Home | History | Annotate | Download | only in bn
      1 /* crypto/bn/bn_exp.c */
      2 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      3  * All rights reserved.
      4  *
      5  * This package is an SSL implementation written
      6  * by Eric Young (eay (at) cryptsoft.com).
      7  * The implementation was written so as to conform with Netscapes SSL.
      8  *
      9  * This library is free for commercial and non-commercial use as long as
     10  * the following conditions are aheared to.  The following conditions
     11  * apply to all code found in this distribution, be it the RC4, RSA,
     12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     13  * included with this distribution is covered by the same copyright terms
     14  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     15  *
     16  * Copyright remains Eric Young's, and as such any Copyright notices in
     17  * the code are not to be removed.
     18  * If this package is used in a product, Eric Young should be given attribution
     19  * as the author of the parts of the library used.
     20  * This can be in the form of a textual message at program startup or
     21  * in documentation (online or textual) provided with the package.
     22  *
     23  * Redistribution and use in source and binary forms, with or without
     24  * modification, are permitted provided that the following conditions
     25  * are met:
     26  * 1. Redistributions of source code must retain the copyright
     27  *    notice, this list of conditions and the following disclaimer.
     28  * 2. Redistributions in binary form must reproduce the above copyright
     29  *    notice, this list of conditions and the following disclaimer in the
     30  *    documentation and/or other materials provided with the distribution.
     31  * 3. All advertising materials mentioning features or use of this software
     32  *    must display the following acknowledgement:
     33  *    "This product includes cryptographic software written by
     34  *     Eric Young (eay (at) cryptsoft.com)"
     35  *    The word 'cryptographic' can be left out if the rouines from the library
     36  *    being used are not cryptographic related :-).
     37  * 4. If you include any Windows specific code (or a derivative thereof) from
     38  *    the apps directory (application code) you must include an acknowledgement:
     39  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     40  *
     41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     51  * SUCH DAMAGE.
     52  *
     53  * The licence and distribution terms for any publically available version or
     54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     55  * copied and put under another distribution licence
     56  * [including the GNU Public Licence.]
     57  */
     58 /* ====================================================================
     59  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  *
     65  * 1. Redistributions of source code must retain the above copyright
     66  *    notice, this list of conditions and the following disclaimer.
     67  *
     68  * 2. Redistributions in binary form must reproduce the above copyright
     69  *    notice, this list of conditions and the following disclaimer in
     70  *    the documentation and/or other materials provided with the
     71  *    distribution.
     72  *
     73  * 3. All advertising materials mentioning features or use of this
     74  *    software must display the following acknowledgment:
     75  *    "This product includes software developed by the OpenSSL Project
     76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     77  *
     78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     79  *    endorse or promote products derived from this software without
     80  *    prior written permission. For written permission, please contact
     81  *    openssl-core (at) openssl.org.
     82  *
     83  * 5. Products derived from this software may not be called "OpenSSL"
     84  *    nor may "OpenSSL" appear in their names without prior written
     85  *    permission of the OpenSSL Project.
     86  *
     87  * 6. Redistributions of any form whatsoever must retain the following
     88  *    acknowledgment:
     89  *    "This product includes software developed by the OpenSSL Project
     90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     91  *
     92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    103  * OF THE POSSIBILITY OF SUCH DAMAGE.
    104  * ====================================================================
    105  *
    106  * This product includes cryptographic software written by Eric Young
    107  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    108  * Hudson (tjh (at) cryptsoft.com).
