1 /************************************************* 2 * Perl-Compatible Regular Expressions * 3 *************************************************/ 4 5 /* PCRE is a library of functions to support regular expressions whose syntax 6 and semantics are as close as possible to those of the Perl 5 language. 7 8 Written by Philip Hazel 9 Copyright (c) 1997-2010 University of Cambridge 10 11 ----------------------------------------------------------------------------- 12 Redistribution and use in source and binary forms, with or without 13 modification, are permitted provided that the following conditions are met: 14 15 * Redistributions of source code must retain the above copyright notice, 16 this list of conditions and the following disclaimer. 17 18 * Redistributions in binary form must reproduce the above copyright 19 notice, this list of conditions and the following disclaimer in the 20 documentation and/or other materials provided with the distribution. 21 22 * Neither the name of the University of Cambridge nor the names of its 23 contributors may be used to endorse or promote products derived from 24 this software without specific prior written permission. 25 26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 POSSIBILITY OF SUCH DAMAGE. 37 ----------------------------------------------------------------------------- 38 */ 39 40 41 /* This module contains the external function pcre_compile(), along with 42 supporting internal functions that are not used by other modules. */ 43 44 45 #ifdef HAVE_CONFIG_H 46 #include "config.h" 47 #endif 48 49 #define NLBLOCK cd /* Block containing newline information */ 50 #define PSSTART start_pattern /* Field containing processed string start */ 51 #define PSEND end_pattern /* Field containing processed string end */ 52 53 #include "pcre_internal.h" 54 55 56 /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is 57 also used by pcretest. PCRE_DEBUG is not defined when building a production 58 library. */ 59 60 #ifdef PCRE_DEBUG 61 #include "pcre_printint.src" 62 #endif 63 64 65 /* Macro for setting individual bits in class bitmaps. */ 66 67 #define SETBIT(a,b) a[b/8] |= (1 << (b%8)) 68 69 /* Maximum length value to check against when making sure that the integer that 70 holds the compiled pattern length does not overflow. We make it a bit less than 71 INT_MAX to allow for adding in group terminating bytes, so that we don't have 72 to check them every time. */ 73 74 #define OFLOW_MAX (INT_MAX - 20) 75 76 77 /************************************************* 78 * Code parameters and static tables * 79 *************************************************/ 80 81 /* This value specifies the size of stack workspace that is used during the 82 first pre-compile phase that determines how much memory is required. The regex 83 is partly compiled into this space, but the compiled parts are discarded as 84 soon as they can be, so that hopefully there will never be an overrun. The code 85 does, however, check for an overrun. The largest amount I've seen used is 218, 86 so this number is very generous. 87 88 The same workspace is used during the second, actual compile phase for 89 remembering forward references to groups so that they can be filled in at the 90 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE 91 is 4 there is plenty of room. */ 92 93 #define COMPILE_WORK_SIZE (4096) 94 95 /* The overrun tests check for a slightly smaller size so that they detect the 96 overrun before it actually does run off the end of the data block. */ 97 98 #define WORK_SIZE_CHECK (COMPILE_WORK_SIZE - 100) 99 100 101 /* Table for handling escaped characters in the range '0'-'z'. Positive returns 102 are simple data values; negative values are for special things like \d and so 103 on. Zero means further processing is needed (for things like \x), or the escape 104 is invalid. */ 105 106 #ifndef EBCDIC 107 108 /* This is the "normal" table for ASCII systems or for EBCDIC systems running 109 in UTF-8 mode. */ 110 111 static const short int escapes[] = { 112 0, 0, 113 0, 0, 114 0, 0, 115 0, 0, 116 0, 0, 117 CHAR_COLON, CHAR_SEMICOLON, 118 CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, 119 CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, 120 CHAR_COMMERCIAL_AT, -ESC_A, 121 -ESC_B, -ESC_C, 122 -ESC_D, -ESC_E, 123 0, -ESC_G, 124 -ESC_H, 0, 125 0, -ESC_K, 126 0, 0, 127 -ESC_N, 0, 128 -ESC_P, -ESC_Q, 129 -ESC_R, -ESC_S, 130 0, 0, 131 -ESC_V, -ESC_W, 132 -ESC_X, 0, 133 -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, 134 CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, 135 CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, 136 CHAR_GRAVE_ACCENT, 7, 137 -ESC_b, 0, 138 -ESC_d, ESC_e, 139 ESC_f, 0, 140 -ESC_h, 0, 141 0, -ESC_k, 142 0, 0, 143 ESC_n, 0, 144 -ESC_p, 0, 145 ESC_r, -ESC_s, 146 ESC_tee, 0, 147 -ESC_v, -ESC_w, 148 0, 0, 149 -ESC_z 150 }; 151 152 #else 153 154 /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ 155 156 static const short int escapes[] = { 157 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', 158 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, 159 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', 160 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, 161 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', 162 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, 163 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', 164 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, 165 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, 166 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, 167 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, 168 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, 169 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, 170 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, 171 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', 172 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, 173 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, 174 /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, 175 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, 176 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, 177 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, 178 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, 179 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 180 }; 181 #endif 182 183 184 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is 185 searched linearly. Put all the names into a single string, in order to reduce 186 the number of relocations when a shared library is dynamically linked. The 187 string is built from string macros so that it works in UTF-8 mode on EBCDIC 188 platforms. */ 189 190 typedef struct verbitem { 191 int len; /* Length of verb name */ 192 int op; /* Op when no arg, or -1 if arg mandatory */ 193 int op_arg; /* Op when arg present, or -1 if not allowed */ 194 } verbitem; 195 196 static const char verbnames[] = 197 "\0" /* Empty name is a shorthand for MARK */ 198 STRING_MARK0 199 STRING_ACCEPT0 200 STRING_COMMIT0 201 STRING_F0 202 STRING_FAIL0 203 STRING_PRUNE0 204 STRING_SKIP0 205 STRING_THEN; 206 207 static const verbitem verbs[] = { 208 { 0, -1, OP_MARK }, 209 { 4, -1, OP_MARK }, 210 { 6, OP_ACCEPT, -1 }, 211 { 6, OP_COMMIT, -1 }, 212 { 1, OP_FAIL, -1 }, 213 { 4, OP_FAIL, -1 }, 214 { 5, OP_PRUNE, OP_PRUNE_ARG }, 215 { 4, OP_SKIP, OP_SKIP_ARG }, 216 { 4, OP_THEN, OP_THEN_ARG } 217 }; 218 219 static const int verbcount = sizeof(verbs)/sizeof(verbitem); 220 221 222 /* Tables of names of POSIX character classes and their lengths. The names are 223 now all in a single string, to reduce the number of relocations when a shared 224 library is dynamically loaded. The list of lengths is terminated by a zero 225 length entry. The first three must be alpha, lower, upper, as this is assumed 226 for handling case independence. */ 227 228 static const char posix_names[] = 229 STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 230 STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 231 STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 232 STRING_word0 STRING_xdigit; 233 234 static const uschar posix_name_lengths[] = { 235 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; 236 237 /* Table of class bit maps for each POSIX class. Each class is formed from a 238 base map, with an optional addition or removal of another map. Then, for some 239 classes, there is some additional tweaking: for [:blank:] the vertical space 240 characters are removed, and for [:alpha:] and [:alnum:] the underscore 241 character is removed. The triples in the table consist of the base map offset, 242 second map offset or -1 if no second map, and a non-negative value for map 243 addition or a negative value for map subtraction (if there are two maps). The 244 absolute value of the third field has these meanings: 0 => no tweaking, 1 => 245 remove vertical space characters, 2 => remove underscore. */ 246 247 static const int posix_class_maps[] = { 248 cbit_word, cbit_digit, -2, /* alpha */ 249 cbit_lower, -1, 0, /* lower */ 250 cbit_upper, -1, 0, /* upper */ 251 cbit_word, -1, 2, /* alnum - word without underscore */ 252 cbit_print, cbit_cntrl, 0, /* ascii */ 253 cbit_space, -1, 1, /* blank - a GNU extension */ 254 cbit_cntrl, -1, 0, /* cntrl */ 255 cbit_digit, -1, 0, /* digit */ 256 cbit_graph, -1, 0, /* graph */ 257 cbit_print, -1, 0, /* print */ 258 cbit_punct, -1, 0, /* punct */ 259 cbit_space, -1, 0, /* space */ 260 cbit_word, -1, 0, /* word - a Perl extension */ 261 cbit_xdigit,-1, 0 /* xdigit */ 262 }; 263 264 /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class 265 substitutes must be in the order of the names, defined above, and there are 266 both positive and negative cases. NULL means no substitute. */ 267 268 #ifdef SUPPORT_UCP 269 static const uschar *substitutes[] = { 270 (uschar *)"\\P{Nd}", /* \D */ 271 (uschar *)"\\p{Nd}", /* \d */ 272 (uschar *)"\\P{Xsp}", /* \S */ /* NOTE: Xsp is Perl space */ 273 (uschar *)"\\p{Xsp}", /* \s */ 274 (uschar *)"\\P{Xwd}", /* \W */ 275 (uschar *)"\\p{Xwd}" /* \w */ 276 }; 277 278 static const uschar *posix_substitutes[] = { 279 (uschar *)"\\p{L}", /* alpha */ 280 (uschar *)"\\p{Ll}", /* lower */ 281 (uschar *)"\\p{Lu}", /* upper */ 282 (uschar *)"\\p{Xan}", /* alnum */ 283 NULL, /* ascii */ 284 (uschar *)"\\h", /* blank */ 285 NULL, /* cntrl */ 286 (uschar *)"\\p{Nd}", /* digit */ 287 NULL, /* graph */ 288 NULL, /* print */ 289 NULL, /* punct */ 290 (uschar *)"\\p{Xps}", /* space */ /* NOTE: Xps is POSIX space */ 291 (uschar *)"\\p{Xwd}", /* word */ 292 NULL, /* xdigit */ 293 /* Negated cases */ 294 (uschar *)"\\P{L}", /* ^alpha */ 295 (uschar *)"\\P{Ll}", /* ^lower */ 296 (uschar *)"\\P{Lu}", /* ^upper */ 297 (uschar *)"\\P{Xan}", /* ^alnum */ 298 NULL, /* ^ascii */ 299 (uschar *)"\\H", /* ^blank */ 300 NULL, /* ^cntrl */ 301 (uschar *)"\\P{Nd}", /* ^digit */ 302 NULL, /* ^graph */ 303 NULL, /* ^print */ 304 NULL, /* ^punct */ 305 (uschar *)"\\P{Xps}", /* ^space */ /* NOTE: Xps is POSIX space */ 306 (uschar *)"\\P{Xwd}", /* ^word */ 307 NULL /* ^xdigit */ 308 }; 309 #define POSIX_SUBSIZE (sizeof(posix_substitutes)/sizeof(uschar *)) 310 #endif 311 312 #define STRING(a) # a 313 #define XSTRING(s) STRING(s) 314 315 /* The texts of compile-time error messages. These are "char *" because they 316 are passed to the outside world. Do not ever re-use any error number, because 317 they are documented. Always add a new error instead. Messages marked DEAD below 318 are no longer used. This used to be a table of strings, but in order to reduce 319 the number of relocations needed when a shared library is loaded dynamically, 320 it is now one long string. We cannot use a table of offsets, because the 321 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we 322 simply count through to the one we want - this isn't a performance issue 323 because these strings are used only when there is a compilation error. 324 325 Each substring ends with \0 to insert a null character. This includes the final 326 substring, so that the whole string ends with \0\0, which can be detected when 327 counting through. */ 328 329 static const char error_texts[] = 330 "no error\0" 331 "\\ at end of pattern\0" 332 "\\c at end of pattern\0" 333 "unrecognized character follows \\\0" 334 "numbers out of order in {} quantifier\0" 335 /* 5 */ 336 "number too big in {} quantifier\0" 337 "missing terminating ] for character class\0" 338 "invalid escape sequence in character class\0" 339 "range out of order in character class\0" 340 "nothing to repeat\0" 341 /* 10 */ 342 "operand of unlimited repeat could match the empty string\0" /** DEAD **/ 343 "internal error: unexpected repeat\0" 344 "unrecognized character after (? or (?-\0" 345 "POSIX named classes are supported only within a class\0" 346 "missing )\0" 347 /* 15 */ 348 "reference to non-existent subpattern\0" 349 "erroffset passed as NULL\0" 350 "unknown option bit(s) set\0" 351 "missing ) after comment\0" 352 "parentheses nested too deeply\0" /** DEAD **/ 353 /* 20 */ 354 "regular expression is too large\0" 355 "failed to get memory\0" 356 "unmatched parentheses\0" 357 "internal error: code overflow\0" 358 "unrecognized character after (?<\0" 359 /* 25 */ 360 "lookbehind assertion is not fixed length\0" 361 "malformed number or name after (?(\0" 362 "conditional group contains more than two branches\0" 363 "assertion expected after (?(\0" 364 "(?R or (?[+-]digits must be followed by )\0" 365 /* 30 */ 366 "unknown POSIX class name\0" 367 "POSIX collating elements are not supported\0" 368 "this version of PCRE is not compiled with PCRE_UTF8 support\0" 369 "spare error\0" /** DEAD **/ 370 "character value in \\x{...} sequence is too large\0" 371 /* 35 */ 372 "invalid condition (?(0)\0" 373 "\\C not allowed in lookbehind assertion\0" 374 "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" 375 "number after (?C is > 255\0" 376 "closing ) for (?C expected\0" 377 /* 40 */ 378 "recursive call could loop indefinitely\0" 379 "unrecognized character after (?P\0" 380 "syntax error in subpattern name (missing terminator)\0" 381 "two named subpatterns have the same name\0" 382 "invalid UTF-8 string\0" 383 /* 45 */ 384 "support for \\P, \\p, and \\X has not been compiled\0" 385 "malformed \\P or \\p sequence\0" 386 "unknown property name after \\P or \\p\0" 387 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" 388 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" 389 /* 50 */ 390 "repeated subpattern is too long\0" /** DEAD **/ 391 "octal value is greater than \\377 (not in UTF-8 mode)\0" 392 "internal error: overran compiling workspace\0" 393 "internal error: previously-checked referenced subpattern not found\0" 394 "DEFINE group contains more than one branch\0" 395 /* 55 */ 396 "repeating a DEFINE group is not allowed\0" 397 "inconsistent NEWLINE options\0" 398 "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" 399 "a numbered reference must not be zero\0" 400 "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" 401 /* 60 */ 402 "(*VERB) not recognized\0" 403 "number is too big\0" 404 "subpattern name expected\0" 405 "digit expected after (?+\0" 406 "] is an invalid data character in JavaScript compatibility mode\0" 407 /* 65 */ 408 "different names for subpatterns of the same number are not allowed\0" 409 "(*MARK) must have an argument\0" 410 "this version of PCRE is not compiled with PCRE_UCP support\0" 411 "\\c must be followed by an ASCII character\0" 412 ; 413 414 /* Table to identify digits and hex digits. This is used when compiling 415 patterns. Note that the tables in chartables are dependent on the locale, and 416 may mark arbitrary characters as digits - but the PCRE compiling code expects 417 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have 418 a private table here. It costs 256 bytes, but it is a lot faster than doing 419 character value tests (at least in some simple cases I timed), and in some 420 applications one wants PCRE to compile efficiently as well as match 421 efficiently. 422 423 For convenience, we use the same bit definitions as in chartables: 424 425 0x04 decimal digit 426 0x08 hexadecimal digit 427 428 Then we can use ctype_digit and ctype_xdigit in the code. */ 429 430 #ifndef EBCDIC 431 432 /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in 433 UTF-8 mode. */ 434 435 static const unsigned char digitab[] = 436 { 437 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ 438 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ 439 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ 440 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ 441 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ 442 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ 443 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ 444 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ 445 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ 446 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ 447 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ 448 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ 449 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ 450 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ 451 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ 452 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ 453 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ 454 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ 455 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ 456 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ 457 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ 458 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ 459 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ 460 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ 461 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ 462 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ 463 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ 464 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ 465 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ 466 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ 467 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ 468 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ 469 470 #else 471 472 /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ 473 474 static const unsigned char digitab[] = 475 { 476 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ 477 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ 478 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ 479 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ 480 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ 481 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ 482 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ 483 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ 484 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ 485 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ 486 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ 487 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ 488 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ 489 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ 490 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ 491 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ 492 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ 493 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ 494 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ 495 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ 496 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ 497 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ 498 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ 499 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ 500 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ 501 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ 502 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ 503 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ 504 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ 505 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ 506 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ 507 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ 508 509 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */ 510 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ 511 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ 512 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ 513 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ 514 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ 515 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ 516 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ 517 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ 518 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ 519 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ 520 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ 521 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ 522 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ 523 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ 524 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ 525 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ 526 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ 527 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ 528 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ 529 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ 530 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ 531 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ 532 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ 533 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ 534 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ 535 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ 536 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ 537 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ 538 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ 539 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ 540 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ 541 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ 542 #endif 543 544 545 /* Definition to allow mutual recursion */ 546 547 static BOOL 548 compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int, 549 int *, int *, branch_chain *, compile_data *, int *); 550 551 552 553 /************************************************* 554 * Find an error text * 555 *************************************************/ 556 557 /* The error texts are now all in one long string, to save on relocations. As 558 some of the text is of unknown length, we can't use a table of offsets. 559 Instead, just count through the strings. This is not a performance issue 560 because it happens only when there has been a compilation error. 561 562 Argument: the error number 563 Returns: pointer to the error string 564 */ 565 566 static const char * 567 find_error_text(int n) 568 { 569 const char *s = error_texts; 570 for (; n > 0; n--) 571 { 572 while (*s++ != 0) {}; 573 if (*s == 0) return "Error text not found (please report)"; 574 } 575 return s; 576 } 577 578 579 /************************************************* 580 * Handle escapes * 581 *************************************************/ 582 583 /* This function is called when a \ has been encountered. It either returns a 584 positive value for a simple escape such as \n, or a negative value which 585 encodes one of the more complicated things such as \d. A backreference to group 586 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When 587 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry, 588 ptr is pointing at the \. On exit, it is on the final character of the escape 589 sequence. 