1 /* 2 ******************************************************************************* 3 * 4 * Copyright (C) 2005-2010, International Business Machines 5 * Corporation and others. All Rights Reserved. 6 * 7 ******************************************************************************* 8 * file name: utext.cpp 9 * encoding: US-ASCII 10 * tab size: 8 (not used) 11 * indentation:4 12 * 13 * created on: 2005apr12 14 * created by: Markus W. Scherer 15 */ 16 17 #include "unicode/utypes.h" 18 #include "unicode/ustring.h" 19 #include "unicode/unistr.h" 20 #include "unicode/chariter.h" 21 #include "unicode/utext.h" 22 #include "ustr_imp.h" 23 #include "cmemory.h" 24 #include "cstring.h" 25 #include "uassert.h" 26 #include "putilimp.h" 27 28 U_NAMESPACE_USE 29 30 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) 31 32 33 static UBool 34 utext_access(UText *ut, int64_t index, UBool forward) { 35 return ut->pFuncs->access(ut, index, forward); 36 } 37 38 39 40 U_CAPI UBool U_EXPORT2 41 utext_moveIndex32(UText *ut, int32_t delta) { 42 UChar32 c; 43 if (delta > 0) { 44 do { 45 if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) { 46 return FALSE; 47 } 48 c = ut->chunkContents[ut->chunkOffset]; 49 if (U16_IS_SURROGATE(c)) { 50 c = utext_next32(ut); 51 if (c == U_SENTINEL) { 52 return FALSE; 53 } 54 } else { 55 ut->chunkOffset++; 56 } 57 } while(--delta>0); 58 59 } else if (delta<0) { 60 do { 61 if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) { 62 return FALSE; 63 } 64 c = ut->chunkContents[ut->chunkOffset-1]; 65 if (U16_IS_SURROGATE(c)) { 66 c = utext_previous32(ut); 67 if (c == U_SENTINEL) { 68 return FALSE; 69 } 70 } else { 71 ut->chunkOffset--; 72 } 73 } while(++delta<0); 74 } 75 76 return TRUE; 77 } 78 79 80 U_CAPI int64_t U_EXPORT2 81 utext_nativeLength(UText *ut) { 82 return ut->pFuncs->nativeLength(ut); 83 } 84 85 86 U_CAPI UBool U_EXPORT2 87 utext_isLengthExpensive(const UText *ut) { 88 UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; 89 return r; 90 } 91 92 93 U_CAPI int64_t U_EXPORT2 94 utext_getNativeIndex(const UText *ut) { 95 if(ut->chunkOffset <= ut->nativeIndexingLimit) { 96 return ut->chunkNativeStart+ut->chunkOffset; 97 } else { 98 return ut->pFuncs->mapOffsetToNative(ut); 99 } 100 } 101 102 103 U_CAPI void U_EXPORT2 104 utext_setNativeIndex(UText *ut, int64_t index) { 105 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { 106 // The desired position is outside of the current chunk. 107 // Access the new position. Assume a forward iteration from here, 108 // which will also be optimimum for a single random access. 109 // Reverse iterations may suffer slightly. 110 ut->pFuncs->access(ut, index, TRUE); 111 } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) { 112 // utf-16 indexing. 113 ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); 114 } else { 115 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); 116 } 117 // The convention is that the index must always be on a code point boundary. 118 // Adjust the index position if it is in the middle of a surrogate pair. 119 if (ut->chunkOffset<ut->chunkLength) { 120 UChar c= ut->chunkContents[ut->chunkOffset]; 121 if (UTF16_IS_TRAIL(c)) { 122 if (ut->chunkOffset==0) { 123 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE); 124 } 125 if (ut->chunkOffset>0) { 126 UChar lead = ut->chunkContents[ut->chunkOffset-1]; 127 if (UTF16_IS_LEAD(lead)) { 128 ut->chunkOffset--; 129 } 130 } 131 } 132 } 133 } 134 135 136 137 U_CAPI int64_t U_EXPORT2 138 utext_getPreviousNativeIndex(UText *ut) { 139 // 140 // Fast-path the common case. 141 // Common means current position is not at the beginning of a chunk 142 // and the preceding character is not supplementary. 