    109  *
    110  */
    111 
    112 
    113 #include "cryptlib.h"
    114 #include "bn_lcl.h"
    115 
    116 /* maximum precomputation table size for *variable* sliding windows */
    117 #define TABLE_SIZE	32
    118 
    119 /* this one works - simple but works */
    120 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    121 	{
    122 	int i,bits,ret=0;
    123 	BIGNUM *v,*rr;
    124 
    125 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
    126 		{
    127 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
    128 		BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    129 		return -1;
    130 		}
    131 
    132 	BN_CTX_start(ctx);
    133 	if ((r == a) || (r == p))
    134 		rr = BN_CTX_get(ctx);
    135 	else
    136 		rr = r;
    137 	v = BN_CTX_get(ctx);
    138 	if (rr == NULL || v == NULL) goto err;
    139 
    140 	if (BN_copy(v,a) == NULL) goto err;
    141 	bits=BN_num_bits(p);
    142 
    143 	if (BN_is_odd(p))
    144 		{ if (BN_copy(rr,a) == NULL) goto err; }
    145 	else	{ if (!BN_one(rr)) goto err; }
    146 
    147 	for (i=1; i<bits; i++)
    148 		{
    149 		if (!BN_sqr(v,v,ctx)) goto err;
    150 		if (BN_is_bit_set(p,i))
    151 			{
    152 			if (!BN_mul(rr,rr,v,ctx)) goto err;
    153 			}
    154 		}
    155 	ret=1;
    156 err:
    157 	if (r != rr) BN_copy(r,rr);
    158 	BN_CTX_end(ctx);
    159 	bn_check_top(r);
    160 	return(ret);
    161 	}
    162 
    163 
    164 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
    165 	       BN_CTX *ctx)
    166 	{
    167 	int ret;
    168 
    169 	bn_check_top(a);
    170 	bn_check_top(p);
    171 	bn_check_top(m);
    172 
    173 	/* For even modulus  m = 2^k*m_odd,  it might make sense to compute
    174 	 * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
    175 	 * exponentiation for the odd part), using appropriate exponent
    176 	 * reductions, and combine the results using the CRT.
    177 	 *
    178 	 * For now, we use Montgomery only if the modulus is odd; otherwise,
    179 	 * exponentiation using the reciprocal-based quick remaindering
    180 	 * algorithm is used.
    181 	 *
    182 	 * (Timing obtained with expspeed.c [computations  a^p mod m
    183 	 * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
    184 	 * 4096, 8192 bits], compared to the running time of the
    185 	 * standard algorithm:
    186 	 *
    187 	 *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
    188          *                     55 .. 77 %  [UltraSparc processor, but
    189 	 *                                  debug-solaris-sparcv8-gcc conf.]
    190 	 *
    191 	 *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
    192 	 *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
    193 	 *
    194 	 * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
    195 	 * at 2048 and more bits, but at 512 and 1024 bits, it was
    196 	 * slower even than the standard algorithm!
    197 	 *
    198 	 * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
    199 	 * should be obtained when the new Montgomery reduction code
    200 	 * has been integrated into OpenSSL.)
    201 	 */
    202 
    203 #define MONT_MUL_MOD
    204 #define MONT_EXP_WORD
    205 #define RECP_MUL_MOD
    206 
    207 #ifdef MONT_MUL_MOD
    208 	/* I have finally been able to take out this pre-condition of
    209 	 * the top bit being set.  It was caused by an error in BN_div
    210 	 * with negatives.  There was also another problem when for a^b%m
    211 	 * a >= m.  eay 07-May-97 */
    212 /*	if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */
    213 
    214 	if (BN_is_odd(m))
    215 		{
    216 #  ifdef MONT_EXP_WORD
    217 		if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0))
    218 			{
    219 			BN_ULONG A = a->d[0];
    220 			ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
    221 			}
    222 		else
    223 #  endif
    224 			ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL);
    225 		}
    226 	else
    227 #endif
    228 #ifdef RECP_MUL_MOD
    229 		{ ret=BN_mod_exp_recp(r,a,p,m,ctx); }
