Home | History | Annotate | Download | only in glib
      1 /* GLIB - Library of useful routines for C programming
      2  * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
      3  *
      4  * This library is free software; you can redistribute it and/or
      5  * modify it under the terms of the GNU Lesser General Public
      6  * License as published by the Free Software Foundation; either
      7  * version 2 of the License, or (at your option) any later version.
      8  *
      9  * This library is distributed in the hope that it will be useful,
     10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     12  * Lesser General Public License for more details.
     13  *
     14  * You should have received a copy of the GNU Lesser General Public
     15  * License along with this library; if not, write to the
     16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     17  * Boston, MA 02111-1307, USA.
     18  */
     19 
     20 /* Originally developed and coded by Makoto Matsumoto and Takuji
     21  * Nishimura.  Please mail <matumoto (at) math.keio.ac.jp>, if you're using
     22  * code from this file in your own programs or libraries.
     23  * Further information on the Mersenne Twister can be found at
     24  * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
     25  * This code was adapted to glib by Sebastian Wilhelmi.
     26  */
     27 
     28 /*
     29  * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
     30  * file for a list of people on the GLib Team.  See the ChangeLog
     31  * files for a list of changes.  These files are distributed with
     32  * GLib at ftp://ftp.gtk.org/pub/gtk/.
     33  */
     34 
     35 /*
     36  * MT safe
     37  */
     38 
     39 #include "config.h"
     40 
     41 #include <math.h>
     42 #include <errno.h>
     43 #include <stdio.h>
     44 #include <string.h>
     45 #include <sys/types.h>
     46 #ifdef HAVE_UNISTD_H
     47 #include <unistd.h>
     48 #endif
     49 
     50 #include "glib.h"
     51 #include "gthreadprivate.h"
     52 #include "galias.h"
     53 
     54 #ifdef G_OS_WIN32
     55 #include <process.h>		/* For getpid() */
     56 #endif
     57 
     58 G_LOCK_DEFINE_STATIC (global_random);
     59 static GRand* global_random = NULL;
     60 
     61 /* Period parameters */
     62 #define N 624
     63 #define M 397
     64 #define MATRIX_A 0x9908b0df   /* constant vector a */
     65 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
     66 #define LOWER_MASK 0x7fffffff /* least significant r bits */
     67 
     68 /* Tempering parameters */
     69 #define TEMPERING_MASK_B 0x9d2c5680
     70 #define TEMPERING_MASK_C 0xefc60000
     71 #define TEMPERING_SHIFT_U(y)  (y >> 11)
     72 #define TEMPERING_SHIFT_S(y)  (y << 7)
     73 #define TEMPERING_SHIFT_T(y)  (y << 15)
     74 #define TEMPERING_SHIFT_L(y)  (y >> 18)
     75 
     76 static guint
     77 get_random_version (void)
     78 {
     79   static gboolean initialized = FALSE;
     80   static guint random_version;
     81 
     82   if (!initialized)
     83     {
     84       const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
     85       if (!version_string || version_string[0] == '\000' ||
     86 	  strcmp (version_string, "2.2") == 0)
     87 	random_version = 22;
     88       else if (strcmp (version_string, "2.0") == 0)
     89 	random_version = 20;
     90       else
     91 	{
     92 	  g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
     93 		     version_string);
     94 	  random_version = 22;
     95 	}
     96       initialized = TRUE;
     97     }
     98 
     99   return random_version;
    100 }
    101 
    102 /* This is called from g_thread_init(). It's used to
    103  * initialize some static data in a threadsafe way.
    104  */
    105 void
    106 _g_rand_thread_init (void)
    107 {
    108   (void)get_random_version ();
    109 }
    110 
    111 struct _GRand
    112 {
    113   guint32 mt[N]; /* the array for the state vector  */
    114   guint mti;
    115 };
    116 
    117 /**
    118  * g_rand_new_with_seed:
    119  * @seed: a value to initialize the random number generator.
