1 /*===- X86DisassemblerDecoderCommon.h - Disassembler decoder -------*- C -*-==* 2 * 3 * The LLVM Compiler Infrastructure 4 * 5 * This file is distributed under the University of Illinois Open Source 6 * License. See LICENSE.TXT for details. 7 * 8 *===----------------------------------------------------------------------===* 9 * 10 * This file is part of the X86 Disassembler. 11 * It contains common definitions used by both the disassembler and the table 12 * generator. 13 * Documentation for the disassembler can be found in X86Disassembler.h. 14 * 15 *===----------------------------------------------------------------------===*/ 16 17 /* 18 * This header file provides those definitions that need to be shared between 19 * the decoder and the table generator in a C-friendly manner. 20 */ 21 22 #ifndef X86DISASSEMBLERDECODERCOMMON_H 23 #define X86DISASSEMBLERDECODERCOMMON_H 24 25 #include "llvm/Support/DataTypes.h" 26 27 #define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers 28 #define CONTEXTS_SYM x86DisassemblerContexts 29 #define ONEBYTE_SYM x86DisassemblerOneByteOpcodes 30 #define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes 31 #define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes 32 #define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes 33 #define THREEBYTEA6_SYM x86DisassemblerThreeByteA6Opcodes 34 #define THREEBYTEA7_SYM x86DisassemblerThreeByteA7Opcodes 35 36 #define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers" 37 #define CONTEXTS_STR "x86DisassemblerContexts" 38 #define ONEBYTE_STR "x86DisassemblerOneByteOpcodes" 39 #define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes" 40 #define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes" 41 #define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes" 42 #define THREEBYTEA6_STR "x86DisassemblerThreeByteA6Opcodes" 43 #define THREEBYTEA7_STR "x86DisassemblerThreeByteA7Opcodes" 44 45 /* 46 * Attributes of an instruction that must be known before the opcode can be 47 * processed correctly. Most of these indicate the presence of particular 48 * prefixes, but ATTR_64BIT is simply an attribute of the decoding context. 49 */ 50 #define ATTRIBUTE_BITS \ 51 ENUM_ENTRY(ATTR_NONE, 0x00) \ 52 ENUM_ENTRY(ATTR_64BIT, 0x01) \ 53 ENUM_ENTRY(ATTR_XS, 0x02) \ 54 ENUM_ENTRY(ATTR_XD, 0x04) \ 55 ENUM_ENTRY(ATTR_REXW, 0x08) \ 56 ENUM_ENTRY(ATTR_OPSIZE, 0x10) \ 57 ENUM_ENTRY(ATTR_VEX, 0x20) \ 58 ENUM_ENTRY(ATTR_VEXL, 0x40) 59 60 #define ENUM_ENTRY(n, v) n = v, 61 enum attributeBits { 62 ATTRIBUTE_BITS 63 ATTR_max 64 }; 65 #undef ENUM_ENTRY 66 67 /* 68 * Combinations of the above attributes that are relevant to instruction 69 * decode. Although other combinations are possible, they can be reduced to 70 * these without affecting the ultimately decoded instruction. 71 */ 72 73 /* Class name Rank Rationale for rank assignment */ 74 #define INSTRUCTION_CONTEXTS \ 75 ENUM_ENTRY(IC, 0, "says nothing about the instruction") \ 76 ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \ 77 "64-bit mode but no more") \ 78 ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \ 79 "operands change width") \ 80 ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \ 81 "but not the operands") \ 82 ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \ 83 "but not the operands") \ 84 ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \ 85 "operands change width") \ 86 ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \ 87 "operands change width") \ 88 ENUM_ENTRY(IC_64BIT_REXW, 4, "requires a REX.W prefix, so operands "\ 89 "change