    230 #else
    231 		{ ret=BN_mod_exp_simple(r,a,p,m,ctx); }
    232 #endif
    233 
    234 	bn_check_top(r);
    235 	return(ret);
    236 	}
    237 
    238 
    239 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    240 		    const BIGNUM *m, BN_CTX *ctx)
    241 	{
    242 	int i,j,bits,ret=0,wstart,wend,window,wvalue;
    243 	int start=1;
    244 	BIGNUM *aa;
    245 	/* Table of variables obtained from 'ctx' */
    246 	BIGNUM *val[TABLE_SIZE];
    247 	BN_RECP_CTX recp;
    248 
    249 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
    250 		{
    251 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
    252 		BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    253 		return -1;
    254 		}
    255 
    256 	bits=BN_num_bits(p);
    257 
    258 	if (bits == 0)
    259 		{
    260 		ret = BN_one(r);
    261 		return ret;
    262 		}
    263 
    264 	BN_CTX_start(ctx);
    265 	aa = BN_CTX_get(ctx);
    266 	val[0] = BN_CTX_get(ctx);
    267 	if(!aa || !val[0]) goto err;
    268 
    269 	BN_RECP_CTX_init(&recp);
    270 	if (m->neg)
    271 		{
    272 		/* ignore sign of 'm' */
    273 		if (!BN_copy(aa, m)) goto err;
    274 		aa->neg = 0;
    275 		if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err;
    276 		}
    277 	else
    278 		{
    279 		if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err;
    280 		}
    281 
    282 	if (!BN_nnmod(val[0],a,m,ctx)) goto err;		/* 1 */
    283 	if (BN_is_zero(val[0]))
    284 		{
    285 		BN_zero(r);
    286 		ret = 1;
    287 		goto err;
    288 		}
    289 
    290 	window = BN_window_bits_for_exponent_size(bits);
    291 	if (window > 1)
    292 		{
    293 		if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx))
    294 			goto err;				/* 2 */
    295 		j=1<<(window-1);
    296 		for (i=1; i<j; i++)
    297 			{
    298 			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
    299 					!BN_mod_mul_reciprocal(val[i],val[i-1],
    300 						aa,&recp,ctx))
    301 				goto err;
    302 			}
    303 		}
    304 
    305 	start=1;	/* This is used to avoid multiplication etc
    306 			 * when there is only the value '1' in the
    307 			 * buffer. */
    308 	wvalue=0;	/* The 'value' of the window */
    309 	wstart=bits-1;	/* The top bit of the window */
    310 	wend=0;		/* The bottom bit of the window */
    311 
    312 	if (!BN_one(r)) goto err;
    313 
    314 	for (;;)
    315 		{
    316 		if (BN_is_bit_set(p,wstart) == 0)
    317 			{
    318 			if (!start)
    319 				if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
    320 				goto err;
    321 			if (wstart == 0) break;
    322 			wstart--;
    323 			continue;
    324 			}
    325 		/* We now have wstart on a 'set' bit, we now need to work out
    326 		 * how bit a window to do.  To do this we need to scan
    327 		 * forward until the last set bit before the end of the
    328 		 * window */
    329 		j=wstart;
    330 		wvalue=1;
    331 		wend=0;
    332 		for (i=1; i<window; i++)
    333 			{
    334 			if (wstart-i < 0) break;
    335 			if (BN_is_bit_set(p,wstart-i))
    336 				{
    337 				wvalue<<=(i-wend);
    338 				wvalue|=1;
    339 				wend=i;
    340 				}
    341 			}
    342 
    343 		/* wend is the size of the current window */
    344 		j=wend+1;
    345 		/* add the 'bytes above' */
    346 		if (!start)
    347 			for (i=0; i<j; i++)
    348 				{
    349 				if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
    350 					goto err;
    351 				}
    352 
    353 		/* wvalue will be an odd number < 2^window */
    354 		if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx))
    355 			goto err;
    356 
    357 		/* move the 'window' down further */
    358 		wstart-=wend+1;
    359 		wvalue=0;
    360 		start=0;
    361 		if (wstart < 0) break;
    362 		}
    363 	ret=1;
    364 err:
    365 	BN_CTX_end(ctx);
    366 	BN_RECP_CTX_free(&recp);
    367 	bn_check_top(r);
    368 	return(ret);
    369 	}
    370 
    371 
    372 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
    373 		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