    120  *
    121  * Creates a new random number generator initialized with @seed.
    122  *
    123  * Return value: the new #GRand.
    124  **/
    125 GRand*
    126 g_rand_new_with_seed (guint32 seed)
    127 {
    128   GRand *rand = g_new0 (GRand, 1);
    129   g_rand_set_seed (rand, seed);
    130   return rand;
    131 }
    132 
    133 /**
    134  * g_rand_new_with_seed_array:
    135  * @seed: an array of seeds to initialize the random number generator.
    136  * @seed_length: an array of seeds to initialize the random number generator.
    137  *
    138  * Creates a new random number generator initialized with @seed.
    139  *
    140  * Return value: the new #GRand.
    141  *
    142  * Since: 2.4
    143  **/
    144 GRand*
    145 g_rand_new_with_seed_array (const guint32 *seed, guint seed_length)
    146 {
    147   GRand *rand = g_new0 (GRand, 1);
    148   g_rand_set_seed_array (rand, seed, seed_length);
    149   return rand;
    150 }
    151 
    152 /**
    153  * g_rand_new:
    154  *
    155  * Creates a new random number generator initialized with a seed taken
    156  * either from <filename>/dev/urandom</filename> (if existing) or from
    157  * the current time (as a fallback).
    158  *
    159  * Return value: the new #GRand.
    160  **/
    161 GRand*
    162 g_rand_new (void)
    163 {
    164   guint32 seed[4];
    165   GTimeVal now;
    166 #ifdef G_OS_UNIX
    167   static gboolean dev_urandom_exists = TRUE;
    168 
    169   if (dev_urandom_exists)
    170     {
    171       FILE* dev_urandom;
    172 
    173       do
    174         {
    175 	  errno = 0;
    176 	  dev_urandom = fopen("/dev/urandom", "rb");
    177 	}
    178       while G_UNLIKELY (errno == EINTR);
    179 
    180       if (dev_urandom)
    181 	{
    182 	  int r;
    183 
    184 	  do
    185 	    {
    186 	      errno = 0;
    187 	      r = fread (seed, sizeof (seed), 1, dev_urandom);
    188 	    }
    189 	  while G_UNLIKELY (errno == EINTR);
    190 
    191 	  if (r != 1)
    192 	    dev_urandom_exists = FALSE;
    193 
    194 	  fclose (dev_urandom);
    195 	}
    196       else
    197 	dev_urandom_exists = FALSE;
    198     }
    199 #else
    200   static gboolean dev_urandom_exists = FALSE;
    201 #endif
    202 
    203   if (!dev_urandom_exists)
    204     {
    205       g_get_current_time (&now);
    206       seed[0] = now.tv_sec;
    207       seed[1] = now.tv_usec;
    208       seed[2] = getpid ();
    209 #ifdef G_OS_UNIX
    210       seed[3] = getppid ();
    211 #else
    212       seed[3] = 0;
    213 #endif
    214     }
    215 
    216   return g_rand_new_with_seed_array (seed, 4);
    217 }
    218 
    219 /**
    220  * g_rand_free:
    221  * @rand_: a #GRand.
    222  *
    223  * Frees the memory allocated for the #GRand.
    224  **/
    225 void
    226 g_rand_free (GRand* rand)
    227 {
    228   g_return_if_fail (rand != NULL);
    229 
    230   g_free (rand);
    231 }
    232 
    233 /**
    234  * g_rand_copy:
    235  * @rand_: a #GRand.
    236  *
    237  * Copies a #GRand into a new one with the same exact state as before.
    238  * This way you can take a snapshot of the random number generator for
    239  * replaying later.
    240  *
    241  * Return value: the new #GRand.
    242  *
    243  * Since: 2.4
    244  **/
    245 GRand *
    246 g_rand_copy (GRand* rand)
    247 {
    248   GRand* new_rand;
    249 
    250   g_return_val_if_fail (rand != NULL, NULL);
    251 
    252   new_rand = g_new0 (GRand, 1);
    253   memcpy (new_rand, rand, sizeof (GRand));
    254 
    255   return new_rand;
    256 }
    257 
    258 /**
    259  * g_rand_set_seed:
    260  * @rand_: a #GRand.
