Home | History | Annotate | Download | only in Rewrite
      1 //===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the RewriteRope class, which is a powerful string.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Rewrite/RewriteRope.h"
     15 #include "clang/Basic/LLVM.h"
     16 #include <algorithm>
     17 using namespace clang;
     18 
     19 /// RewriteRope is a "strong" string class, designed to make insertions and
     20 /// deletions in the middle of the string nearly constant time (really, they are
     21 /// O(log N), but with a very low constant factor).
     22 ///
     23 /// The implementation of this datastructure is a conceptual linear sequence of
     24 /// RopePiece elements.  Each RopePiece represents a view on a separately
     25 /// allocated and reference counted string.  This means that splitting a very
     26 /// long string can be done in constant time by splitting a RopePiece that
     27 /// references the whole string into two rope pieces that reference each half.
     28 /// Once split, another string can be inserted in between the two halves by
     29 /// inserting a RopePiece in between the two others.  All of this is very
     30 /// inexpensive: it takes time proportional to the number of RopePieces, not the
     31 /// length of the strings they represent.
     32 ///
     33 /// While a linear sequences of RopePieces is the conceptual model, the actual
     34 /// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
     35 /// is a tree that keeps the values in the leaves and has where each node
     36 /// contains a reasonable number of pointers to children/values) allows us to
     37 /// maintain efficient operation when the RewriteRope contains a *huge* number
     38 /// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
     39 /// the RopePiece corresponding to some offset very efficiently, and it
     40 /// automatically balances itself on insertions of RopePieces (which can happen
     41 /// for both insertions and erases of string ranges).
     42 ///
     43 /// The one wrinkle on the theory is that we don't attempt to keep the tree
     44 /// properly balanced when erases happen.  Erases of string data can both insert
     45 /// new RopePieces (e.g. when the middle of some other rope piece is deleted,
     46 /// which results in two rope pieces, which is just like an insert) or it can
     47 /// reduce the number of RopePieces maintained by the B+Tree.  In the case when
     48 /// the number of RopePieces is reduced, we don't attempt to maintain the
     49 /// standard 'invariant' that each node in the tree contains at least
     50 /// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
     51 /// matter.
     52 ///
     53 /// The implementation below is primarily implemented in terms of three classes:
     54 ///   RopePieceBTreeNode - Common base class for:
     55 ///
     56 ///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
     57 ///          nodes.  This directly represents a chunk of the string with those
     58 ///          RopePieces contatenated.
     59 ///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
     60 ///          up to '2*WidthFactor' other nodes in the tree.
     61 
     62 
     63 //===----------------------------------------------------------------------===//
     64 // RopePieceBTreeNode Class
     65 //===----------------------------------------------------------------------===//
     66 
     67 namespace {
     68   /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
     69   /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
     70   /// and a flag that determines which subclass the instance is.  Also
     71   /// important, this node knows the full extend of the node, including any
     72   /// children that it has.  This allows efficient skipping over entire subtrees
     73   /// when looking for an offset in the BTree.
     74   class RopePieceBTreeNode {
     75   protected:
     76     /// WidthFactor - This controls the number of K/V slots held in the BTree:
     77     /// how wide it is.  Each level of the BTree is guaranteed to have at least
     78     /// 'WidthFactor' elements in it (either ropepieces or children), (except
     79     /// the root, which may have less) and may have at most 2*WidthFactor
     80     /// elements.
     81     enum { WidthFactor = 8 };
     82 
     83     /// Size - This is the number of bytes of file this node (including any
     84     /// potential children) covers.
     85     unsigned Size;
     86 
     87     /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
     88     /// is an instance of RopePieceBTreeInterior.
     89     bool IsLeaf;
     90 
     91     RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
     92     ~RopePieceBTreeNode() {}
     93   public:
     94 
     95     bool isLeaf() const { return IsLeaf; }
     96     unsigned size() const { return Size; }
     97 
     98     void Destroy();
     99 
    100     /// split - Split the range containing the specified offset so that we are
    101     /// guaranteed that there is a place to do an insertion at the specified
    102     /// offset.  The offset is relative, so "0" is the start of the node.
    103     ///
    104     /// If there is no space in this subtree for the extra piece, the extra tree
    105     /// node is returned and must be inserted into a parent.