    374 	{
    375 	int i,j,bits,ret=0,wstart,wend,window,wvalue;
    376 	int start=1;
    377 	BIGNUM *d,*r;
    378 	const BIGNUM *aa;
    379 	/* Table of variables obtained from 'ctx' */
    380 	BIGNUM *val[TABLE_SIZE];
    381 	BN_MONT_CTX *mont=NULL;
    382 
    383 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
    384 		{
    385 		return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
    386 		}
    387 
    388 	bn_check_top(a);
    389 	bn_check_top(p);
    390 	bn_check_top(m);
    391 
    392 	if (!BN_is_odd(m))
    393 		{
    394 		BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS);
    395 		return(0);
    396 		}
    397 	bits=BN_num_bits(p);
    398 	if (bits == 0)
    399 		{
    400 		ret = BN_one(rr);
    401 		return ret;
    402 		}
    403 
    404 	BN_CTX_start(ctx);
    405 	d = BN_CTX_get(ctx);
    406 	r = BN_CTX_get(ctx);
    407 	val[0] = BN_CTX_get(ctx);
    408 	if (!d || !r || !val[0]) goto err;
    409 
    410 	/* If this is not done, things will break in the montgomery
    411 	 * part */
    412 
    413 	if (in_mont != NULL)
    414 		mont=in_mont;
    415 	else
    416 		{
    417 		if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
    418 		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
    419 		}
    420 
    421 	if (a->neg || BN_ucmp(a,m) >= 0)
    422 		{
    423 		if (!BN_nnmod(val[0],a,m,ctx))
    424 			goto err;
    425 		aa= val[0];
    426 		}
    427 	else
    428 		aa=a;
    429 	if (BN_is_zero(aa))
    430 		{
    431 		BN_zero(rr);
    432 		ret = 1;
    433 		goto err;
    434 		}
    435 	if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */
    436 
    437 	window = BN_window_bits_for_exponent_size(bits);
    438 	if (window > 1)
    439 		{
    440 		if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */
    441 		j=1<<(window-1);
    442 		for (i=1; i<j; i++)
    443 			{
    444 			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
    445 					!BN_mod_mul_montgomery(val[i],val[i-1],
    446 						d,mont,ctx))
    447 				goto err;
    448 			}
    449 		}
    450 
    451 	start=1;	/* This is used to avoid multiplication etc
    452 			 * when there is only the value '1' in the
    453 			 * buffer. */
    454 	wvalue=0;	/* The 'value' of the window */
    455 	wstart=bits-1;	/* The top bit of the window */
    456 	wend=0;		/* The bottom bit of the window */
    457 
    458 	if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
    459 	for (;;)
    460 		{
    461 		if (BN_is_bit_set(p,wstart) == 0)
    462 			{
    463 			if (!start)
    464 				{
    465 				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
    466 				goto err;
    467 				}
    468 			if (wstart == 0) break;
    469 			wstart--;
    470 			continue;
    471 			}
    472 		/* We now have wstart on a 'set' bit, we now need to work out
    473 		 * how bit a window to do.  To do this we need to scan
    474 		 * forward until the last set bit before the end of the
    475 		 * window */
    476 		j=wstart;
    477 		wvalue=1;
    478 		wend=0;
    479 		for (i=1; i<window; i++)
    480 			{
    481 			if (wstart-i < 0) break;
    482 			if (BN_is_bit_set(p,wstart-i))
    483 				{
    484 				wvalue<<=(i-wend);
    485 				wvalue|=1;
    486 				wend=i;
    487 				}
    488 			}
    489 
    490 		/* wend is the size of the current window */
    491 		j=wend+1;
    492 		/* add the 'bytes above' */
    493 		if (!start)
    494 			for (i=0; i<j; i++)
    495 				{
    496 				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
    497 					goto err;
    498 				}
    499 
    500 		/* wvalue will be an odd number < 2^window */
    501 		if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx))
    502 			goto err;
    503 
    504 		/* move the 'window' down further */
    505 		wstart-=wend+1;
    506 		wvalue=0;
    507 		start=0;
    508 		if (wstart < 0) break;
    509 		}
    510 	if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
    511 	ret=1;
    512 err:
    513 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