143 // 144 int32_t i = ut->chunkOffset - 1; 145 int64_t result; 146 if (i >= 0) { 147 UChar c = ut->chunkContents[i]; 148 if (U16_IS_TRAIL(c) == FALSE) { 149 if (i <= ut->nativeIndexingLimit) { 150 result = ut->chunkNativeStart + i; 151 } else { 152 ut->chunkOffset = i; 153 result = ut->pFuncs->mapOffsetToNative(ut); 154 ut->chunkOffset++; 155 } 156 return result; 157 } 158 } 159 160 // If at the start of text, simply return 0. 161 if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { 162 return 0; 163 } 164 165 // Harder, less common cases. We are at a chunk boundary, or on a surrogate. 166 // Keep it simple, use other functions to handle the edges. 167 // 168 utext_previous32(ut); 169 result = UTEXT_GETNATIVEINDEX(ut); 170 utext_next32(ut); 171 return result; 172 } 173 174 175 // 176 // utext_current32. Get the UChar32 at the current position. 177 // UText iteration position is always on a code point boundary, 178 // never on the trail half of a surrogate pair. 179 // 180 U_CAPI UChar32 U_EXPORT2 181 utext_current32(UText *ut) { 182 UChar32 c; 183 if (ut->chunkOffset==ut->chunkLength) { 184 // Current position is just off the end of the chunk. 185 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { 186 // Off the end of the text. 187 return U_SENTINEL; 188 } 189 } 190 191 c = ut->chunkContents[ut->chunkOffset]; 192 if (U16_IS_LEAD(c) == FALSE) { 193 // Normal, non-supplementary case. 194 return c; 195 } 196 197 // 198 // Possible supplementary char. 199 // 200 UChar32 trail = 0; 201 UChar32 supplementaryC = c; 202 if ((ut->chunkOffset+1) < ut->chunkLength) { 203 // The trail surrogate is in the same chunk. 204 trail = ut->chunkContents[ut->chunkOffset+1]; 205 } else { 206 // The trail surrogate is in a different chunk. 207 // Because we must maintain the iteration position, we need to switch forward 208 // into the new chunk, get the trail surrogate, then revert the chunk back to the 209 // original one. 210 // An edge case to be careful of: the entire text may end with an unpaired 211 // leading surrogate. The attempt to access the trail will fail, but 212 // the original position before the unpaired lead still needs to be restored. 213 int64_t nativePosition = ut->chunkNativeLimit; 214 int32_t originalOffset = ut->chunkOffset; 215 if (ut->pFuncs->access(ut, nativePosition, TRUE)) { 216 trail = ut->chunkContents[ut->chunkOffset]; 217 } 218 UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk 219 U_ASSERT(r==TRUE); 220 ut->chunkOffset = originalOffset; 221 if(!r) { 222 return U_SENTINEL; 223 } 224 } 225 226 if (U16_IS_TRAIL(trail)) { 227 supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); 228 } 229 return supplementaryC; 230 231 } 232 233 234 U_CAPI UChar32 U_EXPORT2 235 utext_char32At(UText *ut, int64_t nativeIndex) { 236 UChar32 c = U_SENTINEL; 237 238 // Fast path the common case. 239 if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) { 240 ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); 241 c = ut->chunkContents[ut->chunkOffset]; 242 if (U16_IS_SURROGATE(c) == FALSE) { 243 return c; 244 } 245 } 246 247 248 utext_setNativeIndex(ut, nativeIndex); 249 if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) { 250 c = ut->chunkContents[ut->chunkOffset]; 251 if (U16_IS_SURROGATE(c)) { 252 // For surrogates, let current32() deal with the complications 253 // of supplementaries that may span chunk boundaries. 