true);
   6968 
   6969   // Introduce our parameters into the function scope
   6970   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
   6971     ParmVarDecl *Param = FD->getParamDecl(p);
   6972     Param->setOwningFunction(FD);
   6973 
   6974     // If this has an identifier, add it to the scope stack.
   6975     if (Param->getIdentifier() && FnBodyScope) {
   6976       CheckShadow(FnBodyScope, Param);
   6977 
   6978       PushOnScopeChains(Param, FnBodyScope);
   6979     }
   6980   }
   6981 
   6982   // Checking attributes of current function definition
   6983   // dllimport attribute.
   6984   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
   6985   if (DA && (!FD->getAttr<DLLExportAttr>())) {
   6986     // dllimport attribute cannot be directly applied to definition.
   6987     // Microsoft accepts dllimport for functions defined within class scope.
   6988     if (!DA->isInherited() &&
   6989         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
   6990       Diag(FD->getLocation(),
   6991            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
   6992         << "dllimport";
   6993       FD->setInvalidDecl();
   6994       return FD;
   6995     }
   6996 
   6997     // Visual C++ appears to not think this is an issue, so only issue
   6998     // a warning when Microsoft extensions are disabled.
   6999     if (!LangOpts.MicrosoftExt) {
   7000       // If a symbol previously declared dllimport is later defined, the
   7001       // attribute is ignored in subsequent references, and a warning is
   7002       // emitted.
   7003       Diag(FD->getLocation(),
   7004            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
   7005         << FD->getName() << "dllimport";
   7006     }
   7007   }
   7008   return FD;
   7009 }
   7010 
   7011 /// \brief Given the set of return statements within a function body,
   7012 /// compute the variables that are subject to the named return value
   7013 /// optimization.
   7014 ///
   7015 /// Each of the variables that is subject to the named return value
   7016 /// optimization will be marked as NRVO variables in the AST, and any
   7017 /// return statement that has a marked NRVO variable as its NRVO candidate can
   7018 /// use the named return value optimization.
   7019 ///
   7020 /// This function applies a very simplistic algorithm for NRVO: if every return
   7021 /// statement in the function has the same NRVO candidate, that candidate is
   7022 /// the NRVO variable.
   7023 ///
   7024 /// FIXME: Employ a smarter algorithm that accounts for multiple return
   7025 /// statements and the lifetimes of the NRVO candidates. We should be able to
   7026 /// find a maximal set of NRVO variables.
   7027 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
   7028   ReturnStmt **Returns = Scope->Returns.data();
   7029 
   7030   const VarDecl *NRVOCandidate = 0;
   7031   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
   7032     if (!Returns[I]->getNRVOCandidate())
   7033       return;
   7034 
   7035     if (!NRVOCandidate)
   7036       NRVOCandidate = Returns[I]->getNRVOCandidate();
   7037     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
   7038       return;
   7039   }
   7040 
   7041   if (NRVOCandidate)
   7042     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
   7043 }
   7044 
   7045 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
   7046   return ActOnFinishFunctionBody(D, move(BodyArg), false);
   7047 }
   7048 
   7049 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
   7050                                     bool IsInstantiation) {
   7051   FunctionDecl *FD = 0;
   7052   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
   7053   if (FunTmpl)
   7054     FD = FunTmpl->getTemplatedDecl();
   7055   else
   7056     FD = dyn_cast_or_null<FunctionDecl>(dcl);
   7057 
   7058   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   7059   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
   7060 
   7061   if (FD) {
   7062     FD->setBody(Body);
   7063     if (FD->isMain()) {
   7064       // C and C++ allow for main to automagically return 0.
   7065       // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
   7066       FD->setHasImplicitReturnZero(true);
   7067       WP.disableCheckFallThrough();
   7068     } else if (FD->hasAttr<NakedAttr>()) {
   7069       // If the function is marked 'naked', don't complain about missing return
   7070       // statements.
   7071       WP.disableCheckFallThrough();
   7072     }
   7073 
   7074     // MSVC permits the use of pure specifier (=0) on function definition,
   7075     // defined at class scope, warn about this non standard construct.
   7076     if (getLangOptions().MicrosoftExt && FD->isPure())
   7077       Diag(FD->getLocation(), diag::warn_pure_function_definition);
   7078 
   7079     if (!FD->isInvalidDecl()) {
   7080       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
   7081       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
   7082                                              FD->getResultType(), FD);
   7083 
   7084       // If this is a constructor, we need a vtable.
   7085       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
   7086         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
   7087 
   7088       computeNRVO(Body, getCurFunction());
   7089     }
   7090 
   7091     assert(FD == getCurFunctionDecl() && "Function parsing confused");
   7092   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
   7093     assert(MD == getCurMethodDecl() && "Method parsing confused");
   7094     MD->setBody(Body);
   7095     if (Body)
   7096       MD->setEndLoc(Body->getLocEnd());
   7097     if (!MD->isInvalidDecl()) {
   7098       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
   7099       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
   7100                                              MD->getResultType(), MD);
   7101 
   7102       if (Body)
   7103         computeNRVO(Body, getCurFunction());
   7104     }
   7105     if (ObjCShouldCallSuperDealloc) {
   7106       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
   7107       ObjCShouldCallSuperDealloc = false;
   7108     }
   7109     if (ObjCShouldCallSuperFinalize) {
   7110       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
   7111       ObjCShouldCallSuperFinalize = false;
   7112     }
   7113   } else {
   7114     return 0;
   7115   }
   7116 
   7117   assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
   7118          "ObjC methods, which should have been handled in the block above.");
   7119   assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
   7120          "ObjC methods, which should have been handled in the block above.");
   7121 
   7122   // Verify and clean out per-function state.
   7123   if (Body) {
   7124     // C++ constructors that have function-try-blocks can't have return
   7125     // statements in the handlers of that block. (C++ [except.handle]p14)
   7126     // Verify this.
   7127     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
   7128       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
   7129 
   7130     // Verify that gotos and switch cases don't jump into scopes illegally.
   7131     if (getCurFunction()->NeedsScopeChecking() &&
   7132         !dcl->isInvalidDecl() &&
   7133         !hasAnyUnrecoverableErrorsInThisFunction())
   7134       DiagnoseInvalidJumps(Body);
   7135 
   7136     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
   7137       if (!Destructor->getParent()->isDependentType())
   7138         CheckDestructor(Destructor);
   7139 
   7140       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   7141                                              Destructor->getParent());
   7142     }
   7143 
   7144     // If any errors have occurred, clear out any temporaries that may have
   7145     // been leftover. This ensures that these temporaries won't be picked up for
   7146     // deletion in some later function.
   7147     if (PP.getDiagnostics().hasErrorOccurred() ||
   7148         PP.getDiagnostics().getSuppressAllDiagnostics()) {
   7149       ExprTemporaries.clear();
   7150       ExprNeedsCleanups = false;
   7151     } else if (!isa<FunctionTemplateDecl>(dcl)) {
   7152       // Since the body is valid, issue any analysis-based warnings that are
   7153       // enabled.
   7154       ActivePolicy = &WP;
   7155     }
   7156 
   7157     if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
   7158         !CheckConstexprFunctionBody(FD, Body))
   7159       FD->setInvalidDecl();
   7160 
   7161     assert(ExprTemporaries.empty() && "Leftover temporaries in function");
   7162     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
   7163   }
   7164 
   7165   if (!IsInstantiation)
   7166     PopDeclContext();
   7167 
   7168   PopFunctionOrBlockScope(ActivePolicy, dcl);
   7169 
   7170   // If any errors have occurred, clear out any temporaries that may have
   7171   // been leftover. This ensures that these temporaries won't be picked up for
   7172   // deletion in some later function.
   7173   if (getDiagnostics().hasErrorOccurred()) {
   7174     ExprTemporaries.clear();
   7175     ExprNeedsCleanups = false;
   7176   }
   7177 
   7178   return dcl;
   7179 }
   7180 
   7181 
   7182 /// When we finish delayed parsing of an attribute, we must attach it to the
   7183 /// relevant Decl.
   7184 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
   7185                                        ParsedAttributes &Attrs) {
   7186   ProcessDeclAttributeList(S, D, Attrs.getList());
   7187 }
   7188 
   7189 
   7190 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
   7191 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
   7192 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
   7193                                           IdentifierInfo &II, Scope *S) {
   7194   // Before we produce a declaration for an implicitly defined
   7195   // function, see whether there was a locally-scoped declaration of
   7196   // this name as a function or variable. If so, use that
   7197   // (non-visible) declaration, and complain about it.
   7198   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   7199     = findLocallyScopedExternalDecl(&II);
   7200   if (Pos != LocallyScopedExternalDecls.end()) {
   7201     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
   7202     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
   7203     return Pos->second;
   7204   }
   7205 
   7206   // Extension in C99.  Legal in C90, but warn about it.
   7207   if (II.getName().startswith("__builtin_"))
   7208     Diag(Loc, diag::warn_builtin_unknown) << &II;
   7209   else if (getLangOptions().C99)
   7210     Diag(Loc, diag::ext_implicit_function_decl) << &II;
   7211   else
   7212     Diag(Loc, diag::warn_implicit_function_decl) << &II;
   7213 
   7214   // Set a Declarator for the implicit definition: int foo();
   7215   const char *Dummy;
   7216   AttributeFactory attrFactory;
   7217   DeclSpec DS(attrFactory);
   7218   unsigned DiagID;
   7219   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
   7220   (void)Error; // Silence warning.
   7221   assert(!Error && "Error setting up implicit decl!");
   7222   Declarator D(DS, Declarator::BlockContext);
   7223   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
   7224                                              0, 0, true, SourceLocation(),
   7225                                              SourceLocation(), SourceLocation(),
   7226                                              SourceLocation(),
   7227                                              EST_None, SourceLocation(),
   7228                                              0, 0, 0, 0, Loc, Loc, D),
   7229                 DS.getAttributes(),
   7230                 SourceLocation());
   7231   D.SetIdentifier(&II, Loc);
   7232 
   7233   // Insert this function into translation-unit scope.
   7234 
   7235   DeclContext *PrevDC = CurContext;
   7236   CurContext = Context.getTranslationUnitDecl();
   7237 
   7238   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
   7239   FD->setImplicit();
   7240 
   7241   CurContext = PrevDC;
   7242 
   7243   AddKnownFunctionAttributes(FD);
   7244 
   7245   return FD;
   7246 }
   7247 
   7248 /// \brief Adds any function attributes that we know a priori based on
   7249 /// the declaration of this function.
   7250 ///
   7251 /// These attributes can apply both to implicitly-declared builtins
   7252 /// (like __builtin___printf_chk) or to library-declared functions
   7253 /// like NSLog or printf.
   7254 ///
   7255 /// We need to check for duplicate attributes both here and where user-written
   7256 /// attributes are applied to declarations.
   7257 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
   7258   if (FD->isInvalidDecl())
   7259     return;
   7260 
   7261   // If this is a built-in function, map its builtin attributes to
   7262   // actual attributes.
   7263   if (unsigned BuiltinID = FD->getBuiltinID()) {
   7264     // Handle printf-formatting attributes.
   7265     unsigned FormatIdx;
   7266     bool HasVAListArg;
   7267     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
   7268       if (!FD->getAttr<FormatAttr>())
   7269         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   7270                                                 "printf", FormatIdx+1,
   7271                                                HasVAListArg ? 0 : FormatIdx+2));
   7272     }
   7273     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
   7274                                              HasVAListArg)) {
   7275      if (!FD->getAttr<FormatAttr>())
   7276        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   7277                                               "scanf", FormatIdx+1,
   7278                                               HasVAListArg ? 0 : FormatIdx+2));
   7279     }
   7280 
   7281     // Mark const if we don't care about errno and that is the only
   7282     // thing preventing the function from being const. This allows
   7283     // IRgen to use LLVM intrinsics for such functions.
   7284     if (!getLangOptions().MathErrno &&
   7285         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
   7286       if (!FD->getAttr<ConstAttr>())
   7287         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   7288     }
   7289 
   7290     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
   7291         !FD->getAttr<ReturnsTwiceAttr>())
   7292       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
   7293     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
   7294       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
   7295     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
   7296       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   7297   }
   7298 
   7299   IdentifierInfo *Name = FD->getIdentifier();
   7300   if (!Name)
   7301     return;
   7302   if ((!getLangOptions().CPlusPlus &&
   7303        FD->getDeclContext()->isTranslationUnit()) ||
   7304       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
   7305        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
   7306        LinkageSpecDecl::lang_c)) {
   7307     // Okay: this could be a libc/libm/Objective-C function we know
   7308     // about.
   7309   } else
   7310     return;
   7311 
   7312   if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
   7313     // FIXME: NSLog and NSLogv should be target specific
   7314     if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
   7315       // FIXME: We known better than our headers.
   7316       const_cast<FormatAttr *>(Format)->setType(Context, "printf");
   7317     } else
   7318       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   7319                                              "printf", 1,
   7320                                              Name->isStr("NSLogv") ? 0 : 2));
   7321   } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
   7322     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
   7323     // target-specific builtins, perhaps?
   7324     if (!FD->getAttr<FormatAttr>())
   7325       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   7326                                              "printf", 2,
   7327                                              Name->isStr("vasprintf") ? 0 : 3));
   7328   }
   7329 }
   7330 
   7331 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
   7332                                     TypeSourceInfo *TInfo) {
   7333   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
   7334   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
   7335 
   7336   if (!TInfo) {
   7337     assert(D.isInvalidType() && "no declarator info for valid type");
   7338     TInfo = Context.getTrivialTypeSourceInfo(T);
   7339   }
   7340 
   7341   // Scope manipulation handled by caller.