    106     RopePieceBTreeNode *split(unsigned Offset);
    107 
    108     /// insert - Insert the specified ropepiece into this tree node at the
    109     /// specified offset.  The offset is relative, so "0" is the start of the
    110     /// node.
    111     ///
    112     /// If there is no space in this subtree for the extra piece, the extra tree
    113     /// node is returned and must be inserted into a parent.
    114     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
    115 
    116     /// erase - Remove NumBytes from this node at the specified offset.  We are
    117     /// guaranteed that there is a split at Offset.
    118     void erase(unsigned Offset, unsigned NumBytes);
    119 
    120     //static inline bool classof(const RopePieceBTreeNode *) { return true; }
    121 
    122   };
    123 } // end anonymous namespace
    124 
    125 //===----------------------------------------------------------------------===//
    126 // RopePieceBTreeLeaf Class
    127 //===----------------------------------------------------------------------===//
    128 
    129 namespace {
    130   /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
    131   /// nodes.  This directly represents a chunk of the string with those
    132   /// RopePieces contatenated.  Since this is a B+Tree, all values (in this case
    133   /// instances of RopePiece) are stored in leaves like this.  To make iteration
    134   /// over the leaves efficient, they maintain a singly linked list through the
    135   /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
    136   /// time for all increments.
    137   class RopePieceBTreeLeaf : public RopePieceBTreeNode {
    138     /// NumPieces - This holds the number of rope pieces currently active in the
    139     /// Pieces array.
    140     unsigned char NumPieces;
    141 
    142     /// Pieces - This tracks the file chunks currently in this leaf.
    143     ///
    144     RopePiece Pieces[2*WidthFactor];
    145 
    146     /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
    147     /// efficient in-order forward iteration of the tree without traversal.
    148     RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
    149   public:
    150     RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
    151                            PrevLeaf(0), NextLeaf(0) {}
    152     ~RopePieceBTreeLeaf() {
    153       if (PrevLeaf || NextLeaf)
    154         removeFromLeafInOrder();
    155       clear();
    156     }
    157 
    158     bool isFull() const { return NumPieces == 2*WidthFactor; }
    159 
    160     /// clear - Remove all rope pieces from this leaf.
    161     void clear() {
    162       while (NumPieces)
    163         Pieces[--NumPieces] = RopePiece();
    164       Size = 0;
    165     }
    166 
    167     unsigned getNumPieces() const { return NumPieces; }
    168 
    169     const RopePiece &getPiece(unsigned i) const {
    170       assert(i < getNumPieces() && "Invalid piece ID");
    171       return Pieces[i];
    172     }
    173 
    174     const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
    175     void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
    176       assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering");
    177 
    178       NextLeaf = Node->NextLeaf;
    179       if (NextLeaf)
    180         NextLeaf->PrevLeaf = &NextLeaf;
    181       PrevLeaf = &Node->NextLeaf;
    182       Node->NextLeaf = this;
    183     }
    184 
    185     void removeFromLeafInOrder() {
    186       if (PrevLeaf) {
    187         *PrevLeaf = NextLeaf;
    188         if (NextLeaf)
    189           NextLeaf->PrevLeaf = PrevLeaf;
    190       } else if (NextLeaf) {
    191         NextLeaf->PrevLeaf = 0;
    192       }
    193     }
    194 
    195     /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
    196     /// summing the size of all RopePieces.
    197     void FullRecomputeSizeLocally() {
    198       Size = 0;
    199       for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
    200         Size += getPiece(i).size();
    201     }
    202 
    203     /// split - Split the range containing the specified offset so that we are
    204     /// guaranteed that there is a place to do an insertion at the specified
    205     /// offset.  The offset is relative, so "0" is the start of the node.
    206     ///
    207     /// If there is no space in this subtree for the extra piece, the extra tree
    208     /// node is returned and must be inserted into a parent.
    209     RopePieceBTreeNode *split(unsigned Offset);
    210 
    211     /// insert - Insert the specified ropepiece into this tree node at the
    212     /// specified offset.  The offset is relative, so "0" is the start of the
    213     /// node.
    214     ///
    215     /// If there is no space in this subtree for the extra piece, the extra tree
    216     /// node is returned and must be inserted into a parent.
    217     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
    218 
    219 
    220     /// erase - Remove NumBytes from this node at the specified offset.  We are
    221     /// guaranteed that there is a split at Offset.