590 591 Arguments: 592 ptrptr points to the pattern position pointer 593 errorcodeptr points to the errorcode variable 594 bracount number of previous extracting brackets 595 options the options bits 596 isclass TRUE if inside a character class 597 598 Returns: zero or positive => a data character 599 negative => a special escape sequence 600 on error, errorcodeptr is set 601 */ 602 603 static int 604 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount, 605 int options, BOOL isclass) 606 { 607 BOOL utf8 = (options & PCRE_UTF8) != 0; 608 const uschar *ptr = *ptrptr + 1; 609 int c, i; 610 611 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ 612 ptr--; /* Set pointer back to the last byte */ 613 614 /* If backslash is at the end of the pattern, it's an error. */ 615 616 if (c == 0) *errorcodeptr = ERR1; 617 618 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup 619 in a table. A non-zero result is something that can be returned immediately. 620 Otherwise further processing may be required. */ 621 622 #ifndef EBCDIC /* ASCII/UTF-8 coding */ 623 else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */ 624 else if ((i = escapes[c - CHAR_0]) != 0) c = i; 625 626 #else /* EBCDIC coding */ 627 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */ 628 else if ((i = escapes[c - 0x48]) != 0) c = i; 629 #endif 630 631 /* Escapes that need further processing, or are illegal. */ 632 633 else 634 { 635 const uschar *oldptr; 636 BOOL braced, negated; 637 638 switch (c) 639 { 640 /* A number of Perl escapes are not handled by PCRE. We give an explicit 641 error. */ 642 643 case CHAR_l: 644 case CHAR_L: 645 case CHAR_u: 646 case CHAR_U: 647 *errorcodeptr = ERR37; 648 break; 649 650 /* \g must be followed by one of a number of specific things: 651 652 (1) A number, either plain or braced. If positive, it is an absolute 653 backreference. If negative, it is a relative backreference. This is a Perl 654 5.10 feature. 655 656 (2) Perl 5.10 also supports \g{name} as a reference to a named group. This 657 is part of Perl's movement towards a unified syntax for back references. As 658 this is synonymous with \k{name}, we fudge it up by pretending it really 659 was \k. 660 661 (3) For Oniguruma compatibility we also support \g followed by a name or a 662 number either in angle brackets or in single quotes. However, these are 663 (possibly recursive) subroutine calls, _not_ backreferences. Just return 664 the -ESC_g code (cf \k). */ 665 666 case CHAR_g: 667 if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) 668 { 669 c = -ESC_g; 670 break; 671 } 672 673 /* Handle the Perl-compatible cases */ 674 675 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) 676 { 677 const uschar *p; 678 for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++) 679 if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break; 680 if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET) 681 { 682 c = -ESC_k; 683 break; 684 } 685 braced = TRUE; 686 ptr++; 687 } 688 else braced = FALSE; 689 690 if (ptr[1] == CHAR_MINUS) 691 { 692 negated = TRUE; 693 ptr++; 694 } 695 else negated = FALSE; 696 697 c = 0; 698 while ((digitab[ptr[1]] & ctype_digit) != 0) 699 c = c * 10 + *(++ptr) - CHAR_0; 700 701 if (c < 0) /* Integer overflow */ 702 { 703 *errorcodeptr = ERR61; 704 break; 705 } 706 707 if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) 708 { 709 *errorcodeptr = ERR57; 710 break; 711 } 712 713 if (c == 0) 714 { 715 *errorcodeptr = ERR58; 716 break; 717 } 718 719 if (negated) 720 { 721 if (c > bracount) 722 { 723 *errorcodeptr = ERR15; 724 break; 725 } 726 c = bracount - (c - 1); 727 } 728 729 c = -(ESC_REF + c); 730 break; 731 732 /* The handling of escape sequences consisting of a string of digits 733 starting with one that is not zero is not straightforward. By experiment, 734 the way Perl works seems to be as follows: 735 736 Outside a character class, the digits are read as a decimal number. If the 737 number is less than 10, or if there are that many previous extracting 738 left brackets, then it is a back reference. Otherwise, up to three octal 739 digits are read to form an escaped byte. Thus \123 is likely to be octal 740 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal 741 value is greater than 377, the least significant 8 bits are taken. Inside a 742 character class, \ followed by a digit is always an octal number. */ 743 744 case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: 745 case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: 746 747 if (!isclass) 748 { 749 oldptr = ptr; 750 c -= CHAR_0; 751 while ((digitab[ptr[1]] & ctype_digit) != 0) 752 c = c * 10 + *(++ptr) - CHAR_0; 753 if (c < 0) /* Integer overflow */ 754 { 755 *errorcodeptr = ERR61; 756 break; 757 } 758 if (c < 10 || c <= bracount) 759 { 760 c = -(ESC_REF + c); 761 break; 762 } 763 ptr = oldptr; /* Put the pointer back and fall through */ 764 } 765 766 /* Handle an octal number following \. If the first digit is 8 or 9, Perl 767 generates a binary zero byte and treats the digit as a following literal. 768 Thus we have to pull back the pointer by one. */ 769 770 if ((c = *ptr) >= CHAR_8) 771 { 772 ptr--; 773 c = 0; 774 break; 775 } 776 777 /* \0 always starts an octal number, but we may drop through to here with a 778 larger first octal digit. The original code used just to take the least 779 significant 8 bits of octal numbers (I think this is what early Perls used 780 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more 781 than 3 octal digits. */ 782 783 case CHAR_0: 784 c -= CHAR_0; 785 while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) 786 c = c * 8 + *(++ptr) - CHAR_0; 787 if (!utf8 && c > 255) *errorcodeptr = ERR51; 788 break; 789 790 /* \x is complicated. \x{ddd} is a character number which can be greater 791 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is 792 treated as a data character. */ 793 794 case CHAR_x: 795 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) 796 { 797 const uschar *pt = ptr + 2; 798 int count = 0; 799 800 c = 0; 801 while ((digitab[*pt] & ctype_xdigit) != 0) 802 { 803 register int cc = *pt++; 804 if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ 805 count++; 806 807 #ifndef EBCDIC /* ASCII/UTF-8 coding */ 808 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ 809 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); 810 #else /* EBCDIC coding */ 811 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ 812 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); 813 #endif 814 } 815 816 if (*pt == CHAR_RIGHT_CURLY_BRACKET) 817 { 818 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34; 819 ptr = pt; 820 break; 821 } 822 823 /* If the sequence of hex digits does not end with '}', then we don't 824 recognize this construct; fall through to the normal \x handling. */ 825 } 826 827 /* Read just a single-byte hex-defined char */ 828 829 c = 0; 830 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0) 831 { 832 int cc; /* Some compilers don't like */ 833 cc = *(++ptr); /* ++ in initializers */ 834 #ifndef EBCDIC /* ASCII/UTF-8 coding */ 835 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ 836 c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); 837 #else /* EBCDIC coding */ 838 if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ 839 c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); 840 #endif 841 } 842 break; 843 844 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. 845 An error is given if the byte following \c is not an ASCII character. This 846 coding is ASCII-specific, but then the whole concept of \cx is 847 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ 848 849 case CHAR_c: 850 c = *(++ptr); 851 if (c == 0) 852 { 853 *errorcodeptr = ERR2; 854 break; 855 } 856 #ifndef EBCDIC /* ASCII/UTF-8 coding */ 857 if (c > 127) /* Excludes all non-ASCII in either mode */ 858 { 859 *errorcodeptr = ERR68; 860 break; 861 } 862 if (c >= CHAR_a && c <= CHAR_z) c -= 32; 863 c ^= 0x40; 864 #else /* EBCDIC coding */ 865 if (c >= CHAR_a && c <= CHAR_z) c += 64; 866 c ^= 0xC0; 867 #endif 868 break; 869 870 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any 871 other alphanumeric following \ is an error if PCRE_EXTRA was set; 872 otherwise, for Perl compatibility, it is a literal. This code looks a bit 873 odd, but there used to be some cases other than the default, and there may 874 be again in future, so I haven't "optimized" it. */ 875 876 default: 877 if ((options & PCRE_EXTRA) != 0) switch(c) 878 { 879 default: 880 *errorcodeptr = ERR3; 881 break; 882 } 883 break; 884 } 885 } 886 887 /* Perl supports \N{name} for character names, as well as plain \N for "not 888 newline". PCRE does not support \N{name}. */ 889 890 if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET) 891 *errorcodeptr = ERR37; 892 893 /* If PCRE_UCP is set, we change the values for \d etc. */ 894 895 if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w) 896 c -= (ESC_DU - ESC_D); 897 898 /* Set the pointer to the final character before returning. */ 899 900 *ptrptr = ptr; 901 return c; 902 } 903 904 905 906 #ifdef SUPPORT_UCP 907 /************************************************* 908 * Handle \P and \p * 909 *************************************************/ 910 911 /* This function is called after \P or \p has been encountered, provided that 912 PCRE is compiled with support for Unicode properties. On entry, ptrptr is 913 pointing at the P or p. On exit, it is pointing at the final character of the 914 escape sequence. 915 916 Argument: 917 ptrptr points to the pattern position pointer 918 negptr points to a boolean that is set TRUE for negation else FALSE 919 dptr points to an int that is set to the detailed property value 920 errorcodeptr points to the error code variable 921 922 Returns: type value from ucp_type_table, or -1 for an invalid type 923 */ 924 925 static int 926 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr) 927 { 928 int c, i, bot, top; 929 const uschar *ptr = *ptrptr; 930 char name[32]; 931 932 c = *(++ptr); 933 if (c == 0) goto ERROR_RETURN; 934 935 *negptr = FALSE; 936 937 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for 938 negation. */ 939 940 if (c == CHAR_LEFT_CURLY_BRACKET) 941 { 942 if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) 943 { 944 *negptr = TRUE; 945 ptr++; 946 } 947 for (i = 0; i < (int)sizeof(name) - 1; i++) 948 { 949 c = *(++ptr); 950 if (c == 0) goto ERROR_RETURN; 951 if (c == CHAR_RIGHT_CURLY_BRACKET) break; 952 name[i] = c; 953 } 954 if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; 955 name[i] = 0; 956 } 957 958 /* Otherwise there is just one following character */ 959 960 else 961 { 962 name[0] = c; 963 name[1] = 0; 964 } 965 966 *ptrptr = ptr; 967 968 /* Search for a recognized property name using binary chop */ 969 970 bot = 0; 971 top = _pcre_utt_size; 972 973 while (bot < top) 974 { 975 i = (bot + top) >> 1; 976 c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset); 977 if (c == 0) 978 { 979 *dptr = _pcre_utt[i].value; 980 return _pcre_utt[i].type; 981 } 982 if (c > 0) bot = i + 1; else top = i; 983 } 984 985 *errorcodeptr = ERR47; 986 *ptrptr = ptr; 987 return -1; 988 989 ERROR_RETURN: 990 *errorcodeptr = ERR46; 991 *ptrptr = ptr; 992 return -1; 993 } 994 #endif 995 996 997 998 999 /************************************************* 1000 * Check for counted repeat * 1001 *************************************************/ 1002 1003 /* This function is called when a '{' is encountered in a place where it might 1004 start a quantifier. It looks ahead to see if it really is a quantifier or not. 1005 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} 1006 where the ddds are digits. 1007 1008 Arguments: 1009 p pointer to the first char after '{' 1010 1011 Returns: TRUE or FALSE 1012 */ 1013 1014 static BOOL 1015 is_counted_repeat(const uschar *p) 1016 { 1017 if ((digitab[*p++] & ctype_digit) == 0) return FALSE; 1018 while ((digitab[*p] & ctype_digit) != 0) p++; 1019 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; 1020 1021 if (*p++ != CHAR_COMMA) return FALSE; 1022 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; 1023 1024 if ((digitab[*p++] & ctype_digit) == 0) return FALSE; 1025 while ((digitab[*p] & ctype_digit) != 0) p++; 1026 1027 return (*p == CHAR_RIGHT_CURLY_BRACKET); 1028 } 1029 1030 1031 1032 /************************************************* 1033 * Read repeat counts * 1034 *************************************************/ 1035 1036 /* Read an item of the form {n,m} and return the values. This is called only 1037 after is_counted_repeat() has confirmed that a repeat-count quantifier exists, 1038 so the syntax is guaranteed to be correct, but we need to check the values. 1039 1040 Arguments: 1041 p pointer to first char after '{' 1042 minp pointer to int for min 1043 maxp pointer to int for max 1044 returned as -1 if no max 1045 errorcodeptr points to error code variable 1046 1047 Returns: pointer to '}' on success; 1048 current ptr on error, with errorcodeptr set non-zero 1049 */ 1050 1051 static const uschar * 1052 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr) 1053 { 1054 int min = 0; 1055 int max = -1; 1056 1057 /* Read the minimum value and do a paranoid check: a negative value indicates 1058 an integer overflow. */ 1059 1060 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0; 1061 if (min < 0 || min > 65535) 1062 { 1063 *errorcodeptr = ERR5; 1064 return p; 1065 } 1066 1067 /* Read the maximum value if there is one, and again do a paranoid on its size. 1068 Also, max must not be less than min. */ 1069 1070 if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else 1071 { 1072 if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) 1073 { 1074 max = 0; 1075 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0; 1076 if (max < 0 || max > 65535) 1077 { 1078 *errorcodeptr = ERR5; 1079 return p; 1080 } 1081 if (max < min) 1082 { 1083 *errorcodeptr = ERR4; 1084 return p; 1085 } 1086 } 1087 } 1088 1089 /* Fill in the required variables, and pass back the pointer to the terminating 1090 '}'. */ 1091 1092 *minp = min; 1093 *maxp = max; 1094 return p; 1095 } 1096 1097 1098 1099 /************************************************* 1100 * Subroutine for finding forward reference * 1101 *************************************************/ 1102 1103 /* This recursive function is called only from find_parens() below. The 1104 top-level call starts at the beginning of the pattern. All other calls must 1105 start at a parenthesis. It scans along a pattern's text looking for capturing 1106 subpatterns, and counting them. If it finds a named pattern that matches the 1107 name it is given, it returns its number. Alternatively, if the name is NULL, it 1108 returns when it reaches a given numbered subpattern. Recursion is used to keep 1109 track of subpatterns that reset the capturing group numbers - the (?| feature. 1110 1111 This function was originally called only from the second pass, in which we know 1112 that if (?< or (?' or (?P< is encountered, the name will be correctly 1113 terminated because that is checked in the first pass. There is now one call to 1114 this function in the first pass, to check for a recursive back reference by 1115 name (so that we can make the whole group atomic). In this case, we need check 1116 only up to the current position in the pattern, and that is still OK because 1117 and previous occurrences will have been checked. To make this work, the test 1118 for "end of pattern" is a check against cd->end_pattern in the main loop, 1119 instead of looking for a binary zero. This means that the special first-pass 1120 call can adjust cd->end_pattern temporarily. (Checks for binary zero while 1121 processing items within the loop are OK, because afterwards the main loop will 1122 terminate.) 1123 1124 Arguments: 1125 ptrptr address of the current character pointer (updated) 1126 cd compile background data 1127 name name to seek, or NULL if seeking a numbered subpattern 1128 lorn name length, or subpattern number if name is NULL 1129 xmode TRUE if we are in /x mode 1130 utf8 TRUE if we are in UTF-8 mode 1131 count pointer to the current capturing subpattern number (updated) 1132 1133 Returns: the number of the named subpattern, or -1 if not found 1134 */ 1135 1136 static int 1137 find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn, 1138 BOOL xmode, BOOL utf8, int *count) 1139 { 1140 uschar *ptr = *ptrptr; 1141 int start_count = *count; 1142 int hwm_count = start_count; 1143 BOOL dup_parens = FALSE; 1144 1145 /* If the first character is a parenthesis, check on the type of group we are 1146 dealing with. The very first call may not start with a parenthesis. */ 1147 1148 if (ptr[0] == CHAR_LEFT_PARENTHESIS) 1149 { 1150 /* Handle specials such as (*SKIP) or (*UTF8) etc. */ 1151 1152 if (ptr[1] == CHAR_ASTERISK) ptr += 2; 1153 1154 /* Handle a normal, unnamed capturing parenthesis. */ 1155 1156 else if (ptr[1] != CHAR_QUESTION_MARK) 1157 { 1158 *count += 1; 1159 if (name == NULL && *count == lorn) return *count; 1160 ptr++; 1161 } 1162 1163 /* All cases now have (? at the start. Remember when we are in a group 1164 where the parenthesis numbers are duplicated. */ 1165 1166 else if (ptr[2] == CHAR_VERTICAL_LINE) 1167 { 1168 ptr += 3; 1169 dup_parens = TRUE; 1170 } 1171 1172 /* Handle comments; all characters are allowed until a ket is reached. */ 1173 1174 else if (ptr[2] == CHAR_NUMBER_SIGN) 1175 { 1176 for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break; 1177 goto FAIL_EXIT; 1178 } 1179 1180 /* Handle a condition. If it is an assertion, just carry on so that it 1181 is processed as normal. If not, skip to the closing parenthesis of the 1182 condition (there can't be any nested parens). */ 1183 1184 else if (ptr[2] == CHAR_LEFT_PARENTHESIS) 1185 { 1186 ptr += 2; 1187 if (ptr[1] != CHAR_QUESTION_MARK) 1188 { 1189 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; 1190 if (*ptr != 0) ptr++; 1191 } 1192 } 1193 1194 /* Start with (? but not a condition. */ 1195 1196 else 1197 { 1198 ptr += 2; 1199 if (*ptr == CHAR_P) ptr++; /* Allow optional P */ 1200 1201 /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ 1202 1203 if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && 1204 ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) 1205 { 1206 int term; 1207 const uschar *thisname; 1208 *count += 1; 1209 if (name == NULL && *count == lorn) return *count; 1210 term = *ptr++; 1211 if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; 1212 thisname = ptr; 1213 while (*ptr != term) ptr++; 1214 if (name != NULL && lorn == ptr - thisname && 1215 strncmp((const char *)name, (const char *)thisname, lorn) == 0) 1216 return *count; 1217 term++; 1218 } 1219 } 1220 } 1221 1222 /* Past any initial parenthesis handling, scan for parentheses or vertical 1223 bars. Stop if we get to cd->end_pattern. Note that this is important for the 1224 first-pass call when this value is temporarily adjusted to stop at the current 1225 position. So DO NOT change this to a test for binary zero. */ 1226 1227 for (; ptr < cd->end_pattern; ptr++) 1228 { 1229 /* Skip over backslashed characters and also entire \Q...\E */ 1230 1231 if (*ptr == CHAR_BACKSLASH) 1232 { 1233 if (*(++ptr) == 0) goto FAIL_EXIT; 1234 if (*ptr == CHAR_Q) for (;;) 1235 { 1236 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; 1237 if (*ptr == 0) goto FAIL_EXIT; 1238 if (*(++ptr) == CHAR_E) break; 1239 } 1240 continue; 1241 } 1242 1243 /* Skip over character classes; this logic must be similar to the way they 1244 are handled for real. If the first character is '^', skip it. Also, if the 1245 first few characters (either before or after ^) are \Q\E or \E we skip them 1246 too. This makes for compatibility with Perl. Note the use of STR macros to 1247 encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ 1248 1249 if (*ptr == CHAR_LEFT_SQUARE_BRACKET) 1250 { 1251 BOOL negate_class = FALSE; 1252 for (;;) 1253 { 1254 if (ptr[1] == CHAR_BACKSLASH) 1255 { 1256 if (ptr[2] == CHAR_E) 1257 ptr+= 2; 1258 else if (strncmp((const char *)ptr+2, 1259 STR_Q STR_BACKSLASH STR_E, 3) == 0) 1260 ptr += 4; 1261 else 1262 break; 1263 } 1264 else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) 1265 { 1266 negate_class = TRUE; 1267 ptr++; 1268 } 1269 else break; 1270 } 1271 1272 /* If the next character is ']', it is a data character that must be 1273 skipped, except in JavaScript compatibility mode. */ 1274 1275 if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && 1276 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) 1277 ptr++; 1278 1279 while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) 1280 { 1281 if (*ptr == 0) return -1; 1282 if (*ptr == CHAR_BACKSLASH) 1283 { 1284 if (*(++ptr) == 0) goto FAIL_EXIT; 1285 if (*ptr == CHAR_Q) for (;;) 1286 { 1287 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; 1288 if (*ptr == 0) goto FAIL_EXIT; 1289 if (*(++ptr) == CHAR_E) break; 1290 } 1291 continue; 1292 } 1293 } 1294 continue; 1295 } 1296 1297 /* Skip comments in /x mode */ 1298 1299 if (xmode && *ptr == CHAR_NUMBER_SIGN) 1300 { 1301 ptr++; 1302 while (*ptr != 0) 1303 { 1304 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } 1305 ptr++; 1306 #ifdef SUPPORT_UTF8 1307 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; 1308 #endif 1309 } 1310 if (*ptr == 0) goto FAIL_EXIT; 1311 continue; 1312 } 1313 1314 /* Check for the special metacharacters */ 1315 1316 if (*ptr == CHAR_LEFT_PARENTHESIS) 1317 { 1318 int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, count); 1319 if (rc > 0) return rc; 1320 if (*ptr == 0) goto FAIL_EXIT; 1321 } 1322 1323 else if (*ptr == CHAR_RIGHT_PARENTHESIS) 1324 { 1325 if (dup_parens && *count < hwm_count) *count = hwm_count; 1326 goto FAIL_EXIT; 1327 } 1328 1329 else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) 1330 { 1331 if (*count > hwm_count) hwm_count = *count; 1332 *count = start_count; 1333 } 1334 } 1335 1336 FAIL_EXIT: 1337 *ptrptr = ptr; 1338 return -1; 1339 } 1340 1341 1342 1343 1344 /************************************************* 1345 * Find forward referenced subpattern * 1346 *************************************************/ 1347 1348 /* This function scans along a pattern's text looking for capturing 1349 subpatterns, and counting them. If it finds a named pattern that matches the 1350 name it is given, it returns its number. Alternatively, if the name is NULL, it 1351 returns when it reaches a given numbered subpattern. This is used for forward 1352 references to subpatterns. We used to be able to start this scan from the 1353 current compiling point, using the current count value from cd->bracount, and 1354 do it all in a single loop, but the addition of the possibility of duplicate 1355 subpattern numbers means that we have to scan from the very start, in order to 1356 take account of such duplicates, and to use a recursive function to keep track 1357 of the different types of group. 1358 1359 Arguments: 1360 cd compile background data 1361 name name to seek, or NULL if seeking a numbered subpattern 1362 lorn name length, or subpattern number if name is NULL 1363 xmode TRUE if we are in /x mode 1364 utf8 TRUE if we are in UTF-8 mode 1365 1366 Returns: the number of the found subpattern, or -1 if not found 1367 */ 1368 1369 static int 1370 find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode, 1371 BOOL utf8) 1372 { 1373 uschar *ptr = (uschar *)cd->start_pattern; 1374 int count = 0; 1375 int rc; 1376 1377 /* If the pattern does not start with an opening parenthesis, the first call 1378 to find_parens_sub() will scan right to the end (if necessary). However, if it 1379 does start with a parenthesis, find_parens_sub() will return when it hits the 1380 matching closing parens. That is why we have to have a loop. */ 1381 1382 for (;;) 1383 { 1384 rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, &count); 1385 if (rc > 0 || *ptr++ == 0) break; 1386 } 1387 1388 return rc; 1389 } 1390 1391 1392 1393 1394 /************************************************* 1395 * Find first significant op code * 1396 *************************************************/ 1397 1398 /* This is called by several functions that scan a compiled expression looking 1399 for a fixed first character, or an anchoring op code etc. It skips over things 1400 that do not influence this. For some calls, a change of option is important. 