    514 	BN_CTX_end(ctx);
    515 	bn_check_top(rr);
    516 	return(ret);
    517 	}
    518 
    519 
    520 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout
    521  * so that accessing any of these table values shows the same access pattern as far
    522  * as cache lines are concerned.  The following functions are used to transfer a BIGNUM
    523  * from/to that table. */
    524 
    525 static int MOD_EXP_CTIME_COPY_TO_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width)
    526 	{
    527 	size_t i, j;
    528 
    529 	if (bn_wexpand(b, top) == NULL)
    530 		return 0;
    531 	while (b->top < top)
    532 		{
    533 		b->d[b->top++] = 0;
    534 		}
    535 
    536 	for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
    537 		{
    538 		buf[j] = ((unsigned char*)b->d)[i];
    539 		}
    540 
    541 	bn_correct_top(b);
    542 	return 1;
    543 	}
    544 
    545 static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width)
    546 	{
    547 	size_t i, j;
    548 
    549 	if (bn_wexpand(b, top) == NULL)
    550 		return 0;
    551 
    552 	for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
    553 		{
    554 		((unsigned char*)b->d)[i] = buf[j];
    555 		}
    556 
    557 	b->top = top;
    558 	bn_correct_top(b);
    559 	return 1;
    560 	}
    561 
    562 /* Given a pointer value, compute the next address that is a cache line multiple. */
    563 #define MOD_EXP_CTIME_ALIGN(x_) \
    564 	((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((BN_ULONG)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
    565 
    566 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
    567  * precomputation memory layout to limit data-dependency to a minimum
    568  * to protect secret exponents (cf. the hyper-threading timing attacks
    569  * pointed out by Colin Percival,
    570  * http://www.daemonology.net/hyperthreading-considered-harmful/)
    571  */
    572 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
    573 		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
    574 	{
    575 	int i,bits,ret=0,idx,window,wvalue;
    576 	int top;
    577  	BIGNUM *r;
    578 	const BIGNUM *aa;
    579 	BN_MONT_CTX *mont=NULL;
    580 
    581 	int numPowers;
    582 	unsigned char *powerbufFree=NULL;
    583 	int powerbufLen = 0;
    584 	unsigned char *powerbuf=NULL;
    585 	BIGNUM *computeTemp=NULL, *am=NULL;
    586 
    587 	bn_check_top(a);
    588 	bn_check_top(p);
    589 	bn_check_top(m);
    590 
    591 	top = m->top;
    592 
    593 	if (!(m->d[0] & 1))
    594 		{
    595 		BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS);
    596 		return(0);
    597 		}
    598 	bits=BN_num_bits(p);
    599 	if (bits == 0)
    600 		{
    601 		ret = BN_one(rr);
    602 		return ret;
    603 		}
    604 
    605  	/* Initialize BIGNUM context and allocate intermediate result */
    606 	BN_CTX_start(ctx);
    607 	r = BN_CTX_get(ctx);
    608 	if (r == NULL) goto err;
    609 
    610 	/* Allocate a montgomery context if it was not supplied by the caller.
    611 	 * If this is not done, things will break in the montgomery part.
    612  	 */
    613 	if (in_mont != NULL)
    614 		mont=in_mont;
    615 	else
    616 		{
    617 		if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
    618 		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
    619 		}
    620 
    621 	/* Get the window size to use with size of p. */
    622 	window = BN_window_bits_for_ctime_exponent_size(bits);
    623 
    624 	/* Allocate a buffer large enough to hold all of the pre-computed
    625 	 * powers of a.
    626 	 */
    627 	numPowers = 1 << window;
    628 	powerbufLen = sizeof(m->d[0])*top*numPowers;
    629 	if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL)
    630 		goto err;
    631 
    632 	powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
    633 	memset(powerbuf, 0, powerbufLen);
    634 
    635  	/* Initialize the intermediate result. Do this early to save double conversion,
    636 	 * once each for a^0 and intermediate result.