   7342   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
   7343                                            D.getSourceRange().getBegin(),
   7344                                            D.getIdentifierLoc(),
   7345                                            D.getIdentifier(),
   7346                                            TInfo);
   7347 
   7348   // Bail out immediately if we have an invalid declaration.
   7349   if (D.isInvalidType()) {
   7350     NewTD->setInvalidDecl();
   7351     return NewTD;
   7352   }
   7353 
   7354   if (D.getDeclSpec().isModulePrivateSpecified()) {
   7355     if (CurContext->isFunctionOrMethod())
   7356       Diag(NewTD->getLocation(), diag::err_module_private_local)
   7357         << 2 << NewTD->getDeclName()
   7358         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   7359         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   7360     else
   7361       NewTD->setModulePrivate();
   7362   }
   7363 
   7364   // C++ [dcl.typedef]p8:
   7365   //   If the typedef declaration defines an unnamed class (or
   7366   //   enum), the first typedef-name declared by the declaration
   7367   //   to be that class type (or enum type) is used to denote the
   7368   //   class type (or enum type) for linkage purposes only.
   7369   // We need to check whether the type was declared in the declaration.
   7370   switch (D.getDeclSpec().getTypeSpecType()) {
   7371   case TST_enum:
   7372   case TST_struct:
   7373   case TST_union:
   7374   case TST_class: {
   7375     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   7376 
   7377     // Do nothing if the tag is not anonymous or already has an
   7378     // associated typedef (from an earlier typedef in this decl group).
   7379     if (tagFromDeclSpec->getIdentifier()) break;
   7380     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
   7381 
   7382     // A well-formed anonymous tag must always be a TUK_Definition.
   7383     assert(tagFromDeclSpec->isThisDeclarationADefinition());
   7384 
   7385     // The type must match the tag exactly;  no qualifiers allowed.
   7386     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
   7387       break;
   7388 
   7389     // Otherwise, set this is the anon-decl typedef for the tag.
   7390     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
   7391     break;
   7392   }
   7393 
   7394   default:
   7395     break;
   7396   }
   7397 
   7398   return NewTD;
   7399 }
   7400 
   7401 
   7402 /// \brief Determine whether a tag with a given kind is acceptable
   7403 /// as a redeclaration of the given tag declaration.
   7404 ///
   7405 /// \returns true if the new tag kind is acceptable, false otherwise.
   7406 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
   7407                                         TagTypeKind NewTag, bool isDefinition,
   7408                                         SourceLocation NewTagLoc,
   7409                                         const IdentifierInfo &Name) {
   7410   // C++ [dcl.type.elab]p3:
   7411   //   The class-key or enum keyword present in the
   7412   //   elaborated-type-specifier shall agree in kind with the
   7413   //   declaration to which the name in the elaborated-type-specifier
   7414   //   refers. This rule also applies to the form of
   7415   //   elaborated-type-specifier that declares a class-name or
   7416   //   friend class since it can be construed as referring to the
   7417   //   definition of the class. Thus, in any
   7418   //   elaborated-type-specifier, the enum keyword shall be used to
   7419   //   refer to an enumeration (7.2), the union class-key shall be
   7420   //   used to refer to a union (clause 9), and either the class or
   7421   //   struct class-key shall be used to refer to a class (clause 9)
   7422   //   declared using the class or struct class-key.
   7423   TagTypeKind OldTag = Previous->getTagKind();
   7424   if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
   7425     if (OldTag == NewTag)
   7426       return true;
   7427 
   7428   if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
   7429       (NewTag == TTK_Struct || NewTag == TTK_Class)) {
   7430     // Warn about the struct/class tag mismatch.
   7431     bool isTemplate = false;
   7432     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
   7433       isTemplate = Record->getDescribedClassTemplate();
   7434 
   7435     if (!ActiveTemplateInstantiations.empty()) {
   7436       // In a template instantiation, do not offer fix-its for tag mismatches
   7437       // since they usually mess up the template instead of fixing the problem.
   7438       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   7439         << (NewTag == TTK_Class) << isTemplate << &Name;
   7440       return true;
   7441     }
   7442 
   7443     if (isDefinition) {
   7444       // On definitions, check previous tags and issue a fix-it for each
   7445       // one that doesn't match the current tag.
   7446       if (Previous->getDefinition()) {
   7447         // Don't suggest fix-its for redefinitions.
   7448         return true;
   7449       }
   7450 
   7451       bool previousMismatch = false;
   7452       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
   7453            E(Previous->redecls_end()); I != E; ++I) {
   7454         if (I->getTagKind() != NewTag) {
   7455           if (!previousMismatch) {
   7456             previousMismatch = true;
   7457             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
   7458               << (NewTag == TTK_Class) << isTemplate << &Name;
   7459           }
   7460           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
   7461             << (NewTag == TTK_Class)
   7462             << FixItHint::CreateReplacement(I->getInnerLocStart(),
   7463                                             NewTag == TTK_Class?
   7464                                             "class" : "struct");
   7465         }
   7466       }
   7467       return true;
   7468     }
   7469 
   7470     // Check for a previous definition.  If current tag and definition
   7471     // are same type, do nothing.  If no definition, but disagree with
   7472     // with previous tag type, give a warning, but no fix-it.
   7473     const TagDecl *Redecl = Previous->getDefinition() ?
   7474                             Previous->getDefinition() : Previous;
   7475     if (Redecl->getTagKind() == NewTag) {
   7476       return true;
   7477     }
   7478 
   7479     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   7480       << (NewTag == TTK_Class)
   7481       << isTemplate << &Name;
   7482     Diag(Redecl->getLocation(), diag::note_previous_use);
   7483 
   7484     // If there is a previous defintion, suggest a fix-it.
   7485     if (Previous->getDefinition()) {
   7486         Diag(NewTagLoc, diag::note_struct_class_suggestion)
   7487           << (Redecl->getTagKind() == TTK_Class)
   7488           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
   7489                         Redecl->getTagKind() == TTK_Class? "class" : "struct");
   7490     }
   7491 
   7492     return true;
   7493   }
   7494   return false;
   7495 }
   7496 
   7497 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
   7498 /// former case, Name will be non-null.  In the later case, Name will be null.
   7499 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
   7500 /// reference/declaration/definition of a tag.
   7501 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   7502                      SourceLocation KWLoc, CXXScopeSpec &SS,
   7503                      IdentifierInfo *Name, SourceLocation NameLoc,
   7504                      AttributeList *Attr, AccessSpecifier AS,
   7505                      SourceLocation ModulePrivateLoc,
   7506                      MultiTemplateParamsArg TemplateParameterLists,
   7507                      bool &OwnedDecl, bool &IsDependent,
   7508                      bool ScopedEnum, bool ScopedEnumUsesClassTag,
   7509                      TypeResult UnderlyingType) {
   7510   // If this is not a definition, it must have a name.
   7511   assert((Name != 0 || TUK == TUK_Definition) &&
   7512          "Nameless record must be a definition!");
   7513   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
   7514 
   7515   OwnedDecl = false;
   7516   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   7517 
   7518   // FIXME: Check explicit specializations more carefully.
   7519   bool isExplicitSpecialization = false;
   7520   bool Invalid = false;
   7521 
   7522   // We only need to do this matching if we have template parameters
   7523   // or a scope specifier, which also conveniently avoids this work
   7524   // for non-C++ cases.
   7525   if (TemplateParameterLists.size() > 0 ||
   7526       (SS.isNotEmpty() && TUK != TUK_Reference)) {
   7527     if (TemplateParameterList *TemplateParams
   7528           = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
   7529                                                 TemplateParameterLists.get(),
   7530                                                 TemplateParameterLists.size(),
   7531                                                     TUK == TUK_Friend,
   7532                                                     isExplicitSpecialization,
   7533                                                     Invalid)) {
   7534       if (TemplateParams->size() > 0) {
   7535         // This is a declaration or definition of a class template (which may
   7536         // be a member of another template).
   7537 
   7538         if (Invalid)
   7539           return 0;
   7540 
   7541         OwnedDecl = false;
   7542         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
   7543                                                SS, Name, NameLoc, Attr,
   7544                                                TemplateParams, AS,
   7545                                                ModulePrivateLoc,
   7546                                            TemplateParameterLists.size() - 1,
   7547                  (TemplateParameterList**) TemplateParameterLists.release());
   7548         return Result.get();
   7549       } else {
   7550         // The "template<>" header is extraneous.
   7551         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   7552           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   7553         isExplicitSpecialization = true;
   7554       }
   7555     }
   7556   }
   7557 
   7558   // Figure out the underlying type if this a enum declaration. We need to do
   7559   // this early, because it's needed to detect if this is an incompatible
   7560   // redeclaration.
   7561   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
   7562 
   7563   if (Kind == TTK_Enum) {
   7564     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
   7565       // No underlying type explicitly specified, or we failed to parse the
   7566       // type, default to int.
   7567       EnumUnderlying = Context.IntTy.getTypePtr();
   7568     else if (UnderlyingType.get()) {
   7569       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
   7570       // integral type; any cv-qualification is ignored.
   7571       TypeSourceInfo *TI = 0;
   7572       QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
   7573       EnumUnderlying = TI;
   7574 
   7575       SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
   7576 
   7577       if (!T->isDependentType() && !T->isIntegralType(Context)) {
   7578         Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
   7579           << T;
   7580         // Recover by falling back to int.
   7581         EnumUnderlying = Context.IntTy.getTypePtr();
   7582       }
   7583 
   7584       if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
   7585                                           UPPC_FixedUnderlyingType))
   7586         EnumUnderlying = Context.IntTy.getTypePtr();
   7587 
   7588     } else if (getLangOptions().MicrosoftExt)
   7589       // Microsoft enums are always of int type.
   7590       EnumUnderlying = Context.IntTy.getTypePtr();
   7591   }
   7592 
   7593   DeclContext *SearchDC = CurContext;
   7594   DeclContext *DC = CurContext;
   7595   bool isStdBadAlloc = false;
   7596 
   7597   RedeclarationKind Redecl = ForRedeclaration;
   7598   if (TUK == TUK_Friend || TUK == TUK_Reference)
   7599     Redecl = NotForRedeclaration;
   7600 
   7601   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
   7602 
   7603   if (Name && SS.isNotEmpty()) {
   7604     // We have a nested-name tag ('struct foo::bar').
   7605 
   7606     // Check for invalid 'foo::'.
   7607     if (SS.isInvalid()) {
   7608       Name = 0;
   7609       goto CreateNewDecl;
   7610     }
   7611 
   7612     // If this is a friend or a reference to a class in a dependent
   7613     // context, don't try to make a decl for it.
   7614     if (TUK == TUK_Friend || TUK == TUK_Reference) {
   7615       DC = computeDeclContext(SS, false);
   7616       if (!DC) {
   7617         IsDependent = true;
   7618         return 0;
   7619       }
   7620     } else {
   7621       DC = computeDeclContext(SS, true);
   7622       if (!DC) {
   7623         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
   7624           << SS.getRange();
   7625         return 0;
   7626       }
   7627     }
   7628 
   7629     if (RequireCompleteDeclContext(SS, DC))
   7630       return 0;
   7631 
   7632     SearchDC = DC;
   7633     // Look-up name inside 'foo::'.
   7634     LookupQualifiedName(Previous, DC);
   7635 
   7636     if (Previous.isAmbiguous())
   7637       return 0;
   7638 
   7639     if (Previous.empty()) {
   7640       // Name lookup did not find anything. However, if the
   7641       // nested-name-specifier refers to the current instantiation,
   7642       // and that current instantiation has any dependent base
   7643       // classes, we might find something at instantiation time: treat
   7644       // this as a dependent elaborated-type-specifier.
   7645       // But this only makes any sense for reference-like lookups.
   7646       if (Previous.wasNotFoundInCurrentInstantiation() &&
   7647           (TUK == TUK_Reference || TUK == TUK_Friend)) {
   7648         IsDependent = true;
   7649         return 0;
   7650       }
   7651 
   7652       // A tag 'foo::bar' must already exist.
   7653       Diag(NameLoc, diag::err_not_tag_in_scope)
   7654         << Kind << Name << DC << SS.getRange();
   7655       Name = 0;
   7656       Invalid = true;
   7657       goto CreateNewDecl;
   7658     }
   7659   } else if (Name) {
   7660     // If this is a named struct, check to see if there was a previous forward
   7661     // declaration or definition.
   7662     // FIXME: We're looking into outer scopes here, even when we
   7663     // shouldn't be. Doing so can result in ambiguities that we
   7664     // shouldn't be diagnosing.
   7665     LookupName(Previous, S);
   7666 
   7667     if (Previous.isAmbiguous() &&
   7668         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
   7669       LookupResult::Filter F = Previous.makeFilter();
   7670       while (F.hasNext()) {
   7671         NamedDecl *ND = F.next();
   7672         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
   7673           F.erase();
   7674       }
   7675       F.done();
   7676     }
   7677 
   7678     // Note:  there used to be some attempt at recovery here.
   7679     if (Previous.isAmbiguous())
   7680       return 0;
   7681 
   7682     if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
   7683       // FIXME: This makes sure that we ignore the contexts associated
   7684       // with C structs, unions, and enums when looking for a matching
   7685       // tag declaration or definition. See the similar lookup tweak
   7686       // in Sema::LookupName; is there a better way to deal with this?
   7687       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
   7688         SearchDC = SearchDC->getParent();
   7689     }
   7690   } else if (S->isFunctionPrototypeScope()) {
   7691     // If this is an enum declaration in function prototype scope, set its
   7692     // initial context to the translation unit.
   7693     SearchDC = Context.getTranslationUnitDecl();
   7694   }
   7695 
   7696   if (Previous.isSingleResult() &&
   7697       Previous.getFoundDecl()->isTemplateParameter()) {
   7698     // Maybe we will complain about the shadowed template parameter.