254 c = utext_current32(ut); 255 } 256 } 257 return c; 258 } 259 260 261 U_CAPI UChar32 U_EXPORT2 262 utext_next32(UText *ut) { 263 UChar32 c; 264 265 if (ut->chunkOffset >= ut->chunkLength) { 266 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { 267 return U_SENTINEL; 268 } 269 } 270 271 c = ut->chunkContents[ut->chunkOffset++]; 272 if (U16_IS_LEAD(c) == FALSE) { 273 // Normal case, not supplementary. 274 // (A trail surrogate seen here is just returned as is, as a surrogate value. 275 // It cannot be part of a pair.) 276 return c; 277 } 278 279 if (ut->chunkOffset >= ut->chunkLength) { 280 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { 281 // c is an unpaired lead surrogate at the end of the text. 282 // return it as it is. 283 return c; 284 } 285 } 286 UChar32 trail = ut->chunkContents[ut->chunkOffset]; 287 if (U16_IS_TRAIL(trail) == FALSE) { 288 // c was an unpaired lead surrogate, not at the end of the text. 289 // return it as it is (unpaired). Iteration position is on the 290 // following character, possibly in the next chunk, where the 291 // trail surrogate would have been if it had existed. 292 return c; 293 } 294 295 UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); 296 ut->chunkOffset++; // move iteration position over the trail surrogate. 297 return supplementary; 298 } 299 300 301 U_CAPI UChar32 U_EXPORT2 302 utext_previous32(UText *ut) { 303 UChar32 c; 304 305 if (ut->chunkOffset <= 0) { 306 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { 307 return U_SENTINEL; 308 } 309 } 310 ut->chunkOffset--; 311 c = ut->chunkContents[ut->chunkOffset]; 312 if (U16_IS_TRAIL(c) == FALSE) { 313 // Normal case, not supplementary. 314 // (A lead surrogate seen here is just returned as is, as a surrogate value. 315 // It cannot be part of a pair.) 316 return c; 317 } 318 319 if (ut->chunkOffset <= 0) { 320 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { 321 // c is an unpaired trail surrogate at the start of the text. 322 // return it as it is. 323 return c; 324 } 325 } 326 327 UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; 328 if (U16_IS_LEAD(lead) == FALSE) { 329 // c was an unpaired trail surrogate, not at the end of the text. 330 // return it as it is (unpaired). Iteration position is at c 331 return c; 332 } 333 334 UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); 335 ut->chunkOffset--; // move iteration position over the lead surrogate. 336 return supplementary; 337 } 338 339 340 341 U_CAPI UChar32 U_EXPORT2 342 utext_next32From(UText *ut, int64_t index) { 343 UChar32 c = U_SENTINEL; 344 345 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { 346 // Desired position is outside of the current chunk. 347 if(!ut->pFuncs->access(ut, index, TRUE)) { 348 // no chunk available here 349 return U_SENTINEL; 350 } 351 } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { 352 // Desired position is in chunk, with direct 1:1 native to UTF16 indexing 353 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); 354 } else { 355 // Desired position is in chunk, with non-UTF16 indexing. 356 ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); 357 } 358 359 c = ut->chunkContents[ut->chunkOffset++]; 360 if (U16_IS_SURROGATE(c)) { 361 // Surrogates. Many edge cases. Use other functions that already 362 // deal with the problems. 363 utext_setNativeIndex(ut, index); 364 c = utext_next32(ut); 365 } 366 return c; 367 } 368 369 370 U_CAPI UChar32 U_EXPORT2 371 utext_previous32From(UText *ut, int64_t index) { 372 // 373 // Return the character preceding the specified index. 