    222     void erase(unsigned Offset, unsigned NumBytes);
    223 
    224     //static inline bool classof(const RopePieceBTreeLeaf *) { return true; }
    225     static inline bool classof(const RopePieceBTreeNode *N) {
    226       return N->isLeaf();
    227     }
    228   };
    229 } // end anonymous namespace
    230 
    231 /// split - Split the range containing the specified offset so that we are
    232 /// guaranteed that there is a place to do an insertion at the specified
    233 /// offset.  The offset is relative, so "0" is the start of the node.
    234 ///
    235 /// If there is no space in this subtree for the extra piece, the extra tree
    236 /// node is returned and must be inserted into a parent.
    237 RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
    238   // Find the insertion point.  We are guaranteed that there is a split at the
    239   // specified offset so find it.
    240   if (Offset == 0 || Offset == size()) {
    241     // Fastpath for a common case.  There is already a splitpoint at the end.
    242     return 0;
    243   }
    244 
    245   // Find the piece that this offset lands in.
    246   unsigned PieceOffs = 0;
    247   unsigned i = 0;
    248   while (Offset >= PieceOffs+Pieces[i].size()) {
    249     PieceOffs += Pieces[i].size();
    250     ++i;
    251   }
    252 
    253   // If there is already a split point at the specified offset, just return
    254   // success.
    255   if (PieceOffs == Offset)
    256     return 0;
    257 
    258   // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
    259   // to being Piece relative.
    260   unsigned IntraPieceOffset = Offset-PieceOffs;
    261 
    262   // We do this by shrinking the RopePiece and then doing an insert of the tail.
    263   RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
    264                  Pieces[i].EndOffs);
    265   Size -= Pieces[i].size();
    266   Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
    267   Size += Pieces[i].size();
    268 
    269   return insert(Offset, Tail);
    270 }
    271 
    272 
    273 /// insert - Insert the specified RopePiece into this tree node at the
    274 /// specified offset.  The offset is relative, so "0" is the start of the node.
    275 ///
    276 /// If there is no space in this subtree for the extra piece, the extra tree
    277 /// node is returned and must be inserted into a parent.
    278 RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
    279                                                const RopePiece &R) {
    280   // If this node is not full, insert the piece.
    281   if (!isFull()) {
    282     // Find the insertion point.  We are guaranteed that there is a split at the
    283     // specified offset so find it.
    284     unsigned i = 0, e = getNumPieces();
    285     if (Offset == size()) {
    286       // Fastpath for a common case.
    287       i = e;
    288     } else {
    289       unsigned SlotOffs = 0;
    290       for (; Offset > SlotOffs; ++i)
    291         SlotOffs += getPiece(i).size();
    292       assert(SlotOffs == Offset && "Split didn't occur before insertion!");
    293     }
    294 
    295     // For an insertion into a non-full leaf node, just insert the value in
    296     // its sorted position.  This requires moving later values over.
    297     for (; i != e; --e)
    298       Pieces[e] = Pieces[e-1];
    299     Pieces[i] = R;
    300     ++NumPieces;
    301     Size += R.size();
    302     return 0;
    303   }
    304 
    305   // Otherwise, if this is leaf is full, split it in two halves.  Since this
    306   // node is full, it contains 2*WidthFactor values.  We move the first
    307   // 'WidthFactor' values to the LHS child (which we leave in this node) and
    308   // move the last 'WidthFactor' values into the RHS child.
    309 
    310   // Create the new node.
    311   RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
    312 
    313   // Move over the last 'WidthFactor' values from here to NewNode.
    314   std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
    315             &NewNode->Pieces[0]);
    316   // Replace old pieces with null RopePieces to drop refcounts.
    317   std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
    318 
    319   // Decrease the number of values in the two nodes.
    320   NewNode->NumPieces = NumPieces = WidthFactor;
    321 
    322   // Recompute the two nodes' size.
    323   NewNode->FullRecomputeSizeLocally();
    324   FullRecomputeSizeLocally();
    325 
    326   // Update the list of leaves.
    327   NewNode->insertAfterLeafInOrder(this);
    328 
    329   // These insertions can't fail.
    330   if (this->size() >= Offset)
    331     this->insert(Offset, R);
    332   else
    333     NewNode->insert(Offset - this->size(), R);
    334   return NewNode;
    335 }
    336 
    337 /// erase - Remove NumBytes from this node at the specified offset.  We are
    338 /// guaranteed that there is a split at Offset.