1401 For some calls, it makes sense to skip negative forward and all backward 1402 assertions, and also the \b assertion; for others it does not. 1403 1404 Arguments: 1405 code pointer to the start of the group 1406 options pointer to external options 1407 optbit the option bit whose changing is significant, or 1408 zero if none are 1409 skipassert TRUE if certain assertions are to be skipped 1410 1411 Returns: pointer to the first significant opcode 1412 */ 1413 1414 static const uschar* 1415 first_significant_code(const uschar *code, int *options, int optbit, 1416 BOOL skipassert) 1417 { 1418 for (;;) 1419 { 1420 switch ((int)*code) 1421 { 1422 case OP_OPT: 1423 if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit)) 1424 *options = (int)code[1]; 1425 code += 2; 1426 break; 1427 1428 case OP_ASSERT_NOT: 1429 case OP_ASSERTBACK: 1430 case OP_ASSERTBACK_NOT: 1431 if (!skipassert) return code; 1432 do code += GET(code, 1); while (*code == OP_ALT); 1433 code += _pcre_OP_lengths[*code]; 1434 break; 1435 1436 case OP_WORD_BOUNDARY: 1437 case OP_NOT_WORD_BOUNDARY: 1438 if (!skipassert) return code; 1439 /* Fall through */ 1440 1441 case OP_CALLOUT: 1442 case OP_CREF: 1443 case OP_NCREF: 1444 case OP_RREF: 1445 case OP_NRREF: 1446 case OP_DEF: 1447 code += _pcre_OP_lengths[*code]; 1448 break; 1449 1450 default: 1451 return code; 1452 } 1453 } 1454 /* Control never reaches here */ 1455 } 1456 1457 1458 1459 1460 /************************************************* 1461 * Find the fixed length of a branch * 1462 *************************************************/ 1463 1464 /* Scan a branch and compute the fixed length of subject that will match it, 1465 if the length is fixed. This is needed for dealing with backward assertions. 1466 In UTF8 mode, the result is in characters rather than bytes. The branch is 1467 temporarily terminated with OP_END when this function is called. 1468 1469 This function is called when a backward assertion is encountered, so that if it 1470 fails, the error message can point to the correct place in the pattern. 1471 However, we cannot do this when the assertion contains subroutine calls, 1472 because they can be forward references. We solve this by remembering this case 1473 and doing the check at the end; a flag specifies which mode we are running in. 1474 1475 Arguments: 1476 code points to the start of the pattern (the bracket) 1477 options the compiling options 1478 atend TRUE if called when the pattern is complete 1479 cd the "compile data" structure 1480 1481 Returns: the fixed length, 1482 or -1 if there is no fixed length, 1483 or -2 if \C was encountered 1484 or -3 if an OP_RECURSE item was encountered and atend is FALSE 1485 */ 1486 1487 static int 1488 find_fixedlength(uschar *code, int options, BOOL atend, compile_data *cd) 1489 { 1490 int length = -1; 1491 1492 register int branchlength = 0; 1493 register uschar *cc = code + 1 + LINK_SIZE; 1494 1495 /* Scan along the opcodes for this branch. If we get to the end of the 1496 branch, check the length against that of the other branches. */ 1497 1498 for (;;) 1499 { 1500 int d; 1501 uschar *ce, *cs; 1502 register int op = *cc; 1503 switch (op) 1504 { 1505 case OP_CBRA: 1506 case OP_BRA: 1507 case OP_ONCE: 1508 case OP_COND: 1509 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options, atend, cd); 1510 if (d < 0) return d; 1511 branchlength += d; 1512 do cc += GET(cc, 1); while (*cc == OP_ALT); 1513 cc += 1 + LINK_SIZE; 1514 break; 1515 1516 /* Reached end of a branch; if it's a ket it is the end of a nested 1517 call. If it's ALT it is an alternation in a nested call. If it is 1518 END it's the end of the outer call. All can be handled by the same code. */ 1519 1520 case OP_ALT: 1521 case OP_KET: 1522 case OP_KETRMAX: 1523 case OP_KETRMIN: 1524 case OP_END: 1525 if (length < 0) length = branchlength; 1526 else if (length != branchlength) return -1; 1527 if (*cc != OP_ALT) return length; 1528 cc += 1 + LINK_SIZE; 1529 branchlength = 0; 1530 break; 1531 1532 /* A true recursion implies not fixed length, but a subroutine call may 1533 be OK. If the subroutine is a forward reference, we can't deal with 1534 it until the end of the pattern, so return -3. */ 1535 1536 case OP_RECURSE: 1537 if (!atend) return -3; 1538 cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */ 1539 do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ 1540 if (cc > cs && cc < ce) return -1; /* Recursion */ 1541 d = find_fixedlength(cs + 2, options, atend, cd); 1542 if (d < 0) return d; 1543 branchlength += d; 1544 cc += 1 + LINK_SIZE; 1545 break; 1546 1547 /* Skip over assertive subpatterns */ 1548 1549 case OP_ASSERT: 1550 case OP_ASSERT_NOT: 1551 case OP_ASSERTBACK: 1552 case OP_ASSERTBACK_NOT: 1553 do cc += GET(cc, 1); while (*cc == OP_ALT); 1554 /* Fall through */ 1555 1556 /* Skip over things that don't match chars */ 1557 1558 case OP_REVERSE: 1559 case OP_CREF: 1560 case OP_NCREF: 1561 case OP_RREF: 1562 case OP_NRREF: 1563 case OP_DEF: 1564 case OP_OPT: 1565 case OP_CALLOUT: 1566 case OP_SOD: 1567 case OP_SOM: 1568 case OP_SET_SOM: 1569 case OP_EOD: 1570 case OP_EODN: 1571 case OP_CIRC: 1572 case OP_DOLL: 1573 case OP_NOT_WORD_BOUNDARY: 1574 case OP_WORD_BOUNDARY: 1575 cc += _pcre_OP_lengths[*cc]; 1576 break; 1577 1578 /* Handle literal characters */ 1579 1580 case OP_CHAR: 1581 case OP_CHARNC: 1582 case OP_NOT: 1583 branchlength++; 1584 cc += 2; 1585 #ifdef SUPPORT_UTF8 1586 if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0) 1587 cc += _pcre_utf8_table4[cc[-1] & 0x3f]; 1588 #endif 1589 break; 1590 1591 /* Handle exact repetitions. The count is already in characters, but we 1592 need to skip over a multibyte character in UTF8 mode. */ 1593 1594 case OP_EXACT: 1595 branchlength += GET2(cc,1); 1596 cc += 4; 1597 #ifdef SUPPORT_UTF8 1598 if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0) 1599 cc += _pcre_utf8_table4[cc[-1] & 0x3f]; 1600 #endif 1601 break; 1602 1603 case OP_TYPEEXACT: 1604 branchlength += GET2(cc,1); 1605 if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2; 1606 cc += 4; 1607 break; 1608 1609 /* Handle single-char matchers */ 1610 1611 case OP_PROP: 1612 case OP_NOTPROP: 1613 cc += 2; 1614 /* Fall through */ 1615 1616 case OP_NOT_DIGIT: 1617 case OP_DIGIT: 1618 case OP_NOT_WHITESPACE: 1619 case OP_WHITESPACE: 1620 case OP_NOT_WORDCHAR: 1621 case OP_WORDCHAR: 1622 case OP_ANY: 1623 case OP_ALLANY: 1624 branchlength++; 1625 cc++; 1626 break; 1627 1628 /* The single-byte matcher isn't allowed */ 1629 1630 case OP_ANYBYTE: 1631 return -2; 1632 1633 /* Check a class for variable quantification */ 1634 1635 #ifdef SUPPORT_UTF8 1636 case OP_XCLASS: 1637 cc += GET(cc, 1) - 33; 1638 /* Fall through */ 1639 #endif 1640 1641 case OP_CLASS: 1642 case OP_NCLASS: 1643 cc += 33; 1644 1645 switch (*cc) 1646 { 1647 case OP_CRSTAR: 1648 case OP_CRMINSTAR: 1649 case OP_CRQUERY: 1650 case OP_CRMINQUERY: 1651 return -1; 1652 1653 case OP_CRRANGE: 1654 case OP_CRMINRANGE: 1655 if (GET2(cc,1) != GET2(cc,3)) return -1; 1656 branchlength += GET2(cc,1); 1657 cc += 5; 1658 break; 1659 1660 default: 1661 branchlength++; 1662 } 1663 break; 1664 1665 /* Anything else is variable length */ 1666 1667 default: 1668 return -1; 1669 } 1670 } 1671 /* Control never gets here */ 1672 } 1673 1674 1675 1676 1677 /************************************************* 1678 * Scan compiled regex for specific bracket * 1679 *************************************************/ 1680 1681 /* This little function scans through a compiled pattern until it finds a 1682 capturing bracket with the given number, or, if the number is negative, an 1683 instance of OP_REVERSE for a lookbehind. The function is global in the C sense 1684 so that it can be called from pcre_study() when finding the minimum matching 1685 length. 1686 1687 Arguments: 1688 code points to start of expression 1689 utf8 TRUE in UTF-8 mode 1690 number the required bracket number or negative to find a lookbehind 1691 1692 Returns: pointer to the opcode for the bracket, or NULL if not found 1693 */ 1694 1695 const uschar * 1696 _pcre_find_bracket(const uschar *code, BOOL utf8, int number) 1697 { 1698 for (;;) 1699 { 1700 register int c = *code; 1701 if (c == OP_END) return NULL; 1702 1703 /* XCLASS is used for classes that cannot be represented just by a bit 1704 map. This includes negated single high-valued characters. The length in 1705 the table is zero; the actual length is stored in the compiled code. */ 1706 1707 if (c == OP_XCLASS) code += GET(code, 1); 1708 1709 /* Handle recursion */ 1710 1711 else if (c == OP_REVERSE) 1712 { 1713 if (number < 0) return (uschar *)code; 1714 code += _pcre_OP_lengths[c]; 1715 } 1716 1717 /* Handle capturing bracket */ 1718 1719 else if (c == OP_CBRA) 1720 { 1721 int n = GET2(code, 1+LINK_SIZE); 1722 if (n == number) return (uschar *)code; 1723 code += _pcre_OP_lengths[c]; 1724 } 1725 1726 /* Otherwise, we can get the item's length from the table, except that for 1727 repeated character types, we have to test for \p and \P, which have an extra 1728 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we 1729 must add in its length. */ 1730 1731 else 1732 { 1733 switch(c) 1734 { 1735 case OP_TYPESTAR: 1736 case OP_TYPEMINSTAR: 1737 case OP_TYPEPLUS: 1738 case OP_TYPEMINPLUS: 1739 case OP_TYPEQUERY: 1740 case OP_TYPEMINQUERY: 1741 case OP_TYPEPOSSTAR: 1742 case OP_TYPEPOSPLUS: 1743 case OP_TYPEPOSQUERY: 1744 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; 1745 break; 1746 1747 case OP_TYPEUPTO: 1748 case OP_TYPEMINUPTO: 1749 case OP_TYPEEXACT: 1750 case OP_TYPEPOSUPTO: 1751 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; 1752 break; 1753 1754 case OP_MARK: 1755 case OP_PRUNE_ARG: 1756 case OP_SKIP_ARG: 1757 code += code[1]; 1758 break; 1759 1760 case OP_THEN_ARG: 1761 code += code[1+LINK_SIZE]; 1762 break; 1763 } 1764 1765 /* Add in the fixed length from the table */ 1766 1767 code += _pcre_OP_lengths[c]; 1768 1769 /* In UTF-8 mode, opcodes that are followed by a character may be followed by 1770 a multi-byte character. The length in the table is a minimum, so we have to 1771 arrange to skip the extra bytes. */ 1772 1773 #ifdef SUPPORT_UTF8 1774 if (utf8) switch(c) 1775 { 1776 case OP_CHAR: 1777 case OP_CHARNC: 1778 case OP_EXACT: 1779 case OP_UPTO: 1780 case OP_MINUPTO: 1781 case OP_POSUPTO: 1782 case OP_STAR: 1783 case OP_MINSTAR: 1784 case OP_POSSTAR: 1785 case OP_PLUS: 1786 case OP_MINPLUS: 1787 case OP_POSPLUS: 1788 case OP_QUERY: 1789 case OP_MINQUERY: 1790 case OP_POSQUERY: 1791 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; 1792 break; 1793 } 1794 #else 1795 (void)(utf8); /* Keep compiler happy by referencing function argument */ 1796 #endif 1797 } 1798 } 1799 } 1800 1801 1802 1803 /************************************************* 1804 * Scan compiled regex for recursion reference * 1805 *************************************************/ 1806 1807 /* This little function scans through a compiled pattern until it finds an 1808 instance of OP_RECURSE. 1809 1810 Arguments: 1811 code points to start of expression 1812 utf8 TRUE in UTF-8 mode 1813 1814 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found 1815 */ 1816 1817 static const uschar * 1818 find_recurse(const uschar *code, BOOL utf8) 1819 { 1820 for (;;) 1821 { 1822 register int c = *code; 1823 if (c == OP_END) return NULL; 1824 if (c == OP_RECURSE) return code; 1825 1826 /* XCLASS is used for classes that cannot be represented just by a bit 1827 map. This includes negated single high-valued characters. The length in 1828 the table is zero; the actual length is stored in the compiled code. */ 1829 1830 if (c == OP_XCLASS) code += GET(code, 1); 1831 1832 /* Otherwise, we can get the item's length from the table, except that for 1833 repeated character types, we have to test for \p and \P, which have an extra 1834 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we 1835 must add in its length. */ 1836 1837 else 1838 { 1839 switch(c) 1840 { 1841 case OP_TYPESTAR: 1842 case OP_TYPEMINSTAR: 1843 case OP_TYPEPLUS: 1844 case OP_TYPEMINPLUS: 1845 case OP_TYPEQUERY: 1846 case OP_TYPEMINQUERY: 1847 case OP_TYPEPOSSTAR: 1848 case OP_TYPEPOSPLUS: 1849 case OP_TYPEPOSQUERY: 1850 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; 1851 break; 1852 1853 case OP_TYPEPOSUPTO: 1854 case OP_TYPEUPTO: 1855 case OP_TYPEMINUPTO: 1856 case OP_TYPEEXACT: 1857 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; 1858 break; 1859 1860 case OP_MARK: 1861 case OP_PRUNE_ARG: 1862 case OP_SKIP_ARG: 1863 code += code[1]; 1864 break; 1865 1866 case OP_THEN_ARG: 1867 code += code[1+LINK_SIZE]; 1868 break; 1869 } 1870 1871 /* Add in the fixed length from the table */ 1872 1873 code += _pcre_OP_lengths[c]; 1874 1875 /* In UTF-8 mode, opcodes that are followed by a character may be followed 1876 by a multi-byte character. The length in the table is a minimum, so we have 1877 to arrange to skip the extra bytes. */ 1878 1879 #ifdef SUPPORT_UTF8 1880 if (utf8) switch(c) 1881 { 1882 case OP_CHAR: 1883 case OP_CHARNC: 1884 case OP_EXACT: 1885 case OP_UPTO: 1886 case OP_MINUPTO: 1887 case OP_POSUPTO: 1888 case OP_STAR: 1889 case OP_MINSTAR: 1890 case OP_POSSTAR: 1891 case OP_PLUS: 1892 case OP_MINPLUS: 1893 case OP_POSPLUS: 1894 case OP_QUERY: 1895 case OP_MINQUERY: 1896 case OP_POSQUERY: 1897 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; 1898 break; 1899 } 1900 #else 1901 (void)(utf8); /* Keep compiler happy by referencing function argument */ 1902 #endif 1903 } 1904 } 1905 } 1906 1907 1908 1909 /************************************************* 1910 * Scan compiled branch for non-emptiness * 1911 *************************************************/ 1912 1913 /* This function scans through a branch of a compiled pattern to see whether it 1914 can match the empty string or not. It is called from could_be_empty() 1915 below and from compile_branch() when checking for an unlimited repeat of a 1916 group that can match nothing. Note that first_significant_code() skips over 1917 backward and negative forward assertions when its final argument is TRUE. If we 1918 hit an unclosed bracket, we return "empty" - this means we've struck an inner 1919 bracket whose current branch will already have been scanned. 1920 1921 Arguments: 1922 code points to start of search 1923 endcode points to where to stop 1924 utf8 TRUE if in UTF8 mode 1925 cd contains pointers to tables etc. 1926 1927 Returns: TRUE if what is matched could be empty 1928 */ 1929 1930 static BOOL 1931 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8, 1932 compile_data *cd) 1933 { 1934 register int c; 1935 for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE); 1936 code < endcode; 1937 code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE)) 1938 { 1939 const uschar *ccode; 1940 1941 c = *code; 1942 1943 /* Skip over forward assertions; the other assertions are skipped by 1944 first_significant_code() with a TRUE final argument. */ 1945 1946 if (c == OP_ASSERT) 1947 { 1948 do code += GET(code, 1); while (*code == OP_ALT); 1949 c = *code; 1950 continue; 1951 } 1952 1953 /* Groups with zero repeats can of course be empty; skip them. */ 1954 1955 if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO) 1956 { 1957 code += _pcre_OP_lengths[c]; 1958 do code += GET(code, 1); while (*code == OP_ALT); 1959 c = *code; 1960 continue; 1961 } 1962 1963 /* For a recursion/subroutine call, if its end has been reached, which 1964 implies a subroutine call, we can scan it. */ 1965 1966 if (c == OP_RECURSE) 1967 { 1968 BOOL empty_branch = FALSE; 1969 const uschar *scode = cd->start_code + GET(code, 1); 1970 if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ 1971 do 1972 { 1973 if (could_be_empty_branch(scode, endcode, utf8, cd)) 1974 { 1975 empty_branch = TRUE; 1976 break; 1977 } 1978 scode += GET(scode, 1); 1979 } 1980 while (*scode == OP_ALT); 1981 if (!empty_branch) return FALSE; /* All branches are non-empty */ 1982 continue; 1983 } 1984 1985 /* For other groups, scan the branches. */ 1986 1987 if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE || c == OP_COND) 1988 { 1989 BOOL empty_branch; 1990 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ 1991 1992 /* If a conditional group has only one branch, there is a second, implied, 1993 empty branch, so just skip over the conditional, because it could be empty. 1994 Otherwise, scan the individual branches of the group. */ 1995 1996 if (c == OP_COND && code[GET(code, 1)] != OP_ALT) 1997 code += GET(code, 1); 1998 else 1999 { 2000 empty_branch = FALSE; 2001 do 2002 { 2003 if (!empty_branch && could_be_empty_branch(code, endcode, utf8, cd)) 2004 empty_branch = TRUE; 2005 code += GET(code, 1); 2006 } 2007 while (*code == OP_ALT); 2008 if (!empty_branch) return FALSE; /* All branches are non-empty */ 2009 } 2010 2011 c = *code; 2012 continue; 2013 } 2014 2015 /* Handle the other opcodes */ 2016 2017 switch (c) 2018 { 2019 /* Check for quantifiers after a class. XCLASS is used for classes that 2020 cannot be represented just by a bit map. This includes negated single 2021 high-valued characters. The length in _pcre_OP_lengths[] is zero; the 2022 actual length is stored in the compiled code, so we must update "code" 2023 here. */ 2024 2025 #ifdef SUPPORT_UTF8 2026 case OP_XCLASS: 2027 ccode = code += GET(code, 1); 2028 goto CHECK_CLASS_REPEAT; 2029 #endif 2030 2031 case OP_CLASS: 2032 case OP_NCLASS: 2033 ccode = code + 33; 2034 2035 #ifdef SUPPORT_UTF8 2036 CHECK_CLASS_REPEAT: 2037 #endif 2038 2039 switch (*ccode) 2040 { 2041 case OP_CRSTAR: /* These could be empty; continue */ 2042 case OP_CRMINSTAR: 2043 case OP_CRQUERY: 2044 case OP_CRMINQUERY: 2045 break; 2046 2047 default: /* Non-repeat => class must match */ 2048 case OP_CRPLUS: /* These repeats aren't empty */ 2049 case OP_CRMINPLUS: 2050 return FALSE; 2051 2052 case OP_CRRANGE: 2053 case OP_CRMINRANGE: 2054 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ 2055 break; 2056 } 2057 break; 2058 2059 /* Opcodes that must match a character */ 2060 2061 case OP_PROP: 2062 case OP_NOTPROP: 2063 case OP_EXTUNI: 2064 case OP_NOT_DIGIT: 2065 case OP_DIGIT: 2066 case OP_NOT_WHITESPACE: 2067 case OP_WHITESPACE: 2068 case OP_NOT_WORDCHAR: 2069 case OP_WORDCHAR: 2070 case OP_ANY: 2071 case OP_ALLANY: 2072 case OP_ANYBYTE: 2073 case OP_CHAR: 2074 case OP_CHARNC: 2075 case OP_NOT: 2076 case OP_PLUS: 2077 case OP_MINPLUS: 2078 case OP_POSPLUS: 2079 case OP_EXACT: 2080 case OP_NOTPLUS: 2081 case OP_NOTMINPLUS: 2082 case OP_NOTPOSPLUS: 2083 case OP_NOTEXACT: 2084 case OP_TYPEPLUS: 2085 case OP_TYPEMINPLUS: 2086 case OP_TYPEPOSPLUS: 2087 case OP_TYPEEXACT: 2088 return FALSE; 2089 2090 /* These are going to continue, as they may be empty, but we have to 2091 fudge the length for the \p and \P cases. */ 2092 2093 case OP_TYPESTAR: 2094 case OP_TYPEMINSTAR: 2095 case OP_TYPEPOSSTAR: 2096 case OP_TYPEQUERY: 2097 case OP_TYPEMINQUERY: 2098 case OP_TYPEPOSQUERY: 2099 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; 2100 break; 2101 2102 /* Same for these */ 2103 2104 case OP_TYPEUPTO: 2105 case OP_TYPEMINUPTO: 2106 case OP_TYPEPOSUPTO: 2107 if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; 2108 break; 2109 2110 /* End of branch */ 2111 2112 case OP_KET: 2113 case OP_KETRMAX: 2114 case OP_KETRMIN: 2115 case OP_ALT: 2116 return TRUE; 2117 2118 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, 2119 MINUPTO, and POSUPTO may be followed by a multibyte character */ 2120 2121 #ifdef SUPPORT_UTF8 2122 case OP_STAR: 2123 case OP_MINSTAR: 2124 case OP_POSSTAR: 2125 case OP_QUERY: 2126 case OP_MINQUERY: 2127 case OP_POSQUERY: 2128 if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f]; 2129 break; 2130 2131 case OP_UPTO: 2132 case OP_MINUPTO: 2133 case OP_POSUPTO: 2134 if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f]; 2135 break; 2136 #endif 2137 2138 /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument 2139 string. */ 2140 2141 case OP_MARK: 2142 case OP_PRUNE_ARG: 2143 case OP_SKIP_ARG: 2144 code += code[1]; 2145 break; 2146 2147 case OP_THEN_ARG: 2148 code += code[1+LINK_SIZE]; 2149 break; 2150 2151 /* None of the remaining opcodes are required to match a character. */ 2152 2153 default: 2154 break; 2155 } 2156 } 2157 2158 return TRUE; 2159 } 2160 2161 2162 2163 /************************************************* 2164 * Scan compiled regex for non-emptiness * 2165 *************************************************/ 2166 2167 /* This function is called to check for left recursive calls. We want to check 2168 the current branch of the current pattern to see if it could match the empty 2169 string. If it could, we must look outwards for branches at other levels, 2170 stopping when we pass beyond the bracket which is the subject of the recursion. 2171 2172 Arguments: 2173 code points to start of the recursion 2174 endcode points to where to stop (current RECURSE item) 2175 bcptr points to the chain of current (unclosed) branch starts 2176 utf8 TRUE if in UTF-8 mode 2177 cd pointers to tables etc 2178 2179 Returns: TRUE if what is matched could be empty 2180 */ 2181 2182 static BOOL 2183 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr, 2184 BOOL utf8, compile_data *cd) 2185 { 2186 while (bcptr != NULL && bcptr->current_branch >= code) 2187 { 2188 if (!could_be_empty_branch(bcptr->current_branch, endcode, utf8, cd)) 2189 return FALSE; 2190 bcptr = bcptr->outer; 2191 } 2192 return TRUE; 2193 } 2194 2195 2196 2197 /************************************************* 2198 * Check for POSIX class syntax * 2199 *************************************************/ 2200 2201 /* This function is called when the sequence "[:" or "[." or "[=" is 2202 encountered in a character class. It checks whether this is followed by a 2203 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we 2204 reach an unescaped ']' without the special preceding character, return FALSE. 2205 2206 Originally, this function only recognized a sequence of letters between the 2207 terminators, but it seems that Perl recognizes any sequence of characters, 2208 though of course unknown POSIX names are subsequently rejected. Perl gives an 2209 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE 2210 didn't consider this to be a POSIX class. Likewise for [:1234:]. 2211 2212 The problem in trying to be exactly like Perl is in the handling of escapes. We 2213 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX 2214 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code 2215 below handles the special case of \], but does not try to do any other escape 2216 processing. This makes it different from Perl for cases such as [:l\ower:] 2217 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize 2218 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, 2219 I think. 2220 2221 Arguments: 2222 ptr pointer to the initial [ 2223 endptr where to return the end pointer 2224 2225 Returns: TRUE or FALSE 2226 */ 2227 2228 static BOOL 2229 check_posix_syntax(const uschar *ptr, const uschar **endptr) 2230 { 2231 int terminator; /* Don't combine these lines; the Solaris cc */ 2232 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ 2233 for (++ptr; *ptr != 0; ptr++) 2234 { 2235 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) ptr++; else 2236 { 2237 if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; 2238 if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) 2239 { 2240 *endptr = ptr; 2241 return TRUE; 2242 } 2243 } 2244 } 2245 return FALSE; 2246 } 2247 2248 2249 2250 2251 /************************************************* 2252 * Check POSIX class name * 2253 *************************************************/ 2254 2255 /* This function is called to check the name given in a POSIX-style class entry 2256 such as [:alnum:]. 