374 // Leave the iteration position at the start of the character that was returned. 375 // 376 UChar32 cPrev; // The character preceding cCurr, which is what we will return. 377 378 // Address the chunk containg the position preceding the incoming index 379 // A tricky edge case: 380 // We try to test the requested native index against the chunkNativeStart to determine 381 // whether the character preceding the one at the index is in the current chunk. 382 // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the 383 // requested index is on something other than the first position of the first char. 384 // 385 if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { 386 // Requested native index is outside of the current chunk. 387 if(!ut->pFuncs->access(ut, index, FALSE)) { 388 // no chunk available here 389 return U_SENTINEL; 390 } 391 } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { 392 // Direct UTF-16 indexing. 393 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); 394 } else { 395 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); 396 if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) { 397 // no chunk available here 398 return U_SENTINEL; 399 } 400 } 401 402 // 403 // Simple case with no surrogates. 404 // 405 ut->chunkOffset--; 406 cPrev = ut->chunkContents[ut->chunkOffset]; 407 408 if (U16_IS_SURROGATE(cPrev)) { 409 // Possible supplementary. Many edge cases. 410 // Let other functions do the heavy lifting. 411 utext_setNativeIndex(ut, index); 412 cPrev = utext_previous32(ut); 413 } 414 return cPrev; 415 } 416 417 418 U_CAPI int32_t U_EXPORT2 419 utext_extract(UText *ut, 420 int64_t start, int64_t limit, 421 UChar *dest, int32_t destCapacity, 422 UErrorCode *status) { 423 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status); 424 } 425 426 427 428 U_CAPI UBool U_EXPORT2 429 utext_equals(const UText *a, const UText *b) { 430 if (a==NULL || b==NULL || 431 a->magic != UTEXT_MAGIC || 432 b->magic != UTEXT_MAGIC) { 433 // Null or invalid arguments don't compare equal to anything. 434 return FALSE; 435 } 436 437 if (a->pFuncs != b->pFuncs) { 438 // Different types of text providers. 439 return FALSE; 440 } 441 442 if (a->context != b->context) { 443 // Different sources (different strings) 444 return FALSE; 445 } 446 if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { 447 // Different current position in the string. 448 return FALSE; 449 } 450 451 return TRUE; 452 } 453 454 U_CAPI int32_t U_EXPORT2 455 utext_compare(UText *s1, int32_t length1, 456 UText *s2, int32_t length2) { 457 UChar32 c1 = 0, c2 = 0; 458 459 if(length1<0 && length2<0) { 460 /* strcmp style, go until end of string */ 461 for(;;) { 462 c1 = UTEXT_NEXT32(s1); 463 c2 = UTEXT_NEXT32(s2); 464 if(c1 != c2) { 465 break; 466 } else if(c1 == U_SENTINEL) { 467 return 0; 468 } 469 } 470 } else { 471 if(length1 < 0) { 472 length1 = INT32_MIN; 473 } else if (length2 < 0) { 474 length2 = INT32_MIN; 475 } 476 477 /* memcmp/UnicodeString style, both length-specified */ 478 while((length1 > 0 || length1 == INT32_MIN) && (length2 > 0 || length2 == INT32_MIN)) { 479 c1 = UTEXT_NEXT32(s1); 480 c2 = UTEXT_NEXT32(s2); 481 482 if(c1 != c2) { 483 break; 484 } else if(c1 == U_SENTINEL) { 485 return 0; 486 } 487 488 if (length1 != INT32_MIN) { 489 length1 -= 1; 490 } 491 if (length2 != INT32_MIN) { 492 length2 -= 1; 493 } 494 } 495 496 if(length1 <= 0 && length1 != INT32_MIN) { 497 