    637 	 */
    638  	if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
    639 	if (!MOD_EXP_CTIME_COPY_TO_PREBUF(r, top, powerbuf, 0, numPowers)) goto err;
    640 
    641 	/* Initialize computeTemp as a^1 with montgomery precalcs */
    642 	computeTemp = BN_CTX_get(ctx);
    643 	am = BN_CTX_get(ctx);
    644 	if (computeTemp==NULL || am==NULL) goto err;
    645 
    646 	if (a->neg || BN_ucmp(a,m) >= 0)
    647 		{
    648 		if (!BN_mod(am,a,m,ctx))
    649 			goto err;
    650 		aa= am;
    651 		}
    652 	else
    653 		aa=a;
    654 	if (!BN_to_montgomery(am,aa,mont,ctx)) goto err;
    655 	if (!BN_copy(computeTemp, am)) goto err;
    656 	if (!MOD_EXP_CTIME_COPY_TO_PREBUF(am, top, powerbuf, 1, numPowers)) goto err;
    657 
    658 	/* If the window size is greater than 1, then calculate
    659 	 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
    660 	 * (even powers could instead be computed as (a^(i/2))^2
    661 	 * to use the slight performance advantage of sqr over mul).
    662 	 */
    663 	if (window > 1)
    664 		{
    665 		for (i=2; i<numPowers; i++)
    666 			{
    667 			/* Calculate a^i = a^(i-1) * a */
    668 			if (!BN_mod_mul_montgomery(computeTemp,am,computeTemp,mont,ctx))
    669 				goto err;
    670 			if (!MOD_EXP_CTIME_COPY_TO_PREBUF(computeTemp, top, powerbuf, i, numPowers)) goto err;
    671 			}
    672 		}
    673 
    674  	/* Adjust the number of bits up to a multiple of the window size.
    675  	 * If the exponent length is not a multiple of the window size, then
    676  	 * this pads the most significant bits with zeros to normalize the
    677  	 * scanning loop to there's no special cases.
    678  	 *
    679  	 * * NOTE: Making the window size a power of two less than the native
    680 	 * * word size ensures that the padded bits won't go past the last
    681  	 * * word in the internal BIGNUM structure. Going past the end will
    682  	 * * still produce the correct result, but causes a different branch
    683  	 * * to be taken in the BN_is_bit_set function.
    684  	 */
    685  	bits = ((bits+window-1)/window)*window;
    686  	idx=bits-1;	/* The top bit of the window */
    687 
    688  	/* Scan the exponent one window at a time starting from the most
    689  	 * significant bits.
    690  	 */
    691  	while (idx >= 0)
    692   		{
    693  		wvalue=0; /* The 'value' of the window */
    694 
    695  		/* Scan the window, squaring the result as we go */
    696  		for (i=0; i<window; i++,idx--)
    697  			{
    698 			if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))	goto err;
    699 			wvalue = (wvalue<<1)+BN_is_bit_set(p,idx);
    700   			}
    701 
    702 		/* Fetch the appropriate pre-computed value from the pre-buf */
    703 		if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(computeTemp, top, powerbuf, wvalue, numPowers)) goto err;
    704 
    705  		/* Multiply the result into the intermediate result */
    706  		if (!BN_mod_mul_montgomery(r,r,computeTemp,mont,ctx)) goto err;
    707   		}
    708 
    709  	/* Convert the final result from montgomery to standard format */
    710 	if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
    711 	ret=1;
    712 err:
    713 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
    714 	if (powerbuf!=NULL)
    715 		{
    716 		OPENSSL_cleanse(powerbuf,powerbufLen);
    717 		OPENSSL_free(powerbufFree);
    718 		}
    719  	if (am!=NULL) BN_clear(am);
    720  	if (computeTemp!=NULL) BN_clear(computeTemp);
    721 	BN_CTX_end(ctx);
    722 	return(ret);
    723 	}
    724 
    725 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
    726                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
    727 	{
    728 	BN_MONT_CTX *mont = NULL;
    729 	int b, bits, ret=0;
    730 	int r_is_one;
    731 	BN_ULONG w, next_w;
    732 	BIGNUM *d, *r, *t;
    733 	BIGNUM *swap_tmp;
    734 #define BN_MOD_MUL_WORD(r, w, m) \
    735 		(BN_mul_word(r, (w)) && \
    736 		(/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
    737 			(BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
    738 		/* BN_MOD_MUL_WORD is only used with 'w' large,
    739 		 * so the BN_ucmp test is probably more overhead
    740 		 * than always using BN_mod (which uses BN_copy if
    741 		 * a similar test returns true). */
    742 		/* We can use BN_mod and do not need BN_nnmod because our
    743 		 * accumulator is never negative (the result of BN_mod does
    744 		 * not depend on the sign of the modulus).