2257 2258 Arguments: 2259 ptr points to the first letter 2260 len the length of the name 2261 2262 Returns: a value representing the name, or -1 if unknown 2263 */ 2264 2265 static int 2266 check_posix_name(const uschar *ptr, int len) 2267 { 2268 const char *pn = posix_names; 2269 register int yield = 0; 2270 while (posix_name_lengths[yield] != 0) 2271 { 2272 if (len == posix_name_lengths[yield] && 2273 strncmp((const char *)ptr, pn, len) == 0) return yield; 2274 pn += posix_name_lengths[yield] + 1; 2275 yield++; 2276 } 2277 return -1; 2278 } 2279 2280 2281 /************************************************* 2282 * Adjust OP_RECURSE items in repeated group * 2283 *************************************************/ 2284 2285 /* OP_RECURSE items contain an offset from the start of the regex to the group 2286 that is referenced. This means that groups can be replicated for fixed 2287 repetition simply by copying (because the recursion is allowed to refer to 2288 earlier groups that are outside the current group). However, when a group is 2289 optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is 2290 inserted before it, after it has been compiled. This means that any OP_RECURSE 2291 items within it that refer to the group itself or any contained groups have to 2292 have their offsets adjusted. That one of the jobs of this function. Before it 2293 is called, the partially compiled regex must be temporarily terminated with 2294 OP_END. 2295 2296 This function has been extended with the possibility of forward references for 2297 recursions and subroutine calls. It must also check the list of such references 2298 for the group we are dealing with. If it finds that one of the recursions in 2299 the current group is on this list, it adjusts the offset in the list, not the 2300 value in the reference (which is a group number). 2301 2302 Arguments: 2303 group points to the start of the group 2304 adjust the amount by which the group is to be moved 2305 utf8 TRUE in UTF-8 mode 2306 cd contains pointers to tables etc. 2307 save_hwm the hwm forward reference pointer at the start of the group 2308 2309 Returns: nothing 2310 */ 2311 2312 static void 2313 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd, 2314 uschar *save_hwm) 2315 { 2316 uschar *ptr = group; 2317 2318 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL) 2319 { 2320 int offset; 2321 uschar *hc; 2322 2323 /* See if this recursion is on the forward reference list. If so, adjust the 2324 reference. */ 2325 2326 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) 2327 { 2328 offset = GET(hc, 0); 2329 if (cd->start_code + offset == ptr + 1) 2330 { 2331 PUT(hc, 0, offset + adjust); 2332 break; 2333 } 2334 } 2335 2336 /* Otherwise, adjust the recursion offset if it's after the start of this 2337 group. */ 2338 2339 if (hc >= cd->hwm) 2340 { 2341 offset = GET(ptr, 1); 2342 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); 2343 } 2344 2345 ptr += 1 + LINK_SIZE; 2346 } 2347 } 2348 2349 2350 2351 /************************************************* 2352 * Insert an automatic callout point * 2353 *************************************************/ 2354 2355 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert 2356 callout points before each pattern item. 2357 2358 Arguments: 2359 code current code pointer 2360 ptr current pattern pointer 2361 cd pointers to tables etc 2362 2363 Returns: new code pointer 2364 */ 2365 2366 static uschar * 2367 auto_callout(uschar *code, const uschar *ptr, compile_data *cd) 2368 { 2369 *code++ = OP_CALLOUT; 2370 *code++ = 255; 2371 PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ 2372 PUT(code, LINK_SIZE, 0); /* Default length */ 2373 return code + 2*LINK_SIZE; 2374 } 2375 2376 2377 2378 /************************************************* 2379 * Complete a callout item * 2380 *************************************************/ 2381 2382 /* A callout item contains the length of the next item in the pattern, which 2383 we can't fill in till after we have reached the relevant point. This is used 2384 for both automatic and manual callouts. 2385 2386 Arguments: 2387 previous_callout points to previous callout item 2388 ptr current pattern pointer 2389 cd pointers to tables etc 2390 2391 Returns: nothing 2392 */ 2393 2394 static void 2395 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd) 2396 { 2397 int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); 2398 PUT(previous_callout, 2 + LINK_SIZE, length); 2399 } 2400 2401 2402 2403 #ifdef SUPPORT_UCP 2404 /************************************************* 2405 * Get othercase range * 2406 *************************************************/ 2407 2408 /* This function is passed the start and end of a class range, in UTF-8 mode 2409 with UCP support. It searches up the characters, looking for internal ranges of 2410 characters in the "other" case. Each call returns the next one, updating the 2411 start address. 2412 2413 Arguments: 2414 cptr points to starting character value; updated 2415 d end value 2416 ocptr where to put start of othercase range 2417 odptr where to put end of othercase range 2418 2419 Yield: TRUE when range returned; FALSE when no more 2420 */ 2421 2422 static BOOL 2423 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr, 2424 unsigned int *odptr) 2425 { 2426 unsigned int c, othercase, next; 2427 2428 for (c = *cptr; c <= d; c++) 2429 { if ((othercase = UCD_OTHERCASE(c)) != c) break; } 2430 2431 if (c > d) return FALSE; 2432 2433 *ocptr = othercase; 2434 next = othercase + 1; 2435 2436 for (++c; c <= d; c++) 2437 { 2438 if (UCD_OTHERCASE(c) != next) break; 2439 next++; 2440 } 2441 2442 *odptr = next - 1; 2443 *cptr = c; 2444 2445 return TRUE; 2446 } 2447 2448 2449 2450 /************************************************* 2451 * Check a character and a property * 2452 *************************************************/ 2453 2454 /* This function is called by check_auto_possessive() when a property item 2455 is adjacent to a fixed character. 2456 2457 Arguments: 2458 c the character 2459 ptype the property type 2460 pdata the data for the type 2461 negated TRUE if it's a negated property (\P or \p{^) 2462 2463 Returns: TRUE if auto-possessifying is OK 2464 */ 2465 2466 static BOOL 2467 check_char_prop(int c, int ptype, int pdata, BOOL negated) 2468 { 2469 const ucd_record *prop = GET_UCD(c); 2470 switch(ptype) 2471 { 2472 case PT_LAMP: 2473 return (prop->chartype == ucp_Lu || 2474 prop->chartype == ucp_Ll || 2475 prop->chartype == ucp_Lt) == negated; 2476 2477 case PT_GC: 2478 return (pdata == _pcre_ucp_gentype[prop->chartype]) == negated; 2479 2480 case PT_PC: 2481 return (pdata == prop->chartype) == negated; 2482 2483 case PT_SC: 2484 return (pdata == prop->script) == negated; 2485 2486 /* These are specials */ 2487 2488 case PT_ALNUM: 2489 return (_pcre_ucp_gentype[prop->chartype] == ucp_L || 2490 _pcre_ucp_gentype[prop->chartype] == ucp_N) == negated; 2491 2492 case PT_SPACE: /* Perl space */ 2493 return (_pcre_ucp_gentype[prop->chartype] == ucp_Z || 2494 c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR) 2495 == negated; 2496 2497 case PT_PXSPACE: /* POSIX space */ 2498 return (_pcre_ucp_gentype[prop->chartype] == ucp_Z || 2499 c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || 2500 c == CHAR_FF || c == CHAR_CR) 2501 == negated; 2502 2503 case PT_WORD: 2504 return (_pcre_ucp_gentype[prop->chartype] == ucp_L || 2505 _pcre_ucp_gentype[prop->chartype] == ucp_N || 2506 c == CHAR_UNDERSCORE) == negated; 2507 } 2508 return FALSE; 2509 } 2510 #endif /* SUPPORT_UCP */ 2511 2512 2513 2514 /************************************************* 2515 * Check if auto-possessifying is possible * 2516 *************************************************/ 2517 2518 /* This function is called for unlimited repeats of certain items, to see 2519 whether the next thing could possibly match the repeated item. If not, it makes 2520 sense to automatically possessify the repeated item. 2521 2522 Arguments: 2523 previous pointer to the repeated opcode 2524 utf8 TRUE in UTF-8 mode 2525 ptr next character in pattern 2526 options options bits 2527 cd contains pointers to tables etc. 2528 2529 Returns: TRUE if possessifying is wanted 2530 */ 2531 2532 static BOOL 2533 check_auto_possessive(const uschar *previous, BOOL utf8, const uschar *ptr, 2534 int options, compile_data *cd) 2535 { 2536 int c, next; 2537 int op_code = *previous++; 2538 2539 /* Skip whitespace and comments in extended mode */ 2540 2541 if ((options & PCRE_EXTENDED) != 0) 2542 { 2543 for (;;) 2544 { 2545 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; 2546 if (*ptr == CHAR_NUMBER_SIGN) 2547 { 2548 ptr++; 2549 while (*ptr != 0) 2550 { 2551 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } 2552 ptr++; 2553 #ifdef SUPPORT_UTF8 2554 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; 2555 #endif 2556 } 2557 } 2558 else break; 2559 } 2560 } 2561 2562 /* If the next item is one that we can handle, get its value. A non-negative 2563 value is a character, a negative value is an escape value. */ 2564 2565 if (*ptr == CHAR_BACKSLASH) 2566 { 2567 int temperrorcode = 0; 2568 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE); 2569 if (temperrorcode != 0) return FALSE; 2570 ptr++; /* Point after the escape sequence */ 2571 } 2572 2573 else if ((cd->ctypes[*ptr] & ctype_meta) == 0) 2574 { 2575 #ifdef SUPPORT_UTF8 2576 if (utf8) { GETCHARINC(next, ptr); } else 2577 #endif 2578 next = *ptr++; 2579 } 2580 2581 else return FALSE; 2582 2583 /* Skip whitespace and comments in extended mode */ 2584 2585 if ((options & PCRE_EXTENDED) != 0) 2586 { 2587 for (;;) 2588 { 2589 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; 2590 if (*ptr == CHAR_NUMBER_SIGN) 2591 { 2592 ptr++; 2593 while (*ptr != 0) 2594 { 2595 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } 2596 ptr++; 2597 #ifdef SUPPORT_UTF8 2598 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; 2599 #endif 2600 } 2601 } 2602 else break; 2603 } 2604 } 2605 2606 /* If the next thing is itself optional, we have to give up. */ 2607 2608 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || 2609 strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) 2610 return FALSE; 2611 2612 /* Now compare the next item with the previous opcode. First, handle cases when 2613 the next item is a character. */ 2614 2615 if (next >= 0) switch(op_code) 2616 { 2617 case OP_CHAR: 2618 #ifdef SUPPORT_UTF8 2619 GETCHARTEST(c, previous); 2620 #else 2621 c = *previous; 2622 #endif 2623 return c != next; 2624 2625 /* For CHARNC (caseless character) we must check the other case. If we have 2626 Unicode property support, we can use it to test the other case of 2627 high-valued characters. */ 2628 2629 case OP_CHARNC: 2630 #ifdef SUPPORT_UTF8 2631 GETCHARTEST(c, previous); 2632 #else 2633 c = *previous; 2634 #endif 2635 if (c == next) return FALSE; 2636 #ifdef SUPPORT_UTF8 2637 if (utf8) 2638 { 2639 unsigned int othercase; 2640 if (next < 128) othercase = cd->fcc[next]; else 2641 #ifdef SUPPORT_UCP 2642 othercase = UCD_OTHERCASE((unsigned int)next); 2643 #else 2644 othercase = NOTACHAR; 2645 #endif 2646 return (unsigned int)c != othercase; 2647 } 2648 else 2649 #endif /* SUPPORT_UTF8 */ 2650 return (c != cd->fcc[next]); /* Non-UTF-8 mode */ 2651 2652 /* For OP_NOT, its data is always a single-byte character. */ 2653 2654 case OP_NOT: 2655 if ((c = *previous) == next) return TRUE; 2656 if ((options & PCRE_CASELESS) == 0) return FALSE; 2657 #ifdef SUPPORT_UTF8 2658 if (utf8) 2659 { 2660 unsigned int othercase; 2661 if (next < 128) othercase = cd->fcc[next]; else 2662 #ifdef SUPPORT_UCP 2663 othercase = UCD_OTHERCASE(next); 2664 #else 2665 othercase = NOTACHAR; 2666 #endif 2667 return (unsigned int)c == othercase; 2668 } 2669 else 2670 #endif /* SUPPORT_UTF8 */ 2671 return (c == cd->fcc[next]); /* Non-UTF-8 mode */ 2672 2673 /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set. 2674 When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ 2675 2676 case OP_DIGIT: 2677 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0; 2678 2679 case OP_NOT_DIGIT: 2680 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0; 2681 2682 case OP_WHITESPACE: 2683 return next > 127 || (cd->ctypes[next] & ctype_space) == 0; 2684 2685 case OP_NOT_WHITESPACE: 2686 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0; 2687 2688 case OP_WORDCHAR: 2689 return next > 127 || (cd->ctypes[next] & ctype_word) == 0; 2690 2691 case OP_NOT_WORDCHAR: 2692 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0; 2693 2694 case OP_HSPACE: 2695 case OP_NOT_HSPACE: 2696 switch(next) 2697 { 2698 case 0x09: 2699 case 0x20: 2700 case 0xa0: 2701 case 0x1680: 2702 case 0x180e: 2703 case 0x2000: 2704 case 0x2001: 2705 case 0x2002: 2706 case 0x2003: 2707 case 0x2004: 2708 case 0x2005: 2709 case 0x2006: 2710 case 0x2007: 2711 case 0x2008: 2712 case 0x2009: 2713 case 0x200A: 2714 case 0x202f: 2715 case 0x205f: 2716 case 0x3000: 2717 return op_code == OP_NOT_HSPACE; 2718 default: 2719 return op_code != OP_NOT_HSPACE; 2720 } 2721 2722 case OP_ANYNL: 2723 case OP_VSPACE: 2724 case OP_NOT_VSPACE: 2725 switch(next) 2726 { 2727 case 0x0a: 2728 case 0x0b: 2729 case 0x0c: 2730 case 0x0d: 2731 case 0x85: 2732 case 0x2028: 2733 case 0x2029: 2734 return op_code == OP_NOT_VSPACE; 2735 default: 2736 return op_code != OP_NOT_VSPACE; 2737 } 2738 2739 #ifdef SUPPORT_UCP 2740 case OP_PROP: 2741 return check_char_prop(next, previous[0], previous[1], FALSE); 2742 2743 case OP_NOTPROP: 2744 return check_char_prop(next, previous[0], previous[1], TRUE); 2745 #endif 2746 2747 default: 2748 return FALSE; 2749 } 2750 2751 2752 /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP 2753 is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are 2754 generated only when PCRE_UCP is *not* set, that is, when only ASCII 2755 characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are 2756 replaced by OP_PROP codes when PCRE_UCP is set. */ 2757 2758 switch(op_code) 2759 { 2760 case OP_CHAR: 2761 case OP_CHARNC: 2762 #ifdef SUPPORT_UTF8 2763 GETCHARTEST(c, previous); 2764 #else 2765 c = *previous; 2766 #endif 2767 switch(-next) 2768 { 2769 case ESC_d: 2770 return c > 127 || (cd->ctypes[c] & ctype_digit) == 0; 2771 2772 case ESC_D: 2773 return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0; 2774 2775 case ESC_s: 2776 return c > 127 || (cd->ctypes[c] & ctype_space) == 0; 2777 2778 case ESC_S: 2779 return c <= 127 && (cd->ctypes[c] & ctype_space) != 0; 2780 2781 case ESC_w: 2782 return c > 127 || (cd->ctypes[c] & ctype_word) == 0; 2783 2784 case ESC_W: 2785 return c <= 127 && (cd->ctypes[c] & ctype_word) != 0; 2786 2787 case ESC_h: 2788 case ESC_H: 2789 switch(c) 2790 { 2791 case 0x09: 2792 case 0x20: 2793 case 0xa0: 2794 case 0x1680: 2795 case 0x180e: 2796 case 0x2000: 2797 case 0x2001: 2798 case 0x2002: 2799 case 0x2003: 2800 case 0x2004: 2801 case 0x2005: 2802 case 0x2006: 2803 case 0x2007: 2804 case 0x2008: 2805 case 0x2009: 2806 case 0x200A: 2807 case 0x202f: 2808 case 0x205f: 2809 case 0x3000: 2810 return -next != ESC_h; 2811 default: 2812 return -next == ESC_h; 2813 } 2814 2815 case ESC_v: 2816 case ESC_V: 2817 switch(c) 2818 { 2819 case 0x0a: 2820 case 0x0b: 2821 case 0x0c: 2822 case 0x0d: 2823 case 0x85: 2824 case 0x2028: 2825 case 0x2029: 2826 return -next != ESC_v; 2827 default: 2828 return -next == ESC_v; 2829 } 2830 2831 /* When PCRE_UCP is set, these values get generated for \d etc. Find 2832 their substitutions and process them. The result will always be either 2833 -ESC_p or -ESC_P. Then fall through to process those values. */ 2834 2835 #ifdef SUPPORT_UCP 2836 case ESC_du: 2837 case ESC_DU: 2838 case ESC_wu: 2839 case ESC_WU: 2840 case ESC_su: 2841 case ESC_SU: 2842 { 2843 int temperrorcode = 0; 2844 ptr = substitutes[-next - ESC_DU]; 2845 next = check_escape(&ptr, &temperrorcode, 0, options, FALSE); 2846 if (temperrorcode != 0) return FALSE; 2847 ptr++; /* For compatibility */ 2848 } 2849 /* Fall through */ 2850 2851 case ESC_p: 2852 case ESC_P: 2853 { 2854 int ptype, pdata, errorcodeptr; 2855 BOOL negated; 2856 2857 ptr--; /* Make ptr point at the p or P */ 2858 ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr); 2859 if (ptype < 0) return FALSE; 2860 ptr++; /* Point past the final curly ket */ 2861 2862 /* If the property item is optional, we have to give up. (When generated 2863 from \d etc by PCRE_UCP, this test will have been applied much earlier, 2864 to the original \d etc. At this point, ptr will point to a zero byte. */ 2865 2866 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || 2867 strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) 2868 return FALSE; 2869 2870 /* Do the property check. */ 2871 2872 return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated); 2873 } 2874 #endif 2875 2876 default: 2877 return FALSE; 2878 } 2879 2880 /* In principle, support for Unicode properties should be integrated here as 2881 well. It means re-organizing the above code so as to get hold of the property 2882 values before switching on the op-code. However, I wonder how many patterns 2883 combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set, 2884 these op-codes are never generated.) */ 2885 2886 case OP_DIGIT: 2887 return next == -ESC_D || next == -ESC_s || next == -ESC_W || 2888 next == -ESC_h || next == -ESC_v || next == -ESC_R; 2889 2890 case OP_NOT_DIGIT: 2891 return next == -ESC_d; 2892 2893 case OP_WHITESPACE: 2894 return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R; 2895 2896 case OP_NOT_WHITESPACE: 2897 return next == -ESC_s || next == -ESC_h || next == -ESC_v; 2898 2899 case OP_HSPACE: 2900 return next == -ESC_S || next == -ESC_H || next == -ESC_d || 2901 next == -ESC_w || next == -ESC_v || next == -ESC_R; 2902 2903 case OP_NOT_HSPACE: 2904 return next == -ESC_h; 2905 2906 /* Can't have \S in here because VT matches \S (Perl anomaly) */ 2907 case OP_ANYNL: 2908 case OP_VSPACE: 2909 return next == -ESC_V || next == -ESC_d || next == -ESC_w; 2910 2911 case OP_NOT_VSPACE: 2912 return next == -ESC_v || next == -ESC_R; 2913 2914 case OP_WORDCHAR: 2915 return next == -ESC_W || next == -ESC_s || next == -ESC_h || 2916 next == -ESC_v || next == -ESC_R; 2917 2918 case OP_NOT_WORDCHAR: 2919 return next == -ESC_w || next == -ESC_d; 2920 2921 default: 2922 return FALSE; 2923 } 2924 2925 /* Control does not reach here */ 2926 } 2927 2928 2929 2930 /************************************************* 2931 * Compile one branch * 2932 *************************************************/ 2933 2934 /* Scan the pattern, compiling it into the a vector. If the options are 2935 changed during the branch, the pointer is used to change the external options 2936 bits. This function is used during the pre-compile phase when we are trying 2937 to find out the amount of memory needed, as well as during the real compile 2938 phase. The value of lengthptr distinguishes the two phases. 2939 2940 Arguments: 2941 optionsptr pointer to the option bits 2942 codeptr points to the pointer to the current code point 2943 ptrptr points to the current pattern pointer 2944 errorcodeptr points to error code variable 2945 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) 2946 reqbyteptr set to the last literal character required, else < 0 2947 bcptr points to current branch chain 2948 cd contains pointers to tables etc. 2949 lengthptr NULL during the real compile phase 2950 points to length accumulator during pre-compile phase 2951 2952 Returns: TRUE on success 2953 FALSE, with *errorcodeptr set non-zero on error 2954 */ 2955 2956 static BOOL 2957 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr, 2958 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, 2959 compile_data *cd, int *lengthptr) 2960 { 2961 int repeat_type, op_type; 2962 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ 2963 int bravalue = 0; 2964 int greedy_default, greedy_non_default; 2965 int firstbyte, reqbyte; 2966 int zeroreqbyte, zerofirstbyte; 2967 int req_caseopt, reqvary, tempreqvary; 2968 int options = *optionsptr; 2969 int after_manual_callout = 0; 2970 int length_prevgroup = 0; 2971 register int c; 2972 register uschar *code = *codeptr; 2973 uschar *last_code = code; 2974 uschar *orig_code = code; 2975 uschar *tempcode; 2976 BOOL inescq = FALSE; 2977 BOOL groupsetfirstbyte = FALSE; 2978 const uschar *ptr = *ptrptr; 2979 const uschar *tempptr; 2980 const uschar *nestptr = NULL; 2981 uschar *previous = NULL; 2982 uschar *previous_callout = NULL; 2983 uschar *save_hwm = NULL; 2984 uschar classbits[32]; 2985 2986 #ifdef SUPPORT_UTF8 2987 BOOL class_utf8; 2988 BOOL utf8 = (options & PCRE_UTF8) != 0; 2989 uschar *class_utf8data; 2990 uschar *class_utf8data_base; 2991 uschar utf8_char[6]; 2992 #else 2993 BOOL utf8 = FALSE; 2994 uschar *utf8_char = NULL; 2995 #endif 2996 2997 #ifdef PCRE_DEBUG 2998 if (lengthptr != NULL) DPRINTF((">> start branch\n")); 2999 #endif 3000 3001 /* Set up the default and non-default settings for greediness */ 3002 3003 greedy_default = ((options & PCRE_UNGREEDY) != 0); 3004 greedy_non_default = greedy_default ^ 1; 3005 3006 /* Initialize no first byte, no required byte. REQ_UNSET means "no char 3007 matching encountered yet". It gets changed to REQ_NONE if we hit something that 3008 matches a non-fixed char first char; reqbyte just remains unset if we never 3009 find one. 3010 3011 When we hit a repeat whose minimum is zero, we may have to adjust these values 3012 to take the zero repeat into account. This is implemented by setting them to 3013 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual 3014 item types that can be repeated set these backoff variables appropriately. */ 3015 3016 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET; 3017 3018 /* The variable req_caseopt contains either the REQ_CASELESS value or zero, 3019 according to the current setting of the caseless flag. REQ_CASELESS is a bit 3020 value > 255. It is added into the firstbyte or reqbyte variables to record the 3021 case status of the value. This is used only for ASCII characters. */ 3022 3023 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; 3024 3025 /* Switch on next character until the end of the branch */ 3026 3027 for (;; ptr++) 3028 { 3029 BOOL negate_class; 3030 BOOL should_flip_negation; 3031 BOOL possessive_quantifier; 3032 BOOL is_quantifier; 3033 BOOL is_recurse; 3034 BOOL reset_bracount; 3035 int class_charcount; 3036 int class_lastchar; 3037 int newoptions; 3038 int recno; 3039 int refsign; 3040 int skipbytes; 3041 int subreqbyte; 3042 int subfirstbyte; 3043 int terminator; 3044 int mclength; 3045 uschar mcbuffer[8]; 3046 3047 /* Get next byte in the pattern */ 3048 3049 c = *ptr; 3050 3051 /* If we are at the end of a nested substitution, revert to the outer level 3052 string. Nesting only happens one level deep. */ 3053 3054 if (c == 0 && nestptr != NULL) 3055 { 3056 ptr = nestptr; 3057 nestptr = NULL; 3058 c = *ptr; 3059 } 3060 3061 /* If we are in the pre-compile phase, accumulate the length used for the 3062 previous cycle of this loop. */ 3063 3064 if (lengthptr != NULL) 3065 { 3066 #ifdef PCRE_DEBUG 3067 if (code > cd->hwm) cd->hwm = code; /* High water info */ 3068 #endif 3069 if (code > cd->start_workspace + WORK_SIZE_CHECK) /* Check for overrun */ 3070 { 3071 *errorcodeptr = ERR52; 3072 goto FAILED; 3073 } 3074 3075 /* There is at least one situation where code goes backwards: this is the 3076 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, 3077 the class is simply eliminated. However, it is created first, so we have to 3078 allow memory for it. Therefore, don't ever reduce the length at this point. 