    261  * @seed: a value to reinitialize the random number generator.
    262  *
    263  * Sets the seed for the random number generator #GRand to @seed.
    264  **/
    265 void
    266 g_rand_set_seed (GRand* rand, guint32 seed)
    267 {
    268   g_return_if_fail (rand != NULL);
    269 
    270   switch (get_random_version ())
    271     {
    272     case 20:
    273       /* setting initial seeds to mt[N] using         */
    274       /* the generator Line 25 of Table 1 in          */
    275       /* [KNUTH 1981, The Art of Computer Programming */
    276       /*    Vol. 2 (2nd Ed.), pp102]                  */
    277 
    278       if (seed == 0) /* This would make the PRNG procude only zeros */
    279 	seed = 0x6b842128; /* Just set it to another number */
    280 
    281       rand->mt[0]= seed;
    282       for (rand->mti=1; rand->mti<N; rand->mti++)
    283 	rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
    284 
    285       break;
    286     case 22:
    287       /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
    288       /* In the previous version (see above), MSBs of the    */
    289       /* seed affect only MSBs of the array mt[].            */
    290 
    291       rand->mt[0]= seed;
    292       for (rand->mti=1; rand->mti<N; rand->mti++)
    293 	rand->mt[rand->mti] = 1812433253UL *
    294 	  (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
    295       break;
    296     default:
    297       g_assert_not_reached ();
    298     }
    299 }
    300 
    301 /**
    302  * g_rand_set_seed_array:
    303  * @rand_: a #GRand.
    304  * @seed: array to initialize with
    305  * @seed_length: length of array
    306  *
    307  * Initializes the random number generator by an array of
    308  * longs.  Array can be of arbitrary size, though only the
    309  * first 624 values are taken.  This function is useful
    310  * if you have many low entropy seeds, or if you require more then
    311  * 32bits of actual entropy for your application.
    312  *
    313  * Since: 2.4
    314  **/
    315 void
    316 g_rand_set_seed_array (GRand* rand, const guint32 *seed, guint seed_length)
    317 {
    318   int i, j, k;
    319 
    320   g_return_if_fail (rand != NULL);
    321   g_return_if_fail (seed_length >= 1);
    322 
    323   g_rand_set_seed (rand, 19650218UL);
    324 
    325   i=1; j=0;
    326   k = (N>seed_length ? N : seed_length);
    327   for (; k; k--)
    328     {
    329       rand->mt[i] = (rand->mt[i] ^
    330 		     ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
    331 	      + seed[j] + j; /* non linear */
    332       rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
    333       i++; j++;
    334       if (i>=N)
    335         {
    336 	  rand->mt[0] = rand->mt[N-1];
    337 	  i=1;
    338 	}
    339       if (j>=seed_length)
    340 	j=0;
    341     }
    342   for (k=N-1; k; k--)
    343     {
    344       rand->mt[i] = (rand->mt[i] ^
    345 		     ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
    346 	      - i; /* non linear */
    347       rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
    348       i++;
    349       if (i>=N)
    350         {
    351 	  rand->mt[0] = rand->mt[N-1];
    352 	  i=1;
    353 	}
    354     }
    355 
    356   rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
    357 }
    358 
    359 /**
    360  * g_rand_int:
    361  * @rand_: a #GRand.
    362  *
    363  * Returns the next random #guint32 from @rand_ equally distributed over
    364  * the range [0..2^32-1].
    365  *
    366  * Return value: A random number.