    745 		 */
    746 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
    747 		(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
    748 
    749 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
    750 		{
    751 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
    752 		BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    753 		return -1;
    754 		}
    755 
    756 	bn_check_top(p);
    757 	bn_check_top(m);
    758 
    759 	if (!BN_is_odd(m))
    760 		{
    761 		BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS);
    762 		return(0);
    763 		}
    764 	if (m->top == 1)
    765 		a %= m->d[0]; /* make sure that 'a' is reduced */
    766 
    767 	bits = BN_num_bits(p);
    768 	if (bits == 0)
    769 		{
    770 		ret = BN_one(rr);
    771 		return ret;
    772 		}
    773 	if (a == 0)
    774 		{
    775 		BN_zero(rr);
    776 		ret = 1;
    777 		return ret;
    778 		}
    779 
    780 	BN_CTX_start(ctx);
    781 	d = BN_CTX_get(ctx);
    782 	r = BN_CTX_get(ctx);
    783 	t = BN_CTX_get(ctx);
    784 	if (d == NULL || r == NULL || t == NULL) goto err;
    785 
    786 	if (in_mont != NULL)
    787 		mont=in_mont;
    788 	else
    789 		{
    790 		if ((mont = BN_MONT_CTX_new()) == NULL) goto err;
    791 		if (!BN_MONT_CTX_set(mont, m, ctx)) goto err;
    792 		}
    793 
    794 	r_is_one = 1; /* except for Montgomery factor */
    795 
    796 	/* bits-1 >= 0 */
    797 
    798 	/* The result is accumulated in the product r*w. */
    799 	w = a; /* bit 'bits-1' of 'p' is always set */
    800 	for (b = bits-2; b >= 0; b--)
    801 		{
    802 		/* First, square r*w. */
    803 		next_w = w*w;
    804 		if ((next_w/w) != w) /* overflow */
    805 			{
    806 			if (r_is_one)
    807 				{
    808 				if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
    809 				r_is_one = 0;
    810 				}
    811 			else
    812 				{
    813 				if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
    814 				}
    815 			next_w = 1;
    816 			}
    817 		w = next_w;
    818 		if (!r_is_one)
    819 			{
    820 			if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err;
    821 			}
    822 
    823 		/* Second, multiply r*w by 'a' if exponent bit is set. */
    824 		if (BN_is_bit_set(p, b))
    825 			{
    826 			next_w = w*a;
    827 			if ((next_w/a) != w) /* overflow */
    828 				{
    829 				if (r_is_one)
    830 					{
    831 					if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
    832 					r_is_one = 0;
    833 					}
    834 				else
    835 					{
    836 					if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
    837 					}
    838 				next_w = a;
    839 				}
    840 			w = next_w;
    841 			}
    842 		}
    843 
    844 	/* Finally, set r:=r*w. */
    845 	if (w != 1)
    846 		{
    847 		if (r_is_one)
    848 			{
    849 			if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
    850 			r_is_one = 0;
    851 			}
    852 		else
    853 			{
    854 			if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
    855 			}
    856 		}
    857 
    858 	if (r_is_one) /* can happen only if a == 1*/
    859 		{
    860 		if (!BN_one(rr)) goto err;
    861 		}
    862 	else
    863 		{
    864 		if (!BN_from_montgomery(rr, r, mont, ctx)) goto err;
    865 		}
    866 	ret = 1;
    867 err:
    868 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
    869 	BN_CTX_end(ctx);