3079 */ 3080 3081 if (code < last_code) code = last_code; 3082 3083 /* Paranoid check for integer overflow */ 3084 3085 if (OFLOW_MAX - *lengthptr < code - last_code) 3086 { 3087 *errorcodeptr = ERR20; 3088 goto FAILED; 3089 } 3090 3091 *lengthptr += (int)(code - last_code); 3092 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c)); 3093 3094 /* If "previous" is set and it is not at the start of the work space, move 3095 it back to there, in order to avoid filling up the work space. Otherwise, 3096 if "previous" is NULL, reset the current code pointer to the start. */ 3097 3098 if (previous != NULL) 3099 { 3100 if (previous > orig_code) 3101 { 3102 memmove(orig_code, previous, code - previous); 3103 code -= previous - orig_code; 3104 previous = orig_code; 3105 } 3106 } 3107 else code = orig_code; 3108 3109 /* Remember where this code item starts so we can pick up the length 3110 next time round. */ 3111 3112 last_code = code; 3113 } 3114 3115 /* In the real compile phase, just check the workspace used by the forward 3116 reference list. */ 3117 3118 else if (cd->hwm > cd->start_workspace + WORK_SIZE_CHECK) 3119 { 3120 *errorcodeptr = ERR52; 3121 goto FAILED; 3122 } 3123 3124 /* If in \Q...\E, check for the end; if not, we have a literal */ 3125 3126 if (inescq && c != 0) 3127 { 3128 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) 3129 { 3130 inescq = FALSE; 3131 ptr++; 3132 continue; 3133 } 3134 else 3135 { 3136 if (previous_callout != NULL) 3137 { 3138 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ 3139 complete_callout(previous_callout, ptr, cd); 3140 previous_callout = NULL; 3141 } 3142 if ((options & PCRE_AUTO_CALLOUT) != 0) 3143 { 3144 previous_callout = code; 3145 code = auto_callout(code, ptr, cd); 3146 } 3147 goto NORMAL_CHAR; 3148 } 3149 } 3150 3151 /* Fill in length of a previous callout, except when the next thing is 3152 a quantifier. */ 3153 3154 is_quantifier = 3155 c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || 3156 (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); 3157 3158 if (!is_quantifier && previous_callout != NULL && 3159 after_manual_callout-- <= 0) 3160 { 3161 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ 3162 complete_callout(previous_callout, ptr, cd); 3163 previous_callout = NULL; 3164 } 3165 3166 /* In extended mode, skip white space and comments */ 3167 3168 if ((options & PCRE_EXTENDED) != 0) 3169 { 3170 if ((cd->ctypes[c] & ctype_space) != 0) continue; 3171 if (c == CHAR_NUMBER_SIGN) 3172 { 3173 ptr++; 3174 while (*ptr != 0) 3175 { 3176 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } 3177 ptr++; 3178 #ifdef SUPPORT_UTF8 3179 if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; 3180 #endif 3181 } 3182 if (*ptr != 0) continue; 3183 3184 /* Else fall through to handle end of string */ 3185 c = 0; 3186 } 3187 } 3188 3189 /* No auto callout for quantifiers. */ 3190 3191 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) 3192 { 3193 previous_callout = code; 3194 code = auto_callout(code, ptr, cd); 3195 } 3196 3197 switch(c) 3198 { 3199 /* ===================================================================*/ 3200 case 0: /* The branch terminates at string end */ 3201 case CHAR_VERTICAL_LINE: /* or | or ) */ 3202 case CHAR_RIGHT_PARENTHESIS: 3203 *firstbyteptr = firstbyte; 3204 *reqbyteptr = reqbyte; 3205 *codeptr = code; 3206 *ptrptr = ptr; 3207 if (lengthptr != NULL) 3208 { 3209 if (OFLOW_MAX - *lengthptr < code - last_code) 3210 { 3211 *errorcodeptr = ERR20; 3212 goto FAILED; 3213 } 3214 *lengthptr += (int)(code - last_code); /* To include callout length */ 3215 DPRINTF((">> end branch\n")); 3216 } 3217 return TRUE; 3218 3219 3220 /* ===================================================================*/ 3221 /* Handle single-character metacharacters. In multiline mode, ^ disables 3222 the setting of any following char as a first character. */ 3223 3224 case CHAR_CIRCUMFLEX_ACCENT: 3225 if ((options & PCRE_MULTILINE) != 0) 3226 { 3227 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; 3228 } 3229 previous = NULL; 3230 *code++ = OP_CIRC; 3231 break; 3232 3233 case CHAR_DOLLAR_SIGN: 3234 previous = NULL; 3235 *code++ = OP_DOLL; 3236 break; 3237 3238 /* There can never be a first char if '.' is first, whatever happens about 3239 repeats. The value of reqbyte doesn't change either. */ 3240 3241 case CHAR_DOT: 3242 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; 3243 zerofirstbyte = firstbyte; 3244 zeroreqbyte = reqbyte; 3245 previous = code; 3246 *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; 3247 break; 3248 3249 3250 /* ===================================================================*/ 3251 /* Character classes. If the included characters are all < 256, we build a 3252 32-byte bitmap of the permitted characters, except in the special case 3253 where there is only one such character. For negated classes, we build the 3254 map as usual, then invert it at the end. However, we use a different opcode 3255 so that data characters > 255 can be handled correctly. 3256 3257 If the class contains characters outside the 0-255 range, a different 3258 opcode is compiled. It may optionally have a bit map for characters < 256, 3259 but those above are are explicitly listed afterwards. A flag byte tells 3260 whether the bitmap is present, and whether this is a negated class or not. 3261 3262 In JavaScript compatibility mode, an isolated ']' causes an error. In 3263 default (Perl) mode, it is treated as a data character. */ 3264 3265 case CHAR_RIGHT_SQUARE_BRACKET: 3266 if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) 3267 { 3268 *errorcodeptr = ERR64; 3269 goto FAILED; 3270 } 3271 goto NORMAL_CHAR; 3272 3273 case CHAR_LEFT_SQUARE_BRACKET: 3274 previous = code; 3275 3276 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if 3277 they are encountered at the top level, so we'll do that too. */ 3278 3279 if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || 3280 ptr[1] == CHAR_EQUALS_SIGN) && 3281 check_posix_syntax(ptr, &tempptr)) 3282 { 3283 *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; 3284 goto FAILED; 3285 } 3286 3287 /* If the first character is '^', set the negation flag and skip it. Also, 3288 if the first few characters (either before or after ^) are \Q\E or \E we 3289 skip them too. This makes for compatibility with Perl. */ 3290 3291 negate_class = FALSE; 3292 for (;;) 3293 { 3294 c = *(++ptr); 3295 if (c == CHAR_BACKSLASH) 3296 { 3297 if (ptr[1] == CHAR_E) 3298 ptr++; 3299 else if (strncmp((const char *)ptr+1, 3300 STR_Q STR_BACKSLASH STR_E, 3) == 0) 3301 ptr += 3; 3302 else 3303 break; 3304 } 3305 else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) 3306 negate_class = TRUE; 3307 else break; 3308 } 3309 3310 /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, 3311 an initial ']' is taken as a data character -- the code below handles 3312 that. In JS mode, [] must always fail, so generate OP_FAIL, whereas 3313 [^] must match any character, so generate OP_ALLANY. */ 3314 3315 if (c == CHAR_RIGHT_SQUARE_BRACKET && 3316 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) 3317 { 3318 *code++ = negate_class? OP_ALLANY : OP_FAIL; 3319 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; 3320 zerofirstbyte = firstbyte; 3321 break; 3322 } 3323 3324 /* If a class contains a negative special such as \S, we need to flip the 3325 negation flag at the end, so that support for characters > 255 works 3326 correctly (they are all included in the class). */ 3327 3328 should_flip_negation = FALSE; 3329 3330 /* Keep a count of chars with values < 256 so that we can optimize the case 3331 of just a single character (as long as it's < 256). However, For higher 3332 valued UTF-8 characters, we don't yet do any optimization. */ 3333 3334 class_charcount = 0; 3335 class_lastchar = -1; 3336 3337 /* Initialize the 32-char bit map to all zeros. We build the map in a 3338 temporary bit of memory, in case the class contains only 1 character (less 3339 than 256), because in that case the compiled code doesn't use the bit map. 3340 */ 3341 3342 memset(classbits, 0, 32 * sizeof(uschar)); 3343 3344 #ifdef SUPPORT_UTF8 3345 class_utf8 = FALSE; /* No chars >= 256 */ 3346 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */ 3347 class_utf8data_base = class_utf8data; /* For resetting in pass 1 */ 3348 #endif 3349 3350 /* Process characters until ] is reached. By writing this as a "do" it 3351 means that an initial ] is taken as a data character. At the start of the 3352 loop, c contains the first byte of the character. */ 3353 3354 if (c != 0) do 3355 { 3356 const uschar *oldptr; 3357 3358 #ifdef SUPPORT_UTF8 3359 if (utf8 && c > 127) 3360 { /* Braces are required because the */ 3361 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ 3362 } 3363 3364 /* In the pre-compile phase, accumulate the length of any UTF-8 extra 3365 data and reset the pointer. This is so that very large classes that 3366 contain a zillion UTF-8 characters no longer overwrite the work space 3367 (which is on the stack). */ 3368 3369 if (lengthptr != NULL) 3370 { 3371 *lengthptr += class_utf8data - class_utf8data_base; 3372 class_utf8data = class_utf8data_base; 3373 } 3374 3375 #endif 3376 3377 /* Inside \Q...\E everything is literal except \E */ 3378 3379 if (inescq) 3380 { 3381 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ 3382 { 3383 inescq = FALSE; /* Reset literal state */ 3384 ptr++; /* Skip the 'E' */ 3385 continue; /* Carry on with next */ 3386 } 3387 goto CHECK_RANGE; /* Could be range if \E follows */ 3388 } 3389 3390 /* Handle POSIX class names. Perl allows a negation extension of the 3391 form [:^name:]. A square bracket that doesn't match the syntax is 3392 treated as a literal. We also recognize the POSIX constructions 3393 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl 3394 5.6 and 5.8 do. */ 3395 3396 if (c == CHAR_LEFT_SQUARE_BRACKET && 3397 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || 3398 ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) 3399 { 3400 BOOL local_negate = FALSE; 3401 int posix_class, taboffset, tabopt; 3402 register const uschar *cbits = cd->cbits; 3403 uschar pbits[32]; 3404 3405 if (ptr[1] != CHAR_COLON) 3406 { 3407 *errorcodeptr = ERR31; 3408 goto FAILED; 3409 } 3410 3411 ptr += 2; 3412 if (*ptr == CHAR_CIRCUMFLEX_ACCENT) 3413 { 3414 local_negate = TRUE; 3415 should_flip_negation = TRUE; /* Note negative special */ 3416 ptr++; 3417 } 3418 3419 posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); 3420 if (posix_class < 0) 3421 { 3422 *errorcodeptr = ERR30; 3423 goto FAILED; 3424 } 3425 3426 /* If matching is caseless, upper and lower are converted to 3427 alpha. This relies on the fact that the class table starts with 3428 alpha, lower, upper as the first 3 entries. */ 3429 3430 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) 3431 posix_class = 0; 3432 3433 /* When PCRE_UCP is set, some of the POSIX classes are converted to 3434 different escape sequences that use Unicode properties. */ 3435 3436 #ifdef SUPPORT_UCP 3437 if ((options & PCRE_UCP) != 0) 3438 { 3439 int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); 3440 if (posix_substitutes[pc] != NULL) 3441 { 3442 nestptr = tempptr + 1; 3443 ptr = posix_substitutes[pc] - 1; 3444 continue; 3445 } 3446 } 3447 #endif 3448 /* In the non-UCP case, we build the bit map for the POSIX class in a 3449 chunk of local store because we may be adding and subtracting from it, 3450 and we don't want to subtract bits that may be in the main map already. 3451 At the end we or the result into the bit map that is being built. */ 3452 3453 posix_class *= 3; 3454 3455 /* Copy in the first table (always present) */ 3456 3457 memcpy(pbits, cbits + posix_class_maps[posix_class], 3458 32 * sizeof(uschar)); 3459 3460 /* If there is a second table, add or remove it as required. */ 3461 3462 taboffset = posix_class_maps[posix_class + 1]; 3463 tabopt = posix_class_maps[posix_class + 2]; 3464 3465 if (taboffset >= 0) 3466 { 3467 if (tabopt >= 0) 3468 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; 3469 else 3470 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; 3471 } 3472 3473 /* Not see if we need to remove any special characters. An option 3474 value of 1 removes vertical space and 2 removes underscore. */ 3475 3476 if (tabopt < 0) tabopt = -tabopt; 3477 if (tabopt == 1) pbits[1] &= ~0x3c; 3478 else if (tabopt == 2) pbits[11] &= 0x7f; 3479 3480 /* Add the POSIX table or its complement into the main table that is 3481 being built and we are done. */ 3482 3483 if (local_negate) 3484 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; 3485 else 3486 for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; 3487 3488 ptr = tempptr + 1; 3489 class_charcount = 10; /* Set > 1; assumes more than 1 per class */ 3490 continue; /* End of POSIX syntax handling */ 3491 } 3492 3493 /* Backslash may introduce a single character, or it may introduce one 3494 of the specials, which just set a flag. The sequence \b is a special 3495 case. Inside a class (and only there) it is treated as backspace. We 3496 assume that other escapes have more than one character in them, so set 3497 class_charcount bigger than one. Unrecognized escapes fall through and 3498 are either treated as literal characters (by default), or are faulted if 3499 PCRE_EXTRA is set. */ 3500 3501 if (c == CHAR_BACKSLASH) 3502 { 3503 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); 3504 if (*errorcodeptr != 0) goto FAILED; 3505 3506 if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ 3507 else if (-c == ESC_Q) /* Handle start of quoted string */ 3508 { 3509 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) 3510 { 3511 ptr += 2; /* avoid empty string */ 3512 } 3513 else inescq = TRUE; 3514 continue; 3515 } 3516 else if (-c == ESC_E) continue; /* Ignore orphan \E */ 3517 3518 if (c < 0) 3519 { 3520 register const uschar *cbits = cd->cbits; 3521 class_charcount += 2; /* Greater than 1 is what matters */ 3522 3523 switch (-c) 3524 { 3525 #ifdef SUPPORT_UCP 3526 case ESC_du: /* These are the values given for \d etc */ 3527 case ESC_DU: /* when PCRE_UCP is set. We replace the */ 3528 case ESC_wu: /* escape sequence with an appropriate \p */ 3529 case ESC_WU: /* or \P to test Unicode properties instead */ 3530 case ESC_su: /* of the default ASCII testing. */ 3531 case ESC_SU: 3532 nestptr = ptr; 3533 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ 3534 class_charcount -= 2; /* Undo! */ 3535 continue; 3536 #endif 3537 case ESC_d: 3538 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; 3539 continue; 3540 3541 case ESC_D: 3542 should_flip_negation = TRUE; 3543 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; 3544 continue; 3545 3546 case ESC_w: 3547 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; 3548 continue; 3549 3550 case ESC_W: 3551 should_flip_negation = TRUE; 3552 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; 3553 continue; 3554 3555 /* Perl 5.004 onwards omits VT from \s, but we must preserve it 3556 if it was previously set by something earlier in the character 3557 class. */ 3558 3559 case ESC_s: 3560 classbits[0] |= cbits[cbit_space]; 3561 classbits[1] |= cbits[cbit_space+1] & ~0x08; 3562 for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; 3563 continue; 3564 3565 case ESC_S: 3566 should_flip_negation = TRUE; 3567 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; 3568 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ 3569 continue; 3570 3571 case ESC_h: 3572 SETBIT(classbits, 0x09); /* VT */ 3573 SETBIT(classbits, 0x20); /* SPACE */ 3574 SETBIT(classbits, 0xa0); /* NSBP */ 3575 #ifdef SUPPORT_UTF8 3576 if (utf8) 3577 { 3578 class_utf8 = TRUE; 3579 *class_utf8data++ = XCL_SINGLE; 3580 class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data); 3581 *class_utf8data++ = XCL_SINGLE; 3582 class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data); 3583 *class_utf8data++ = XCL_RANGE; 3584 class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data); 3585 class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data); 3586 *class_utf8data++ = XCL_SINGLE; 3587 class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data); 3588 *class_utf8data++ = XCL_SINGLE; 3589 class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data); 3590 *class_utf8data++ = XCL_SINGLE; 3591 class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data); 3592 } 3593 #endif 3594 continue; 3595 3596 case ESC_H: 3597 for (c = 0; c < 32; c++) 3598 { 3599 int x = 0xff; 3600 switch (c) 3601 { 3602 case 0x09/8: x ^= 1 << (0x09%8); break; 3603 case 0x20/8: x ^= 1 << (0x20%8); break; 3604 case 0xa0/8: x ^= 1 << (0xa0%8); break; 3605 default: break; 3606 } 3607 classbits[c] |= x; 3608 } 3609 3610 #ifdef SUPPORT_UTF8 3611 if (utf8) 3612 { 3613 class_utf8 = TRUE; 3614 *class_utf8data++ = XCL_RANGE; 3615 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); 3616 class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data); 3617 *class_utf8data++ = XCL_RANGE; 3618 class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data); 3619 class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data); 3620 *class_utf8data++ = XCL_RANGE; 3621 class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data); 3622 class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data); 3623 *class_utf8data++ = XCL_RANGE; 3624 class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data); 3625 class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data); 3626 *class_utf8data++ = XCL_RANGE; 3627 class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data); 3628 class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data); 3629 *class_utf8data++ = XCL_RANGE; 3630 class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data); 3631 class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data); 3632 *class_utf8data++ = XCL_RANGE; 3633 class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data); 3634 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); 3635 } 3636 #endif 3637 continue; 3638 3639 case ESC_v: 3640 SETBIT(classbits, 0x0a); /* LF */ 3641 SETBIT(classbits, 0x0b); /* VT */ 3642 SETBIT(classbits, 0x0c); /* FF */ 3643 SETBIT(classbits, 0x0d); /* CR */ 3644 SETBIT(classbits, 0x85); /* NEL */ 3645 #ifdef SUPPORT_UTF8 3646 if (utf8) 3647 { 3648 class_utf8 = TRUE; 3649 *class_utf8data++ = XCL_RANGE; 3650 class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data); 3651 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); 3652 } 3653 #endif 3654 continue; 3655 3656 case ESC_V: 3657 for (c = 0; c < 32; c++) 3658 { 3659 int x = 0xff; 3660 switch (c) 3661 { 3662 case 0x0a/8: x ^= 1 << (0x0a%8); 3663 x ^= 1 << (0x0b%8); 3664 x ^= 1 << (0x0c%8); 3665 x ^= 1 << (0x0d%8); 3666 break; 3667 case 0x85/8: x ^= 1 << (0x85%8); break; 3668 default: break; 3669 } 3670 classbits[c] |= x; 3671 } 3672 3673 #ifdef SUPPORT_UTF8 3674 if (utf8) 3675 { 3676 class_utf8 = TRUE; 3677 *class_utf8data++ = XCL_RANGE; 3678 class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); 3679 class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data); 3680 *class_utf8data++ = XCL_RANGE; 3681 class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); 3682 class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); 3683 } 3684 #endif 3685 continue; 3686 3687 #ifdef SUPPORT_UCP 3688 case ESC_p: 3689 case ESC_P: 3690 { 3691 BOOL negated; 3692 int pdata; 3693 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); 3694 if (ptype < 0) goto FAILED; 3695 class_utf8 = TRUE; 3696 *class_utf8data++ = ((-c == ESC_p) != negated)? 3697 XCL_PROP : XCL_NOTPROP; 3698 *class_utf8data++ = ptype; 3699 *class_utf8data++ = pdata; 3700 class_charcount -= 2; /* Not a < 256 character */ 3701 continue; 3702 } 3703 #endif 3704 /* Unrecognized escapes are faulted if PCRE is running in its 3705 strict mode. By default, for compatibility with Perl, they are 3706 treated as literals. */ 3707 3708 default: 3709 if ((options & PCRE_EXTRA) != 0) 3710 { 3711 *errorcodeptr = ERR7; 3712 goto FAILED; 3713 } 3714 class_charcount -= 2; /* Undo the default count from above */ 3715 c = *ptr; /* Get the final character and fall through */ 3716 break; 3717 } 3718 } 3719 3720 /* Fall through if we have a single character (c >= 0). This may be 3721 greater than 256 in UTF-8 mode. */ 3722 3723 } /* End of backslash handling */ 3724 3725 /* A single character may be followed by '-' to form a range. However, 3726 Perl does not permit ']' to be the end of the range. A '-' character 3727 at the end is treated as a literal. Perl ignores orphaned \E sequences 3728 entirely. The code for handling \Q and \E is messy. */ 3729 3730 CHECK_RANGE: 3731 while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) 3732 { 3733 inescq = FALSE; 3734 ptr += 2; 3735 } 3736 3737 oldptr = ptr; 3738 3739 /* Remember \r or \n */ 3740 3741 if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; 3742 3743 /* Check for range */ 3744 3745 if (!inescq && ptr[1] == CHAR_MINUS) 3746 { 3747 int d; 3748 ptr += 2; 3749 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; 3750 3751 /* If we hit \Q (not followed by \E) at this point, go into escaped 3752 mode. */ 3753 3754 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) 3755 { 3756 ptr += 2; 3757 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) 3758 { ptr += 2; continue; } 3759 inescq = TRUE; 3760 break; 3761 } 3762 3763 if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) 3764 { 3765 ptr = oldptr; 3766 goto LONE_SINGLE_CHARACTER; 3767 } 3768 3769 #ifdef SUPPORT_UTF8 3770 if (utf8) 3771 { /* Braces are required because the */ 3772 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ 3773 } 3774 else 3775 #endif 3776 d = *ptr; /* Not UTF-8 mode */ 3777 3778 /* The second part of a range can be a single-character escape, but 3779 not any of the other escapes. Perl 5.6 treats a hyphen as a literal 3780 in such circumstances. */ 3781 3782 if (!inescq && d == CHAR_BACKSLASH) 3783 { 3784 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); 3785 if (*errorcodeptr != 0) goto FAILED; 3786 3787 /* \b is backspace; any other special means the '-' was literal */ 3788 3789 if (d < 0) 3790 { 3791 if (d == -ESC_b) d = CHAR_BS; else 3792 { 3793 ptr = oldptr; 3794 goto LONE_SINGLE_CHARACTER; /* A few lines below */ 3795 } 3796 } 3797 } 3798 3799 /* Check that the two values are in the correct order. Optimize 3800 one-character ranges */ 3801 3802 if (d < c) 3803 { 3804 *errorcodeptr = ERR8; 3805 goto FAILED; 3806 } 3807 3808 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */ 3809 3810 /* Remember \r or \n */ 3811 3812 if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; 3813 3814 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless 3815 matching, we have to use an XCLASS with extra data items. Caseless 3816 matching for characters > 127 is available only if UCP support is 3817 available. */ 3818 3819 #ifdef SUPPORT_UTF8 3820 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127))) 3821 { 3822 class_utf8 = TRUE; 3823 3824 /* With UCP support, we can find the other case equivalents of 3825 the relevant characters. There may be several ranges. Optimize how 3826 they fit with the basic range. */ 3827 3828 #ifdef SUPPORT_UCP 3829 if ((options & PCRE_CASELESS) != 0) 3830 { 3831 unsigned int occ, ocd; 3832 unsigned int cc = c; 3833 unsigned int origd = d; 3834 while (get_othercase_range(&cc, origd, &occ, &ocd)) 3835 { 3836 if (occ >= (unsigned int)c && 3837 ocd <= (unsigned int)d) 3838 continue; /* Skip embedded ranges */ 3839 3840 if (occ < (unsigned int)c && 3841 ocd >= (unsigned int)c - 1) /* Extend the basic range */ 3842 { /* if there is overlap, */ 3843 c = occ; /* noting that if occ < c */ 3844 continue; /* we can't have ocd > d */ 3845 } /* because a subrange is */ 3846 if (ocd > (unsigned int)d && 3847 occ <= (unsigned int)d + 1) /* always shorter than */ 3848 { /* the basic range. */ 3849 d = ocd; 3850 continue; 3851 } 3852 3853 if (occ == ocd) 3854 { 3855 *class_utf8data++ = XCL_SINGLE; 3856 } 3857 else 3858 { 3859 *class_utf8data++ = XCL_RANGE; 3860 class_utf8data += _pcre_ord2utf8(occ, class_utf8data); 3861 } 3862 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data); 3863 } 3864 } 3865 #endif /* SUPPORT_UCP */ 3866 3867 /* Now record the original range, possibly modified for UCP caseless 3868 overlapping ranges. */ 3869 3870 *class_utf8data++ = XCL_RANGE; 3871 class_utf8data += _pcre_ord2utf8(c, class_utf8data); 3872 class_utf8data += _pcre_ord2utf8(d, class_utf8data); 3873 3874 /* With UCP support, we are done. Without UCP support, there is no 3875 caseless matching for UTF-8 characters > 127; we can use the bit map 3876 for the smaller ones. */ 3877 3878 #ifdef SUPPORT_UCP 3879 continue; /* With next character in the class */ 3880 #else 3881 if ((options & PCRE_CASELESS) == 0 || c > 127) continue; 3882 3883 /* Adjust upper limit and fall through to set up the map */ 3884 3885 d = 127; 3886 3887 #endif /* SUPPORT_UCP */ 3888 } 3889 #endif /* SUPPORT_UTF8 */ 3890 3891 /* We use the bit map for all cases when not in UTF-8 mode; else 3892 ranges that lie entirely within 0-127 when there is UCP support; else 3893 for partial ranges without UCP support. */ 3894 3895 class_charcount += d - c + 1; 3896 class_lastchar = d; 3897 3898 /* We can save a bit of time by skipping this in the pre-compile. */ 3899 3900 if (lengthptr == NULL) for (; c <= d; c++) 3901 { 3902 classbits[c/8] |= (1 << (c&7)); 3903 if ((options & PCRE_CASELESS) != 0) 3904 { 3905 int uc = cd->fcc[c]; /* flip case */ 3906 classbits[uc/8] |= (1 << (uc&7)); 3907 } 3908 } 3909 3910 continue; /* Go get the next char in the class */ 3911 } 3912 3913 /* Handle a lone single character - we can get here for a normal 3914 non-escape char, or after \ that introduces a single character or for an 3915 apparent range that isn't. */ 3916 3917 LONE_SINGLE_CHARACTER: 3918 3919 /* Handle a character that cannot go in the bit map */ 3920 3921 #ifdef SUPPORT_UTF8 3922 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127))) 3923 { 3924 class_utf8 = TRUE; 3925 *class_utf8data++ = XCL_SINGLE; 3926 class_utf8data += _pcre_ord2utf8(c, class_utf8data); 3927 3928 #ifdef SUPPORT_UCP 3929 if ((options & PCRE_CASELESS) != 0) 3930 { 3931 unsigned int othercase; 3932 if ((othercase = UCD_OTHERCASE(c)) != c) 3933 { 3934 *class_utf8data++ = XCL_SINGLE; 3935 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data); 3936 } 3937 } 3938 #endif /* SUPPORT_UCP */ 3939 3940 } 3941 else 3942 #endif /* SUPPORT_UTF8 */ 3943 3944 /* Handle a single-byte character */ 3945 { 3946 classbits[c/8] |= (1 << (c&7)); 3947 if ((options & PCRE_CASELESS) != 0) 3948 { 3949 c = cd->fcc[c]; /* flip case */ 3950 classbits[c/8] |= (1 << (c&7)); 3951 } 3952 class_charcount++; 3953 class_lastchar = c; 3954 } 3955 } 3956 3957 /* Loop until ']' reached. This "while" is the end of the "do" far above. 