    339 void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
    340   // Since we are guaranteed that there is a split at Offset, we start by
    341   // finding the Piece that starts there.
    342   unsigned PieceOffs = 0;
    343   unsigned i = 0;
    344   for (; Offset > PieceOffs; ++i)
    345     PieceOffs += getPiece(i).size();
    346   assert(PieceOffs == Offset && "Split didn't occur before erase!");
    347 
    348   unsigned StartPiece = i;
    349 
    350   // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
    351   // all of them.
    352   for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
    353     PieceOffs += getPiece(i).size();
    354 
    355   // If we exactly include the last one, include it in the region to delete.
    356   if (Offset+NumBytes == PieceOffs+getPiece(i).size())
    357     PieceOffs += getPiece(i).size(), ++i;
    358 
    359   // If we completely cover some RopePieces, erase them now.
    360   if (i != StartPiece) {
    361     unsigned NumDeleted = i-StartPiece;
    362     for (; i != getNumPieces(); ++i)
    363       Pieces[i-NumDeleted] = Pieces[i];
    364 
    365     // Drop references to dead rope pieces.
    366     std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
    367               RopePiece());
    368     NumPieces -= NumDeleted;
    369 
    370     unsigned CoverBytes = PieceOffs-Offset;
    371     NumBytes -= CoverBytes;
    372     Size -= CoverBytes;
    373   }
    374 
    375   // If we completely removed some stuff, we could be done.
    376   if (NumBytes == 0) return;
    377 
    378   // Okay, now might be erasing part of some Piece.  If this is the case, then
    379   // move the start point of the piece.
    380   assert(getPiece(StartPiece).size() > NumBytes);
    381   Pieces[StartPiece].StartOffs += NumBytes;
    382 
    383   // The size of this node just shrunk by NumBytes.
    384   Size -= NumBytes;
    385 }
    386 
    387 //===----------------------------------------------------------------------===//
    388 // RopePieceBTreeInterior Class
    389 //===----------------------------------------------------------------------===//
    390 
    391 namespace {
    392   /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
    393   /// which holds up to 2*WidthFactor pointers to child nodes.
    394   class RopePieceBTreeInterior : public RopePieceBTreeNode {
    395     /// NumChildren - This holds the number of children currently active in the
    396     /// Children array.
    397     unsigned char NumChildren;
    398     RopePieceBTreeNode *Children[2*WidthFactor];
    399   public:
    400     RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
    401 
    402     RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
    403     : RopePieceBTreeNode(false) {
    404       Children[0] = LHS;
    405       Children[1] = RHS;
    406       NumChildren = 2;
    407       Size = LHS->size() + RHS->size();
    408     }
    409 
    410     bool isFull() const { return NumChildren == 2*WidthFactor; }
    411 
    412     unsigned getNumChildren() const { return NumChildren; }
    413     const RopePieceBTreeNode *getChild(unsigned i) const {
    414       assert(i < NumChildren && "invalid child #");
    415       return Children[i];
    416     }
    417     RopePieceBTreeNode *getChild(unsigned i) {
    418       assert(i < NumChildren && "invalid child #");
    419       return Children[i];
    420     }
    421 
    422     /// FullRecomputeSizeLocally - Recompute the Size field of this node by
    423     /// summing up the sizes of the child nodes.
    424     void FullRecomputeSizeLocally() {
    425       Size = 0;
    426       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    427         Size += getChild(i)->size();
    428     }
    429 
    430 
    431     /// split - Split the range containing the specified offset so that we are
    432     /// guaranteed that there is a place to do an insertion at the specified
    433     /// offset.  The offset is relative, so "0" is the start of the node.
    434     ///
    435     /// If there is no space in this subtree for the extra piece, the extra tree
    436     /// node is returned and must be inserted into a parent.
    437     RopePieceBTreeNode *split(unsigned Offset);
    438 
    439 
    440     /// insert - Insert the specified ropepiece into this tree node at the
    441     /// specified offset.  The offset is relative, so "0" is the start of the
    442     /// node.
    443     ///
    444     /// If there is no space in this subtree for the extra piece, the extra tree
    445     /// node is returned and must be inserted into a parent.
    446     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
    447 
    448     /// HandleChildPiece - A child propagated an insertion result up to us.