if(length2 <= 0) { 498 return 0; 499 } else { 500 return -1; 501 } 502 } else if(length2 <= 0 && length2 != INT32_MIN) { 503 if (length1 <= 0) { 504 return 0; 505 } else { 506 return 1; 507 } 508 } 509 } 510 511 return (int32_t)c1-(int32_t)c2; 512 } 513 514 U_CAPI int32_t U_EXPORT2 515 utext_compareNativeLimit(UText *s1, int64_t limit1, 516 UText *s2, int64_t limit2) { 517 UChar32 c1, c2; 518 519 if(limit1<0 && limit2<0) { 520 /* strcmp style, go until end of string */ 521 for(;;) { 522 c1 = UTEXT_NEXT32(s1); 523 c2 = UTEXT_NEXT32(s2); 524 if(c1 != c2) { 525 return (int32_t)c1-(int32_t)c2; 526 } else if(c1 == U_SENTINEL) { 527 return 0; 528 } 529 } 530 } else { 531 /* memcmp/UnicodeString style, both length-specified */ 532 int64_t index1 = (limit1 >= 0 ? UTEXT_GETNATIVEINDEX(s1) : 0); 533 int64_t index2 = (limit2 >= 0 ? UTEXT_GETNATIVEINDEX(s2) : 0); 534 535 while((limit1 < 0 || index1 < limit1) && (limit2 < 0 || index2 < limit2)) { 536 c1 = UTEXT_NEXT32(s1); 537 c2 = UTEXT_NEXT32(s2); 538 539 if(c1 != c2) { 540 return (int32_t)c1-(int32_t)c2; 541 } else if(c1 == U_SENTINEL) { 542 return 0; 543 } 544 545 if (limit1 >= 0) { 546 index1 = UTEXT_GETNATIVEINDEX(s1); 547 } 548 if (limit2 >= 0) { 549 index2 = UTEXT_GETNATIVEINDEX(s2); 550 } 551 } 552 553 if(limit1 >= 0 && index1 >= limit1) { 554 if(index2 >= limit2) { 555 return 0; 556 } else { 557 return -1; 558 } 559 } else { 560 if(index1 >= limit1) { 561 return 0; 562 } else { 563 return 1; 564 } 565 } 566 } 567 } 568 569 U_CAPI int32_t U_EXPORT2 570 utext_caseCompare(UText *s1, int32_t length1, 571 UText *s2, int32_t length2, 572 uint32_t options, UErrorCode *pErrorCode) { 573 const UCaseProps *csp; 574 575 /* case folding variables */ 576 const UChar *p; 577 int32_t length; 578 579 /* case folding buffers, only use current-level start/limit */ 580 UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; 581 int32_t foldOffset1, foldOffset2, foldLength1, foldLength2; 582 583 /* current code points */ 584 UChar32 c1, c2; 585 uint8_t cLength1, cLength2; 586 587 /* argument checking */ 588 if(U_FAILURE(*pErrorCode)) { 589 return 0; 590 } 591 if(s1==NULL || s2==NULL) { 592 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 593 return 0; 594 } 595 596 csp=ucase_getSingleton(); 597 598 /* for variable-length strings */ 599 if(length1 < 0) { 600 length1 = INT32_MIN; 601 } 602 if (length2 < 0) { 603 length2 = INT32_MIN; 604 } 605 606 /* initialize */ 607 foldOffset1 = foldOffset2 = foldLength1 = foldLength2 = 0; 608 609 /* comparison loop */ 610 while((foldOffset1 < foldLength1 || length1 > 0 || length1 == INT32_MIN) && 611 (foldOffset2 < foldLength2 || length2 > 0 || length2 == INT32_MIN)) { 612 if(foldOffset1 < foldLength1) { 613 U16_NEXT_UNSAFE(fold1, foldOffset1, c1); 614 cLength1 = 0; 615 } else { 616 c1 = UTEXT_NEXT32(s1); 617 if (c1 != U_SENTINEL) { 618 cLength1 = U16_LENGTH(c1); 619 620 length = ucase_toFullFolding(csp, c1, &p, options); 621 if(length >= 0) { 622 if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings 623 u_memcpy(fold1, p, length); 624 foldOffset1 = 0; 625 foldLength1 = length; 626 U16_NEXT_UNSAFE(fold1, foldOffset1, c1); 627 } else { 628 c1 = length; 629 } 630 } 631 } 632 633 if(length1 != INT32_MIN) { 634 length1 -= 1; 635 } 636 } 637 638 if(foldOffset2 < foldLength2) { 639 U16_NEXT_UNSAFE(fold2, foldOffset2, c2); 640 cLength2 = 0; 641 } else { 642 c2 = UTEXT_NEXT32(s2); 643 if (c2 != U_SENTINEL) { 644 cLength2 = U16_LENGTH(c2); 645 646 length = ucase_toFullFolding(csp, c2, &p, options); 647 