    870 	bn_check_top(rr);
    871 	return(ret);
    872 	}
    873 
    874 
    875 /* The old fallback, simple version :-) */
    876 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    877 		const BIGNUM *m, BN_CTX *ctx)
    878 	{
    879 	int i,j,bits,ret=0,wstart,wend,window,wvalue;
    880 	int start=1;
    881 	BIGNUM *d;
    882 	/* Table of variables obtained from 'ctx' */
    883 	BIGNUM *val[TABLE_SIZE];
    884 
    885 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
    886 		{
    887 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
    888 		BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    889 		return -1;
    890 		}
    891 
    892 	bits=BN_num_bits(p);
    893 
    894 	if (bits == 0)
    895 		{
    896 		ret = BN_one(r);
    897 		return ret;
    898 		}
    899 
    900 	BN_CTX_start(ctx);
    901 	d = BN_CTX_get(ctx);
    902 	val[0] = BN_CTX_get(ctx);
    903 	if(!d || !val[0]) goto err;
    904 
    905 	if (!BN_nnmod(val[0],a,m,ctx)) goto err;		/* 1 */
    906 	if (BN_is_zero(val[0]))
    907 		{
    908 		BN_zero(r);
    909 		ret = 1;
    910 		goto err;
    911 		}
    912 
    913 	window = BN_window_bits_for_exponent_size(bits);
    914 	if (window > 1)
    915 		{
    916 		if (!BN_mod_mul(d,val[0],val[0],m,ctx))
    917 			goto err;				/* 2 */
    918 		j=1<<(window-1);
    919 		for (i=1; i<j; i++)
    920 			{
    921 			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
    922 					!BN_mod_mul(val[i],val[i-1],d,m,ctx))
    923 				goto err;
    924 			}
    925 		}
    926 
    927 	start=1;	/* This is used to avoid multiplication etc
    928 			 * when there is only the value '1' in the
    929 			 * buffer. */
    930 	wvalue=0;	/* The 'value' of the window */
    931 	wstart=bits-1;	/* The top bit of the window */
    932 	wend=0;		/* The bottom bit of the window */
    933 
    934 	if (!BN_one(r)) goto err;
    935 
    936 	for (;;)
    937 		{
    938 		if (BN_is_bit_set(p,wstart) == 0)
    939 			{
    940 			if (!start)
    941 				if (!BN_mod_mul(r,r,r,m,ctx))
    942 				goto err;
    943 			if (wstart == 0) break;
    944 			wstart--;
    945 			continue;
    946 			}
    947 		/* We now have wstart on a 'set' bit, we now need to work out
    948 		 * how bit a window to do.  To do this we need to scan
    949 		 * forward until the last set bit before the end of the
    950 		 * window */
    951 		j=wstart;
    952 		wvalue=1;
    953 		wend=0;
    954 		for (i=1; i<window; i++)
    955 			{
    956 			if (wstart-i < 0) break;
    957 			if (BN_is_bit_set(p,wstart-i))
    958 				{
    959 				wvalue<<=(i-wend);
    960 				wvalue|=1;
    961 				wend=i;
    962 				}
    963 			}
    964 
    965 		/* wend is the size of the current window */
    966 		j=wend+1;
    967 		/* add the 'bytes above' */
    968 		if (!start)
    969 			for (i=0; i<j; i++)
    970 				{
    971 				if (!BN_mod_mul(r,r,r,m,ctx))
    972 					goto err;
    973 				}
    974 
    975 		/* wvalue will be an odd number < 2^window */
    976 		if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx))
    977 			goto err;
    978 
    979 		/* move the 'window' down further */
    980 		wstart-=wend+1;
    981 		wvalue=0;
    982 		start=0;
    983 		if (wstart < 0) break;
    984 		}
    985 	ret=1;
    986 err:
    987 	BN_CTX_end(ctx);
    988 	bn_check_top(r);
    989 	return(ret);
    990 	}
    991 
    992