width; overrides IC_OPSIZE") \ 90 ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \ 91 ENUM_ENTRY(IC_64BIT_XD, 5, "XD instructions are SSE; REX.W is " \ 92 "secondary") \ 93 ENUM_ENTRY(IC_64BIT_XS, 5, "Just as meaningful as IC_64BIT_XD") \ 94 ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \ 95 ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \ 96 ENUM_ENTRY(IC_64BIT_REXW_XS, 6, "OPSIZE could mean a different " \ 97 "opcode") \ 98 ENUM_ENTRY(IC_64BIT_REXW_XD, 6, "Just as meaningful as " \ 99 "IC_64BIT_REXW_XS") \ 100 ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \ 101 "else because this changes most " \ 102 "operands' meaning") \ 103 ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \ 104 ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \ 105 ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \ 106 ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \ 107 ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \ 108 ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \ 109 ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \ 110 ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \ 111 ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \ 112 ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\ 113 ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\ 114 ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") 115 116 117 #define ENUM_ENTRY(n, r, d) n, 118 typedef enum { 119 INSTRUCTION_CONTEXTS 120 IC_max 121 } InstructionContext; 122 #undef ENUM_ENTRY 123 124 /* 125 * Opcode types, which determine which decode table to use, both in the Intel 126 * manual and also for the decoder. 127 */ 128 typedef enum { 129 ONEBYTE = 0, 130 TWOBYTE = 1, 131 THREEBYTE_38 = 2, 132 THREEBYTE_3A = 3, 133 THREEBYTE_A6 = 4, 134 THREEBYTE_A7 = 5 135 } OpcodeType; 136 137 /* 138 * The following structs are used for the hierarchical decode table. After 139 * determining the instruction's class (i.e., which IC_* constant applies to 140 * it), the decoder reads the opcode. Some instructions require specific 141 * values of the ModR/M byte, so the ModR/M byte indexes into the final table. 142 * 143 * If a ModR/M byte is not required, "required" is left unset, and the values 144 * for each instructionID are identical. 145 */ 146 147 typedef uint16_t InstrUID; 148 149 /* 150 * ModRMDecisionType - describes the type of ModR/M decision, allowing the 151 * consumer to determine the number of entries in it. 152 * 153 * MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded 154 * instruction is the same. 155 * MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode 156 * corresponds to one instruction; otherwise, it corresponds to 157 * a different instruction. 158 * MODRM_FULL - Potentially, each value of the ModR/M byte could correspond 159 * to a different instruction. 160 */ 161 162 #define MODRMTYPES \ 163 ENUM_ENTRY(MODRM_ONEENTRY) \ 164 ENUM_ENTRY(MODRM_SPLITRM) \ 165 ENUM_ENTRY(MODRM_FULL) 166 167 #define ENUM_ENTRY(n) n, 168 typedef enum { 169 MODRMTYPES 170 MODRM_max 171 } ModRMDecisionType; 172 #undef ENUM_ENTRY 173 174 /* 175 * ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which 176 * instruction each possible value of the ModR/M byte corresponds to. Once 177 * this information is known, we have narrowed down to a single instruction. 178 */ 179 struct ModRMDecision { 180 uint8_t modrm_type; 181 182 /* The macro below must be defined wherever this file is included. */ 183 INSTRUCTION_IDS 184 }; 185 186 /* 187 * OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at 188 * given a particular opcode. 