    449     /// Insert the new child, and/or propagate the result further up the tree.
    450     RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
    451 
    452     /// erase - Remove NumBytes from this node at the specified offset.  We are
    453     /// guaranteed that there is a split at Offset.
    454     void erase(unsigned Offset, unsigned NumBytes);
    455 
    456     //static inline bool classof(const RopePieceBTreeInterior *) { return true; }
    457     static inline bool classof(const RopePieceBTreeNode *N) {
    458       return !N->isLeaf();
    459     }
    460   };
    461 } // end anonymous namespace
    462 
    463 /// split - Split the range containing the specified offset so that we are
    464 /// guaranteed that there is a place to do an insertion at the specified
    465 /// offset.  The offset is relative, so "0" is the start of the node.
    466 ///
    467 /// If there is no space in this subtree for the extra piece, the extra tree
    468 /// node is returned and must be inserted into a parent.
    469 RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
    470   // Figure out which child to split.
    471   if (Offset == 0 || Offset == size())
    472     return 0;  // If we have an exact offset, we're already split.
    473 
    474   unsigned ChildOffset = 0;
    475   unsigned i = 0;
    476   for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
    477     ChildOffset += getChild(i)->size();
    478 
    479   // If already split there, we're done.
    480   if (ChildOffset == Offset)
    481     return 0;
    482 
    483   // Otherwise, recursively split the child.
    484   if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
    485     return HandleChildPiece(i, RHS);
    486   return 0;  // Done!
    487 }
    488 
    489 /// insert - Insert the specified ropepiece into this tree node at the
    490 /// specified offset.  The offset is relative, so "0" is the start of the
    491 /// node.
    492 ///
    493 /// If there is no space in this subtree for the extra piece, the extra tree
    494 /// node is returned and must be inserted into a parent.
    495 RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
    496                                                    const RopePiece &R) {
    497   // Find the insertion point.  We are guaranteed that there is a split at the
    498   // specified offset so find it.
    499   unsigned i = 0, e = getNumChildren();
    500 
    501   unsigned ChildOffs = 0;
    502   if (Offset == size()) {
    503     // Fastpath for a common case.  Insert at end of last child.
    504     i = e-1;
    505     ChildOffs = size()-getChild(i)->size();
    506   } else {
    507     for (; Offset > ChildOffs+getChild(i)->size(); ++i)
    508       ChildOffs += getChild(i)->size();
    509   }
    510 
    511   Size += R.size();
    512 
    513   // Insert at the end of this child.
    514   if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
    515     return HandleChildPiece(i, RHS);
    516 
    517   return 0;
    518 }
    519 
    520 /// HandleChildPiece - A child propagated an insertion result up to us.
    521 /// Insert the new child, and/or propagate the result further up the tree.
    522 RopePieceBTreeNode *
    523 RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
    524   // Otherwise the child propagated a subtree up to us as a new child.  See if
    525   // we have space for it here.
    526   if (!isFull()) {
    527     // Insert RHS after child 'i'.
    528     if (i + 1 != getNumChildren())
    529       memmove(&Children[i+2], &Children[i+1],
    530               (getNumChildren()-i-1)*sizeof(Children[0]));
    531     Children[i+1] = RHS;
    532     ++NumChildren;
    533     return 0;
    534   }
    535 
    536   // Okay, this node is full.  Split it in half, moving WidthFactor children to
    537   // a newly allocated interior node.
    538 
    539   // Create the new node.
    540   RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
    541 
    542   // Move over the last 'WidthFactor' values from here to NewNode.
    543   memcpy(&NewNode->Children[0], &Children[WidthFactor],
    544          WidthFactor*sizeof(Children[0]));
    545 
    546   // Decrease the number of values in the two nodes.
    547   NewNode->NumChildren = NumChildren = WidthFactor;
    548 
    549   // Finally, insert the two new children in the side the can (now) hold them.
    550   // These insertions can't fail.
    551   if (i < WidthFactor)
    552     this->HandleChildPiece(i, RHS);
    553   else
    554     NewNode->HandleChildPiece(i-WidthFactor, RHS);
    555 
    556   // Recompute the two nodes' size.
    557   NewNode->FullRecomputeSizeLocally();
    558   FullRecomputeSizeLocally();
    559   return NewNode;
    560 }
    561 
    562 /// erase - Remove NumBytes from this node at the specified offset.  We are
    563 /// guaranteed that there is a split at Offset.