   7699     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
   7700     // Just pretend that we didn't see the previous declaration.
   7701     Previous.clear();
   7702   }
   7703 
   7704   if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
   7705       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
   7706     // This is a declaration of or a reference to "std::bad_alloc".
   7707     isStdBadAlloc = true;
   7708 
   7709     if (Previous.empty() && StdBadAlloc) {
   7710       // std::bad_alloc has been implicitly declared (but made invisible to
   7711       // name lookup). Fill in this implicit declaration as the previous
   7712       // declaration, so that the declarations get chained appropriately.
   7713       Previous.addDecl(getStdBadAlloc());
   7714     }
   7715   }
   7716 
   7717   // If we didn't find a previous declaration, and this is a reference
   7718   // (or friend reference), move to the correct scope.  In C++, we
   7719   // also need to do a redeclaration lookup there, just in case
   7720   // there's a shadow friend decl.
   7721   if (Name && Previous.empty() &&
   7722       (TUK == TUK_Reference || TUK == TUK_Friend)) {
   7723     if (Invalid) goto CreateNewDecl;
   7724     assert(SS.isEmpty());
   7725 
   7726     if (TUK == TUK_Reference) {
   7727       // C++ [basic.scope.pdecl]p5:
   7728       //   -- for an elaborated-type-specifier of the form
   7729       //
   7730       //          class-key identifier
   7731       //
   7732       //      if the elaborated-type-specifier is used in the
   7733       //      decl-specifier-seq or parameter-declaration-clause of a
   7734       //      function defined in namespace scope, the identifier is
   7735       //      declared as a class-name in the namespace that contains
   7736       //      the declaration; otherwise, except as a friend
   7737       //      declaration, the identifier is declared in the smallest
   7738       //      non-class, non-function-prototype scope that contains the
   7739       //      declaration.
   7740       //
   7741       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
   7742       // C structs and unions.
   7743       //
   7744       // It is an error in C++ to declare (rather than define) an enum
   7745       // type, including via an elaborated type specifier.  We'll
   7746       // diagnose that later; for now, declare the enum in the same
   7747       // scope as we would have picked for any other tag type.
   7748       //
   7749       // GNU C also supports this behavior as part of its incomplete
   7750       // enum types extension, while GNU C++ does not.
   7751       //
   7752       // Find the context where we'll be declaring the tag.
   7753       // FIXME: We would like to maintain the current DeclContext as the
   7754       // lexical context,
   7755       while (SearchDC->isRecord() || SearchDC->isTransparentContext())
   7756         SearchDC = SearchDC->getParent();
   7757 
   7758       // Find the scope where we'll be declaring the tag.
   7759       while (S->isClassScope() ||
   7760              (getLangOptions().CPlusPlus &&
   7761               S->isFunctionPrototypeScope()) ||
   7762              ((S->getFlags() & Scope::DeclScope) == 0) ||
   7763              (S->getEntity() &&
   7764               ((DeclContext *)S->getEntity())->isTransparentContext()))
   7765         S = S->getParent();
   7766     } else {
   7767       assert(TUK == TUK_Friend);
   7768       // C++ [namespace.memdef]p3:
   7769       //   If a friend declaration in a non-local class first declares a
   7770       //   class or function, the friend class or function is a member of
   7771       //   the innermost enclosing namespace.
   7772       SearchDC = SearchDC->getEnclosingNamespaceContext();
   7773     }
   7774 
   7775     // In C++, we need to do a redeclaration lookup to properly
   7776     // diagnose some problems.
   7777     if (getLangOptions().CPlusPlus) {
   7778       Previous.setRedeclarationKind(ForRedeclaration);
   7779       LookupQualifiedName(Previous, SearchDC);
   7780     }
   7781   }
   7782 
   7783   if (!Previous.empty()) {
   7784     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
   7785 
   7786     // It's okay to have a tag decl in the same scope as a typedef
   7787     // which hides a tag decl in the same scope.  Finding this
   7788     // insanity with a redeclaration lookup can only actually happen
   7789     // in C++.
   7790     //
   7791     // This is also okay for elaborated-type-specifiers, which is
   7792     // technically forbidden by the current standard but which is
   7793     // okay according to the likely resolution of an open issue;
   7794     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
   7795     if (getLangOptions().CPlusPlus) {
   7796       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   7797         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
   7798           TagDecl *Tag = TT->getDecl();
   7799           if (Tag->getDeclName() == Name &&
   7800               Tag->getDeclContext()->getRedeclContext()
   7801                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
   7802             PrevDecl = Tag;
   7803             Previous.clear();
   7804             Previous.addDecl(Tag);
   7805             Previous.resolveKind();
   7806           }
   7807         }
   7808       }
   7809     }
   7810 
   7811     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
   7812       // If this is a use of a previous tag, or if the tag is already declared
   7813       // in the same scope (so that the definition/declaration completes or
   7814       // rementions the tag), reuse the decl.
   7815       if (TUK == TUK_Reference || TUK == TUK_Friend ||
   7816           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
   7817         // Make sure that this wasn't declared as an enum and now used as a
   7818         // struct or something similar.
   7819         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
   7820                                           TUK == TUK_Definition, KWLoc,
   7821                                           *Name)) {
   7822           bool SafeToContinue
   7823             = (PrevTagDecl->getTagKind() != TTK_Enum &&
   7824                Kind != TTK_Enum);
   7825           if (SafeToContinue)
   7826             Diag(KWLoc, diag::err_use_with_wrong_tag)
   7827               << Name
   7828               << FixItHint::CreateReplacement(SourceRange(KWLoc),
   7829                                               PrevTagDecl->getKindName());
   7830           else
   7831             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
   7832           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   7833 
   7834           if (SafeToContinue)
   7835             Kind = PrevTagDecl->getTagKind();
   7836           else {
   7837             // Recover by making this an anonymous redefinition.
   7838             Name = 0;
   7839             Previous.clear();
   7840             Invalid = true;
   7841           }
   7842         }
   7843 
   7844         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
   7845           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
   7846 
   7847           // All conflicts with previous declarations are recovered by
   7848           // returning the previous declaration.
   7849           if (ScopedEnum != PrevEnum->isScoped()) {
   7850             Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
   7851               << PrevEnum->isScoped();
   7852             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   7853             return PrevTagDecl;
   7854           }
   7855           else if (EnumUnderlying && PrevEnum->isFixed()) {
   7856             QualType T;
   7857             if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   7858                 T = TI->getType();
   7859             else
   7860                 T = QualType(EnumUnderlying.get<const Type*>(), 0);
   7861 
   7862             if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
   7863               Diag(NameLoc.isValid() ? NameLoc : KWLoc,
   7864                    diag::err_enum_redeclare_type_mismatch)
   7865                 << T
   7866                 << PrevEnum->getIntegerType();
   7867               Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   7868               return PrevTagDecl;
   7869             }
   7870           }
   7871           else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
   7872             Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
   7873               << PrevEnum->isFixed();
   7874             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   7875             return PrevTagDecl;
   7876           }
   7877         }
   7878 
   7879         if (!Invalid) {
   7880           // If this is a use, just return the declaration we found.
   7881 
   7882           // FIXME: In the future, return a variant or some other clue
   7883           // for the consumer of this Decl to know it doesn't own it.
   7884           // For our current ASTs this shouldn't be a problem, but will
   7885           // need to be changed with DeclGroups.
   7886           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
   7887                getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
   7888             return PrevTagDecl;
   7889 
   7890           // Diagnose attempts to redefine a tag.
   7891           if (TUK == TUK_Definition) {
   7892             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
   7893               // If we're defining a specialization and the previous definition
   7894               // is from an implicit instantiation, don't emit an error
   7895               // here; we'll catch this in the general case below.
   7896               if (!isExplicitSpecialization ||
   7897                   !isa<CXXRecordDecl>(Def) ||
   7898                   cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
   7899                                                == TSK_ExplicitSpecialization) {
   7900                 Diag(NameLoc, diag::err_redefinition) << Name;
   7901                 Diag(Def->getLocation(), diag::note_previous_definition);
   7902                 // If this is a redefinition, recover by making this
   7903                 // struct be anonymous, which will make any later
   7904                 // references get the previous definition.
   7905                 Name = 0;
   7906                 Previous.clear();
   7907                 Invalid = true;
   7908               }
   7909             } else {
   7910               // If the type is currently being defined, complain
   7911               // about a nested redefinition.
   7912               const TagType *Tag
   7913                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
   7914               if (Tag->isBeingDefined()) {
   7915                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
   7916                 Diag(PrevTagDecl->getLocation(),
   7917                      diag::note_previous_definition);
   7918                 Name = 0;
   7919                 Previous.clear();
   7920                 Invalid = true;
   7921               }
   7922             }
   7923 
   7924             // Okay, this is definition of a previously declared or referenced
   7925             // tag PrevDecl. We're going to create a new Decl for it.
   7926           }
   7927         }
   7928         // If we get here we have (another) forward declaration or we
   7929         // have a definition.  Just create a new decl.
   7930 
   7931       } else {
   7932         // If we get here, this is a definition of a new tag type in a nested
   7933         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
   7934         // new decl/type.  We set PrevDecl to NULL so that the entities
   7935         // have distinct types.
   7936         Previous.clear();
   7937       }
   7938       // If we get here, we're going to create a new Decl. If PrevDecl
   7939       // is non-NULL, it's a definition of the tag declared by
   7940       // PrevDecl. If it's NULL, we have a new definition.
   7941 
   7942 
   7943     // Otherwise, PrevDecl is not a tag, but was found with tag
   7944     // lookup.  This is only actually possible in C++, where a few
   7945     // things like templates still live in the tag namespace.
   7946     } else {
   7947       assert(getLangOptions().CPlusPlus);
   7948 
   7949       // Use a better diagnostic if an elaborated-type-specifier
   7950       // found the wrong kind of type on the first
   7951       // (non-redeclaration) lookup.
   7952       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
   7953           !Previous.isForRedeclaration()) {
   7954         unsigned Kind = 0;
   7955         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   7956         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   7957         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   7958         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
   7959         Diag(PrevDecl->getLocation(), diag::note_declared_at);
   7960         Invalid = true;
   7961 
   7962       // Otherwise, only diagnose if the declaration is in scope.
   7963       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
   7964                                 isExplicitSpecialization)) {
   7965         // do nothing
   7966 
   7967       // Diagnose implicit declarations introduced by elaborated types.
   7968       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
   7969         unsigned Kind = 0;
   7970         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   7971         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   7972         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   7973         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
   7974         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   7975         Invalid = true;
   7976 
   7977       // Otherwise it's a declaration.  Call out a particularly common
   7978       // case here.
   7979       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   7980         unsigned Kind = 0;
   7981         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
   7982         Diag(NameLoc, diag::err_tag_definition_of_typedef)
   7983           << Name << Kind << TND->getUnderlyingType();
   7984         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   7985         Invalid = true;
   7986 
   7987       // Otherwise, diagnose.
   7988       } else {
   7989         // The tag name clashes with something else in the target scope,
   7990         // issue an error and recover by making this tag be anonymous.
   7991         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   7992         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   7993         Name = 0;
   7994         Invalid = true;
   7995       }
   7996 
   7997       // The existing declaration isn't relevant to us; we're in a
   7998       // new scope, so clear out the previous declaration.
   7999       Previous.clear();
   8000     }
   8001   }
   8002 
   8003 CreateNewDecl:
   8004 
   8005   TagDecl *PrevDecl = 0;
   8006   if (Previous.isSingleResult())
   8007     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
   8008 
   8009   // If there is an identifier, use the location of the identifier as the
   8010   // location of the decl, otherwise use the location of the struct/union
   8011   // keyword.
   8012   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
   8013 
   8014   // Otherwise, create a new declaration. If there is a previous
   8015   // declaration of the same entity, the two will be linked via
   8016   // PrevDecl.
   8017   TagDecl *New;
   8018 
   8019   bool IsForwardReference = false;
   8020   if (Kind == TTK_Enum) {
   8021     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   8022     // enum X { A, B, C } D;    D should chain to X.
   8023     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
   8024                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
   8025                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
   8026     // If this is an undefined enum, warn.
   8027     if (TUK != TUK_Definition && !Invalid) {
   8028       TagDecl *Def;
   8029       if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
   8030         // C++0x: 7.2p2: opaque-enum-declaration.
   8031         // Conflicts are diagnosed above. Do nothing.
   8032       }
   8033       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
   8034         Diag(Loc, diag::ext_forward_ref_enum_def)
   8035           << New;
   8036         Diag(Def->getLocation(), diag::note_previous_definition);
   8037       } else {
   8038         unsigned DiagID = diag::ext_forward_ref_enum;
   8039         if (getLangOptions().MicrosoftExt)
   8040           DiagID = diag::ext_ms_forward_ref_enum;
   8041         else if (getLangOptions().CPlusPlus)
   8042           DiagID = diag::err_forward_ref_enum;
   8043         Diag(Loc, DiagID);
   8044 
   8045         // If this is a forward-declared reference to an enumeration, make a
   8046         // note of it; we won't actually be introducing the declaration into
   8047         // the declaration context.
   8048         if (TUK == TUK_Reference)
   8049           IsForwardReference = true;
   8050       }
   8051     }
   8052 
   8053     if (EnumUnderlying) {
   8054       EnumDecl *ED = cast<EnumDecl>(New);
   8055       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   8056         ED->setIntegerTypeSourceInfo(TI);
   8057       else
   8058         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
   8059       ED->setPromotionType(ED->getIntegerType());
   8060     }
   8061 
   8062   } else {
   8063     // struct/union/class
   8064 
   8065     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   8066     // struct X { int A; } D;    D should chain to X.
