Home | History | Annotate | Download | only in src
      1 /*-
      2  * Copyright (c) 2005 David Schultz <das (at) FreeBSD.ORG>
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     24  * SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 /* __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $"); */
     29 
     30 #include <fenv.h>
     31 #include <float.h>
     32 #include <math.h>
     33 
     34 /*
     35  * Fused multiply-add: Compute x * y + z with a single rounding error.
     36  *
     37  * We use scaling to avoid overflow/underflow, along with the
     38  * canonical precision-doubling technique adapted from:
     39  *
     40  *	Dekker, T.  A Floating-Point Technique for Extending the
     41  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
     42  *
     43  * This algorithm is sensitive to the rounding precision.  FPUs such
     44  * as the i387 must be set in double-precision mode if variables are
     45  * to be stored in FP registers in order to avoid incorrect results.
     46  * This is the default on FreeBSD, but not on many other systems.
     47  *
     48  * Hardware instructions should be used on architectures that support it,
     49  * since this implementation will likely be several times slower.
     50  */
     51 #if LDBL_MANT_DIG != 113
     52 double
     53 fma(double x, double y, double z)
     54 {
     55 	static const double split = 0x1p27 + 1.0;
     56 	double xs, ys, zs;
     57 	double c, cc, hx, hy, p, q, tx, ty;
     58 	double r, rr, s;
     59 	int oround;
     60 	int ex, ey, ez;
     61 	int spread;
     62 
     63 	if (z == 0.0)
     64 		return (x * y);
     65 	if (x == 0.0 || y == 0.0)
     66 		return (x * y + z);
     67 
     68 	/* Results of frexp() are undefined for these cases. */
     69 	if (!isfinite(x) || !isfinite(y) || !isfinite(z))
     70 		return (x * y + z);
     71 
     72 	xs = frexp(x, &ex);
     73 	ys = frexp(y, &ey);
     74 	zs = frexp(z, &ez);
     75 	oround = fegetround();
     76 	spread = ex + ey - ez;
     77 
     78 	/*
     79 	 * If x * y and z are many orders of magnitude apart, the scaling
     80 	 * will overflow, so we handle these cases specially.  Rounding
     81 	 * modes other than FE_TONEAREST are painful.
     82 	 */
     83 	if (spread > DBL_MANT_DIG * 2) {
     84 		fenv_t env;
     85 		feraiseexcept(FE_INEXACT);
     86 		switch(oround) {
     87 		case FE_TONEAREST:
     88 			return (x * y);
     89 		case FE_TOWARDZERO:
     90 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
     91 				return (x * y);
     92 			feholdexcept(&env);
     93 			r = x * y;
     94 			if (!fetestexcept(FE_INEXACT))
     95 				r = nextafter(r, 0);
     96 			feupdateenv(&env);
     97 			return (r);
     98 		case FE_DOWNWARD:
     99 			if (z > 0.0)
    100 				return (x * y);
    101 			feholdexcept(&env);
    102 			r = x * y;
    103 			if (!fetestexcept(FE_INEXACT))
    104 				r = nextafter(r, -INFINITY);
    105 			feupdateenv(&env);
    106 			return (r);
    107 		default:	/* FE_UPWARD */
    108 			if (z < 0.0)
    109 				return (x * y);
    110 			feholdexcept(&env);
    111 			r = x * y;
    112 			if (!fetestexcept(FE_INEXACT))
    113 				r = nextafter(r, INFINITY);
    114 			feupdateenv(&env);
    115 			return (r);
    116 		}
    117 	}
    118 	if (spread < -DBL_MANT_DIG) {
    119 		feraiseexcept(FE_INEXACT);
    120 		if (!isnormal(z))
    121 			feraiseexcept(FE_UNDERFLOW);
    122 		switch (oround) {
    123 		case FE_TONEAREST:
    124 			return (z);
    125 		case FE_TOWARDZERO:
    126 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
    127 				return (z);
    128 			else
    129 				return (nextafter(z, 0));
    130 		case FE_DOWNWARD:
    131 			if (x > 0.0 ^ y < 0.0)
    132 				return (z);
    133 			else
    134 				return (nextafter(z, -INFINITY));
    135 		default:	/* FE_UPWARD */
    136 			if (x > 0.0 ^ y < 0.0)
    137 				return (nextafter(z, INFINITY));
    138 			else
    139 				return (z);
    140 		}
    141 	}
    142 
    143 	/*
    144 	 * Use Dekker's algorithm to perform the multiplication and
    145 	 * subsequent addition in twice the machine precision.
    146 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
    147 	 */
    148 	fesetround(FE_TONEAREST);
    149 
    150 	p = xs * split;
    151 	hx = xs - p;
    152 	hx += p;
    153 	tx = xs - hx;
    154 
    155 	p = ys * split;
    156 	hy = ys - p;
    157 	hy += p;
    158 	ty = ys - hy;
    159 
    160 	p = hx * hy;
    161 	q = hx * ty + tx * hy;
    162 	c = p + q;
    163 	cc = p - c + q + tx * ty;
    164 
    165 	zs = ldexp(zs, -spread);
    166 	r = c + zs;
    167 	s = r - c;
    168 	rr = (c - (r - s)) + (zs - s) + cc;
    169 
    170 	spread = ex + ey;
    171 	if (spread + ilogb(r) > -1023) {
    172 		fesetround(oround);
    173 		r = r + rr;
    174 	} else {
    175 		/*
    176 		 * The result is subnormal, so we round before scaling to
    177 		 * avoid double rounding.
    178 		 */
    179 		p = ldexp(copysign(0x1p-1022, r), -spread);
    180 		c = r + p;
    181 		s = c - r;
    182 		cc = (r - (c - s)) + (p - s) + rr;
    183 		fesetround(oround);
    184 		r = (c + cc) - p;
    185 	}
    186 	return (ldexp(r, spread));
    187 }
    188 #else	/* LDBL_MANT_DIG == 113 */
    189 /*
    190  * 113 bits of precision is more than twice the precision of a double,
    191  * so it is enough to represent the intermediate product exactly.
    192  */
    193 double
    194 fma(double x, double y, double z)
    195 {
    196 	return ((long double)x * y + z);
    197 }
    198 #endif	/* LDBL_MANT_DIG != 113 */
    199 
    200 #if (LDBL_MANT_DIG == 53)
    201 __weak_reference(fma, fmal);
    202 #endif
    203