Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/JITCodeEmitter.h - Code emission ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an abstract interface that is used by the machine code
     11 // emission framework to output the code.  This allows machine code emission to
     12 // be separated from concerns such as resolution of call targets, and where the
     13 // machine code will be written (memory or disk, f.e.).
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_CODEGEN_JITCODEEMITTER_H
     18 #define LLVM_CODEGEN_JITCODEEMITTER_H
     19 
     20 #include <string>
     21 #include "llvm/Support/DataTypes.h"
     22 #include "llvm/Support/MathExtras.h"
     23 #include "llvm/CodeGen/MachineCodeEmitter.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 
     26 namespace llvm {
     27 
     28 class MachineBasicBlock;
     29 class MachineConstantPool;
     30 class MachineJumpTableInfo;
     31 class MachineFunction;
     32 class MachineModuleInfo;
     33 class MachineRelocation;
     34 class Value;
     35 class GlobalValue;
     36 class Function;
     37 
     38 /// JITCodeEmitter - This class defines two sorts of methods: those for
     39 /// emitting the actual bytes of machine code, and those for emitting auxiliary
     40 /// structures, such as jump tables, relocations, etc.
     41 ///
     42 /// Emission of machine code is complicated by the fact that we don't (in
     43 /// general) know the size of the machine code that we're about to emit before
     44 /// we emit it.  As such, we preallocate a certain amount of memory, and set the
     45 /// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
     46 /// emit machine instructions, we advance the CurBufferPtr to indicate the
     47 /// location of the next byte to emit.  In the case of a buffer overflow (we
     48 /// need to emit more machine code than we have allocated space for), the
     49 /// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
     50 /// function has been emitted, the overflow condition is checked, and if it has
     51 /// occurred, more memory is allocated, and we reemit the code into it.
     52 ///
     53 class JITCodeEmitter : public MachineCodeEmitter {
     54 public:
     55   virtual ~JITCodeEmitter() {}
     56 
     57   /// startFunction - This callback is invoked when the specified function is
     58   /// about to be code generated.  This initializes the BufferBegin/End/Ptr
     59   /// fields.
     60   ///
     61   virtual void startFunction(MachineFunction &F) = 0;
     62 
     63   /// finishFunction - This callback is invoked when the specified function has
     64   /// finished code generation.  If a buffer overflow has occurred, this method
     65   /// returns true (the callee is required to try again), otherwise it returns
     66   /// false.
     67   ///
     68   virtual bool finishFunction(MachineFunction &F) = 0;
     69 
     70   /// allocIndirectGV - Allocates and fills storage for an indirect
     71   /// GlobalValue, and returns the address.
     72   virtual void *allocIndirectGV(const GlobalValue *GV,
     73                                 const uint8_t *Buffer, size_t Size,
     74                                 unsigned Alignment) = 0;
     75 
     76   /// emitByte - This callback is invoked when a byte needs to be written to the
     77   /// output stream.
     78   ///
     79   void emitByte(uint8_t B) {
     80     if (CurBufferPtr != BufferEnd)
     81       *CurBufferPtr++ = B;
     82   }
     83 
     84   /// emitWordLE - This callback is invoked when a 32-bit word needs to be
     85   /// written to the output stream in little-endian format.
     86   ///
     87   void emitWordLE(uint32_t W) {
     88     if (4 <= BufferEnd-CurBufferPtr) {
     89       *CurBufferPtr++ = (uint8_t)(W >>  0);
     90       *CurBufferPtr++ = (uint8_t)(W >>  8);
     91       *CurBufferPtr++ = (uint8_t)(W >> 16);
     92       *CurBufferPtr++ = (uint8_t)(W >> 24);
     93     } else {
     94       CurBufferPtr = BufferEnd;
     95     }
     96   }
     97 
     98   /// emitWordBE - This callback is invoked when a 32-bit word needs to be
     99   /// written to the output stream in big-endian format.
    100   ///
    101   void emitWordBE(uint32_t W) {
    102     if (4 <= BufferEnd-CurBufferPtr) {
    103       *CurBufferPtr++ = (uint8_t)(W >> 24);
    104       *CurBufferPtr++ = (uint8_t)(W >> 16);
    105       *CurBufferPtr++ = (uint8_t)(W >>  8);
    106       *CurBufferPtr++ = (uint8_t)(W >>  0);
    107     } else {
    108       CurBufferPtr = BufferEnd;
    109     }
    110   }
    111 
    112   /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
    113   /// written to the output stream in little-endian format.