    564 void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
    565   // This will shrink this node by NumBytes.
    566   Size -= NumBytes;
    567 
    568   // Find the first child that overlaps with Offset.
    569   unsigned i = 0;
    570   for (; Offset >= getChild(i)->size(); ++i)
    571     Offset -= getChild(i)->size();
    572 
    573   // Propagate the delete request into overlapping children, or completely
    574   // delete the children as appropriate.
    575   while (NumBytes) {
    576     RopePieceBTreeNode *CurChild = getChild(i);
    577 
    578     // If we are deleting something contained entirely in the child, pass on the
    579     // request.
    580     if (Offset+NumBytes < CurChild->size()) {
    581       CurChild->erase(Offset, NumBytes);
    582       return;
    583     }
    584 
    585     // If this deletion request starts somewhere in the middle of the child, it
    586     // must be deleting to the end of the child.
    587     if (Offset) {
    588       unsigned BytesFromChild = CurChild->size()-Offset;
    589       CurChild->erase(Offset, BytesFromChild);
    590       NumBytes -= BytesFromChild;
    591       // Start at the beginning of the next child.
    592       Offset = 0;
    593       ++i;
    594       continue;
    595     }
    596 
    597     // If the deletion request completely covers the child, delete it and move
    598     // the rest down.
    599     NumBytes -= CurChild->size();
    600     CurChild->Destroy();
    601     --NumChildren;
    602     if (i != getNumChildren())
    603       memmove(&Children[i], &Children[i+1],
    604               (getNumChildren()-i)*sizeof(Children[0]));
    605   }
    606 }
    607 
    608 //===----------------------------------------------------------------------===//
    609 // RopePieceBTreeNode Implementation
    610 //===----------------------------------------------------------------------===//
    611 
    612 void RopePieceBTreeNode::Destroy() {
    613   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
    614     delete Leaf;
    615   else
    616     delete cast<RopePieceBTreeInterior>(this);
    617 }
    618 
    619 /// split - Split the range containing the specified offset so that we are
    620 /// guaranteed that there is a place to do an insertion at the specified
    621 /// offset.  The offset is relative, so "0" is the start of the node.
    622 ///
    623 /// If there is no space in this subtree for the extra piece, the extra tree
    624 /// node is returned and must be inserted into a parent.
    625 RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
    626   assert(Offset <= size() && "Invalid offset to split!");
    627   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
    628     return Leaf->split(Offset);
    629   return cast<RopePieceBTreeInterior>(this)->split(Offset);
    630 }
    631 
    632 /// insert - Insert the specified ropepiece into this tree node at the
    633 /// specified offset.  The offset is relative, so "0" is the start of the
    634 /// node.
    635 ///
    636 /// If there is no space in this subtree for the extra piece, the extra tree
    637 /// node is returned and must be inserted into a parent.
    638 RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
    639                                                const RopePiece &R) {
    640   assert(Offset <= size() && "Invalid offset to insert!");
    641   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
    642     return Leaf->insert(Offset, R);
    643   return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
    644 }
    645 
    646 /// erase - Remove NumBytes from this node at the specified offset.  We are
    647 /// guaranteed that there is a split at Offset.
    648 void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
    649   assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
    650   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
    651     return Leaf->erase(Offset, NumBytes);
    652   return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
    653 }
    654 
    655 
    656 //===----------------------------------------------------------------------===//
    657 // RopePieceBTreeIterator Implementation
    658 //===----------------------------------------------------------------------===//
    659 
    660 static const RopePieceBTreeLeaf *getCN(const void *P) {
    661   return static_cast<const RopePieceBTreeLeaf*>(P);
    662 }
    663 
    664 // begin iterator.
    665 RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
    666   const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
    667 
    668   // Walk down the left side of the tree until we get to a leaf.
    669   while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
    670     N = IN->getChild(0);
    671 
    672   // We must have at least one leaf.
    673   CurNode = cast<RopePieceBTreeLeaf>(N);
    674 
    675   // If we found a leaf that happens to be empty, skip over it until we get
    676   // to something full.
    677   while (CurNode && getCN(CurNode)->getNumPieces() == 0)
    678     CurNode = getCN(CurNode)->getNextLeafInOrder();
    679 
    680   if (CurNode != 0)
    681     CurPiece = &getCN(CurNode)->getPiece(0);
    682   else  // Empty tree, this is an end() iterator.