189 */ 190 struct OpcodeDecision { 191 struct ModRMDecision modRMDecisions[256]; 192 }; 193 194 /* 195 * ContextDecision - Specifies which opcode->instruction tables to look at given 196 * a particular context (set of attributes). Since there are many possible 197 * contexts, the decoder first uses CONTEXTS_SYM to determine which context 198 * applies given a specific set of attributes. Hence there are only IC_max 199 * entries in this table, rather than 2^(ATTR_max). 200 */ 201 struct ContextDecision { 202 struct OpcodeDecision opcodeDecisions[IC_max]; 203 }; 204 205 /* 206 * Physical encodings of instruction operands. 207 */ 208 209 #define ENCODINGS \ 210 ENUM_ENTRY(ENCODING_NONE, "") \ 211 ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \ 212 ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \ 213 ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \ 214 ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \ 215 ENUM_ENTRY(ENCODING_CW, "2-byte") \ 216 ENUM_ENTRY(ENCODING_CD, "4-byte") \ 217 ENUM_ENTRY(ENCODING_CP, "6-byte") \ 218 ENUM_ENTRY(ENCODING_CO, "8-byte") \ 219 ENUM_ENTRY(ENCODING_CT, "10-byte") \ 220 ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \ 221 ENUM_ENTRY(ENCODING_IW, "2-byte") \ 222 ENUM_ENTRY(ENCODING_ID, "4-byte") \ 223 ENUM_ENTRY(ENCODING_IO, "8-byte") \ 224 ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \ 225 "the opcode byte") \ 226 ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \ 227 ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \ 228 ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \ 229 ENUM_ENTRY(ENCODING_I, "Position on floating-point stack added to the " \ 230 "opcode byte") \ 231 \ 232 ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \ 233 ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \ 234 ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \ 235 "opcode byte") \ 236 ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \ 237 "in type") 238 239 #define ENUM_ENTRY(n, d) n, 240 typedef enum { 241 ENCODINGS 242 ENCODING_max 243 } OperandEncoding; 244 #undef ENUM_ENTRY 245 246 /* 247 * Semantic interpretations of instruction operands. 248 */ 249 250 #define TYPES \ 251 ENUM_ENTRY(TYPE_NONE, "") \ 252 ENUM_ENTRY(TYPE_REL8, "1-byte immediate address") \ 253 ENUM_ENTRY(TYPE_REL16, "2-byte") \ 254 ENUM_ENTRY(TYPE_REL32, "4-byte") \ 255 ENUM_ENTRY(TYPE_REL64, "8-byte") \ 256 ENUM_ENTRY(TYPE_PTR1616, "2+2-byte segment+offset address") \ 257 ENUM_ENTRY(TYPE_PTR1632, "2+4-byte") \ 258 ENUM_ENTRY(TYPE_PTR1664, "2+8-byte") \ 259 ENUM_ENTRY(TYPE_R8, "1-byte register operand") \ 260 ENUM_ENTRY(TYPE_R16, "2-byte") \ 261 ENUM_ENTRY(TYPE_R32, "4-byte") \ 262 ENUM_ENTRY(TYPE_R64, "8-byte") \ 263 ENUM_ENTRY(TYPE_IMM8, "1-byte immediate operand") \ 264 ENUM_ENTRY(TYPE_IMM16, "2-byte") \ 265 ENUM_ENTRY(TYPE_IMM32, "4-byte") \ 266 ENUM_ENTRY(TYPE_IMM64, "8-byte") \ 267 ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \ 268 ENUM_ENTRY(TYPE_RM8, "1-byte register or memory operand") \ 269 ENUM_ENTRY(TYPE_RM16, "2-byte") \ 270 ENUM_ENTRY(TYPE_RM32, "4-byte") \ 271 ENUM_ENTRY(TYPE_RM64, "8-byte") \ 272 ENUM_ENTRY(TYPE_M, "Memory operand") \ 273 ENUM_ENTRY(TYPE_M8, "1-byte") \ 274 ENUM_ENTRY(TYPE_M16, "2-byte") \ 275 ENUM_ENTRY(TYPE_M32, "4-byte") \ 276 ENUM_ENTRY(TYPE_M64, "8-byte") \ 277 ENUM_ENTRY(TYPE_LEA, "Effective address") \ 278 ENUM_ENTRY(TYPE_M128, "16-byte (SSE/SSE2)") \ 279 ENUM_ENTRY(TYPE_M256, "256-byte (AVX)") \ 280 ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \ 281 ENUM_ENTRY(TYPE_M1632, "2+4-byte") \ 282 ENUM_ENTRY(TYPE_M1664, "2+8-byte") \ 