    114   ///
    115   void emitDWordLE(uint64_t W) {
    116     if (8 <= BufferEnd-CurBufferPtr) {
    117       *CurBufferPtr++ = (uint8_t)(W >>  0);
    118       *CurBufferPtr++ = (uint8_t)(W >>  8);
    119       *CurBufferPtr++ = (uint8_t)(W >> 16);
    120       *CurBufferPtr++ = (uint8_t)(W >> 24);
    121       *CurBufferPtr++ = (uint8_t)(W >> 32);
    122       *CurBufferPtr++ = (uint8_t)(W >> 40);
    123       *CurBufferPtr++ = (uint8_t)(W >> 48);
    124       *CurBufferPtr++ = (uint8_t)(W >> 56);
    125     } else {
    126       CurBufferPtr = BufferEnd;
    127     }
    128   }
    129 
    130   /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
    131   /// written to the output stream in big-endian format.
    132   ///
    133   void emitDWordBE(uint64_t W) {
    134     if (8 <= BufferEnd-CurBufferPtr) {
    135       *CurBufferPtr++ = (uint8_t)(W >> 56);
    136       *CurBufferPtr++ = (uint8_t)(W >> 48);
    137       *CurBufferPtr++ = (uint8_t)(W >> 40);
    138       *CurBufferPtr++ = (uint8_t)(W >> 32);
    139       *CurBufferPtr++ = (uint8_t)(W >> 24);
    140       *CurBufferPtr++ = (uint8_t)(W >> 16);
    141       *CurBufferPtr++ = (uint8_t)(W >>  8);
    142       *CurBufferPtr++ = (uint8_t)(W >>  0);
    143     } else {
    144       CurBufferPtr = BufferEnd;
    145     }
    146   }
    147 
    148   /// emitAlignment - Move the CurBufferPtr pointer up to the specified
    149   /// alignment (saturated to BufferEnd of course).
    150   void emitAlignment(unsigned Alignment) {
    151     if (Alignment == 0) Alignment = 1;
    152     uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
    153                                                    Alignment);
    154     CurBufferPtr = std::min(NewPtr, BufferEnd);
    155   }
    156 
    157   /// emitAlignmentWithFill - Similar to emitAlignment, except that the
    158   /// extra bytes are filled with the provided byte.
    159   void emitAlignmentWithFill(unsigned Alignment, uint8_t Fill) {
    160     if (Alignment == 0) Alignment = 1;
    161     uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
    162                                                    Alignment);
    163     // Fail if we don't have room.
    164     if (NewPtr > BufferEnd) {
    165       CurBufferPtr = BufferEnd;
    166       return;
    167     }
    168     while (CurBufferPtr < NewPtr) {
    169       *CurBufferPtr++ = Fill;
    170     }
    171   }
    172 
    173   /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
    174   /// written to the output stream.
    175   void emitULEB128Bytes(uint64_t Value, unsigned PadTo = 0) {
    176     do {
    177       uint8_t Byte = Value & 0x7f;
    178       Value >>= 7;
    179       if (Value || PadTo != 0) Byte |= 0x80;
    180       emitByte(Byte);
    181     } while (Value);
    182 
    183     if (PadTo) {
    184       do {
    185         uint8_t Byte = (PadTo > 1) ? 0x80 : 0x0;
    186         emitByte(Byte);
    187       } while (--PadTo);
    188     }
    189   }
    190 
    191   /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
    192   /// written to the output stream.
    193   void emitSLEB128Bytes(int64_t Value) {
    194     int32_t Sign = Value >> (8 * sizeof(Value) - 1);
    195     bool IsMore;
    196 
    197     do {
    198       uint8_t Byte = Value & 0x7f;
    199       Value >>= 7;
    200       IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
    201       if (IsMore) Byte |= 0x80;
    202       emitByte(Byte);
    203     } while (IsMore);
    204   }
    205 
    206   /// emitString - This callback is invoked when a String needs to be
    207   /// written to the output stream.
    208   void emitString(const std::string &String) {
    209     for (unsigned i = 0, N = static_cast<unsigned>(String.size());
    210          i < N; ++i) {
    211       uint8_t C = String[i];
    212       emitByte(C);
    213     }
    214     emitByte(0);
    215   }
    216 
    217   /// emitInt32 - Emit a int32 directive.