if(length >= 0) { 648 if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings 649 u_memcpy(fold2, p, length); 650 foldOffset2 = 0; 651 foldLength2 = length; 652 U16_NEXT_UNSAFE(fold2, foldOffset2, c2); 653 } else { 654 c2 = length; 655 } 656 } 657 } else if(c1 == U_SENTINEL) { 658 return 0; // end of both strings at once 659 } 660 661 if(length2 != INT32_MIN) { 662 length2 -= 1; 663 } 664 } 665 666 if(c1 != c2) { 667 return (int32_t)c1-(int32_t)c2; 668 } 669 } 670 671 /* By now at least one of the strings is out of characters */ 672 length1 += foldLength1 - foldOffset1; 673 length2 += foldLength2 - foldOffset2; 674 675 if(length1 <= 0 && length1 != INT32_MIN) { 676 if(length2 <= 0) { 677 return 0; 678 } else { 679 return -1; 680 } 681 } else { 682 if (length1 <= 0) { 683 return 0; 684 } else { 685 return 1; 686 } 687 } 688 } 689 690 U_CAPI int32_t U_EXPORT2 691 utext_caseCompareNativeLimit(UText *s1, int64_t limit1, 692 UText *s2, int64_t limit2, 693 uint32_t options, UErrorCode *pErrorCode) { 694 const UCaseProps *csp; 695 696 /* case folding variables */ 697 const UChar *p; 698 int32_t length; 699 700 /* case folding buffers, only use current-level start/limit */ 701 UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; 702 int32_t foldOffset1, foldOffset2, foldLength1, foldLength2; 703 704 /* current code points */ 705 UChar32 c1, c2; 706 707 /* native indexes into s1 and s2 */ 708 int64_t index1, index2; 709 710 /* argument checking */ 711 if(U_FAILURE(*pErrorCode)) { 712 return 0; 713 } 714 if(s1==NULL || s2==NULL) { 715 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 716 return 0; 717 } 718 719 csp=ucase_getSingleton(); 720 721 /* initialize */ 722 index1 = (limit1 >= 0 ? UTEXT_GETNATIVEINDEX(s1) : 0); 723 index2 = (limit2 >= 0 ? UTEXT_GETNATIVEINDEX(s2) : 0); 724 725 foldOffset1 = foldOffset2 = foldLength1 = foldLength2 = 0; 726 727 /* comparison loop */ 728 while((foldOffset1 < foldLength1 || limit1 < 0 || index1 < limit1) && 729 (foldOffset2 < foldLength2 || limit2 < 0 || index2 < limit2)) { 730 if(foldOffset1 < foldLength1) { 731 U16_NEXT_UNSAFE(fold1, foldOffset1, c1); 732 } else { 733 c1 = UTEXT_NEXT32(s1); 734 if (c1 != U_SENTINEL) { 735 length = ucase_toFullFolding(csp, c1, &p, options); 736 if(length >= 0) { 737 if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings 738 u_memcpy(fold1, p, length); 739 foldOffset1 = 0; 740 foldLength1 = length; 741 U16_NEXT_UNSAFE(fold1, foldOffset1, c1); 742 } else { 743 c1 = length; 744 } 745 } 746 } 747 748 if (limit1 >= 0) { 749 index1 = UTEXT_GETNATIVEINDEX(s1); 750 } 751 } 752 753 if(foldOffset2 < foldLength2) { 754 U16_NEXT_UNSAFE(fold2, foldOffset2, c2); 755 } else { 756 c2 = UTEXT_NEXT32(s2); 757 if (c2 != U_SENTINEL) { 758 length = ucase_toFullFolding(csp, c2, &p, options); 759 if(length >= 0) { 760 if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings 761 u_memcpy(fold2, p, length); 762 foldOffset2 = 0; 763 foldLength2 = length; 764 U16_NEXT_UNSAFE(fold2, foldOffset2, c2); 765 } else { 766 c2 = length; 767 } 768 } 769 } else if(c1 == U_SENTINEL) { 770 return 0; 771 } 772 773 if (limit2 >= 0) { 774 index2 = UTEXT_GETNATIVEINDEX(s2); 775 } 776 } 777 778 if(c1 != c2) { 779 return (int32_t)c1-(int32_t)c2; 780 } 781 } 782 783 /* By now at least one of the strings is out of characters */ 784 index1 -= foldLength1 - foldOffset1; 785 index2 -= foldLength2 - foldOffset2; 786 787 if(limit1 >= 0 && index1 >= limit1) { 788 if(index2 >= limit2) { 789 return 0; 790 } else { 791 return -1; 792 } 