283 ENUM_ENTRY(TYPE_M16_32, "2+4-byte two-part memory operand (LIDT, LGDT)") \ 284 ENUM_ENTRY(TYPE_M16_16, "2+2-byte (BOUND)") \ 285 ENUM_ENTRY(TYPE_M32_32, "4+4-byte (BOUND)") \ 286 ENUM_ENTRY(TYPE_M16_64, "2+8-byte (LIDT, LGDT)") \ 287 ENUM_ENTRY(TYPE_MOFFS8, "1-byte memory offset (relative to segment " \ 288 "base)") \ 289 ENUM_ENTRY(TYPE_MOFFS16, "2-byte") \ 290 ENUM_ENTRY(TYPE_MOFFS32, "4-byte") \ 291 ENUM_ENTRY(TYPE_MOFFS64, "8-byte") \ 292 ENUM_ENTRY(TYPE_SREG, "Byte with single bit set: 0 = ES, 1 = CS, " \ 293 "2 = SS, 3 = DS, 4 = FS, 5 = GS") \ 294 ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \ 295 ENUM_ENTRY(TYPE_M64FP, "64-bit") \ 296 ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \ 297 ENUM_ENTRY(TYPE_M16INT, "2-byte memory integer operand for use in " \ 298 "floating-point instructions") \ 299 ENUM_ENTRY(TYPE_M32INT, "4-byte") \ 300 ENUM_ENTRY(TYPE_M64INT, "8-byte") \ 301 ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \ 302 ENUM_ENTRY(TYPE_MM, "MMX register operand") \ 303 ENUM_ENTRY(TYPE_MM32, "4-byte MMX register or memory operand") \ 304 ENUM_ENTRY(TYPE_MM64, "8-byte") \ 305 ENUM_ENTRY(TYPE_XMM, "XMM register operand") \ 306 ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \ 307 ENUM_ENTRY(TYPE_XMM64, "8-byte") \ 308 ENUM_ENTRY(TYPE_XMM128, "16-byte") \ 309 ENUM_ENTRY(TYPE_XMM256, "32-byte") \ 310 ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \ 311 ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \ 312 ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \ 313 ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \ 314 \ 315 ENUM_ENTRY(TYPE_Mv, "Memory operand of operand size") \ 316 ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \ 317 ENUM_ENTRY(TYPE_IMMv, "Immediate operand of operand size") \ 318 ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \ 319 ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \ 320 ENUM_ENTRY(TYPE_DUP1, "operand 1") \ 321 ENUM_ENTRY(TYPE_DUP2, "operand 2") \ 322 ENUM_ENTRY(TYPE_DUP3, "operand 3") \ 323 ENUM_ENTRY(TYPE_DUP4, "operand 4") \ 324 ENUM_ENTRY(TYPE_M512, "512-bit FPU/MMX/XMM/MXCSR state") 325 326 #define ENUM_ENTRY(n, d) n, 327 typedef enum { 328 TYPES 329 TYPE_max 330 } OperandType; 331 #undef ENUM_ENTRY 332 333 /* 334 * OperandSpecifier - The specification for how to extract and interpret one 335 * operand. 336 */ 337 struct OperandSpecifier { 338 OperandEncoding encoding; 339 OperandType type; 340 }; 341 342 /* 343 * Indicates where the opcode modifier (if any) is to be found. Extended 344 * opcodes with AddRegFrm have the opcode modifier in the ModR/M byte. 345 */ 346 347 #define MODIFIER_TYPES \ 348 ENUM_ENTRY(MODIFIER_NONE) \ 349 ENUM_ENTRY(MODIFIER_OPCODE) \ 350 ENUM_ENTRY(MODIFIER_MODRM) 351 352 #define ENUM_ENTRY(n) n, 353 typedef enum { 354 MODIFIER_TYPES 355 MODIFIER_max 356 } ModifierType; 357 #undef ENUM_ENTRY 358 359 #define X86_MAX_OPERANDS 5 360 361 /* 362 * The specification for how to extract and interpret a full instruction and 363 * its operands. 364 */ 365 struct InstructionSpecifier { 366 ModifierType modifierType; 367 uint8_t modifierBase; 368 struct OperandSpecifier operands[X86_MAX_OPERANDS]; 369 370 /* The macro below must be defined wherever this file is included. */ 371 INSTRUCTION_SPECIFIER_FIELDS 372 }; 373 374 /* 375 * Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode 376 * are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode, 377 * respectively. 378 */ 379 typedef enum { 380 MODE_16BIT, 381 MODE_32BIT, 382 MODE_64BIT 383 } DisassemblerMode; 384 385 #endif 386