   8067     if (getLangOptions().CPlusPlus) {
   8068       // FIXME: Look for a way to use RecordDecl for simple structs.
   8069       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   8070                                   cast_or_null<CXXRecordDecl>(PrevDecl));
   8071 
   8072       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
   8073         StdBadAlloc = cast<CXXRecordDecl>(New);
   8074     } else
   8075       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   8076                                cast_or_null<RecordDecl>(PrevDecl));
   8077   }
   8078 
   8079   // Maybe add qualifier info.
   8080   if (SS.isNotEmpty()) {
   8081     if (SS.isSet()) {
   8082       New->setQualifierInfo(SS.getWithLocInContext(Context));
   8083       if (TemplateParameterLists.size() > 0) {
   8084         New->setTemplateParameterListsInfo(Context,
   8085                                            TemplateParameterLists.size(),
   8086                     (TemplateParameterList**) TemplateParameterLists.release());
   8087       }
   8088     }
   8089     else
   8090       Invalid = true;
   8091   }
   8092 
   8093   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
   8094     // Add alignment attributes if necessary; these attributes are checked when
   8095     // the ASTContext lays out the structure.
   8096     //
   8097     // It is important for implementing the correct semantics that this
   8098     // happen here (in act on tag decl). The #pragma pack stack is
   8099     // maintained as a result of parser callbacks which can occur at
   8100     // many points during the parsing of a struct declaration (because
   8101     // the #pragma tokens are effectively skipped over during the
   8102     // parsing of the struct).
   8103     AddAlignmentAttributesForRecord(RD);
   8104 
   8105     AddMsStructLayoutForRecord(RD);
   8106   }
   8107 
   8108   if (PrevDecl && PrevDecl->isModulePrivate())
   8109     New->setModulePrivate();
   8110   else if (ModulePrivateLoc.isValid()) {
   8111     if (isExplicitSpecialization)
   8112       Diag(New->getLocation(), diag::err_module_private_specialization)
   8113         << 2
   8114         << FixItHint::CreateRemoval(ModulePrivateLoc);
   8115     else if (PrevDecl && !PrevDecl->isModulePrivate())
   8116       diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
   8117     // __module_private__ does not apply to local classes. However, we only
   8118     // diagnose this as an error when the declaration specifiers are
   8119     // freestanding. Here, we just ignore the __module_private__.
   8120     // foobar
   8121     else if (!SearchDC->isFunctionOrMethod())
   8122       New->setModulePrivate();
   8123   }
   8124 
   8125   // If this is a specialization of a member class (of a class template),
   8126   // check the specialization.
   8127   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
   8128     Invalid = true;
   8129 
   8130   if (Invalid)
   8131     New->setInvalidDecl();
   8132 
   8133   if (Attr)
   8134     ProcessDeclAttributeList(S, New, Attr);
   8135 
   8136   // If we're declaring or defining a tag in function prototype scope
   8137   // in C, note that this type can only be used within the function.
   8138   if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
   8139     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
   8140 
   8141   // Set the lexical context. If the tag has a C++ scope specifier, the
   8142   // lexical context will be different from the semantic context.
   8143   New->setLexicalDeclContext(CurContext);
   8144 
   8145   // Mark this as a friend decl if applicable.
   8146   // In Microsoft mode, a friend declaration also acts as a forward
   8147   // declaration so we always pass true to setObjectOfFriendDecl to make
   8148   // the tag name visible.
   8149   if (TUK == TUK_Friend)
   8150     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
   8151                                getLangOptions().MicrosoftExt);
   8152 
   8153   // Set the access specifier.
   8154   if (!Invalid && SearchDC->isRecord())
   8155     SetMemberAccessSpecifier(New, PrevDecl, AS);
   8156 
   8157   if (TUK == TUK_Definition)
   8158     New->startDefinition();
   8159 
   8160   // If this has an identifier, add it to the scope stack.
   8161   if (TUK == TUK_Friend) {
   8162     // We might be replacing an existing declaration in the lookup tables;
   8163     // if so, borrow its access specifier.
   8164     if (PrevDecl)
   8165       New->setAccess(PrevDecl->getAccess());
   8166 
   8167     DeclContext *DC = New->getDeclContext()->getRedeclContext();
   8168     DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
   8169     if (Name) // can be null along some error paths
   8170       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   8171         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
   8172   } else if (Name) {
   8173     S = getNonFieldDeclScope(S);
   8174     PushOnScopeChains(New, S, !IsForwardReference);
   8175     if (IsForwardReference)
   8176       SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
   8177 
   8178   } else {
   8179     CurContext->addDecl(New);
   8180   }
   8181 
   8182   // If this is the C FILE type, notify the AST context.
   8183   if (IdentifierInfo *II = New->getIdentifier())
   8184     if (!New->isInvalidDecl() &&
   8185         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   8186         II->isStr("FILE"))
   8187       Context.setFILEDecl(New);
   8188 
   8189   OwnedDecl = true;
   8190   return New;
   8191 }
   8192 
   8193 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
   8194   AdjustDeclIfTemplate(TagD);
   8195   TagDecl *Tag = cast<TagDecl>(TagD);
   8196 
   8197   // Enter the tag context.
   8198   PushDeclContext(S, Tag);
   8199 }
   8200 
   8201 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
   8202   assert(isa<ObjCContainerDecl>(IDecl) &&
   8203          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
   8204   DeclContext *OCD = cast<DeclContext>(IDecl);
   8205   assert(getContainingDC(OCD) == CurContext &&
   8206       "The next DeclContext should be lexically contained in the current one.");
   8207   CurContext = OCD;
   8208   return IDecl;
   8209 }
   8210 
   8211 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
   8212                                            SourceLocation FinalLoc,
   8213                                            SourceLocation LBraceLoc) {
   8214   AdjustDeclIfTemplate(TagD);
   8215   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
   8216 
   8217   FieldCollector->StartClass();
   8218 
   8219   if (!Record->getIdentifier())
   8220     return;
   8221 
   8222   if (FinalLoc.isValid())
   8223     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
   8224 
   8225   // C++ [class]p2:
   8226   //   [...] The class-name is also inserted into the scope of the
   8227   //   class itself; this is known as the injected-class-name. For
   8228   //   purposes of access checking, the injected-class-name is treated
   8229   //   as if it were a public member name.
   8230   CXXRecordDecl *InjectedClassName
   8231     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
   8232                             Record->getLocStart(), Record->getLocation(),
   8233                             Record->getIdentifier(),
   8234                             /*PrevDecl=*/0,
   8235                             /*DelayTypeCreation=*/true);
   8236   Context.getTypeDeclType(InjectedClassName, Record);
   8237   InjectedClassName->setImplicit();
   8238   InjectedClassName->setAccess(AS_public);
   8239   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
   8240       InjectedClassName->setDescribedClassTemplate(Template);
   8241   PushOnScopeChains(InjectedClassName, S);
   8242   assert(InjectedClassName->isInjectedClassName() &&
   8243          "Broken injected-class-name");
   8244 }
   8245 
   8246 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
   8247                                     SourceLocation RBraceLoc) {
   8248   AdjustDeclIfTemplate(TagD);
   8249   TagDecl *Tag = cast<TagDecl>(TagD);
   8250   Tag->setRBraceLoc(RBraceLoc);
   8251 
   8252   if (isa<CXXRecordDecl>(Tag))
   8253     FieldCollector->FinishClass();
   8254 
   8255   // Exit this scope of this tag's definition.
   8256   PopDeclContext();
   8257 
   8258   // Notify the consumer that we've defined a tag.
   8259   Consumer.HandleTagDeclDefinition(Tag);
   8260 }
   8261 
   8262 void Sema::ActOnObjCContainerFinishDefinition() {
   8263   // Exit this scope of this interface definition.
   8264   PopDeclContext();
   8265 }
   8266 
   8267 void Sema::ActOnObjCTemporaryExitContainerContext() {
   8268   OriginalLexicalContext = CurContext;
   8269   ActOnObjCContainerFinishDefinition();
   8270 }
   8271 
   8272 void Sema::ActOnObjCReenterContainerContext() {
   8273   ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
   8274   OriginalLexicalContext = 0;
   8275 }
   8276 
   8277 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
   8278   AdjustDeclIfTemplate(TagD);
   8279   TagDecl *Tag = cast<TagDecl>(TagD);
   8280   Tag->setInvalidDecl();
   8281 
   8282   // We're undoing ActOnTagStartDefinition here, not
   8283   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
   8284   // the FieldCollector.
   8285 
   8286   PopDeclContext();
   8287 }
   8288 
   8289 // Note that FieldName may be null for anonymous bitfields.
   8290 bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
   8291                           QualType FieldTy, const Expr *BitWidth,
   8292                           bool *ZeroWidth) {
   8293   // Default to true; that shouldn't confuse checks for emptiness
   8294   if (ZeroWidth)
   8295     *ZeroWidth = true;
   8296 
   8297   // C99 6.7.2.1p4 - verify the field type.
   8298   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   8299   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
   8300     // Handle incomplete types with specific error.
   8301     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
   8302       return true;
   8303     if (FieldName)
   8304       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
   8305         << FieldName << FieldTy << BitWidth->getSourceRange();
   8306     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
   8307       << FieldTy << BitWidth->getSourceRange();
   8308   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
   8309                                              UPPC_BitFieldWidth))
   8310     return true;
   8311 
   8312   // If the bit-width is type- or value-dependent, don't try to check
   8313   // it now.
   8314   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
   8315     return false;
   8316 
   8317   llvm::APSInt Value;
   8318   if (VerifyIntegerConstantExpression(BitWidth, &Value))
   8319     return true;
   8320 
   8321   if (Value != 0 && ZeroWidth)
   8322     *ZeroWidth = false;
   8323 
   8324   // Zero-width bitfield is ok for anonymous field.
   8325   if (Value == 0 && FieldName)
   8326     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
   8327 
   8328   if (Value.isSigned() && Value.isNegative()) {
   8329     if (FieldName)
   8330       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
   8331                << FieldName << Value.toString(10);
   8332     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
   8333       << Value.toString(10);
   8334   }
   8335 
   8336   if (!FieldTy->isDependentType()) {
   8337     uint64_t TypeSize = Context.getTypeSize(FieldTy);
   8338     if (Value.getZExtValue() > TypeSize) {
   8339       if (!getLangOptions().CPlusPlus) {
   8340         if (FieldName)
   8341           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
   8342             << FieldName << (unsigned)Value.getZExtValue()
   8343             << (unsigned)TypeSize;
   8344 
   8345         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
   8346           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   8347       }
   8348 
   8349       if (FieldName)
   8350         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
   8351           << FieldName << (unsigned)Value.getZExtValue()
   8352           << (unsigned)TypeSize;
   8353       else
   8354         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
   8355           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   8356     }
   8357   }
   8358 
   8359   return false;
   8360 }
   8361 
   8362 /// ActOnField - Each field of a C struct/union is passed into this in order
   8363 /// to create a FieldDecl object for it.
   8364 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
   8365                        Declarator &D, Expr *BitfieldWidth) {
   8366   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
   8367                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
   8368                                /*HasInit=*/false, AS_public);
   8369   return Res;
   8370 }
   8371 
   8372 /// HandleField - Analyze a field of a C struct or a C++ data member.
   8373 ///
   8374 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
   8375                              SourceLocation DeclStart,
   8376                              Declarator &D, Expr *BitWidth, bool HasInit,
   8377                              AccessSpecifier AS) {
   8378   IdentifierInfo *II = D.getIdentifier();
   8379   SourceLocation Loc = DeclStart;
   8380   if (II) Loc = D.getIdentifierLoc();
   8381 
   8382   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   8383   QualType T = TInfo->getType();
   8384   if (getLangOptions().CPlusPlus) {
   8385     CheckExtraCXXDefaultArguments(D);
   8386 
   8387     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   8388                                         UPPC_DataMemberType)) {
   8389       D.setInvalidType();
   8390       T = Context.IntTy;
   8391       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   8392     }
   8393   }
   8394 
   8395   DiagnoseFunctionSpecifiers(D);
   8396 
   8397   if (D.getDeclSpec().isThreadSpecified())
   8398     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   8399   if (D.getDeclSpec().isConstexprSpecified())
   8400     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   8401       << 2;
   8402 
   8403   // Check to see if this name was declared as a member previously
   8404   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   8405   LookupName(Previous, S);
   8406   assert((Previous.empty() || Previous.isOverloadedResult() ||
   8407           Previous.isSingleResult())
   8408     && "Lookup of member name should be either overloaded, single or null");
   8409 
   8410   // If the name is overloaded then get any declaration else get the single result
   8411   NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
   8412     Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
   8413 
   8414   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   8415     // Maybe we will complain about the shadowed template parameter.
   8416     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   8417     // Just pretend that we didn't see the previous declaration.
   8418     PrevDecl = 0;
   8419   }
   8420 
   8421   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   8422     PrevDecl = 0;
   8423 
   8424   bool Mutable
   8425     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
   8426   SourceLocation TSSL = D.getSourceRange().getBegin();
   8427   FieldDecl *NewFD
   8428     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
   8429                      TSSL, AS, PrevDecl, &D);
   8430 
   8431   if (NewFD->isInvalidDecl())
   8432     Record->setInvalidDecl();
   8433 
   8434   if (D.getDeclSpec().isModulePrivateSpecified())
   8435     NewFD->setModulePrivate();
   8436 
   8437   if (NewFD->isInvalidDecl() && PrevDecl) {
   8438     // Don't introduce NewFD into scope; there's already something
   8439     // with the same name in the same scope.