793 } else { 794 if(index1 >= limit1) { 795 return 0; 796 } else { 797 return 1; 798 } 799 } 800 } 801 802 803 U_CAPI UBool U_EXPORT2 804 utext_isWritable(const UText *ut) 805 { 806 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; 807 return b; 808 } 809 810 811 U_CAPI void U_EXPORT2 812 utext_freeze(UText *ut) { 813 // Zero out the WRITABLE flag. 814 ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); 815 } 816 817 818 U_CAPI UBool U_EXPORT2 819 utext_hasMetaData(const UText *ut) 820 { 821 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; 822 return b; 823 } 824 825 826 827 U_CAPI int32_t U_EXPORT2 828 utext_replace(UText *ut, 829 int64_t nativeStart, int64_t nativeLimit, 830 const UChar *replacementText, int32_t replacementLength, 831 UErrorCode *status) 832 { 833 if (U_FAILURE(*status)) { 834 return 0; 835 } 836 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { 837 *status = U_NO_WRITE_PERMISSION; 838 return 0; 839 } 840 int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); 841 return i; 842 } 843 844 U_CAPI void U_EXPORT2 845 utext_copy(UText *ut, 846 int64_t nativeStart, int64_t nativeLimit, 847 int64_t destIndex, 848 UBool move, 849 UErrorCode *status) 850 { 851 if (U_FAILURE(*status)) { 852 return; 853 } 854 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { 855 *status = U_NO_WRITE_PERMISSION; 856 return; 857 } 858 ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); 859 } 860 861 862 863 U_CAPI UText * U_EXPORT2 864 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) { 865 UText *result; 866 result = src->pFuncs->clone(dest, src, deep, status); 867 if (readOnly) { 868 utext_freeze(result); 869 } 870 return result; 871 } 872 873 874 875 //------------------------------------------------------------------------------ 876 // 877 // UText common functions implementation 878 // 879 //------------------------------------------------------------------------------ 880 881 // 882 // UText.flags bit definitions 883 // 884 enum { 885 UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. 886 // 0 if caller provided storage for the UText. 887 888 UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate 889 // heap block. 890 // 0 if there is no separate allocation. Either no extra 891 // storage was requested, or it is appended to the end 892 // of the main UText storage. 893 894 UTEXT_OPEN = 4 // 1 if this UText is currently open 895 // 0 if this UText is not open. 896 }; 897 898 899 // 900 // Extended form of a UText. The purpose is to aid in computing the total size required 901 // when a provider asks for a UText to be allocated with extra storage. 902 903 struct ExtendedUText { 904 UText ut; 905 UAlignedMemory extension; 906 }; 907 908 static const UText emptyText = UTEXT_INITIALIZER; 909 910 U_CAPI UText * U_EXPORT2 911 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) { 912 if (U_FAILURE(*status)) { 913 return ut; 914 } 915 916 if (ut == NULL) { 917 // We need to heap-allocate storage for the new UText 918 int32_t spaceRequired = sizeof(UText); 919 if (extraSpace > 0) { 920 spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory); 921 } 922 ut = (UText *)uprv_malloc(spaceRequired); 923 if (ut == NULL) { 924 *status = U_MEMORY_ALLOCATION_ERROR; 925 return NULL; 926 } else { 927 *ut = emptyText; 928 ut->flags |= UTEXT_HEAP_ALLOCATED; 929 if (spaceRequired>0) { 930 ut->extraSize = extraSpace; 931 ut->pExtra = &((ExtendedUText *)ut)->extension; 932 } 933 } 934 } else { 935 // We have been supplied with an already existing UText. 