3958 If we are at the end of an internal nested string, revert to the outer 3959 string. */ 3960 3961 while (((c = *(++ptr)) != 0 || 3962 (nestptr != NULL && 3963 (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) && 3964 (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); 3965 3966 /* Check for missing terminating ']' */ 3967 3968 if (c == 0) 3969 { 3970 *errorcodeptr = ERR6; 3971 goto FAILED; 3972 } 3973 3974 /* If class_charcount is 1, we saw precisely one character whose value is 3975 less than 256. As long as there were no characters >= 128 and there was no 3976 use of \p or \P, in other words, no use of any XCLASS features, we can 3977 optimize. 3978 3979 In UTF-8 mode, we can optimize the negative case only if there were no 3980 characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR 3981 operate on single-bytes only. This is an historical hangover. Maybe one day 3982 we can tidy these opcodes to handle multi-byte characters. 3983 3984 The optimization throws away the bit map. We turn the item into a 3985 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note 3986 that OP_NOT does not support multibyte characters. In the positive case, it 3987 can cause firstbyte to be set. Otherwise, there can be no first char if 3988 this item is first, whatever repeat count may follow. In the case of 3989 reqbyte, save the previous value for reinstating. */ 3990 3991 #ifdef SUPPORT_UTF8 3992 if (class_charcount == 1 && !class_utf8 && 3993 (!utf8 || !negate_class || class_lastchar < 128)) 3994 #else 3995 if (class_charcount == 1) 3996 #endif 3997 { 3998 zeroreqbyte = reqbyte; 3999 4000 /* The OP_NOT opcode works on one-byte characters only. */ 4001 4002 if (negate_class) 4003 { 4004 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; 4005 zerofirstbyte = firstbyte; 4006 *code++ = OP_NOT; 4007 *code++ = class_lastchar; 4008 break; 4009 } 4010 4011 /* For a single, positive character, get the value into mcbuffer, and 4012 then we can handle this with the normal one-character code. */ 4013 4014 #ifdef SUPPORT_UTF8 4015 if (utf8 && class_lastchar > 127) 4016 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer); 4017 else 4018 #endif 4019 { 4020 mcbuffer[0] = class_lastchar; 4021 mclength = 1; 4022 } 4023 goto ONE_CHAR; 4024 } /* End of 1-char optimization */ 4025 4026 /* The general case - not the one-char optimization. If this is the first 4027 thing in the branch, there can be no first char setting, whatever the 4028 repeat count. Any reqbyte setting must remain unchanged after any kind of 4029 repeat. */ 4030 4031 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; 4032 zerofirstbyte = firstbyte; 4033 zeroreqbyte = reqbyte; 4034 4035 /* If there are characters with values > 255, we have to compile an 4036 extended class, with its own opcode, unless there was a negated special 4037 such as \S in the class, and PCRE_UCP is not set, because in that case all 4038 characters > 255 are in the class, so any that were explicitly given as 4039 well can be ignored. If (when there are explicit characters > 255 that must 4040 be listed) there are no characters < 256, we can omit the bitmap in the 4041 actual compiled code. */ 4042 4043 #ifdef SUPPORT_UTF8 4044 if (class_utf8 && (!should_flip_negation || (options & PCRE_UCP) != 0)) 4045 { 4046 *class_utf8data++ = XCL_END; /* Marks the end of extra data */ 4047 *code++ = OP_XCLASS; 4048 code += LINK_SIZE; 4049 *code = negate_class? XCL_NOT : 0; 4050 4051 /* If the map is required, move up the extra data to make room for it; 4052 otherwise just move the code pointer to the end of the extra data. */ 4053 4054 if (class_charcount > 0) 4055 { 4056 *code++ |= XCL_MAP; 4057 memmove(code + 32, code, class_utf8data - code); 4058 memcpy(code, classbits, 32); 4059 code = class_utf8data + 32; 4060 } 4061 else code = class_utf8data; 4062 4063 /* Now fill in the complete length of the item */ 4064 4065 PUT(previous, 1, code - previous); 4066 break; /* End of class handling */ 4067 } 4068 #endif 4069 4070 /* If there are no characters > 255, or they are all to be included or 4071 excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the 4072 whole class was negated and whether there were negative specials such as \S 4073 (non-UCP) in the class. Then copy the 32-byte map into the code vector, 4074 negating it if necessary. */ 4075 4076 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; 4077 if (negate_class) 4078 { 4079 if (lengthptr == NULL) /* Save time in the pre-compile phase */ 4080 for (c = 0; c < 32; c++) code[c] = ~classbits[c]; 4081 } 4082 else 4083 { 4084 memcpy(code, classbits, 32); 4085 } 4086 code += 32; 4087 break; 4088 4089 4090 /* ===================================================================*/ 4091 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this 4092 has been tested above. */ 4093 4094 case CHAR_LEFT_CURLY_BRACKET: 4095 if (!is_quantifier) goto NORMAL_CHAR; 4096 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); 4097 if (*errorcodeptr != 0) goto FAILED; 4098 goto REPEAT; 4099 4100 case CHAR_ASTERISK: 4101 repeat_min = 0; 4102 repeat_max = -1; 4103 goto REPEAT; 4104 4105 case CHAR_PLUS: 4106 repeat_min = 1; 4107 repeat_max = -1; 4108 goto REPEAT; 4109 4110 case CHAR_QUESTION_MARK: 4111 repeat_min = 0; 4112 repeat_max = 1; 4113 4114 REPEAT: 4115 if (previous == NULL) 4116 { 4117 *errorcodeptr = ERR9; 4118 goto FAILED; 4119 } 4120 4121 if (repeat_min == 0) 4122 { 4123 firstbyte = zerofirstbyte; /* Adjust for zero repeat */ 4124 reqbyte = zeroreqbyte; /* Ditto */ 4125 } 4126 4127 /* Remember whether this is a variable length repeat */ 4128 4129 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; 4130 4131 op_type = 0; /* Default single-char op codes */ 4132 possessive_quantifier = FALSE; /* Default not possessive quantifier */ 4133 4134 /* Save start of previous item, in case we have to move it up to make space 4135 for an inserted OP_ONCE for the additional '+' extension. */ 4136 4137 tempcode = previous; 4138 4139 /* If the next character is '+', we have a possessive quantifier. This 4140 implies greediness, whatever the setting of the PCRE_UNGREEDY option. 4141 If the next character is '?' this is a minimizing repeat, by default, 4142 but if PCRE_UNGREEDY is set, it works the other way round. We change the 4143 repeat type to the non-default. */ 4144 4145 if (ptr[1] == CHAR_PLUS) 4146 { 4147 repeat_type = 0; /* Force greedy */ 4148 possessive_quantifier = TRUE; 4149 ptr++; 4150 } 4151 else if (ptr[1] == CHAR_QUESTION_MARK) 4152 { 4153 repeat_type = greedy_non_default; 4154 ptr++; 4155 } 4156 else repeat_type = greedy_default; 4157 4158 /* If previous was a character match, abolish the item and generate a 4159 repeat item instead. If a char item has a minumum of more than one, ensure 4160 that it is set in reqbyte - it might not be if a sequence such as x{3} is 4161 the first thing in a branch because the x will have gone into firstbyte 4162 instead. */ 4163 4164 if (*previous == OP_CHAR || *previous == OP_CHARNC) 4165 { 4166 /* Deal with UTF-8 characters that take up more than one byte. It's 4167 easier to write this out separately than try to macrify it. Use c to 4168 hold the length of the character in bytes, plus 0x80 to flag that it's a 4169 length rather than a small character. */ 4170 4171 #ifdef SUPPORT_UTF8 4172 if (utf8 && (code[-1] & 0x80) != 0) 4173 { 4174 uschar *lastchar = code - 1; 4175 while((*lastchar & 0xc0) == 0x80) lastchar--; 4176 c = code - lastchar; /* Length of UTF-8 character */ 4177 memcpy(utf8_char, lastchar, c); /* Save the char */ 4178 c |= 0x80; /* Flag c as a length */ 4179 } 4180 else 4181 #endif 4182 4183 /* Handle the case of a single byte - either with no UTF8 support, or 4184 with UTF-8 disabled, or for a UTF-8 character < 128. */ 4185 4186 { 4187 c = code[-1]; 4188 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt; 4189 } 4190 4191 /* If the repetition is unlimited, it pays to see if the next thing on 4192 the line is something that cannot possibly match this character. If so, 4193 automatically possessifying this item gains some performance in the case 4194 where the match fails. */ 4195 4196 if (!possessive_quantifier && 4197 repeat_max < 0 && 4198 check_auto_possessive(previous, utf8, ptr + 1, options, cd)) 4199 { 4200 repeat_type = 0; /* Force greedy */ 4201 possessive_quantifier = TRUE; 4202 } 4203 4204 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ 4205 } 4206 4207 /* If previous was a single negated character ([^a] or similar), we use 4208 one of the special opcodes, replacing it. The code is shared with single- 4209 character repeats by setting opt_type to add a suitable offset into 4210 repeat_type. We can also test for auto-possessification. OP_NOT is 4211 currently used only for single-byte chars. */ 4212 4213 else if (*previous == OP_NOT) 4214 { 4215 op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ 4216 c = previous[1]; 4217 if (!possessive_quantifier && 4218 repeat_max < 0 && 4219 check_auto_possessive(previous, utf8, ptr + 1, options, cd)) 4220 { 4221 repeat_type = 0; /* Force greedy */ 4222 possessive_quantifier = TRUE; 4223 } 4224 goto OUTPUT_SINGLE_REPEAT; 4225 } 4226 4227 /* If previous was a character type match (\d or similar), abolish it and 4228 create a suitable repeat item. The code is shared with single-character 4229 repeats by setting op_type to add a suitable offset into repeat_type. Note 4230 the the Unicode property types will be present only when SUPPORT_UCP is 4231 defined, but we don't wrap the little bits of code here because it just 4232 makes it horribly messy. */ 4233 4234 else if (*previous < OP_EODN) 4235 { 4236 uschar *oldcode; 4237 int prop_type, prop_value; 4238 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ 4239 c = *previous; 4240 4241 if (!possessive_quantifier && 4242 repeat_max < 0 && 4243 check_auto_possessive(previous, utf8, ptr + 1, options, cd)) 4244 { 4245 repeat_type = 0; /* Force greedy */ 4246 possessive_quantifier = TRUE; 4247 } 4248 4249 OUTPUT_SINGLE_REPEAT: 4250 if (*previous == OP_PROP || *previous == OP_NOTPROP) 4251 { 4252 prop_type = previous[1]; 4253 prop_value = previous[2]; 4254 } 4255 else prop_type = prop_value = -1; 4256 4257 oldcode = code; 4258 code = previous; /* Usually overwrite previous item */ 4259 4260 /* If the maximum is zero then the minimum must also be zero; Perl allows 4261 this case, so we do too - by simply omitting the item altogether. */ 4262 4263 if (repeat_max == 0) goto END_REPEAT; 4264 4265 /*--------------------------------------------------------------------*/ 4266 /* This code is obsolete from release 8.00; the restriction was finally 4267 removed: */ 4268 4269 /* All real repeats make it impossible to handle partial matching (maybe 4270 one day we will be able to remove this restriction). */ 4271 4272 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ 4273 /*--------------------------------------------------------------------*/ 4274 4275 /* Combine the op_type with the repeat_type */ 4276 4277 repeat_type += op_type; 4278 4279 /* A minimum of zero is handled either as the special case * or ?, or as 4280 an UPTO, with the maximum given. */ 4281 4282 if (repeat_min == 0) 4283 { 4284 if (repeat_max == -1) *code++ = OP_STAR + repeat_type; 4285 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; 4286 else 4287 { 4288 *code++ = OP_UPTO + repeat_type; 4289 PUT2INC(code, 0, repeat_max); 4290 } 4291 } 4292 4293 /* A repeat minimum of 1 is optimized into some special cases. If the 4294 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is 4295 left in place and, if the maximum is greater than 1, we use OP_UPTO with 4296 one less than the maximum. */ 4297 4298 else if (repeat_min == 1) 4299 { 4300 if (repeat_max == -1) 4301 *code++ = OP_PLUS + repeat_type; 4302 else 4303 { 4304 code = oldcode; /* leave previous item in place */ 4305 if (repeat_max == 1) goto END_REPEAT; 4306 *code++ = OP_UPTO + repeat_type; 4307 PUT2INC(code, 0, repeat_max - 1); 4308 } 4309 } 4310 4311 /* The case {n,n} is just an EXACT, while the general case {n,m} is 4312 handled as an EXACT followed by an UPTO. */ 4313 4314 else 4315 { 4316 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ 4317 PUT2INC(code, 0, repeat_min); 4318 4319 /* If the maximum is unlimited, insert an OP_STAR. Before doing so, 4320 we have to insert the character for the previous code. For a repeated 4321 Unicode property match, there are two extra bytes that define the 4322 required property. In UTF-8 mode, long characters have their length in 4323 c, with the 0x80 bit as a flag. */ 4324 4325 if (repeat_max < 0) 4326 { 4327 #ifdef SUPPORT_UTF8 4328 if (utf8 && c >= 128) 4329 { 4330 memcpy(code, utf8_char, c & 7); 4331 code += c & 7; 4332 } 4333 else 4334 #endif 4335 { 4336 *code++ = c; 4337 if (prop_type >= 0) 4338 { 4339 *code++ = prop_type; 4340 *code++ = prop_value; 4341 } 4342 } 4343 *code++ = OP_STAR + repeat_type; 4344 } 4345 4346 /* Else insert an UPTO if the max is greater than the min, again 4347 preceded by the character, for the previously inserted code. If the 4348 UPTO is just for 1 instance, we can use QUERY instead. */ 4349 4350 else if (repeat_max != repeat_min) 4351 { 4352 #ifdef SUPPORT_UTF8 4353 if (utf8 && c >= 128) 4354 { 4355 memcpy(code, utf8_char, c & 7); 4356 code += c & 7; 4357 } 4358 else 4359 #endif 4360 *code++ = c; 4361 if (prop_type >= 0) 4362 { 4363 *code++ = prop_type; 4364 *code++ = prop_value; 4365 } 4366 repeat_max -= repeat_min; 4367 4368 if (repeat_max == 1) 4369 { 4370 *code++ = OP_QUERY + repeat_type; 4371 } 4372 else 4373 { 4374 *code++ = OP_UPTO + repeat_type; 4375 PUT2INC(code, 0, repeat_max); 4376 } 4377 } 4378 } 4379 4380 /* The character or character type itself comes last in all cases. */ 4381 4382 #ifdef SUPPORT_UTF8 4383 if (utf8 && c >= 128) 4384 { 4385 memcpy(code, utf8_char, c & 7); 4386 code += c & 7; 4387 } 4388 else 4389 #endif 4390 *code++ = c; 4391 4392 /* For a repeated Unicode property match, there are two extra bytes that 4393 define the required property. */ 4394 4395 #ifdef SUPPORT_UCP 4396 if (prop_type >= 0) 4397 { 4398 *code++ = prop_type; 4399 *code++ = prop_value; 4400 } 4401 #endif 4402 } 4403 4404 /* If previous was a character class or a back reference, we put the repeat 4405 stuff after it, but just skip the item if the repeat was {0,0}. */ 4406 4407 else if (*previous == OP_CLASS || 4408 *previous == OP_NCLASS || 4409 #ifdef SUPPORT_UTF8 4410 *previous == OP_XCLASS || 4411 #endif 4412 *previous == OP_REF) 4413 { 4414 if (repeat_max == 0) 4415 { 4416 code = previous; 4417 goto END_REPEAT; 4418 } 4419 4420 /*--------------------------------------------------------------------*/ 4421 /* This code is obsolete from release 8.00; the restriction was finally 4422 removed: */ 4423 4424 /* All real repeats make it impossible to handle partial matching (maybe 4425 one day we will be able to remove this restriction). */ 4426 4427 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ 4428 /*--------------------------------------------------------------------*/ 4429 4430 if (repeat_min == 0 && repeat_max == -1) 4431 *code++ = OP_CRSTAR + repeat_type; 4432 else if (repeat_min == 1 && repeat_max == -1) 4433 *code++ = OP_CRPLUS + repeat_type; 4434 else if (repeat_min == 0 && repeat_max == 1) 4435 *code++ = OP_CRQUERY + repeat_type; 4436 else 4437 { 4438 *code++ = OP_CRRANGE + repeat_type; 4439 PUT2INC(code, 0, repeat_min); 4440 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ 4441 PUT2INC(code, 0, repeat_max); 4442 } 4443 } 4444 4445 /* If previous was a bracket group, we may have to replicate it in certain 4446 cases. */ 4447 4448 else if (*previous == OP_BRA || *previous == OP_CBRA || 4449 *previous == OP_ONCE || *previous == OP_COND) 4450 { 4451 register int i; 4452 int ketoffset = 0; 4453 int len = (int)(code - previous); 4454 uschar *bralink = NULL; 4455 4456 /* Repeating a DEFINE group is pointless */ 4457 4458 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) 4459 { 4460 *errorcodeptr = ERR55; 4461 goto FAILED; 4462 } 4463 4464 /* If the maximum repeat count is unlimited, find the end of the bracket 4465 by scanning through from the start, and compute the offset back to it 4466 from the current code pointer. There may be an OP_OPT setting following 4467 the final KET, so we can't find the end just by going back from the code 4468 pointer. */ 4469 4470 if (repeat_max == -1) 4471 { 4472 register uschar *ket = previous; 4473 do ket += GET(ket, 1); while (*ket != OP_KET); 4474 ketoffset = (int)(code - ket); 4475 } 4476 4477 /* The case of a zero minimum is special because of the need to stick 4478 OP_BRAZERO in front of it, and because the group appears once in the 4479 data, whereas in other cases it appears the minimum number of times. For 4480 this reason, it is simplest to treat this case separately, as otherwise 4481 the code gets far too messy. There are several special subcases when the 4482 minimum is zero. */ 4483 4484 if (repeat_min == 0) 4485 { 4486 /* If the maximum is also zero, we used to just omit the group from the 4487 output altogether, like this: 4488 4489 ** if (repeat_max == 0) 4490 ** { 4491 ** code = previous; 4492 ** goto END_REPEAT; 4493 ** } 4494 4495 However, that fails when a group is referenced as a subroutine from 4496 elsewhere in the pattern, so now we stick in OP_SKIPZERO in front of it 4497 so that it is skipped on execution. As we don't have a list of which 4498 groups are referenced, we cannot do this selectively. 4499 4500 If the maximum is 1 or unlimited, we just have to stick in the BRAZERO 4501 and do no more at this point. However, we do need to adjust any 4502 OP_RECURSE calls inside the group that refer to the group itself or any 4503 internal or forward referenced group, because the offset is from the 4504 start of the whole regex. Temporarily terminate the pattern while doing 4505 this. */ 4506 4507 if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ 4508 { 4509 *code = OP_END; 4510 adjust_recurse(previous, 1, utf8, cd, save_hwm); 4511 memmove(previous+1, previous, len); 4512 code++; 4513 if (repeat_max == 0) 4514 { 4515 *previous++ = OP_SKIPZERO; 4516 goto END_REPEAT; 4517 } 4518 *previous++ = OP_BRAZERO + repeat_type; 4519 } 4520 4521 /* If the maximum is greater than 1 and limited, we have to replicate 4522 in a nested fashion, sticking OP_BRAZERO before each set of brackets. 4523 The first one has to be handled carefully because it's the original 4524 copy, which has to be moved up. The remainder can be handled by code 4525 that is common with the non-zero minimum case below. We have to 4526 adjust the value or repeat_max, since one less copy is required. Once 4527 again, we may have to adjust any OP_RECURSE calls inside the group. */ 4528 4529 else 4530 { 4531 int offset; 4532 *code = OP_END; 4533 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm); 4534 memmove(previous + 2 + LINK_SIZE, previous, len); 4535 code += 2 + LINK_SIZE; 4536 *previous++ = OP_BRAZERO + repeat_type; 4537 *previous++ = OP_BRA; 4538 4539 /* We chain together the bracket offset fields that have to be 4540 filled in later when the ends of the brackets are reached. */ 4541 4542 offset = (bralink == NULL)? 0 : (int)(previous - bralink); 4543 bralink = previous; 4544 PUTINC(previous, 0, offset); 4545 } 4546 4547 repeat_max--; 4548 } 4549 4550 /* If the minimum is greater than zero, replicate the group as many 4551 times as necessary, and adjust the maximum to the number of subsequent 4552 copies that we need. If we set a first char from the group, and didn't 4553 set a required char, copy the latter from the former. If there are any 4554 forward reference subroutine calls in the group, there will be entries on 4555 the workspace list; replicate these with an appropriate increment. */ 4556 4557 else 4558 { 4559 if (repeat_min > 1) 4560 { 4561 /* In the pre-compile phase, we don't actually do the replication. We 4562 just adjust the length as if we had. Do some paranoid checks for 4563 potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit 4564 integer type when available, otherwise double. */ 4565 4566 if (lengthptr != NULL) 4567 { 4568 int delta = (repeat_min - 1)*length_prevgroup; 4569 if ((INT64_OR_DOUBLE)(repeat_min - 1)* 4570 (INT64_OR_DOUBLE)length_prevgroup > 4571 (INT64_OR_DOUBLE)INT_MAX || 4572 OFLOW_MAX - *lengthptr < delta) 4573 { 4574 *errorcodeptr = ERR20; 4575 goto FAILED; 4576 } 4577 *lengthptr += delta; 4578 } 4579 4580 /* This is compiling for real */ 4581 4582 else 4583 { 4584 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte; 4585 for (i = 1; i < repeat_min; i++) 4586 { 4587 uschar *hc; 4588 uschar *this_hwm = cd->hwm; 4589 memcpy(code, previous, len); 4590 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) 4591 { 4592 PUT(cd->hwm, 0, GET(hc, 0) + len); 4593 cd->hwm += LINK_SIZE; 4594 } 4595 save_hwm = this_hwm; 4596 code += len; 4597 } 4598 } 4599 } 4600 4601 if (repeat_max > 0) repeat_max -= repeat_min; 4602 } 4603 4604 /* This code is common to both the zero and non-zero minimum cases. If 4605 the maximum is limited, it replicates the group in a nested fashion, 4606 remembering the bracket starts on a stack. In the case of a zero minimum, 4607 the first one was set up above. In all cases the repeat_max now specifies 4608 the number of additional copies needed. Again, we must remember to 4609 replicate entries on the forward reference list. */ 4610 4611 if (repeat_max >= 0) 4612 { 4613 /* In the pre-compile phase, we don't actually do the replication. We 4614 just adjust the length as if we had. For each repetition we must add 1 4615 to the length for BRAZERO and for all but the last repetition we must 4616 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some 4617 paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is 4618 a 64-bit integer type when available, otherwise double. */ 4619 4620 if (lengthptr != NULL && repeat_max > 0) 4621 { 4622 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - 4623 2 - 2*LINK_SIZE; /* Last one doesn't nest */ 4624 if ((INT64_OR_DOUBLE)repeat_max * 4625 (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) 4626 > (INT64_OR_DOUBLE)INT_MAX || 4627 OFLOW_MAX - *lengthptr < delta) 4628 { 4629 *errorcodeptr = ERR20; 4630 goto FAILED; 4631 } 4632 *lengthptr += delta; 4633 } 4634 4635 /* This is compiling for real */ 4636 4637 else for (i = repeat_max - 1; i >= 0; i--) 4638 { 4639 uschar *hc; 4640 uschar *this_hwm = cd->hwm; 4641 4642 *code++ = OP_BRAZERO + repeat_type; 4643 4644 /* All but the final copy start a new nesting, maintaining the 4645 chain of brackets outstanding. */ 4646 4647 if (i != 0) 4648 { 4649 int offset; 4650 *code++ = OP_BRA; 4651 offset = (bralink == NULL)? 