   8440   } else if (II) {
   8441     PushOnScopeChains(NewFD, S);
   8442   } else
   8443     Record->addDecl(NewFD);
   8444 
   8445   return NewFD;
   8446 }
   8447 
   8448 /// \brief Build a new FieldDecl and check its well-formedness.
   8449 ///
   8450 /// This routine builds a new FieldDecl given the fields name, type,
   8451 /// record, etc. \p PrevDecl should refer to any previous declaration
   8452 /// with the same name and in the same scope as the field to be
   8453 /// created.
   8454 ///
   8455 /// \returns a new FieldDecl.
   8456 ///
   8457 /// \todo The Declarator argument is a hack. It will be removed once
   8458 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
   8459                                 TypeSourceInfo *TInfo,
   8460                                 RecordDecl *Record, SourceLocation Loc,
   8461                                 bool Mutable, Expr *BitWidth, bool HasInit,
   8462                                 SourceLocation TSSL,
   8463                                 AccessSpecifier AS, NamedDecl *PrevDecl,
   8464                                 Declarator *D) {
   8465   IdentifierInfo *II = Name.getAsIdentifierInfo();
   8466   bool InvalidDecl = false;
   8467   if (D) InvalidDecl = D->isInvalidType();
   8468 
   8469   // If we receive a broken type, recover by assuming 'int' and
   8470   // marking this declaration as invalid.
   8471   if (T.isNull()) {
   8472     InvalidDecl = true;
   8473     T = Context.IntTy;
   8474   }
   8475 
   8476   QualType EltTy = Context.getBaseElementType(T);
   8477   if (!EltTy->isDependentType() &&
   8478       RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
   8479     // Fields of incomplete type force their record to be invalid.
   8480     Record->setInvalidDecl();
   8481     InvalidDecl = true;
   8482   }
   8483 
   8484   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   8485   // than a variably modified type.
   8486   if (!InvalidDecl && T->isVariablyModifiedType()) {
   8487     bool SizeIsNegative;
   8488     llvm::APSInt Oversized;
   8489     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
   8490                                                            SizeIsNegative,
   8491                                                            Oversized);
   8492     if (!FixedTy.isNull()) {
   8493       Diag(Loc, diag::warn_illegal_constant_array_size);
   8494       T = FixedTy;
   8495     } else {
   8496       if (SizeIsNegative)
   8497         Diag(Loc, diag::err_typecheck_negative_array_size);
   8498       else if (Oversized.getBoolValue())
   8499         Diag(Loc, diag::err_array_too_large)
   8500           << Oversized.toString(10);
   8501       else
   8502         Diag(Loc, diag::err_typecheck_field_variable_size);
   8503       InvalidDecl = true;
   8504     }
   8505   }
   8506 
   8507   // Fields can not have abstract class types
   8508   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
   8509                                              diag::err_abstract_type_in_decl,
   8510                                              AbstractFieldType))
   8511     InvalidDecl = true;
   8512 
   8513   bool ZeroWidth = false;
   8514   // If this is declared as a bit-field, check the bit-field.
   8515   if (!InvalidDecl && BitWidth &&
   8516       VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
   8517     InvalidDecl = true;
   8518     BitWidth = 0;
   8519     ZeroWidth = false;
   8520   }
   8521 
   8522   // Check that 'mutable' is consistent with the type of the declaration.
   8523   if (!InvalidDecl && Mutable) {
   8524     unsigned DiagID = 0;
   8525     if (T->isReferenceType())
   8526       DiagID = diag::err_mutable_reference;
   8527     else if (T.isConstQualified())
   8528       DiagID = diag::err_mutable_const;
   8529 
   8530     if (DiagID) {
   8531       SourceLocation ErrLoc = Loc;
   8532       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
   8533         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
   8534       Diag(ErrLoc, DiagID);
   8535       Mutable = false;
   8536       InvalidDecl = true;
   8537     }
   8538   }
   8539 
   8540   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
   8541                                        BitWidth, Mutable, HasInit);
   8542   if (InvalidDecl)
   8543     NewFD->setInvalidDecl();
   8544 
   8545   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
   8546     Diag(Loc, diag::err_duplicate_member) << II;
   8547     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   8548     NewFD->setInvalidDecl();
   8549   }
   8550 
   8551   if (!InvalidDecl && getLangOptions().CPlusPlus) {
   8552     if (Record->isUnion()) {
   8553       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   8554         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   8555         if (RDecl->getDefinition()) {
   8556           // C++ [class.union]p1: An object of a class with a non-trivial
   8557           // constructor, a non-trivial copy constructor, a non-trivial
   8558           // destructor, or a non-trivial copy assignment operator
   8559           // cannot be a member of a union, nor can an array of such
   8560           // objects.
   8561           if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
   8562             NewFD->setInvalidDecl();
   8563         }
   8564       }
   8565 
   8566       // C++ [class.union]p1: If a union contains a member of reference type,
   8567       // the program is ill-formed.
   8568       if (EltTy->isReferenceType()) {
   8569         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
   8570           << NewFD->getDeclName() << EltTy;
   8571         NewFD->setInvalidDecl();
   8572       }
   8573     }
   8574   }
   8575 
   8576   // FIXME: We need to pass in the attributes given an AST
   8577   // representation, not a parser representation.
   8578   if (D)
   8579     // FIXME: What to pass instead of TUScope?
   8580     ProcessDeclAttributes(TUScope, NewFD, *D);
   8581 
   8582   // In auto-retain/release, infer strong retension for fields of
   8583   // retainable type.
   8584   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
   8585     NewFD->setInvalidDecl();
   8586 
   8587   if (T.isObjCGCWeak())
   8588     Diag(Loc, diag::warn_attribute_weak_on_field);
   8589 
   8590   NewFD->setAccess(AS);
   8591   return NewFD;
   8592 }
   8593 
   8594 bool Sema::CheckNontrivialField(FieldDecl *FD) {
   8595   assert(FD);
   8596   assert(getLangOptions().CPlusPlus && "valid check only for C++");
   8597 
   8598   if (FD->isInvalidDecl())
   8599     return true;
   8600 
   8601   QualType EltTy = Context.getBaseElementType(FD->getType());
   8602   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   8603     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   8604     if (RDecl->getDefinition()) {
   8605       // We check for copy constructors before constructors
   8606       // because otherwise we'll never get complaints about
   8607       // copy constructors.
   8608 
   8609       CXXSpecialMember member = CXXInvalid;
   8610       if (!RDecl->hasTrivialCopyConstructor())
   8611         member = CXXCopyConstructor;
   8612       else if (!RDecl->hasTrivialDefaultConstructor())
   8613         member = CXXDefaultConstructor;
   8614       else if (!RDecl->hasTrivialCopyAssignment())
   8615         member = CXXCopyAssignment;
   8616       else if (!RDecl->hasTrivialDestructor())
   8617         member = CXXDestructor;
   8618 
   8619       if (member != CXXInvalid) {
   8620         if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
   8621           // Objective-C++ ARC: it is an error to have a non-trivial field of
   8622           // a union. However, system headers in Objective-C programs
   8623           // occasionally have Objective-C lifetime objects within unions,
   8624           // and rather than cause the program to fail, we make those
   8625           // members unavailable.
   8626           SourceLocation Loc = FD->getLocation();
   8627           if (getSourceManager().isInSystemHeader(Loc)) {
   8628             if (!FD->hasAttr<UnavailableAttr>())
   8629               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
   8630                                   "this system field has retaining ownership"));
   8631             return false;
   8632           }
   8633         }
   8634 
   8635         Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
   8636               << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
   8637         DiagnoseNontrivial(RT, member);
   8638         return true;
   8639       }
   8640     }
   8641   }
   8642 
   8643   return false;
   8644 }
   8645 
   8646 /// DiagnoseNontrivial - Given that a class has a non-trivial
   8647 /// special member, figure out why.
   8648 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
   8649   QualType QT(T, 0U);
   8650   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
   8651 
   8652   // Check whether the member was user-declared.
   8653   switch (member) {
   8654   case CXXInvalid:
   8655     break;
   8656 
   8657   case CXXDefaultConstructor:
   8658     if (RD->hasUserDeclaredConstructor()) {
   8659       typedef CXXRecordDecl::ctor_iterator ctor_iter;
   8660       for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
   8661         const FunctionDecl *body = 0;
   8662         ci->hasBody(body);
   8663         if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
   8664           SourceLocation CtorLoc = ci->getLocation();
   8665           Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   8666           return;
   8667         }
   8668       }
   8669 
   8670       llvm_unreachable("found no user-declared constructors");
   8671     }
   8672     break;
   8673 
   8674   case CXXCopyConstructor:
   8675     if (RD->hasUserDeclaredCopyConstructor()) {
   8676       SourceLocation CtorLoc =
   8677         RD->getCopyConstructor(0)->getLocation();
   8678       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   8679       return;
   8680     }
   8681     break;
   8682 
   8683   case CXXMoveConstructor:
   8684     if (RD->hasUserDeclaredMoveConstructor()) {
   8685       SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
   8686       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   8687       return;
   8688     }
   8689     break;
   8690 
   8691   case CXXCopyAssignment:
   8692     if (RD->hasUserDeclaredCopyAssignment()) {
   8693       // FIXME: this should use the location of the copy
   8694       // assignment, not the type.
   8695       SourceLocation TyLoc = RD->getSourceRange().getBegin();
   8696       Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
   8697       return;
   8698     }
   8699     break;
   8700 
   8701   case CXXMoveAssignment:
   8702     if (RD->hasUserDeclaredMoveAssignment()) {
   8703       SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
   8704       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
   8705       return;
   8706     }
   8707     break;
   8708 
   8709   case CXXDestructor:
   8710     if (RD->hasUserDeclaredDestructor()) {
   8711       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
   8712       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   8713       return;
   8714     }
   8715     break;
   8716   }
   8717 
   8718   typedef CXXRecordDecl::base_class_iterator base_iter;
   8719 
   8720   // Virtual bases and members inhibit trivial copying/construction,
   8721   // but not trivial destruction.
   8722   if (member != CXXDestructor) {
   8723     // Check for virtual bases.  vbases includes indirect virtual bases,
   8724     // so we just iterate through the direct bases.
   8725     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
   8726       if (bi->isVirtual()) {
   8727         SourceLocation BaseLoc = bi->getSourceRange().getBegin();
   8728         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
   8729         return;
   8730       }
   8731 
   8732     // Check for virtual methods.
   8733     typedef CXXRecordDecl::method_iterator meth_iter;
   8734     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
   8735          ++mi) {
   8736       if (mi->isVirtual()) {
   8737         SourceLocation MLoc = mi->getSourceRange().getBegin();
   8738         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
   8739         return;
   8740       }
   8741     }
   8742   }
   8743 
   8744   bool (CXXRecordDecl::*hasTrivial)() const;
   8745   switch (member) {
   8746   case CXXDefaultConstructor:
   8747     hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
   8748   case CXXCopyConstructor:
   8749     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
   8750   case CXXCopyAssignment:
   8751     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
   8752   case CXXDestructor:
   8753     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
   8754   default:
   8755     llvm_unreachable("unexpected special member");
   8756   }
   8757 
   8758   // Check for nontrivial bases (and recurse).
   8759   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
   8760     const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
   8761     assert(BaseRT && "Don't know how to handle dependent bases");
   8762     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
   8763     if (!(BaseRecTy->*hasTrivial)()) {
   8764       SourceLocation BaseLoc = bi->getSourceRange().getBegin();
   8765       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
   8766       DiagnoseNontrivial(BaseRT, member);
   8767       return;
   8768     }
   8769   }
   8770 
   8771   // Check for nontrivial members (and recurse).
   8772   typedef RecordDecl::field_iterator field_iter;
   8773   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
   8774        ++fi) {
   8775     QualType EltTy = Context.getBaseElementType((*fi)->getType());
   8776     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
   8777       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
   8778 
   8779       if (!(EltRD->*hasTrivial)()) {
   8780         SourceLocation FLoc = (*fi)->getLocation();
   8781         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
   8782         DiagnoseNontrivial(EltRT, member);
   8783         return;
   8784       }
   8785     }
   8786 
   8787     if (EltTy->isObjCLifetimeType()) {
   8788       switch (EltTy.getObjCLifetime()) {
   8789       case Qualifiers::OCL_None:
   8790       case Qualifiers::OCL_ExplicitNone:
   8791         break;
   8792 
   8793       case Qualifiers::OCL_Autoreleasing:
   8794       case Qualifiers::OCL_Weak:
   8795       case Qualifiers::OCL_Strong:
   8796         Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
   8797           << QT << EltTy.getObjCLifetime();
   8798         return;
   8799       }
   8800     }
   8801   }
   8802 
   8803   llvm_unreachable("found no explanation for non-trivial member");
   8804 }
   8805 
   8806 /// TranslateIvarVisibility - Translate visibility from a token ID to an
   8807 ///  AST enum value.
   8808 static ObjCIvarDecl::AccessControl
   8809 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
   8810   switch (ivarVisibility) {
   8811   default: llvm_unreachable("Unknown visitibility kind");
   8812   case tok::objc_private: return ObjCIvarDecl::Private;
   8813   case tok::objc_public: return ObjCIvarDecl::Public;
   8814   case tok::objc_protected: return ObjCIvarDecl::Protected;
   8815   case tok::objc_package: return ObjCIvarDecl::Package;
   8816   }
   8817 }
   8818 
   8819 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
   8820 /// in order to create an IvarDecl object for it.