    683     CurPiece = 0;
    684   CurChar = 0;
    685 }
    686 
    687 void RopePieceBTreeIterator::MoveToNextPiece() {
    688   if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
    689     CurChar = 0;
    690     ++CurPiece;
    691     return;
    692   }
    693 
    694   // Find the next non-empty leaf node.
    695   do
    696     CurNode = getCN(CurNode)->getNextLeafInOrder();
    697   while (CurNode && getCN(CurNode)->getNumPieces() == 0);
    698 
    699   if (CurNode != 0)
    700     CurPiece = &getCN(CurNode)->getPiece(0);
    701   else // Hit end().
    702     CurPiece = 0;
    703   CurChar = 0;
    704 }
    705 
    706 //===----------------------------------------------------------------------===//
    707 // RopePieceBTree Implementation
    708 //===----------------------------------------------------------------------===//
    709 
    710 static RopePieceBTreeNode *getRoot(void *P) {
    711   return static_cast<RopePieceBTreeNode*>(P);
    712 }
    713 
    714 RopePieceBTree::RopePieceBTree() {
    715   Root = new RopePieceBTreeLeaf();
    716 }
    717 RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
    718   assert(RHS.empty() && "Can't copy non-empty tree yet");
    719   Root = new RopePieceBTreeLeaf();
    720 }
    721 RopePieceBTree::~RopePieceBTree() {
    722   getRoot(Root)->Destroy();
    723 }
    724 
    725 unsigned RopePieceBTree::size() const {
    726   return getRoot(Root)->size();
    727 }
    728 
    729 void RopePieceBTree::clear() {
    730   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
    731     Leaf->clear();
    732   else {
    733     getRoot(Root)->Destroy();
    734     Root = new RopePieceBTreeLeaf();
    735   }
    736 }
    737 
    738 void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
    739   // #1. Split at Offset.
    740   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
    741     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
    742 
    743   // #2. Do the insertion.
    744   if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
    745     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
    746 }
    747 
    748 void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
    749   // #1. Split at Offset.
    750   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
    751     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
    752 
    753   // #2. Do the erasing.
    754   getRoot(Root)->erase(Offset, NumBytes);
    755 }
    756 
    757 //===----------------------------------------------------------------------===//
    758 // RewriteRope Implementation
    759 //===----------------------------------------------------------------------===//
    760 
    761 /// MakeRopeString - This copies the specified byte range into some instance of
    762 /// RopeRefCountString, and return a RopePiece that represents it.  This uses
    763 /// the AllocBuffer object to aggregate requests for small strings into one
    764 /// allocation instead of doing tons of tiny allocations.
    765 RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
    766   unsigned Len = End-Start;
    767   assert(Len && "Zero length RopePiece is invalid!");
    768 
    769   // If we have space for this string in the current alloc buffer, use it.
    770   if (AllocOffs+Len <= AllocChunkSize) {
    771     memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
    772     AllocOffs += Len;
    773     return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
    774   }
    775 
    776   // If we don't have enough room because this specific allocation is huge,
    777   // just allocate a new rope piece for it alone.
    778   if (Len > AllocChunkSize) {
    779     unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
    780     RopeRefCountString *Res =
    781       reinterpret_cast<RopeRefCountString *>(new char[Size]);
    782     Res->RefCount = 0;
    783     memcpy(Res->Data, Start, End-Start);
    784     return RopePiece(Res, 0, End-Start);
    785   }
    786 
    787   // Otherwise, this was a small request but we just don't have space for it
    788   // Make a new chunk and share it with later allocations.
    789 
    790   // If we had an old allocation, drop our reference to it.
    791   if (AllocBuffer && --AllocBuffer->RefCount == 0)
    792     delete [] (char*)AllocBuffer;
    793 
    794   unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
    795   AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
    796   AllocBuffer->RefCount = 0;
    797   memcpy(AllocBuffer->Data, Start, Len);
    798   AllocOffs = Len;
    799 
    800   // Start out the new allocation with a refcount of 1, since we have an
    801   // internal reference to it.
    802   AllocBuffer->addRef();
    803   return RopePiece(AllocBuffer, 0, Len);
    804 }
    805 
    806 
    807