    367  **/
    368 guint32
    369 g_rand_int (GRand* rand)
    370 {
    371   guint32 y;
    372   static const guint32 mag01[2]={0x0, MATRIX_A};
    373   /* mag01[x] = x * MATRIX_A  for x=0,1 */
    374 
    375   g_return_val_if_fail (rand != NULL, 0);
    376 
    377   if (rand->mti >= N) { /* generate N words at one time */
    378     int kk;
    379 
    380     for (kk=0;kk<N-M;kk++) {
    381       y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
    382       rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
    383     }
    384     for (;kk<N-1;kk++) {
    385       y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
    386       rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
    387     }
    388     y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
    389     rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
    390 
    391     rand->mti = 0;
    392   }
    393 
    394   y = rand->mt[rand->mti++];
    395   y ^= TEMPERING_SHIFT_U(y);
    396   y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
    397   y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
    398   y ^= TEMPERING_SHIFT_L(y);
    399 
    400   return y;
    401 }
    402 
    403 /* transform [0..2^32] -> [0..1] */
    404 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
    405 
    406 /**
    407  * g_rand_int_range:
    408  * @rand_: a #GRand.
    409  * @begin: lower closed bound of the interval.
    410  * @end: upper open bound of the interval.
    411  *
    412  * Returns the next random #gint32 from @rand_ equally distributed over
    413  * the range [@begin..@end-1].
    414  *
    415  * Return value: A random number.
    416  **/
    417 gint32
    418 g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
    419 {
    420   guint32 dist = end - begin;
    421   guint32 random;
    422 
    423   g_return_val_if_fail (rand != NULL, begin);
    424   g_return_val_if_fail (end > begin, begin);
    425 
    426   switch (get_random_version ())
    427     {
    428     case 20:
    429       if (dist <= 0x10000L) /* 2^16 */
    430 	{
    431 	  /* This method, which only calls g_rand_int once is only good
    432 	   * for (end - begin) <= 2^16, because we only have 32 bits set
    433 	   * from the one call to g_rand_int (). */
    434 
    435 	  /* we are using (trans + trans * trans), because g_rand_int only
    436 	   * covers [0..2^32-1] and thus g_rand_int * trans only covers
    437 	   * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
    438 	   */
    439 
    440 	  gdouble double_rand = g_rand_int (rand) *
    441 	    (G_RAND_DOUBLE_TRANSFORM +
    442 	     G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
    443 
    444 	  random = (gint32) (double_rand * dist);
    445 	}
    446       else
    447 	{
    448 	  /* Now we use g_rand_double_range (), which will set 52 bits for
    449 	     us, so that it is safe to round and still get a decent
    450 	     distribution */
    451 	  random = (gint32) g_rand_double_range (rand, 0, dist);
    452 	}
    453       break;
    454     case 22:
    455       if (dist == 0)
    456 	random = 0;
    457       else
    458 	{
    459 	  /* maxvalue is set to the predecessor of the greatest
    460 	   * multiple of dist less or equal 2^32. */
    461 	  guint32 maxvalue;
    462 	  if (dist <= 0x80000000u) /* 2^31 */
    463 	    {
    464 	      /* maxvalue = 2^32 - 1 - (2^32 % dist) */
    465 	      guint32 leftover = (0x80000000u % dist) * 2;
    466 	      if (leftover >= dist) leftover -= dist;
    467 	      maxvalue = 0xffffffffu - leftover;
    468 	    }
    469 	  else
    470 	    maxvalue = dist - 1;
    471 
    472 	  do
    473 	    random = g_rand_int (rand);
    474 	  while (random > maxvalue);
    475 
    476 	  random %= dist;
    477 	}
    478       break;
    479     default:
    480       random = 0;		/* Quiet GCC */
    481       g_assert_not_reached ();
    482     }
    483 
    484   return begin + random;
    485 }
    486 
    487 /**
    488  * g_rand_double:
    489  * @rand_: a #GRand.
    490  *
    491  * Returns the next random #gdouble from @rand_ equally distributed over
    492  * the range [0..1).
    493  *
    494  * Return value: A random number.