   8821 Decl *Sema::ActOnIvar(Scope *S,
   8822                                 SourceLocation DeclStart,
   8823                                 Declarator &D, Expr *BitfieldWidth,
   8824                                 tok::ObjCKeywordKind Visibility) {
   8825 
   8826   IdentifierInfo *II = D.getIdentifier();
   8827   Expr *BitWidth = (Expr*)BitfieldWidth;
   8828   SourceLocation Loc = DeclStart;
   8829   if (II) Loc = D.getIdentifierLoc();
   8830 
   8831   // FIXME: Unnamed fields can be handled in various different ways, for
   8832   // example, unnamed unions inject all members into the struct namespace!
   8833 
   8834   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   8835   QualType T = TInfo->getType();
   8836 
   8837   if (BitWidth) {
   8838     // 6.7.2.1p3, 6.7.2.1p4
   8839     if (VerifyBitField(Loc, II, T, BitWidth)) {
   8840       D.setInvalidType();
   8841       BitWidth = 0;
   8842     }
   8843   } else {
   8844     // Not a bitfield.
   8845 
   8846     // validate II.
   8847 
   8848   }
   8849   if (T->isReferenceType()) {
   8850     Diag(Loc, diag::err_ivar_reference_type);
   8851     D.setInvalidType();
   8852   }
   8853   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   8854   // than a variably modified type.
   8855   else if (T->isVariablyModifiedType()) {
   8856     Diag(Loc, diag::err_typecheck_ivar_variable_size);
   8857     D.setInvalidType();
   8858   }
   8859 
   8860   // Get the visibility (access control) for this ivar.
   8861   ObjCIvarDecl::AccessControl ac =
   8862     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
   8863                                         : ObjCIvarDecl::None;
   8864   // Must set ivar's DeclContext to its enclosing interface.
   8865   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
   8866   ObjCContainerDecl *EnclosingContext;
   8867   if (ObjCImplementationDecl *IMPDecl =
   8868       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   8869     if (!LangOpts.ObjCNonFragileABI2) {
   8870     // Case of ivar declared in an implementation. Context is that of its class.
   8871       EnclosingContext = IMPDecl->getClassInterface();
   8872       assert(EnclosingContext && "Implementation has no class interface!");
   8873     }
   8874     else
   8875       EnclosingContext = EnclosingDecl;
   8876   } else {
   8877     if (ObjCCategoryDecl *CDecl =
   8878         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   8879       if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
   8880         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
   8881         return 0;
   8882       }
   8883     }
   8884     EnclosingContext = EnclosingDecl;
   8885   }
   8886 
   8887   // Construct the decl.
   8888   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
   8889                                              DeclStart, Loc, II, T,
   8890                                              TInfo, ac, (Expr *)BitfieldWidth);
   8891 
   8892   if (II) {
   8893     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
   8894                                            ForRedeclaration);
   8895     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
   8896         && !isa<TagDecl>(PrevDecl)) {
   8897       Diag(Loc, diag::err_duplicate_member) << II;
   8898       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   8899       NewID->setInvalidDecl();
   8900     }
   8901   }
   8902 
   8903   // Process attributes attached to the ivar.
   8904   ProcessDeclAttributes(S, NewID, D);
   8905 
   8906   if (D.isInvalidType())
   8907     NewID->setInvalidDecl();
   8908 
   8909   // In ARC, infer 'retaining' for ivars of retainable type.
   8910   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
   8911     NewID->setInvalidDecl();
   8912 
   8913   if (D.getDeclSpec().isModulePrivateSpecified())
   8914     NewID->setModulePrivate();
   8915 
   8916   if (II) {
   8917     // FIXME: When interfaces are DeclContexts, we'll need to add
   8918     // these to the interface.
   8919     S->AddDecl(NewID);
   8920     IdResolver.AddDecl(NewID);
   8921   }
   8922 
   8923   return NewID;
   8924 }
   8925 
   8926 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
   8927 /// class and class extensions. For every class @interface and class
   8928 /// extension @interface, if the last ivar is a bitfield of any type,
   8929 /// then add an implicit `char :0` ivar to the end of that interface.
   8930 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
   8931                              SmallVectorImpl<Decl *> &AllIvarDecls) {
   8932   if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
   8933     return;
   8934 
   8935   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
   8936   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
   8937 
   8938   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
   8939     return;
   8940   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
   8941   if (!ID) {
   8942     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
   8943       if (!CD->IsClassExtension())
   8944         return;
   8945     }
   8946     // No need to add this to end of @implementation.
   8947     else
   8948       return;
   8949   }
   8950   // All conditions are met. Add a new bitfield to the tail end of ivars.
   8951   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
   8952   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
   8953 
   8954   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
   8955                               DeclLoc, DeclLoc, 0,
   8956                               Context.CharTy,
   8957                               Context.getTrivialTypeSourceInfo(Context.CharTy,
   8958                                                                DeclLoc),
   8959                               ObjCIvarDecl::Private, BW,
   8960                               true);
   8961   AllIvarDecls.push_back(Ivar);
   8962 }
   8963 
   8964 void Sema::ActOnFields(Scope* S,
   8965                        SourceLocation RecLoc, Decl *EnclosingDecl,
   8966                        llvm::ArrayRef<Decl *> Fields,
   8967                        SourceLocation LBrac, SourceLocation RBrac,
   8968                        AttributeList *Attr) {
   8969   assert(EnclosingDecl && "missing record or interface decl");
   8970 
   8971   // If the decl this is being inserted into is invalid, then it may be a
   8972   // redeclaration or some other bogus case.  Don't try to add fields to it.
   8973   if (EnclosingDecl->isInvalidDecl())
   8974     return;
   8975 
   8976   // Verify that all the fields are okay.
   8977   unsigned NumNamedMembers = 0;
   8978   SmallVector<FieldDecl*, 32> RecFields;
   8979 
   8980   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
   8981   bool ARCErrReported = false;
   8982   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
   8983        i != end; ++i) {
   8984     FieldDecl *FD = cast<FieldDecl>(*i);
   8985 
   8986     // Get the type for the field.
   8987     const Type *FDTy = FD->getType().getTypePtr();
   8988 
   8989     if (!FD->isAnonymousStructOrUnion()) {
   8990       // Remember all fields written by the user.
   8991       RecFields.push_back(FD);
   8992     }
   8993 
   8994     // If the field is already invalid for some reason, don't emit more
   8995     // diagnostics about it.
   8996     if (FD->isInvalidDecl()) {
   8997       EnclosingDecl->setInvalidDecl();
   8998       continue;
   8999     }
   9000 
   9001     // C99 6.7.2.1p2:
   9002     //   A structure or union shall not contain a member with
   9003     //   incomplete or function type (hence, a structure shall not
   9004     //   contain an instance of itself, but may contain a pointer to
   9005     //   an instance of itself), except that the last member of a
   9006     //   structure with more than one named member may have incomplete
   9007     //   array type; such a structure (and any union containing,
   9008     //   possibly recursively, a member that is such a structure)
   9009     //   shall not be a member of a structure or an element of an
   9010     //   array.
   9011     if (FDTy->isFunctionType()) {
   9012       // Field declared as a function.
   9013       Diag(FD->getLocation(), diag::err_field_declared_as_function)
   9014         << FD->getDeclName();
   9015       FD->setInvalidDecl();
   9016       EnclosingDecl->setInvalidDecl();
   9017       continue;
   9018     } else if (FDTy->isIncompleteArrayType() && Record &&
   9019                ((i + 1 == Fields.end() && !Record->isUnion()) ||
   9020                 ((getLangOptions().MicrosoftExt ||
   9021                   getLangOptions().CPlusPlus) &&
   9022                  (i + 1 == Fields.end() || Record->isUnion())))) {
   9023       // Flexible array member.
   9024       // Microsoft and g++ is more permissive regarding flexible array.
   9025       // It will accept flexible array in union and also
   9026       // as the sole element of a struct/class.
   9027       if (getLangOptions().MicrosoftExt) {
   9028         if (Record->isUnion())
   9029           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
   9030             << FD->getDeclName();
   9031         else if (Fields.size() == 1)
   9032           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
   9033             << FD->getDeclName() << Record->getTagKind();
   9034       } else if (getLangOptions().CPlusPlus) {
   9035         if (Record->isUnion())
   9036           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
   9037             << FD->getDeclName();
   9038         else if (Fields.size() == 1)
   9039           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
   9040             << FD->getDeclName() << Record->getTagKind();
   9041       } else if (NumNamedMembers < 1) {
   9042         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
   9043           << FD->getDeclName();
   9044         FD->setInvalidDecl();
   9045         EnclosingDecl->setInvalidDecl();
   9046         continue;
   9047       }
   9048       if (!FD->getType()->isDependentType() &&
   9049           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
   9050         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
   9051           << FD->getDeclName() << FD->getType();
   9052         FD->setInvalidDecl();
   9053         EnclosingDecl->setInvalidDecl();
   9054         continue;
   9055       }
   9056       // Okay, we have a legal flexible array member at the end of the struct.
   9057       if (Record)
   9058         Record->setHasFlexibleArrayMember(true);
   9059     } else if (!FDTy->isDependentType() &&
   9060                RequireCompleteType(FD->getLocation(), FD->getType(),
   9061                                    diag::err_field_incomplete)) {
   9062       // Incomplete type
   9063       FD->setInvalidDecl();
   9064       EnclosingDecl->setInvalidDecl();
   9065       continue;
   9066     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
   9067       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
   9068         // If this is a member of a union, then entire union becomes "flexible".
   9069         if (Record && Record->isUnion()) {
   9070           Record->setHasFlexibleArrayMember(true);
   9071         } else {
   9072           // If this is a struct/class and this is not the last element, reject
   9073           // it.  Note that GCC supports variable sized arrays in the middle of
   9074           // structures.
   9075           if (i + 1 != Fields.end())
   9076             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
   9077               << FD->getDeclName() << FD->getType();
   9078           else {
   9079             // We support flexible arrays at the end of structs in
   9080             // other structs as an extension.
   9081             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
   9082               << FD->getDeclName();
   9083             if (Record)
   9084               Record->setHasFlexibleArrayMember(true);
   9085           }
   9086         }
   9087       }
   9088       if (Record && FDTTy->getDecl()->hasObjectMember())
   9089         Record->setHasObjectMember(true);
   9090     } else if (FDTy->isObjCObjectType()) {
   9091       /// A field cannot be an Objective-c object
   9092       Diag(FD->getLocation(), diag::err_statically_allocated_object)
   9093         << FixItHint::CreateInsertion(FD->getLocation(), "*");
   9094       QualType T = Context.getObjCObjectPointerType(FD->getType());
   9095       FD->setType(T);
   9096     }
   9097     else if (!getLangOptions().CPlusPlus) {
   9098       if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
   9099         // It's an error in ARC if a field has lifetime.
   9100         // We don't want to report this in a system header, though,
   9101         // so we just make the field unavailable.
   9102         // FIXME: that's really not sufficient; we need to make the type
   9103         // itself invalid to, say, initialize or copy.
   9104         QualType T = FD->getType();
   9105         Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
   9106         if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
   9107           SourceLocation loc = FD->getLocation();
   9108           if (getSourceManager().isInSystemHeader(loc)) {
   9109             if (!FD->hasAttr<UnavailableAttr>()) {
   9110               FD->addAttr(new (Context) UnavailableAttr(loc, Context,
   9111                                 "this system field has retaining ownership"));
   9112             }
   9113           } else {
   9114             Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
   9115           }
   9116           ARCErrReported = true;
   9117         }
   9118       }
   9119       else if (getLangOptions().ObjC1 &&
   9120                getLangOptions().getGC() != LangOptions::NonGC &&
   9121                Record && !Record->hasObjectMember()) {
   9122         if (FD->getType()->isObjCObjectPointerType() ||
   9123             FD->getType().isObjCGCStrong())
   9124           Record->setHasObjectMember(true);
   9125         else if (Context.getAsArrayType(FD->getType())) {
   9126           QualType BaseType = Context.getBaseElementType(FD->getType());
   9127           if (BaseType->isRecordType() &&
   9128               BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
   9129             Record->setHasObjectMember(true);
   9130           else if (BaseType->isObjCObjectPointerType() ||
   9131                    BaseType.isObjCGCStrong())
   9132                  Record->setHasObjectMember(true);
   9133         }
   9134       }
   9135     }
   9136     // Keep track of the number of named members.
   9137     if (FD->getIdentifier())
   9138       ++NumNamedMembers;
   9139   }
   9140 
   9141   // Okay, we successfully defined 'Record'.
   9142   if (Record) {
   9143     bool Completed = false;
   9144     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
   9145       if (!CXXRecord->isInvalidDecl()) {
   9146         // Set access bits correctly on the directly-declared conversions.
   9147         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
   9148         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
   9149              I != E; ++I)
   9150           Convs->setAccess(I, (*I)->getAccess());
   9151 
   9152         if (!CXXRecord->isDependentType()) {
   9153           // Objective-C Automatic Reference Counting:
   9154           //   If a class has a non-static data member of Objective-C pointer
   9155           //   type (or array thereof), it is a non-POD type and its
   9156           //   default constructor (if any), copy constructor, copy assignment
   9157           //   operator, and destructor are non-trivial.
   9158           //
   9159           // This rule is also handled by CXXRecordDecl::completeDefinition().
   9160           // However, here we check whether this particular class is only
   9161           // non-POD because of the presence of an Objective-C pointer member.
   9162           // If so, objects of this type cannot be shared between code compiled
   9163           // with instant objects and code compiled with manual retain/release.
   9164           if (getLangOptions().ObjCAutoRefCount &&
   9165               CXXRecord->hasObjectMember() &&
   9166               CXXRecord->getLinkage() == ExternalLinkage) {
   9167             if (CXXRecord->isPOD()) {
   9168               Diag(CXXRecord->getLocation(),
   9169                    diag::warn_arc_non_pod_class_with_object_member)
   9170                << CXXRecord;
   9171             } else {
   9172               // FIXME: Fix-Its would be nice here, but finding a good location
   9173               // for them is going to be tricky.