0 : (int)(code - bralink); 4652 bralink = code; 4653 PUTINC(code, 0, offset); 4654 } 4655 4656 memcpy(code, previous, len); 4657 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) 4658 { 4659 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); 4660 cd->hwm += LINK_SIZE; 4661 } 4662 save_hwm = this_hwm; 4663 code += len; 4664 } 4665 4666 /* Now chain through the pending brackets, and fill in their length 4667 fields (which are holding the chain links pro tem). */ 4668 4669 while (bralink != NULL) 4670 { 4671 int oldlinkoffset; 4672 int offset = (int)(code - bralink + 1); 4673 uschar *bra = code - offset; 4674 oldlinkoffset = GET(bra, 1); 4675 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; 4676 *code++ = OP_KET; 4677 PUTINC(code, 0, offset); 4678 PUT(bra, 1, offset); 4679 } 4680 } 4681 4682 /* If the maximum is unlimited, set a repeater in the final copy. We 4683 can't just offset backwards from the current code point, because we 4684 don't know if there's been an options resetting after the ket. The 4685 correct offset was computed above. 4686 4687 Then, when we are doing the actual compile phase, check to see whether 4688 this group is a non-atomic one that could match an empty string. If so, 4689 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so 4690 that runtime checking can be done. [This check is also applied to 4691 atomic groups at runtime, but in a different way.] */ 4692 4693 else 4694 { 4695 uschar *ketcode = code - ketoffset; 4696 uschar *bracode = ketcode - GET(ketcode, 1); 4697 *ketcode = OP_KETRMAX + repeat_type; 4698 if (lengthptr == NULL && *bracode != OP_ONCE) 4699 { 4700 uschar *scode = bracode; 4701 do 4702 { 4703 if (could_be_empty_branch(scode, ketcode, utf8, cd)) 4704 { 4705 *bracode += OP_SBRA - OP_BRA; 4706 break; 4707 } 4708 scode += GET(scode, 1); 4709 } 4710 while (*scode == OP_ALT); 4711 } 4712 } 4713 } 4714 4715 /* If previous is OP_FAIL, it was generated by an empty class [] in 4716 JavaScript mode. The other ways in which OP_FAIL can be generated, that is 4717 by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" 4718 error above. We can just ignore the repeat in JS case. */ 4719 4720 else if (*previous == OP_FAIL) goto END_REPEAT; 4721 4722 /* Else there's some kind of shambles */ 4723 4724 else 4725 { 4726 *errorcodeptr = ERR11; 4727 goto FAILED; 4728 } 4729 4730 /* If the character following a repeat is '+', or if certain optimization 4731 tests above succeeded, possessive_quantifier is TRUE. For some of the 4732 simpler opcodes, there is an special alternative opcode for this. For 4733 anything else, we wrap the entire repeated item inside OP_ONCE brackets. 4734 The '+' notation is just syntactic sugar, taken from Sun's Java package, 4735 but the special opcodes can optimize it a bit. The repeated item starts at 4736 tempcode, not at previous, which might be the first part of a string whose 4737 (former) last char we repeated. 4738 4739 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But 4740 an 'upto' may follow. We skip over an 'exact' item, and then test the 4741 length of what remains before proceeding. */ 4742 4743 if (possessive_quantifier) 4744 { 4745 int len; 4746 4747 if (*tempcode == OP_TYPEEXACT) 4748 tempcode += _pcre_OP_lengths[*tempcode] + 4749 ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0); 4750 4751 else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) 4752 { 4753 tempcode += _pcre_OP_lengths[*tempcode]; 4754 #ifdef SUPPORT_UTF8 4755 if (utf8 && tempcode[-1] >= 0xc0) 4756 tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f]; 4757 #endif 4758 } 4759 4760 len = (int)(code - tempcode); 4761 if (len > 0) switch (*tempcode) 4762 { 4763 case OP_STAR: *tempcode = OP_POSSTAR; break; 4764 case OP_PLUS: *tempcode = OP_POSPLUS; break; 4765 case OP_QUERY: *tempcode = OP_POSQUERY; break; 4766 case OP_UPTO: *tempcode = OP_POSUPTO; break; 4767 4768 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; 4769 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; 4770 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; 4771 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; 4772 4773 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; 4774 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; 4775 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; 4776 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; 4777 4778 /* Because we are moving code along, we must ensure that any 4779 pending recursive references are updated. */ 4780 4781 default: 4782 *code = OP_END; 4783 adjust_recurse(tempcode, 1 + LINK_SIZE, utf8, cd, save_hwm); 4784 memmove(tempcode + 1+LINK_SIZE, tempcode, len); 4785 code += 1 + LINK_SIZE; 4786 len += 1 + LINK_SIZE; 4787 tempcode[0] = OP_ONCE; 4788 *code++ = OP_KET; 4789 PUTINC(code, 0, len); 4790 PUT(tempcode, 1, len); 4791 break; 4792 } 4793 } 4794 4795 /* In all case we no longer have a previous item. We also set the 4796 "follows varying string" flag for subsequently encountered reqbytes if 4797 it isn't already set and we have just passed a varying length item. */ 4798 4799 END_REPEAT: 4800 previous = NULL; 4801 cd->req_varyopt |= reqvary; 4802 break; 4803 4804 4805 /* ===================================================================*/ 4806 /* Start of nested parenthesized sub-expression, or comment or lookahead or 4807 lookbehind or option setting or condition or all the other extended 4808 parenthesis forms. */ 4809 4810 case CHAR_LEFT_PARENTHESIS: 4811 newoptions = options; 4812 skipbytes = 0; 4813 bravalue = OP_CBRA; 4814 save_hwm = cd->hwm; 4815 reset_bracount = FALSE; 4816 4817 /* First deal with various "verbs" that can be introduced by '*'. */ 4818 4819 if (*(++ptr) == CHAR_ASTERISK && 4820 ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':')) 4821 { 4822 int i, namelen; 4823 int arglen = 0; 4824 const char *vn = verbnames; 4825 const uschar *name = ptr + 1; 4826 const uschar *arg = NULL; 4827 previous = NULL; 4828 while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {}; 4829 namelen = (int)(ptr - name); 4830 4831 if (*ptr == CHAR_COLON) 4832 { 4833 arg = ++ptr; 4834 while ((cd->ctypes[*ptr] & (ctype_letter|ctype_digit)) != 0 4835 || *ptr == '_') ptr++; 4836 arglen = (int)(ptr - arg); 4837 } 4838 4839 if (*ptr != CHAR_RIGHT_PARENTHESIS) 4840 { 4841 *errorcodeptr = ERR60; 4842 goto FAILED; 4843 } 4844 4845 /* Scan the table of verb names */ 4846 4847 for (i = 0; i < verbcount; i++) 4848 { 4849 if (namelen == verbs[i].len && 4850 strncmp((char *)name, vn, namelen) == 0) 4851 { 4852 /* Check for open captures before ACCEPT */ 4853 4854 if (verbs[i].op == OP_ACCEPT) 4855 { 4856 open_capitem *oc; 4857 cd->had_accept = TRUE; 4858 for (oc = cd->open_caps; oc != NULL; oc = oc->next) 4859 { 4860 *code++ = OP_CLOSE; 4861 PUT2INC(code, 0, oc->number); 4862 } 4863 } 4864 4865 /* Handle the cases with/without an argument */ 4866 4867 if (arglen == 0) 4868 { 4869 if (verbs[i].op < 0) /* Argument is mandatory */ 4870 { 4871 *errorcodeptr = ERR66; 4872 goto FAILED; 4873 } 4874 *code = verbs[i].op; 4875 if (*code++ == OP_THEN) 4876 { 4877 PUT(code, 0, code - bcptr->current_branch - 1); 4878 code += LINK_SIZE; 4879 } 4880 } 4881 4882 else 4883 { 4884 if (verbs[i].op_arg < 0) /* Argument is forbidden */ 4885 { 4886 *errorcodeptr = ERR59; 4887 goto FAILED; 4888 } 4889 *code = verbs[i].op_arg; 4890 if (*code++ == OP_THEN_ARG) 4891 { 4892 PUT(code, 0, code - bcptr->current_branch - 1); 4893 code += LINK_SIZE; 4894 } 4895 *code++ = arglen; 4896 memcpy(code, arg, arglen); 4897 code += arglen; 4898 *code++ = 0; 4899 } 4900 4901 break; /* Found verb, exit loop */ 4902 } 4903 4904 vn += verbs[i].len + 1; 4905 } 4906 4907 if (i < verbcount) continue; /* Successfully handled a verb */ 4908 *errorcodeptr = ERR60; /* Verb not recognized */ 4909 goto FAILED; 4910 } 4911 4912 /* Deal with the extended parentheses; all are introduced by '?', and the 4913 appearance of any of them means that this is not a capturing group. */ 4914 4915 else if (*ptr == CHAR_QUESTION_MARK) 4916 { 4917 int i, set, unset, namelen; 4918 int *optset; 4919 const uschar *name; 4920 uschar *slot; 4921 4922 switch (*(++ptr)) 4923 { 4924 case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ 4925 ptr++; 4926 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; 4927 if (*ptr == 0) 4928 { 4929 *errorcodeptr = ERR18; 4930 goto FAILED; 4931 } 4932 continue; 4933 4934 4935 /* ------------------------------------------------------------ */ 4936 case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ 4937 reset_bracount = TRUE; 4938 /* Fall through */ 4939 4940 /* ------------------------------------------------------------ */ 4941 case CHAR_COLON: /* Non-capturing bracket */ 4942 bravalue = OP_BRA; 4943 ptr++; 4944 break; 4945 4946 4947 /* ------------------------------------------------------------ */ 4948 case CHAR_LEFT_PARENTHESIS: 4949 bravalue = OP_COND; /* Conditional group */ 4950 4951 /* A condition can be an assertion, a number (referring to a numbered 4952 group), a name (referring to a named group), or 'R', referring to 4953 recursion. R<digits> and R&name are also permitted for recursion tests. 4954 4955 There are several syntaxes for testing a named group: (?(name)) is used 4956 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). 4957 4958 There are two unfortunate ambiguities, caused by history. (a) 'R' can 4959 be the recursive thing or the name 'R' (and similarly for 'R' followed 4960 by digits), and (b) a number could be a name that consists of digits. 4961 In both cases, we look for a name first; if not found, we try the other 4962 cases. */ 4963 4964 /* For conditions that are assertions, check the syntax, and then exit 4965 the switch. This will take control down to where bracketed groups, 4966 including assertions, are processed. */ 4967 4968 if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || 4969 ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) 4970 break; 4971 4972 /* Most other conditions use OP_CREF (a couple change to OP_RREF 4973 below), and all need to skip 3 bytes at the start of the group. */ 4974 4975 code[1+LINK_SIZE] = OP_CREF; 4976 skipbytes = 3; 4977 refsign = -1; 4978 4979 /* Check for a test for recursion in a named group. */ 4980 4981 if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) 4982 { 4983 terminator = -1; 4984 ptr += 2; 4985 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ 4986 } 4987 4988 /* Check for a test for a named group's having been set, using the Perl 4989 syntax (?(<name>) or (?('name') */ 4990 4991 else if (ptr[1] == CHAR_LESS_THAN_SIGN) 4992 { 4993 terminator = CHAR_GREATER_THAN_SIGN; 4994 ptr++; 4995 } 4996 else if (ptr[1] == CHAR_APOSTROPHE) 4997 { 4998 terminator = CHAR_APOSTROPHE; 4999 ptr++; 5000 } 5001 else 5002 { 5003 terminator = 0; 5004 if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); 5005 } 5006 5007 /* We now expect to read a name; any thing else is an error */ 5008 5009 if ((cd->ctypes[ptr[1]] & ctype_word) == 0) 5010 { 5011 ptr += 1; /* To get the right offset */ 5012 *errorcodeptr = ERR28; 5013 goto FAILED; 5014 } 5015 5016 /* Read the name, but also get it as a number if it's all digits */ 5017 5018 recno = 0; 5019 name = ++ptr; 5020 while ((cd->ctypes[*ptr] & ctype_word) != 0) 5021 { 5022 if (recno >= 0) 5023 recno = ((digitab[*ptr] & ctype_digit) != 0)? 5024 recno * 10 + *ptr - CHAR_0 : -1; 5025 ptr++; 5026 } 5027 namelen = (int)(ptr - name); 5028 5029 if ((terminator > 0 && *ptr++ != terminator) || 5030 *ptr++ != CHAR_RIGHT_PARENTHESIS) 5031 { 5032 ptr--; /* Error offset */ 5033 *errorcodeptr = ERR26; 5034 goto FAILED; 5035 } 5036 5037 /* Do no further checking in the pre-compile phase. */ 5038 5039 if (lengthptr != NULL) break; 5040 5041 /* In the real compile we do the work of looking for the actual 5042 reference. If the string started with "+" or "-" we require the rest to 5043 be digits, in which case recno will be set. */ 5044 5045 if (refsign > 0) 5046 { 5047 if (recno <= 0) 5048 { 5049 *errorcodeptr = ERR58; 5050 goto FAILED; 5051 } 5052 recno = (refsign == CHAR_MINUS)? 5053 cd->bracount - recno + 1 : recno +cd->bracount; 5054 if (recno <= 0 || recno > cd->final_bracount) 5055 { 5056 *errorcodeptr = ERR15; 5057 goto FAILED; 5058 } 5059 PUT2(code, 2+LINK_SIZE, recno); 5060 break; 5061 } 5062 5063 /* Otherwise (did not start with "+" or "-"), start by looking for the 5064 name. If we find a name, add one to the opcode to change OP_CREF or 5065 OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same, 5066 except they record that the reference was originally to a name. The 5067 information is used to check duplicate names. */ 5068 5069 slot = cd->name_table; 5070 for (i = 0; i < cd->names_found; i++) 5071 { 5072 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break; 5073 slot += cd->name_entry_size; 5074 } 5075 5076 /* Found a previous named subpattern */ 5077 5078 if (i < cd->names_found) 5079 { 5080 recno = GET2(slot, 0); 5081 PUT2(code, 2+LINK_SIZE, recno); 5082 code[1+LINK_SIZE]++; 5083 } 5084 5085 /* Search the pattern for a forward reference */ 5086 5087 else if ((i = find_parens(cd, name, namelen, 5088 (options & PCRE_EXTENDED) != 0, utf8)) > 0) 5089 { 5090 PUT2(code, 2+LINK_SIZE, i); 5091 code[1+LINK_SIZE]++; 5092 } 5093 5094 /* If terminator == 0 it means that the name followed directly after 5095 the opening parenthesis [e.g. (?(abc)...] and in this case there are 5096 some further alternatives to try. For the cases where terminator != 0 5097 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have 5098 now checked all the possibilities, so give an error. */ 5099 5100 else if (terminator != 0) 5101 { 5102 *errorcodeptr = ERR15; 5103 goto FAILED; 5104 } 5105 5106 /* Check for (?(R) for recursion. Allow digits after R to specify a 5107 specific group number. */ 5108 5109 else if (*name == CHAR_R) 5110 { 5111 recno = 0; 5112 for (i = 1; i < namelen; i++) 5113 { 5114 if ((digitab[name[i]] & ctype_digit) == 0) 5115 { 5116 *errorcodeptr = ERR15; 5117 goto FAILED; 5118 } 5119 recno = recno * 10 + name[i] - CHAR_0; 5120 } 5121 if (recno == 0) recno = RREF_ANY; 5122 code[1+LINK_SIZE] = OP_RREF; /* Change test type */ 5123 PUT2(code, 2+LINK_SIZE, recno); 5124 } 5125 5126 /* Similarly, check for the (?(DEFINE) "condition", which is always 5127 false. */ 5128 5129 else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0) 5130 { 5131 code[1+LINK_SIZE] = OP_DEF; 5132 skipbytes = 1; 5133 } 5134 5135 /* Check for the "name" actually being a subpattern number. We are 5136 in the second pass here, so final_bracount is set. */ 5137 5138 else if (recno > 0 && recno <= cd->final_bracount) 5139 { 5140 PUT2(code, 2+LINK_SIZE, recno); 5141 } 5142 5143 /* Either an unidentified subpattern, or a reference to (?(0) */ 5144 5145 else 5146 { 5147 *errorcodeptr = (recno == 0)? ERR35: ERR15; 5148 goto FAILED; 5149 } 5150 break; 5151 5152 5153 /* ------------------------------------------------------------ */ 5154 case CHAR_EQUALS_SIGN: /* Positive lookahead */ 5155 bravalue = OP_ASSERT; 5156 ptr++; 5157 break; 5158 5159 5160 /* ------------------------------------------------------------ */ 5161 case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ 5162 ptr++; 5163 if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ 5164 { 5165 *code++ = OP_FAIL; 5166 previous = NULL; 5167 continue; 5168 } 5169 bravalue = OP_ASSERT_NOT; 5170 break; 5171 5172 5173 /* ------------------------------------------------------------ */ 5174 case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ 5175 switch (ptr[1]) 5176 { 5177 case CHAR_EQUALS_SIGN: /* Positive lookbehind */ 5178 bravalue = OP_ASSERTBACK; 5179 ptr += 2; 5180 break; 5181 5182 case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ 5183 bravalue = OP_ASSERTBACK_NOT; 5184 ptr += 2; 5185 break; 5186 5187 default: /* Could be name define, else bad */ 5188 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME; 5189 ptr++; /* Correct offset for error */ 5190 *errorcodeptr = ERR24; 5191 goto FAILED; 5192 } 5193 break; 5194 5195 5196 /* ------------------------------------------------------------ */ 5197 case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ 5198 bravalue = OP_ONCE; 5199 ptr++; 5200 break; 5201 5202 5203 /* ------------------------------------------------------------ */ 5204 case CHAR_C: /* Callout - may be followed by digits; */ 5205 previous_callout = code; /* Save for later completion */ 5206 after_manual_callout = 1; /* Skip one item before completing */ 5207 *code++ = OP_CALLOUT; 5208 { 5209 int n = 0; 5210 while ((digitab[*(++ptr)] & ctype_digit) != 0) 5211 n = n * 10 + *ptr - CHAR_0; 5212 if (*ptr != CHAR_RIGHT_PARENTHESIS) 5213 { 5214 *errorcodeptr = ERR39; 5215 goto FAILED; 5216 } 5217 if (n > 255) 5218 { 5219 *errorcodeptr = ERR38; 5220 goto FAILED; 5221 } 5222 *code++ = n; 5223 PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */ 5224 PUT(code, LINK_SIZE, 0); /* Default length */ 5225 code += 2 * LINK_SIZE; 5226 } 5227 previous = NULL; 5228 continue; 5229 5230 5231 /* ------------------------------------------------------------ */ 5232 case CHAR_P: /* Python-style named subpattern handling */ 5233 if (*(++ptr) == CHAR_EQUALS_SIGN || 5234 *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ 5235 { 5236 is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; 5237 terminator = CHAR_RIGHT_PARENTHESIS; 5238 goto NAMED_REF_OR_RECURSE; 5239 } 5240 else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ 5241 { 5242 *errorcodeptr = ERR41; 5243 goto FAILED; 5244 } 5245 /* Fall through to handle (?P< as (?< is handled */ 5246 5247 5248 /* ------------------------------------------------------------ */ 5249 DEFINE_NAME: /* Come here from (?< handling */ 5250 case CHAR_APOSTROPHE: 5251 { 5252 terminator = (*ptr == CHAR_LESS_THAN_SIGN)? 5253 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; 5254 name = ++ptr; 5255 5256 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; 5257 namelen = (int)(ptr - name); 5258 5259 /* In the pre-compile phase, just do a syntax check. */ 5260 5261 if (lengthptr != NULL) 5262 { 5263 if (*ptr != terminator) 5264 { 5265 *errorcodeptr = ERR42; 5266 goto FAILED; 5267 } 5268 if (cd->names_found >= MAX_NAME_COUNT) 5269 { 5270 *errorcodeptr = ERR49; 5271 goto FAILED; 5272 } 5273 if (namelen + 3 > cd->name_entry_size) 5274 { 5275 cd->name_entry_size = namelen + 3; 5276 if (namelen > MAX_NAME_SIZE) 5277 { 5278 *errorcodeptr = ERR48; 5279 goto FAILED; 5280 } 5281 } 5282 } 5283 5284 /* In the real compile, create the entry in the table, maintaining 5285 alphabetical order. Duplicate names for different numbers are 5286 permitted only if PCRE_DUPNAMES is set. Duplicate names for the same 5287 number are always OK. (An existing number can be re-used if (?| 5288 appears in the pattern.) In either event, a duplicate name results in 5289 a duplicate entry in the table, even if the number is the same. This 5290 is because the number of names, and hence the table size, is computed 5291 in the pre-compile, and it affects various numbers and pointers which 5292 would all have to be modified, and the compiled code moved down, if 5293 duplicates with the same number were omitted from the table. This 5294 doesn't seem worth the hassle. However, *different* names for the 5295 same number are not permitted. */ 5296 5297 else 5298 { 5299 BOOL dupname = FALSE; 5300 slot = cd->name_table; 5301 5302 for (i = 0; i < cd->names_found; i++) 5303 { 5304 int crc = memcmp(name, slot+2, namelen); 5305 if (crc == 0) 5306 { 5307 if (slot[2+namelen] == 0) 5308 { 5309 if (GET2(slot, 0) != cd->bracount + 1 && 5310 (options & PCRE_DUPNAMES) == 0) 5311 { 5312 *errorcodeptr = ERR43; 5313 goto FAILED; 5314 } 5315 else dupname = TRUE; 5316 } 5317 else crc = -1; /* Current name is a substring */ 5318 } 5319 5320 /* Make space in the table and break the loop for an earlier 5321 name. For a duplicate or later name, carry on. We do this for 5322 duplicates so that in the simple case (when ?(| is not used) they 5323 are in order of their numbers. */ 5324 5325 if (crc < 0) 5326 { 5327 memmove(slot + cd->name_entry_size, slot, 5328 (cd->names_found - i) * cd->name_entry_size); 5329 break; 5330 } 5331 5332 /* Continue the loop for a later or duplicate name */ 5333 5334 slot += cd->name_entry_size; 5335 } 5336 5337 /* For non-duplicate names, check for a duplicate number before 5338 adding the new name. */ 5339 5340 if (!dupname) 5341 { 5342 uschar *cslot = cd->name_table; 5343 for (i = 0; i < cd->names_found; i++) 5344 { 5345 if (cslot != slot) 5346 { 5347 if (GET2(cslot, 0) == cd->bracount + 1) 5348 { 5349 *errorcodeptr = ERR65; 5350 goto FAILED; 5351 } 5352 } 5353 else i--; 5354 cslot += cd->name_entry_size; 5355 } 5356 } 5357 5358 PUT2(slot, 0, cd->bracount + 1); 5359 memcpy(slot + 2, name, namelen); 5360 slot[2+namelen] = 0; 5361 } 5362 } 5363 5364 /* In both pre-compile and compile, count the number of names we've 5365 encountered. */ 5366 5367 cd->names_found++; 5368 ptr++; /* Move past > or ' */ 5369 goto NUMBERED_GROUP; 5370 5371 5372 /* ------------------------------------------------------------ */ 5373 case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ 5374 terminator = CHAR_RIGHT_PARENTHESIS; 5375 is_recurse = TRUE; 5376 /* Fall through */ 5377 5378 /* We come here from the Python syntax above that handles both 5379 references (?P=name) and recursion (?P>name), as well as falling 5380 through from the Perl recursion syntax (?&name). We also come here from 5381 the Perl \k<name> or \k'name' back reference syntax and the \k{name} 5382 .