    495  **/
    496 gdouble
    497 g_rand_double (GRand* rand)
    498 {
    499   /* We set all 52 bits after the point for this, not only the first
    500      32. Thats why we need two calls to g_rand_int */
    501   gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
    502   retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
    503 
    504   /* The following might happen due to very bad rounding luck, but
    505    * actually this should be more than rare, we just try again then */
    506   if (retval >= 1.0)
    507     return g_rand_double (rand);
    508 
    509   return retval;
    510 }
    511 
    512 /**
    513  * g_rand_double_range:
    514  * @rand_: a #GRand.
    515  * @begin: lower closed bound of the interval.
    516  * @end: upper open bound of the interval.
    517  *
    518  * Returns the next random #gdouble from @rand_ equally distributed over
    519  * the range [@begin..@end).
    520  *
    521  * Return value: A random number.
    522  **/
    523 gdouble
    524 g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
    525 {
    526   return g_rand_double (rand) * (end - begin) + begin;
    527 }
    528 
    529 /**
    530  * g_random_int:
    531  *
    532  * Return a random #guint32 equally distributed over the range
    533  * [0..2^32-1].
    534  *
    535  * Return value: A random number.
    536  **/
    537 guint32
    538 g_random_int (void)
    539 {
    540   guint32 result;
    541   G_LOCK (global_random);
    542   if (!global_random)
    543     global_random = g_rand_new ();
    544 
    545   result = g_rand_int (global_random);
    546   G_UNLOCK (global_random);
    547   return result;
    548 }
    549 
    550 /**
    551  * g_random_int_range:
    552  * @begin: lower closed bound of the interval.
    553  * @end: upper open bound of the interval.
    554  *
    555  * Returns a random #gint32 equally distributed over the range
    556  * [@begin..@end-1].
    557  *
    558  * Return value: A random number.
    559  **/
    560 gint32
    561 g_random_int_range (gint32 begin, gint32 end)
    562 {
    563   gint32 result;
    564   G_LOCK (global_random);
    565   if (!global_random)
    566     global_random = g_rand_new ();
    567 
    568   result = g_rand_int_range (global_random, begin, end);
    569   G_UNLOCK (global_random);
    570   return result;
    571 }
    572 
    573 /**
    574  * g_random_double:
    575  *
    576  * Returns a random #gdouble equally distributed over the range [0..1).
    577  *
    578  * Return value: A random number.
    579  **/
    580 gdouble
    581 g_random_double (void)
    582 {
    583   double result;
    584   G_LOCK (global_random);
    585   if (!global_random)
    586     global_random = g_rand_new ();
    587 
    588   result = g_rand_double (global_random);
    589   G_UNLOCK (global_random);
    590   return result;
    591 }
    592 
    593 /**
    594  * g_random_double_range:
    595  * @begin: lower closed bound of the interval.
    596  * @end: upper open bound of the interval.
    597  *
    598  * Returns a random #gdouble equally distributed over the range [@begin..@end).
    599  *
    600  * Return value: A random number.
    601  **/
    602 gdouble
    603 g_random_double_range (gdouble begin, gdouble end)
    604 {
    605   double result;
    606   G_LOCK (global_random);
    607   if (!global_random)
    608     global_random = g_rand_new ();
    609 
    610   result = g_rand_double_range (global_random, begin, end);
    611   G_UNLOCK (global_random);
    612   return result;
    613 }
    614 
    615 /**
    616  * g_random_set_seed:
    617  * @seed: a value to reinitialize the global random number generator.
    618  *
    619  * Sets the seed for the global random number generator, which is used
    620  * by the <function>g_random_*</function> functions, to @seed.
    621  **/
    622 void
    623 g_random_set_seed (guint32 seed)
    624 {
    625   G_LOCK (global_random);
    626   if (!global_random)
    627     global_random = g_rand_new_with_seed (seed);
    628   else
    629     g_rand_set_seed (global_random, seed);
    630   G_UNLOCK (global_random);
    631 }
    632 
    633 
    634 #define __G_RAND_C__
    635 #include "galiasdef.c"
    636