   9174               if (CXXRecord->hasTrivialCopyConstructor())
   9175                 Diag(CXXRecord->getLocation(),
   9176                      diag::warn_arc_trivial_member_function_with_object_member)
   9177                   << CXXRecord << 0;
   9178               if (CXXRecord->hasTrivialCopyAssignment())
   9179                 Diag(CXXRecord->getLocation(),
   9180                      diag::warn_arc_trivial_member_function_with_object_member)
   9181                 << CXXRecord << 1;
   9182               if (CXXRecord->hasTrivialDestructor())
   9183                 Diag(CXXRecord->getLocation(),
   9184                      diag::warn_arc_trivial_member_function_with_object_member)
   9185                 << CXXRecord << 2;
   9186             }
   9187           }
   9188 
   9189           // Adjust user-defined destructor exception spec.
   9190           if (getLangOptions().CPlusPlus0x &&
   9191               CXXRecord->hasUserDeclaredDestructor())
   9192             AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
   9193 
   9194           // Add any implicitly-declared members to this class.
   9195           AddImplicitlyDeclaredMembersToClass(CXXRecord);
   9196 
   9197           // If we have virtual base classes, we may end up finding multiple
   9198           // final overriders for a given virtual function. Check for this
   9199           // problem now.
   9200           if (CXXRecord->getNumVBases()) {
   9201             CXXFinalOverriderMap FinalOverriders;
   9202             CXXRecord->getFinalOverriders(FinalOverriders);
   9203 
   9204             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   9205                                              MEnd = FinalOverriders.end();
   9206                  M != MEnd; ++M) {
   9207               for (OverridingMethods::iterator SO = M->second.begin(),
   9208                                             SOEnd = M->second.end();
   9209                    SO != SOEnd; ++SO) {
   9210                 assert(SO->second.size() > 0 &&
   9211                        "Virtual function without overridding functions?");
   9212                 if (SO->second.size() == 1)
   9213                   continue;
   9214 
   9215                 // C++ [class.virtual]p2:
   9216                 //   In a derived class, if a virtual member function of a base
   9217                 //   class subobject has more than one final overrider the
   9218                 //   program is ill-formed.
   9219                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
   9220                   << (NamedDecl *)M->first << Record;
   9221                 Diag(M->first->getLocation(),
   9222                      diag::note_overridden_virtual_function);
   9223                 for (OverridingMethods::overriding_iterator
   9224                           OM = SO->second.begin(),
   9225                        OMEnd = SO->second.end();
   9226                      OM != OMEnd; ++OM)
   9227                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
   9228                     << (NamedDecl *)M->first << OM->Method->getParent();
   9229 
   9230                 Record->setInvalidDecl();
   9231               }
   9232             }
   9233             CXXRecord->completeDefinition(&FinalOverriders);
   9234             Completed = true;
   9235           }
   9236         }
   9237       }
   9238     }
   9239 
   9240     if (!Completed)
   9241       Record->completeDefinition();
   9242 
   9243     // Now that the record is complete, do any delayed exception spec checks
   9244     // we were missing.
   9245     while (!DelayedDestructorExceptionSpecChecks.empty()) {
   9246       const CXXDestructorDecl *Dtor =
   9247               DelayedDestructorExceptionSpecChecks.back().first;
   9248       if (Dtor->getParent() != Record)
   9249         break;
   9250 
   9251       assert(!Dtor->getParent()->isDependentType() &&
   9252           "Should not ever add destructors of templates into the list.");
   9253       CheckOverridingFunctionExceptionSpec(Dtor,
   9254           DelayedDestructorExceptionSpecChecks.back().second);
   9255       DelayedDestructorExceptionSpecChecks.pop_back();
   9256     }
   9257 
   9258   } else {
   9259     ObjCIvarDecl **ClsFields =
   9260       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
   9261     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
   9262       ID->setLocEnd(RBrac);
   9263       // Add ivar's to class's DeclContext.
   9264       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   9265         ClsFields[i]->setLexicalDeclContext(ID);
   9266         ID->addDecl(ClsFields[i]);
   9267       }
   9268       // Must enforce the rule that ivars in the base classes may not be
   9269       // duplicates.
   9270       if (ID->getSuperClass())
   9271         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
   9272     } else if (ObjCImplementationDecl *IMPDecl =
   9273                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   9274       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
   9275       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
   9276         // Ivar declared in @implementation never belongs to the implementation.
   9277         // Only it is in implementation's lexical context.
   9278         ClsFields[I]->setLexicalDeclContext(IMPDecl);
   9279       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
   9280     } else if (ObjCCategoryDecl *CDecl =
   9281                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   9282       // case of ivars in class extension; all other cases have been
   9283       // reported as errors elsewhere.
   9284       // FIXME. Class extension does not have a LocEnd field.
   9285       // CDecl->setLocEnd(RBrac);
   9286       // Add ivar's to class extension's DeclContext.
   9287       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   9288         ClsFields[i]->setLexicalDeclContext(CDecl);
   9289         CDecl->addDecl(ClsFields[i]);
   9290       }
   9291     }
   9292   }
   9293 
   9294   if (Attr)
   9295     ProcessDeclAttributeList(S, Record, Attr);
   9296 
   9297   // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
   9298   // set the visibility of this record.
   9299   if (Record && !Record->getDeclContext()->isRecord())
   9300     AddPushedVisibilityAttribute(Record);
   9301 }
   9302 
   9303 /// \brief Determine whether the given integral value is representable within
   9304 /// the given type T.
   9305 static bool isRepresentableIntegerValue(ASTContext &Context,
   9306                                         llvm::APSInt &Value,
   9307                                         QualType T) {
   9308   assert(T->isIntegralType(Context) && "Integral type required!");
   9309   unsigned BitWidth = Context.getIntWidth(T);
   9310 
   9311   if (Value.isUnsigned() || Value.isNonNegative()) {
   9312     if (T->isSignedIntegerOrEnumerationType())
   9313       --BitWidth;
   9314     return Value.getActiveBits() <= BitWidth;
   9315   }
   9316   return Value.getMinSignedBits() <= BitWidth;
   9317 }
   9318 
   9319 // \brief Given an integral type, return the next larger integral type
   9320 // (or a NULL type of no such type exists).
   9321 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
   9322   // FIXME: Int128/UInt128 support, which also needs to be introduced into
   9323   // enum checking below.
   9324   assert(T->isIntegralType(Context) && "Integral type required!");
   9325   const unsigned NumTypes = 4;
   9326   QualType SignedIntegralTypes[NumTypes] = {
   9327     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
   9328   };
   9329   QualType UnsignedIntegralTypes[NumTypes] = {
   9330     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
   9331     Context.UnsignedLongLongTy
   9332   };
   9333 
   9334   unsigned BitWidth = Context.getTypeSize(T);
   9335   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
   9336                                                         : UnsignedIntegralTypes;
   9337   for (unsigned I = 0; I != NumTypes; ++I)
   9338     if (Context.getTypeSize(Types[I]) > BitWidth)
   9339       return Types[I];
   9340 
   9341   return QualType();
   9342 }
   9343 
   9344 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
   9345                                           EnumConstantDecl *LastEnumConst,
   9346                                           SourceLocation IdLoc,
   9347                                           IdentifierInfo *Id,
   9348                                           Expr *Val) {
   9349   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   9350   llvm::APSInt EnumVal(IntWidth);
   9351   QualType EltTy;
   9352 
   9353   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
   9354     Val = 0;
   9355 
   9356   if (Val) {
   9357     if (Enum->isDependentType() || Val->isTypeDependent())
   9358       EltTy = Context.DependentTy;
   9359     else {
   9360       // C99 6.7.2.2p2: Make sure we have an integer constant expression.
   9361       SourceLocation ExpLoc;
   9362       if (!Val->isValueDependent() &&
   9363           VerifyIntegerConstantExpression(Val, &EnumVal)) {
   9364         Val = 0;
   9365       } else {
   9366         if (!getLangOptions().CPlusPlus) {
   9367           // C99 6.7.2.2p2:
   9368           //   The expression that defines the value of an enumeration constant
   9369           //   shall be an integer constant expression that has a value
   9370           //   representable as an int.
   9371 
   9372           // Complain if the value is not representable in an int.
   9373           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
   9374             Diag(IdLoc, diag::ext_enum_value_not_int)
   9375               << EnumVal.toString(10) << Val->getSourceRange()
   9376               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
   9377           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
   9378             // Force the type of the expression to 'int'.
   9379             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
   9380           }
   9381         }
   9382 
   9383         if (Enum->isFixed()) {
   9384           EltTy = Enum->getIntegerType();
   9385 
   9386           // C++0x [dcl.enum]p5:
   9387           //   ... if the initializing value of an enumerator cannot be
   9388           //   represented by the underlying type, the program is ill-formed.
   9389           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   9390             if (getLangOptions().MicrosoftExt) {
   9391               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
   9392               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   9393             } else
   9394               Diag(IdLoc, diag::err_enumerator_too_large)
   9395                 << EltTy;
   9396           } else
   9397             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   9398         }
   9399         else {
   9400           // C++0x [dcl.enum]p5:
   9401           //   If the underlying type is not fixed, the type of each enumerator
   9402           //   is the type of its initializing value:
   9403           //     - If an initializer is specified for an enumerator, the
   9404           //       initializing value has the same type as the expression.
   9405           EltTy = Val->getType();
   9406         }
   9407       }
   9408     }
   9409   }
   9410 
   9411   if (!Val) {
   9412     if (Enum->isDependentType())
   9413       EltTy = Context.DependentTy;
   9414     else if (!LastEnumConst) {
   9415       // C++0x [dcl.enum]p5:
   9416       //   If the underlying type is not fixed, the type of each enumerator
   9417       //   is the type of its initializing value:
   9418       //     - If no initializer is specified for the first enumerator, the
   9419       //       initializing value has an unspecified integral type.
   9420       //
   9421       // GCC uses 'int' for its unspecified integral type, as does
   9422       // C99 6.7.2.2p3.
   9423       if (Enum->isFixed()) {
   9424         EltTy = Enum->getIntegerType();
   9425       }
   9426       else {
   9427         EltTy = Context.IntTy;
   9428       }
   9429     } else {
   9430       // Assign the last value + 1.
   9431       EnumVal = LastEnumConst->getInitVal();
   9432       ++EnumVal;
   9433       EltTy = LastEnumConst->getType();
   9434 
   9435       // Check for overflow on increment.
   9436       if (EnumVal < LastEnumConst->getInitVal()) {
   9437         // C++0x [dcl.enum]p5:
   9438         //   If the underlying type is not fixed, the type of each enumerator
   9439         //   is the type of its initializing value:
   9440         //
   9441         //     - Otherwise the type of the initializing value is the same as
   9442         //       the type of the initializing value of the preceding enumerator
   9443         //       unless the incremented value is not representable in that type,
   9444         //       in which case the type is an unspecified integral type
   9445         //       sufficient to contain the incremented value. If no such type
   9446         //       exists, the program is ill-formed.
   9447         QualType T = getNextLargerIntegralType(Context, EltTy);
   9448         if (T.isNull() || Enum->isFixed()) {
   9449           // There is no integral type larger enough to represent this
   9450           // value. Complain, then allow the value to wrap around.
   9451           EnumVal = LastEnumConst->getInitVal();
   9452           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
   9453           ++EnumVal;
   9454           if (Enum->isFixed())
   9455             // When the underlying type is fixed, this is ill-formed.
   9456             Diag(IdLoc, diag::err_enumerator_wrapped)
   9457               << EnumVal.toString(10)
   9458               << EltTy;
   9459           else
   9460             Diag(IdLoc, diag::warn_enumerator_too_large)
   9461               << EnumVal.toString(10);
   9462         } else {
   9463           EltTy = T;
   9464         }
   9465 
   9466         // Retrieve the last enumerator's value, extent that type to the
   9467         // type that is supposed to be large enough to represent the incremented
   9468         // value, then increment.
   9469         EnumVal = LastEnumConst->getInitVal();
   9470         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   9471         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   9472         ++EnumVal;
   9473 
   9474         // If we're not in C++, diagnose the overflow of enumerator values,
   9475         // which in C99 means that the enumerator value is not representable in
   9476         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
   9477         // permits enumerator values that are representable in some larger
   9478         // integral type.
   9479         if (!getLangOptions().CPlusPlus && !T.isNull())
   9480           Diag(IdLoc, diag::warn_enum_value_overflow);
   9481       } else if (!getLangOptions().CPlusPlus &&
   9482                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   9483         // Enforce C99 6.7.2.2p2 even when we compute the next value.
   9484         Diag(IdLoc, diag::ext_enum_value_not_int)
   9485           << EnumVal.toString(10) << 1;
   9486       }
   9487     }
   9488   }
   9489 
   9490   if (!EltTy->isDependentType()) {
   9491     // Make the enumerator value match the signedness and size of the
   9492     // enumerator's type.
   9493     EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   9494     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   9495   }
   9496 
   9497   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
   9498                                   Val, EnumVal);
   9499 }
   9500 
   9501 
   9502 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
   9503                               SourceLocation IdLoc, IdentifierInfo *Id,
   9504                               AttributeList *Attr,
   9505                               SourceLocation EqualLoc, Expr *val) {
   9506   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
   9507   EnumConstantDecl *LastEnumConst =
   9508     cast_or_null<EnumConstantDecl>(lastEnumConst);
   9509   Expr *Val = static_cast<Expr*>(val);
   9510 
   9511   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   9512   // we find one that is.