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ 5383 5384 NAMED_REF_OR_RECURSE: 5385 name = ++ptr; 5386 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; 5387 namelen = (int)(ptr - name); 5388 5389 /* In the pre-compile phase, do a syntax check. We used to just set 5390 a dummy reference number, because it was not used in the first pass. 5391 However, with the change of recursive back references to be atomic, 5392 we have to look for the number so that this state can be identified, as 5393 otherwise the incorrect length is computed. If it's not a backwards 5394 reference, the dummy number will do. */ 5395 5396 if (lengthptr != NULL) 5397 { 5398 const uschar *temp; 5399 5400 if (namelen == 0) 5401 { 5402 *errorcodeptr = ERR62; 5403 goto FAILED; 5404 } 5405 if (*ptr != terminator) 5406 { 5407 *errorcodeptr = ERR42; 5408 goto FAILED; 5409 } 5410 if (namelen > MAX_NAME_SIZE) 5411 { 5412 *errorcodeptr = ERR48; 5413 goto FAILED; 5414 } 5415 5416 /* The name table does not exist in the first pass, so we cannot 5417 do a simple search as in the code below. Instead, we have to scan the 5418 pattern to find the number. It is important that we scan it only as 5419 far as we have got because the syntax of named subpatterns has not 5420 been checked for the rest of the pattern, and find_parens() assumes 5421 correct syntax. In any case, it's a waste of resources to scan 5422 further. We stop the scan at the current point by temporarily 5423 adjusting the value of cd->endpattern. */ 5424 5425 temp = cd->end_pattern; 5426 cd->end_pattern = ptr; 5427 recno = find_parens(cd, name, namelen, 5428 (options & PCRE_EXTENDED) != 0, utf8); 5429 cd->end_pattern = temp; 5430 if (recno < 0) recno = 0; /* Forward ref; set dummy number */ 5431 } 5432 5433 /* In the real compile, seek the name in the table. We check the name 5434 first, and then check that we have reached the end of the name in the 5435 table. That way, if the name that is longer than any in the table, 5436 the comparison will fail without reading beyond the table entry. */ 5437 5438 else 5439 { 5440 slot = cd->name_table; 5441 for (i = 0; i < cd->names_found; i++) 5442 { 5443 if (strncmp((char *)name, (char *)slot+2, namelen) == 0 && 5444 slot[2+namelen] == 0) 5445 break; 5446 slot += cd->name_entry_size; 5447 } 5448 5449 if (i < cd->names_found) /* Back reference */ 5450 { 5451 recno = GET2(slot, 0); 5452 } 5453 else if ((recno = /* Forward back reference */ 5454 find_parens(cd, name, namelen, 5455 (options & PCRE_EXTENDED) != 0, utf8)) <= 0) 5456 { 5457 *errorcodeptr = ERR15; 5458 goto FAILED; 5459 } 5460 } 5461 5462 /* In both phases, we can now go to the code than handles numerical 5463 recursion or backreferences. */ 5464 5465 if (is_recurse) goto HANDLE_RECURSION; 5466 else goto HANDLE_REFERENCE; 5467 5468 5469 /* ------------------------------------------------------------ */ 5470 case CHAR_R: /* Recursion */ 5471 ptr++; /* Same as (?0) */ 5472 /* Fall through */ 5473 5474 5475 /* ------------------------------------------------------------ */ 5476 case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ 5477 case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: 5478 case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: 5479 { 5480 const uschar *called; 5481 terminator = CHAR_RIGHT_PARENTHESIS; 5482 5483 /* Come here from the \g<...> and \g'...' code (Oniguruma 5484 compatibility). However, the syntax has been checked to ensure that 5485 the ... are a (signed) number, so that neither ERR63 nor ERR29 will 5486 be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY 5487 ever be taken. */ 5488 5489 HANDLE_NUMERICAL_RECURSION: 5490 5491 if ((refsign = *ptr) == CHAR_PLUS) 5492 { 5493 ptr++; 5494 if ((digitab[*ptr] & ctype_digit) == 0) 5495 { 5496 *errorcodeptr = ERR63; 5497 goto FAILED; 5498 } 5499 } 5500 else if (refsign == CHAR_MINUS) 5501 { 5502 if ((digitab[ptr[1]] & ctype_digit) == 0) 5503 goto OTHER_CHAR_AFTER_QUERY; 5504 ptr++; 5505 } 5506 5507 recno = 0; 5508 while((digitab[*ptr] & ctype_digit) != 0) 5509 recno = recno * 10 + *ptr++ - CHAR_0; 5510 5511 if (*ptr != terminator) 5512 { 5513 *errorcodeptr = ERR29; 5514 goto FAILED; 5515 } 5516 5517 if (refsign == CHAR_MINUS) 5518 { 5519 if (recno == 0) 5520 { 5521 *errorcodeptr = ERR58; 5522 goto FAILED; 5523 } 5524 recno = cd->bracount - recno + 1; 5525 if (recno <= 0) 5526 { 5527 *errorcodeptr = ERR15; 5528 goto FAILED; 5529 } 5530 } 5531 else if (refsign == CHAR_PLUS) 5532 { 5533 if (recno == 0) 5534 { 5535 *errorcodeptr = ERR58; 5536 goto FAILED; 5537 } 5538 recno += cd->bracount; 5539 } 5540 5541 /* Come here from code above that handles a named recursion */ 5542 5543 HANDLE_RECURSION: 5544 5545 previous = code; 5546 called = cd->start_code; 5547 5548 /* When we are actually compiling, find the bracket that is being 5549 referenced. Temporarily end the regex in case it doesn't exist before 5550 this point. If we end up with a forward reference, first check that 5551 the bracket does occur later so we can give the error (and position) 5552 now. Then remember this forward reference in the workspace so it can 5553 be filled in at the end. */ 5554 5555 if (lengthptr == NULL) 5556 { 5557 *code = OP_END; 5558 if (recno != 0) 5559 called = _pcre_find_bracket(cd->start_code, utf8, recno); 5560 5561 /* Forward reference */ 5562 5563 if (called == NULL) 5564 { 5565 if (find_parens(cd, NULL, recno, 5566 (options & PCRE_EXTENDED) != 0, utf8) < 0) 5567 { 5568 *errorcodeptr = ERR15; 5569 goto FAILED; 5570 } 5571 5572 /* Fudge the value of "called" so that when it is inserted as an 5573 offset below, what it actually inserted is the reference number 5574 of the group. */ 5575 5576 called = cd->start_code + recno; 5577 PUTINC(cd->hwm, 0, (int)(code + 2 + LINK_SIZE - cd->start_code)); 5578 } 5579 5580 /* If not a forward reference, and the subpattern is still open, 5581 this is a recursive call. We check to see if this is a left 5582 recursion that could loop for ever, and diagnose that case. */ 5583 5584 else if (GET(called, 1) == 0 && 5585 could_be_empty(called, code, bcptr, utf8, cd)) 5586 { 5587 *errorcodeptr = ERR40; 5588 goto FAILED; 5589 } 5590 } 5591 5592 /* Insert the recursion/subroutine item, automatically wrapped inside 5593 "once" brackets. Set up a "previous group" length so that a 5594 subsequent quantifier will work. */ 5595 5596 *code = OP_ONCE; 5597 PUT(code, 1, 2 + 2*LINK_SIZE); 5598 code += 1 + LINK_SIZE; 5599 5600 *code = OP_RECURSE; 5601 PUT(code, 1, (int)(called - cd->start_code)); 5602 code += 1 + LINK_SIZE; 5603 5604 *code = OP_KET; 5605 PUT(code, 1, 2 + 2*LINK_SIZE); 5606 code += 1 + LINK_SIZE; 5607 5608 length_prevgroup = 3 + 3*LINK_SIZE; 5609 } 5610 5611 /* Can't determine a first byte now */ 5612 5613 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; 5614 continue; 5615 5616 5617 /* ------------------------------------------------------------ */ 5618 default: /* Other characters: check option setting */ 5619 OTHER_CHAR_AFTER_QUERY: 5620 set = unset = 0; 5621 optset = &set; 5622 5623 while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) 5624 { 5625 switch (*ptr++) 5626 { 5627 case CHAR_MINUS: optset = &unset; break; 5628 5629 case CHAR_J: /* Record that it changed in the external options */ 5630 *optset |= PCRE_DUPNAMES; 5631 cd->external_flags |= PCRE_JCHANGED; 5632 break; 5633 5634 case CHAR_i: *optset |= PCRE_CASELESS; break; 5635 case CHAR_m: *optset |= PCRE_MULTILINE; break; 5636 case CHAR_s: *optset |= PCRE_DOTALL; break; 5637 case CHAR_x: *optset |= PCRE_EXTENDED; break; 5638 case CHAR_U: *optset |= PCRE_UNGREEDY; break; 5639 case CHAR_X: *optset |= PCRE_EXTRA; break; 5640 5641 default: *errorcodeptr = ERR12; 5642 ptr--; /* Correct the offset */ 5643 goto FAILED; 5644 } 5645 } 5646 5647 /* Set up the changed option bits, but don't change anything yet. */ 5648 5649 newoptions = (options | set) & (~unset); 5650 5651 /* If the options ended with ')' this is not the start of a nested 5652 group with option changes, so the options change at this level. If this 5653 item is right at the start of the pattern, the options can be 5654 abstracted and made external in the pre-compile phase, and ignored in 5655 the compile phase. This can be helpful when matching -- for instance in 5656 caseless checking of required bytes. 5657 5658 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are 5659 definitely *not* at the start of the pattern because something has been 5660 compiled. In the pre-compile phase, however, the code pointer can have 5661 that value after the start, because it gets reset as code is discarded 5662 during the pre-compile. However, this can happen only at top level - if 5663 we are within parentheses, the starting BRA will still be present. At 5664 any parenthesis level, the length value can be used to test if anything 5665 has been compiled at that level. Thus, a test for both these conditions 5666 is necessary to ensure we correctly detect the start of the pattern in 5667 both phases. 5668 5669 If we are not at the pattern start, compile code to change the ims 5670 options if this setting actually changes any of them, and reset the 5671 greedy defaults and the case value for firstbyte and reqbyte. */ 5672 5673 if (*ptr == CHAR_RIGHT_PARENTHESIS) 5674 { 5675 if (code == cd->start_code + 1 + LINK_SIZE && 5676 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) 5677 { 5678 cd->external_options = newoptions; 5679 } 5680 else 5681 { 5682 if ((options & PCRE_IMS) != (newoptions & PCRE_IMS)) 5683 { 5684 *code++ = OP_OPT; 5685 *code++ = newoptions & PCRE_IMS; 5686 } 5687 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); 5688 greedy_non_default = greedy_default ^ 1; 5689 req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; 5690 } 5691 5692 /* Change options at this level, and pass them back for use 5693 in subsequent branches. When not at the start of the pattern, this 5694 information is also necessary so that a resetting item can be 5695 compiled at the end of a group (if we are in a group). */ 5696 5697 *optionsptr = options = newoptions; 5698 previous = NULL; /* This item can't be repeated */ 5699 continue; /* It is complete */ 5700 } 5701 5702 /* If the options ended with ':' we are heading into a nested group 5703 with possible change of options. Such groups are non-capturing and are 5704 not assertions of any kind. All we need to do is skip over the ':'; 5705 the newoptions value is handled below. */ 5706 5707 bravalue = OP_BRA; 5708 ptr++; 5709 } /* End of switch for character following (? */ 5710 } /* End of (? handling */ 5711 5712 /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE 5713 is set, all unadorned brackets become non-capturing and behave like (?:...) 5714 brackets. */ 5715 5716 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) 5717 { 5718 bravalue = OP_BRA; 5719 } 5720 5721 /* Else we have a capturing group. */ 5722 5723 else 5724 { 5725 NUMBERED_GROUP: 5726 cd->bracount += 1; 5727 PUT2(code, 1+LINK_SIZE, cd->bracount); 5728 skipbytes = 2; 5729 } 5730 5731 /* Process nested bracketed regex. Assertions may not be repeated, but 5732 other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a 5733 non-register variable in order to be able to pass its address because some 5734 compilers complain otherwise. Pass in a new setting for the ims options if 5735 they have changed. */ 5736 5737 previous = (bravalue >= OP_ONCE)? code : NULL; 5738 *code = bravalue; 5739 tempcode = code; 5740 tempreqvary = cd->req_varyopt; /* Save value before bracket */ 5741 length_prevgroup = 0; /* Initialize for pre-compile phase */ 5742 5743 if (!compile_regex( 5744 newoptions, /* The complete new option state */ 5745 options & PCRE_IMS, /* The previous ims option state */ 5746 &tempcode, /* Where to put code (updated) */ 5747 &ptr, /* Input pointer (updated) */ 5748 errorcodeptr, /* Where to put an error message */ 5749 (bravalue == OP_ASSERTBACK || 5750 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ 5751 reset_bracount, /* True if (?| group */ 5752 skipbytes, /* Skip over bracket number */ 5753 &subfirstbyte, /* For possible first char */ 5754 &subreqbyte, /* For possible last char */ 5755 bcptr, /* Current branch chain */ 5756 cd, /* Tables block */ 5757 (lengthptr == NULL)? NULL : /* Actual compile phase */ 5758 &length_prevgroup /* Pre-compile phase */ 5759 )) 5760 goto FAILED; 5761 5762 /* At the end of compiling, code is still pointing to the start of the 5763 group, while tempcode has been updated to point past the end of the group 5764 and any option resetting that may follow it. The pattern pointer (ptr) 5765 is on the bracket. */ 5766 5767 /* If this is a conditional bracket, check that there are no more than 5768 two branches in the group, or just one if it's a DEFINE group. We do this 5769 in the real compile phase, not in the pre-pass, where the whole group may 5770 not be available. */ 5771 5772 if (bravalue == OP_COND && lengthptr == NULL) 5773 { 5774 uschar *tc = code; 5775 int condcount = 0; 5776 5777 do { 5778 condcount++; 5779 tc += GET(tc,1); 5780 } 5781 while (*tc != OP_KET); 5782 5783 /* A DEFINE group is never obeyed inline (the "condition" is always 5784 false). It must have only one branch. */ 5785 5786 if (code[LINK_SIZE+1] == OP_DEF) 5787 { 5788 if (condcount > 1) 5789 { 5790 *errorcodeptr = ERR54; 5791 goto FAILED; 5792 } 5793 bravalue = OP_DEF; /* Just a flag to suppress char handling below */ 5794 } 5795 5796 /* A "normal" conditional group. If there is just one branch, we must not 5797 make use of its firstbyte or reqbyte, because this is equivalent to an 5798 empty second branch. */ 5799 5800 else 5801 { 5802 if (condcount > 2) 5803 { 5804 *errorcodeptr = ERR27; 5805 goto FAILED; 5806 } 5807 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE; 5808 } 5809 } 5810 5811 /* Error if hit end of pattern */ 5812 5813 if (*ptr != CHAR_RIGHT_PARENTHESIS) 5814 { 5815 *errorcodeptr = ERR14; 5816 goto FAILED; 5817 } 5818 5819 /* In the pre-compile phase, update the length by the length of the group, 5820 less the brackets at either end. Then reduce the compiled code to just a 5821 set of non-capturing brackets so that it doesn't use much memory if it is 5822 duplicated by a quantifier.*/ 5823 5824 if (lengthptr != NULL) 5825 { 5826 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) 5827 { 5828 *errorcodeptr = ERR20; 5829 goto FAILED; 5830 } 5831 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; 5832 *code++ = OP_BRA; 5833 PUTINC(code, 0, 1 + LINK_SIZE); 5834 *code++ = OP_KET; 5835 PUTINC(code, 0, 1 + LINK_SIZE); 5836 break; /* No need to waste time with special character handling */ 5837 } 5838 5839 /* Otherwise update the main code pointer to the end of the group. */ 5840 5841 code = tempcode; 5842 5843 /* For a DEFINE group, required and first character settings are not 5844 relevant. */ 5845 5846 if (bravalue == OP_DEF) break; 5847 5848 /* Handle updating of the required and first characters for other types of 5849 group. Update for normal brackets of all kinds, and conditions with two 5850 branches (see code above). If the bracket is followed by a quantifier with 5851 zero repeat, we have to back off. Hence the definition of zeroreqbyte and 5852 zerofirstbyte outside the main loop so that they can be accessed for the 5853 back off. */ 5854 5855 zeroreqbyte = reqbyte; 5856 zerofirstbyte = firstbyte; 5857 groupsetfirstbyte = FALSE; 5858 5859 if (bravalue >= OP_ONCE) 5860 { 5861 /* If we have not yet set a firstbyte in this branch, take it from the 5862 subpattern, remembering that it was set here so that a repeat of more 5863 than one can replicate it as reqbyte if necessary. If the subpattern has 5864 no firstbyte, set "none" for the whole branch. In both cases, a zero 5865 repeat forces firstbyte to "none". */ 5866 5867 if (firstbyte == REQ_UNSET) 5868 { 5869 if (subfirstbyte >= 0) 5870 { 5871 firstbyte = subfirstbyte; 5872 groupsetfirstbyte = TRUE; 5873 } 5874 else firstbyte = REQ_NONE; 5875 zerofirstbyte = REQ_NONE; 5876 } 5877 5878 /* If firstbyte was previously set, convert the subpattern's firstbyte 5879 into reqbyte if there wasn't one, using the vary flag that was in 5880 existence beforehand. */ 5881 5882 else if (subfirstbyte >= 0 && subreqbyte < 0) 5883 subreqbyte = subfirstbyte | tempreqvary; 5884 5885 /* If the subpattern set a required byte (or set a first byte that isn't 5886 really the first byte - see above), set it. */ 5887 5888 if (subreqbyte >= 0) reqbyte = subreqbyte; 5889 } 5890 5891 /* For a forward assertion, we take the reqbyte, if set. This can be 5892 helpful if the pattern that follows the assertion doesn't set a different 5893 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte 5894 for an assertion, however because it leads to incorrect effect for patterns 5895 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead 5896 of a firstbyte. This is overcome by a scan at the end if there's no 5897 firstbyte, looking for an asserted first char. */ 5898 5899 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte; 5900 break; /* End of processing '(' */ 5901 5902 5903 /* ===================================================================*/ 5904 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values 5905 are arranged to be the negation of the corresponding OP_values in the 5906 default case when PCRE_UCP is not set. For the back references, the values 5907 are ESC_REF plus the reference number. Only back references and those types 5908 that consume a character may be repeated. We can test for values between 5909 ESC_b and ESC_Z for the latter; this may have to change if any new ones are 5910 ever created. */ 5911 5912 case CHAR_BACKSLASH: 5913 tempptr = ptr; 5914 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE); 5915 if (*errorcodeptr != 0) goto FAILED; 5916 5917 if (c < 0) 5918 { 5919 if (-c == ESC_Q) /* Handle start of quoted string */ 5920 { 5921 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) 5922 ptr += 2; /* avoid empty string */ 5923 else inescq = TRUE; 5924 continue; 5925 } 5926 5927 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */ 5928 5929 /* For metasequences that actually match a character, we disable the 5930 setting of a first character if it hasn't already been set. */ 5931 5932 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z) 5933 firstbyte = REQ_NONE; 5934 5935 /* Set values to reset to if this is followed by a zero repeat. */ 5936 5937 zerofirstbyte = firstbyte; 5938 zeroreqbyte = reqbyte; 5939 5940 /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n' 5941 is a subroutine call by number (Oniguruma syntax). In fact, the value 5942 -ESC_g is returned only for these cases. So we don't need to check for < 5943 or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is 5944 -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as 5945 that is a synonym for a named back reference). */ 5946 5947 if (-c == ESC_g) 5948 { 5949 const uschar *p; 5950 save_hwm = cd->hwm; /* Normally this is set when '(' is read */ 5951 terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? 5952 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; 5953 5954 /* These two statements stop the compiler for warning about possibly 5955 unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In 5956 fact, because we actually check for a number below, the paths that 5957 would actually be in error are never taken. */ 5958 5959 skipbytes = 0; 5960 reset_bracount = FALSE; 5961 5962 /* Test for a name */ 5963 5964 if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS) 5965 { 5966 BOOL isnumber = TRUE; 5967 for (p = ptr + 1; *p != 0 && *p != terminator; p++) 5968 { 5969 if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE; 5970 if ((cd->ctypes[*p] & ctype_word) == 0) break; 5971 } 5972 if (*p != terminator) 5973 { 5974 *errorcodeptr = ERR57; 5975 break; 5976 } 5977 if (isnumber) 5978 { 5979 ptr++; 5980 goto HANDLE_NUMERICAL_RECURSION; 5981 } 5982 is_recurse = TRUE; 5983 goto NAMED_REF_OR_RECURSE; 5984 } 5985 5986 /* Test a signed number in angle brackets or quotes. */ 5987 5988 p = ptr + 2; 5989 while ((digitab[*p] & ctype_digit) != 0) p++; 5990 if (*p != terminator) 5991 { 5992 *errorcodeptr = ERR57; 5993 break; 5994 } 5995 ptr++; 5996 goto HANDLE_NUMERICAL_RECURSION; 5997 } 5998 5999 /* \k<name> or \k'name' is a back reference by name (Perl syntax). 6000 We also support \k{name} (.NET syntax) */ 6001 6002 if (-c == ESC_k && (ptr[1] == CHAR_LESS_THAN_SIGN || 6003 ptr[1] == CHAR_APOSTROPHE || ptr[1] == CHAR_LEFT_CURLY_BRACKET)) 6004 { 6005 is_recurse = FALSE; 6006 terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? 6007 CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)? 6008 CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET; 6009 goto NAMED_REF_OR_RECURSE; 6010 } 6011 6012 /* Back references are handled specially; must disable firstbyte if 6013 not set to cope with cases like (?=(\w+))\1: which would otherwise set 6014 ':' later. */ 6015 6016 if (-c >= ESC_REF) 6017 { 6018 open_capitem *oc; 6019 recno = -c - ESC_REF; 6020 6021 HANDLE_REFERENCE: /* Come here from named backref handling */ 6022 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; 6023 previous = code; 6024 *code++ = OP_REF; 6025 PUT2INC(code, 0, recno); 6026 cd->backref_map |= (recno < 32)? (1 << recno) : 1; 6027 if (recno > cd->top_backref) cd->top_backref = recno; 6028 6029 /* Check to see if this back reference is recursive, that it, it 6030 is inside the group that it references. A flag is set so that the 6031 group can be made atomic. */ 6032 6033 for (oc = cd->open_caps; oc != NULL; oc = oc->next) 6034 { 6035 if (oc->number == recno) 6036 { 6037 oc->flag = TRUE; 6038 break; 6039 } 6040 } 6041 } 6042 6043 /* So are Unicode property matches, if supported. */ 6044 6045 #ifdef SUPPORT_UCP 6046 else if (-c == ESC_P || -c == ESC_p) 6047 { 6048 BOOL negated; 6049 int pdata; 6050 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); 6051 if (ptype < 0) goto FAILED; 6052 previous = code; 6053 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP; 6054 *code++ = ptype; 6055 *code++ = pdata; 6056 } 6057 #else 6058 6059 /* If Unicode properties are not supported, \X, \P, and \p are not 6060 allowed. */ 6061 6062 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p) 6063 { 6064 *errorcodeptr = ERR45; 6065 goto FAILED; 6066 } 6067 #endif 6068 6069 /* For the rest (including \X when Unicode properties are supported), we 6070 can obtain the OP value by negating the escape value in the default 6071 situation when PCRE_UCP is not set. When it *is* set, we substitute 6072 Unicode property tests. */ 6073 6074 else 6075 { 6076 #ifdef SUPPORT_UCP 6077 if (-c >= ESC_DU && -c <= ESC_wu) 6078 { 6079 nestptr = ptr + 1; /* Where to resume */ 6080 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ 6081 } 6082 else 6083 #endif 6084 { 6085 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; 6086 *code++ = -c; 6087 } 6088 } 6089 continue; 6090 } 6091 6092 /* We have a data character whose value is in c. In UTF-8 mode it may have 6093 a value > 127. We set its representation in the length/buffer, and then 6094 handle it as a data character. */ 6095 6096 #ifdef SUPPORT_UTF8 6097 if (utf8 && c > 127) 6098 mclength = _pcre_ord2utf8(c, mcbuffer); 6099 else 6100 #endif 6101 6102 { 6103 mcbuffer[0] = c; 6104 mclength = 1; 6105 } 6106 goto ONE_CHAR; 6107 6108 6109 /* ===================================================================*/ 6110 /* Handle a literal character. It is guaranteed not to be whitespace or # 6111 when the extended flag is set. If we are in UTF-8 mode, it may be a 6112 multi-byte literal character. */ 6113 6114 default: 6115 NORMAL_CHAR: 6116 mclength = 1; 6117 mcbuffer[0] = c; 6118 6119 #ifdef SUPPORT_UTF8 6120 if (utf8 && c >= 0xc0) 6121 { 6122 while ((ptr[1] & 0xc0) == 0x80) 6123 mcbuffer[mclength++] = *(++ptr); 6124 } 6125 #endif 6126 6127 /* At this point we have the character's bytes in mcbuffer, and the length 6128 in mclength. When not in UTF-8 mode, the length is always 1. */ 6129 6130 ONE_CHAR: 6131 previous = code; 6132 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR; 6133 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c]; 6134 6135 /* Remember if \r or \n were seen */ 6136 6137 if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL) 6138 cd->external_flags |= PCRE_HASCRORLF; 6139 6140 /* Set the first and required bytes appropriately. If no previous first 6141 byte, set it from this character, but revert to none on a zero repeat. 6142 Otherwise, leave the firstbyte value alone, and don't change it on a zero 6143 repeat. */ 6144 6145 if (firstbyte == REQ_UNSET) 6146 { 6147 zerofirstbyte = REQ_NONE; 6148 zeroreqbyte = reqbyte; 6149 6150 /* If the character is more than one byte long, we can set firstbyte 6151 only if it is not to be matched caselessly. */ 6152 6153 if (mclength == 1 || req_caseopt == 0) 6154 { 6155 firstbyte = mcbuffer[0] | req_caseopt; 6156 if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt; 6157 } 6158 else firstbyte = reqbyte = REQ_NONE; 6159 } 6160 6161 /* firstbyte was previously set; we can set reqbyte only the length is 6162 1 or the matching is caseful. */ 6163 6164 else 6165 { 6166 zerofirstbyte = firstbyte; 6167 zeroreqbyte = reqbyte; 6168 if (mclength == 1 || req_caseopt == 0) 6169 reqbyte = code[-1] | req_caseopt |