    218   void emitInt32(uint32_t Value) {
    219     if (4 <= BufferEnd-CurBufferPtr) {
    220       *((uint32_t*)CurBufferPtr) = Value;
    221       CurBufferPtr += 4;
    222     } else {
    223       CurBufferPtr = BufferEnd;
    224     }
    225   }
    226 
    227   /// emitInt64 - Emit a int64 directive.
    228   void emitInt64(uint64_t Value) {
    229     if (8 <= BufferEnd-CurBufferPtr) {
    230       *((uint64_t*)CurBufferPtr) = Value;
    231       CurBufferPtr += 8;
    232     } else {
    233       CurBufferPtr = BufferEnd;
    234     }
    235   }
    236 
    237   /// emitInt32At - Emit the Int32 Value in Addr.
    238   void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
    239     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
    240       (*(uint32_t*)Addr) = (uint32_t)Value;
    241   }
    242 
    243   /// emitInt64At - Emit the Int64 Value in Addr.
    244   void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
    245     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
    246       (*(uint64_t*)Addr) = (uint64_t)Value;
    247   }
    248 
    249 
    250   /// emitLabel - Emits a label
    251   virtual void emitLabel(MCSymbol *Label) = 0;
    252 
    253   /// allocateSpace - Allocate a block of space in the current output buffer,
    254   /// returning null (and setting conditions to indicate buffer overflow) on
    255   /// failure.  Alignment is the alignment in bytes of the buffer desired.
    256   virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
    257     emitAlignment(Alignment);
    258     void *Result;
    259 
    260     // Check for buffer overflow.
    261     if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
    262       CurBufferPtr = BufferEnd;
    263       Result = 0;
    264     } else {
    265       // Allocate the space.
    266       Result = CurBufferPtr;
    267       CurBufferPtr += Size;
    268     }
    269 
    270     return Result;
    271   }
    272 
    273   /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
    274   /// this method does not allocate memory in the current output buffer,
    275   /// because a global may live longer than the current function.
    276   virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment) = 0;
    277 
    278   /// StartMachineBasicBlock - This should be called by the target when a new
    279   /// basic block is about to be emitted.  This way the MCE knows where the
    280   /// start of the block is, and can implement getMachineBasicBlockAddress.
    281   virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
    282 
    283   /// getCurrentPCValue - This returns the address that the next emitted byte
    284   /// will be output to.
    285   ///
    286   virtual uintptr_t getCurrentPCValue() const {
    287     return (uintptr_t)CurBufferPtr;
    288   }
    289 
    290   /// getCurrentPCOffset - Return the offset from the start of the emitted
    291   /// buffer that we are currently writing to.
    292   uintptr_t getCurrentPCOffset() const {
    293     return CurBufferPtr-BufferBegin;
    294   }
    295 
    296   /// earlyResolveAddresses - True if the code emitter can use symbol addresses
    297   /// during code emission time. The JIT is capable of doing this because it
    298   /// creates jump tables or constant pools in memory on the fly while the
    299   /// object code emitters rely on a linker to have real addresses and should
    300   /// use relocations instead.
    301   bool earlyResolveAddresses() const { return true; }
    302 
    303   /// addRelocation - Whenever a relocatable address is needed, it should be
    304   /// noted with this interface.
    305   virtual void addRelocation(const MachineRelocation &MR) = 0;
    306 
    307   /// FIXME: These should all be handled with relocations!
    308 
    309   /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
    310   /// the constant pool that was last emitted with the emitConstantPool method.
    311   ///
    312   virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
    313 
    314   /// getJumpTableEntryAddress - Return the address of the jump table with index
    315   /// 'Index' in the function that last called initJumpTableInfo.
    316   ///
    317   virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
    318 
    319   /// getMachineBasicBlockAddress - Return the address of the specified
    320   /// MachineBasicBlock, only usable after the label for the MBB has been
    321   /// emitted.
    322   ///
    323   virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
    324 
    325   /// getLabelAddress - Return the address of the specified Label, only usable
    326   /// after the Label has been emitted.
    327   ///
    328   virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
    329 
    330   /// Specifies the MachineModuleInfo object. This is used for exception handling
    331   /// purposes.
    332   virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
    333 
    334   /// getLabelLocations - Return the label locations map of the label IDs to
    335   /// their address.
    336   virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { return 0; }
    337 };
    338 
    339 } // End llvm namespace
    340 
    341 #endif
    342