   9513   S = getNonFieldDeclScope(S);
   9514 
   9515   // Verify that there isn't already something declared with this name in this
   9516   // scope.
   9517   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
   9518                                          ForRedeclaration);
   9519   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   9520     // Maybe we will complain about the shadowed template parameter.
   9521     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
   9522     // Just pretend that we didn't see the previous declaration.
   9523     PrevDecl = 0;
   9524   }
   9525 
   9526   if (PrevDecl) {
   9527     // When in C++, we may get a TagDecl with the same name; in this case the
   9528     // enum constant will 'hide' the tag.
   9529     assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
   9530            "Received TagDecl when not in C++!");
   9531     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
   9532       if (isa<EnumConstantDecl>(PrevDecl))
   9533         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
   9534       else
   9535         Diag(IdLoc, diag::err_redefinition) << Id;
   9536       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   9537       return 0;
   9538     }
   9539   }
   9540 
   9541   // C++ [class.mem]p13:
   9542   //   If T is the name of a class, then each of the following shall have a
   9543   //   name different from T:
   9544   //     - every enumerator of every member of class T that is an enumerated
   9545   //       type
   9546   if (CXXRecordDecl *Record
   9547                       = dyn_cast<CXXRecordDecl>(
   9548                              TheEnumDecl->getDeclContext()->getRedeclContext()))
   9549     if (Record->getIdentifier() && Record->getIdentifier() == Id)
   9550       Diag(IdLoc, diag::err_member_name_of_class) << Id;
   9551 
   9552   EnumConstantDecl *New =
   9553     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
   9554 
   9555   if (New) {
   9556     // Process attributes.
   9557     if (Attr) ProcessDeclAttributeList(S, New, Attr);
   9558 
   9559     // Register this decl in the current scope stack.
   9560     New->setAccess(TheEnumDecl->getAccess());
   9561     PushOnScopeChains(New, S);
   9562   }
   9563 
   9564   return New;
   9565 }
   9566 
   9567 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
   9568                          SourceLocation RBraceLoc, Decl *EnumDeclX,
   9569                          Decl **Elements, unsigned NumElements,
   9570                          Scope *S, AttributeList *Attr) {
   9571   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
   9572   QualType EnumType = Context.getTypeDeclType(Enum);
   9573 
   9574   if (Attr)
   9575     ProcessDeclAttributeList(S, Enum, Attr);
   9576 
   9577   if (Enum->isDependentType()) {
   9578     for (unsigned i = 0; i != NumElements; ++i) {
   9579       EnumConstantDecl *ECD =
   9580         cast_or_null<EnumConstantDecl>(Elements[i]);
   9581       if (!ECD) continue;
   9582 
   9583       ECD->setType(EnumType);
   9584     }
   9585 
   9586     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
   9587     return;
   9588   }
   9589 
   9590   // TODO: If the result value doesn't fit in an int, it must be a long or long
   9591   // long value.  ISO C does not support this, but GCC does as an extension,
   9592   // emit a warning.
   9593   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   9594   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
   9595   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
   9596 
   9597   // Verify that all the values are okay, compute the size of the values, and
   9598   // reverse the list.
   9599   unsigned NumNegativeBits = 0;
   9600   unsigned NumPositiveBits = 0;
   9601 
   9602   // Keep track of whether all elements have type int.
   9603   bool AllElementsInt = true;
   9604 
   9605   for (unsigned i = 0; i != NumElements; ++i) {
   9606     EnumConstantDecl *ECD =
   9607       cast_or_null<EnumConstantDecl>(Elements[i]);
   9608     if (!ECD) continue;  // Already issued a diagnostic.
   9609 
   9610     const llvm::APSInt &InitVal = ECD->getInitVal();
   9611 
   9612     // Keep track of the size of positive and negative values.
   9613     if (InitVal.isUnsigned() || InitVal.isNonNegative())
   9614       NumPositiveBits = std::max(NumPositiveBits,
   9615                                  (unsigned)InitVal.getActiveBits());
   9616     else
   9617       NumNegativeBits = std::max(NumNegativeBits,
   9618                                  (unsigned)InitVal.getMinSignedBits());
   9619 
   9620     // Keep track of whether every enum element has type int (very commmon).
   9621     if (AllElementsInt)
   9622       AllElementsInt = ECD->getType() == Context.IntTy;
   9623   }
   9624 
   9625   // Figure out the type that should be used for this enum.
   9626   QualType BestType;
   9627   unsigned BestWidth;
   9628 
   9629   // C++0x N3000 [conv.prom]p3:
   9630   //   An rvalue of an unscoped enumeration type whose underlying
   9631   //   type is not fixed can be converted to an rvalue of the first
   9632   //   of the following types that can represent all the values of
   9633   //   the enumeration: int, unsigned int, long int, unsigned long
   9634   //   int, long long int, or unsigned long long int.
   9635   // C99 6.4.4.3p2:
   9636   //   An identifier declared as an enumeration constant has type int.
   9637   // The C99 rule is modified by a gcc extension
   9638   QualType BestPromotionType;
   9639 
   9640   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
   9641   // -fshort-enums is the equivalent to specifying the packed attribute on all
   9642   // enum definitions.
   9643   if (LangOpts.ShortEnums)
   9644     Packed = true;
   9645 
   9646   if (Enum->isFixed()) {
   9647     BestType = BestPromotionType = Enum->getIntegerType();
   9648     // We don't need to set BestWidth, because BestType is going to be the type
   9649     // of the enumerators, but we do anyway because otherwise some compilers
   9650     // warn that it might be used uninitialized.
   9651     BestWidth = CharWidth;
   9652   }
   9653   else if (NumNegativeBits) {
   9654     // If there is a negative value, figure out the smallest integer type (of
   9655     // int/long/longlong) that fits.
   9656     // If it's packed, check also if it fits a char or a short.
   9657     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
   9658       BestType = Context.SignedCharTy;
   9659       BestWidth = CharWidth;
   9660     } else if (Packed && NumNegativeBits <= ShortWidth &&
   9661                NumPositiveBits < ShortWidth) {
   9662       BestType = Context.ShortTy;
   9663       BestWidth = ShortWidth;
   9664     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
   9665       BestType = Context.IntTy;
   9666       BestWidth = IntWidth;
   9667     } else {
   9668       BestWidth = Context.getTargetInfo().getLongWidth();
   9669 
   9670       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
   9671         BestType = Context.LongTy;
   9672       } else {
   9673         BestWidth = Context.getTargetInfo().getLongLongWidth();
   9674 
   9675         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
   9676           Diag(Enum->getLocation(), diag::warn_enum_too_large);
   9677         BestType = Context.LongLongTy;
   9678       }
   9679     }
   9680     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
   9681   } else {
   9682     // If there is no negative value, figure out the smallest type that fits
   9683     // all of the enumerator values.
   9684     // If it's packed, check also if it fits a char or a short.
   9685     if (Packed && NumPositiveBits <= CharWidth) {
   9686       BestType = Context.UnsignedCharTy;
   9687       BestPromotionType = Context.IntTy;
   9688       BestWidth = CharWidth;
   9689     } else if (Packed && NumPositiveBits <= ShortWidth) {
   9690       BestType = Context.UnsignedShortTy;
   9691       BestPromotionType = Context.IntTy;
   9692       BestWidth = ShortWidth;
   9693     } else if (NumPositiveBits <= IntWidth) {
   9694       BestType = Context.UnsignedIntTy;
   9695       BestWidth = IntWidth;
   9696       BestPromotionType
   9697         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
   9698                            ? Context.UnsignedIntTy : Context.IntTy;
   9699     } else if (NumPositiveBits <=
   9700                (BestWidth = Context.getTargetInfo().getLongWidth())) {
   9701       BestType = Context.UnsignedLongTy;
   9702       BestPromotionType
   9703         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
   9704                            ? Context.UnsignedLongTy : Context.LongTy;
   9705     } else {
   9706       BestWidth = Context.getTargetInfo().getLongLongWidth();
   9707       assert(NumPositiveBits <= BestWidth &&
   9708              "How could an initializer get larger than ULL?");
   9709       BestType = Context.UnsignedLongLongTy;
   9710       BestPromotionType
   9711         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
   9712                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
   9713     }
   9714   }
   9715 
   9716   // Loop over all of the enumerator constants, changing their types to match
   9717   // the type of the enum if needed.
   9718   for (unsigned i = 0; i != NumElements; ++i) {
   9719     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   9720     if (!ECD) continue;  // Already issued a diagnostic.
   9721 
   9722     // Standard C says the enumerators have int type, but we allow, as an
   9723     // extension, the enumerators to be larger than int size.  If each
   9724     // enumerator value fits in an int, type it as an int, otherwise type it the
   9725     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
   9726     // that X has type 'int', not 'unsigned'.
   9727 
   9728     // Determine whether the value fits into an int.
   9729     llvm::APSInt InitVal = ECD->getInitVal();
   9730 
   9731     // If it fits into an integer type, force it.  Otherwise force it to match
   9732     // the enum decl type.
   9733     QualType NewTy;
   9734     unsigned NewWidth;
   9735     bool NewSign;
   9736     if (!getLangOptions().CPlusPlus &&
   9737         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
   9738       NewTy = Context.IntTy;
   9739       NewWidth = IntWidth;
   9740       NewSign = true;
   9741     } else if (ECD->getType() == BestType) {
   9742       // Already the right type!
   9743       if (getLangOptions().CPlusPlus)
   9744         // C++ [dcl.enum]p4: Following the closing brace of an
   9745         // enum-specifier, each enumerator has the type of its
   9746         // enumeration.
   9747         ECD->setType(EnumType);
   9748       continue;
   9749     } else {
   9750       NewTy = BestType;
   9751       NewWidth = BestWidth;
   9752       NewSign = BestType->isSignedIntegerOrEnumerationType();
   9753     }
   9754 
   9755     // Adjust the APSInt value.
   9756     InitVal = InitVal.extOrTrunc(NewWidth);
   9757     InitVal.setIsSigned(NewSign);
   9758     ECD->setInitVal(InitVal);
   9759 
   9760     // Adjust the Expr initializer and type.
   9761     if (ECD->getInitExpr() &&
   9762         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
   9763       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
   9764                                                 CK_IntegralCast,
   9765                                                 ECD->getInitExpr(),
   9766                                                 /*base paths*/ 0,
   9767                                                 VK_RValue));
   9768     if (getLangOptions().CPlusPlus)
   9769       // C++ [dcl.enum]p4: Following the closing brace of an
   9770       // enum-specifier, each enumerator has the type of its
   9771       // enumeration.
   9772       ECD->setType(EnumType);
   9773     else
   9774       ECD->setType(NewTy);
   9775   }
   9776 
   9777   Enum->completeDefinition(BestType, BestPromotionType,
   9778                            NumPositiveBits, NumNegativeBits);
   9779 }
   9780 
   9781 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
   9782                                   SourceLocation StartLoc,
   9783                                   SourceLocation EndLoc) {
   9784   StringLiteral *AsmString = cast<StringLiteral>(expr);
   9785 
   9786   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
   9787                                                    AsmString, StartLoc,
   9788                                                    EndLoc);
   9789   CurContext->addDecl(New);
   9790   return New;
   9791 }
   9792 
   9793 DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
   9794                                    IdentifierInfo &ModuleName,
   9795                                    SourceLocation ModuleNameLoc) {
   9796   ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
   9797                                                      ModuleName, ModuleNameLoc);
   9798   if (!Module)
   9799     return true;
   9800 
   9801   // FIXME: Actually create a declaration to describe the module import.
   9802   (void)Module;
   9803   return DeclResult((Decl *)0);
   9804 }
   9805 
   9806 void
   9807 Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
   9808                                          SourceLocation ModulePrivateKeyword) {
   9809   assert(!Old->isModulePrivate() && "Old is module-private!");
   9810 
   9811   Diag(New->getLocation(), diag::err_module_private_follows_public)
   9812     << New->getDeclName() << SourceRange(ModulePrivateKeyword);
   9813   Diag(Old->getLocation(), diag::note_previous_declaration)
   9814     << Old->getDeclName();
   9815 
   9816   // Drop the __module_private__ from the new declaration, since it's invalid.
   9817   New->setModulePrivate(false);
   9818 }
   9819 
   9820 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
   9821                              SourceLocation PragmaLoc,
   9822                              SourceLocation NameLoc) {
   9823   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
   9824 
   9825   if (PrevDecl) {
   9826     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
   9827   } else {
   9828     (void)WeakUndeclaredIdentifiers.insert(
   9829       std::pair<IdentifierInfo*,WeakInfo>
   9830         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
   9831   }
   9832 }
   9833 
   9834 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
   9835                                 IdentifierInfo* AliasName,
   9836                                 SourceLocation PragmaLoc,
   9837                                 SourceLocation NameLoc,
   9838                                 SourceLocation AliasNameLoc) {
   9839   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
   9840                                     LookupOrdinaryName);
   9841   WeakInfo W = WeakInfo(Name, NameLoc);
   9842 
   9843   if (PrevDecl) {
   9844     if (!PrevDecl->hasAttr<AliasAttr>())
   9845       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
   9846         DeclApplyPragmaWeak(TUScope, ND, W);
   9847   } else {
   9848     (void)WeakUndeclaredIdentifiers.insert(
   9849       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
   9850   }
   9851 }
   9852 
   9853 Decl *Sema::getObjCDeclContext() const {
   9854   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
   9855 }
   9856 
   9857 AvailabilityResult Sema::getCurContextAvailability() const {
   9858   const Decl *D = cast<Decl>(getCurLexicalContext());
   9859   // A category implicitly has the availability of the interface.
   9860   if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
   9861     D = CatD->getClassInterface();
   9862 
   9863   return D->getAvailability();
   9864 }
   9865