936 // Verify that it really appears to be a UText. 937 if (ut->magic != UTEXT_MAGIC) { 938 *status = U_ILLEGAL_ARGUMENT_ERROR; 939 return ut; 940 } 941 // If the ut is already open and there's a provider supplied close 942 // function, call it. 943 if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) { 944 ut->pFuncs->close(ut); 945 } 946 ut->flags &= ~UTEXT_OPEN; 947 948 // If extra space was requested by our caller, check whether 949 // sufficient already exists, and allocate new if needed. 950 if (extraSpace > ut->extraSize) { 951 // Need more space. If there is existing separately allocated space, 952 // delete it first, then allocate new space. 953 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { 954 uprv_free(ut->pExtra); 955 ut->extraSize = 0; 956 } 957 ut->pExtra = uprv_malloc(extraSpace); 958 if (ut->pExtra == NULL) { 959 *status = U_MEMORY_ALLOCATION_ERROR; 960 } else { 961 ut->extraSize = extraSpace; 962 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; 963 } 964 } 965 } 966 if (U_SUCCESS(*status)) { 967 ut->flags |= UTEXT_OPEN; 968 969 // Initialize all remaining fields of the UText. 970 // 971 ut->context = NULL; 972 ut->chunkContents = NULL; 973 ut->p = NULL; 974 ut->q = NULL; 975 ut->r = NULL; 976 ut->a = 0; 977 ut->b = 0; 978 ut->c = 0; 979 ut->chunkOffset = 0; 980 ut->chunkLength = 0; 981 ut->chunkNativeStart = 0; 982 ut->chunkNativeLimit = 0; 983 ut->nativeIndexingLimit = 0; 984 ut->providerProperties = 0; 985 ut->privA = 0; 986 ut->privB = 0; 987 ut->privC = 0; 988 ut->privP = NULL; 989 if (ut->pExtra!=NULL && ut->extraSize>0) 990 uprv_memset(ut->pExtra, 0, ut->extraSize); 991 992 } 993 return ut; 994 } 995 996 997 U_CAPI UText * U_EXPORT2 998 utext_close(UText *ut) { 999 if (ut==NULL || 1000 ut->magic != UTEXT_MAGIC || 1001 (ut->flags & UTEXT_OPEN) == 0) 1002 { 1003 // The supplied ut is not an open UText. 1004 // Do nothing. 1005 return ut; 1006 } 1007 1008 // If the provider gave us a close function, call it now. 1009 // This will clean up anything allocated specifically by the provider. 1010 if (ut->pFuncs->close != NULL) { 1011 ut->pFuncs->close(ut); 1012 } 1013 ut->flags &= ~UTEXT_OPEN; 1014 1015 // If we (the framework) allocated the UText or subsidiary storage, 1016 // delete it. 1017 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { 1018 uprv_free(ut->pExtra); 1019 ut->pExtra = NULL; 1020 ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; 1021 ut->extraSize = 0; 1022 } 1023 1024 // Zero out function table of the closed UText. This is a defensive move, 1025 // inteded to cause applications that inadvertantly use a closed 1026 // utext to crash with null pointer errors. 1027 ut->pFuncs = NULL; 1028 1029 if (ut->flags & UTEXT_HEAP_ALLOCATED) { 1030 // This UText was allocated by UText setup. We need to free it. 1031 // Clear magic, so we can detect if the user messes up and immediately 1032 // tries to reopen another UText using the deleted storage. 1033 ut->magic = 0; 1034 uprv_free(ut); 1035 ut = NULL; 1036 } 1037 return ut; 1038 } 1039 1040 1041 1042 1043 // 1044 // invalidateChunk Reset a chunk to have no contents, so that the next call 1045 // to access will cause new data to load. 1046 // This is needed when copy/move/replace operate directly on the 1047 // backing text, potentially putting it out of sync with the 1048 // contents in the chunk. 1049 // 1050 static void 1051 invalidateChunk(UText *ut) { 1052 ut->chunkLength = 0; 1053 ut->chunkNativeLimit = 0; 1054 ut->chunkNativeStart = 0; 1055 ut->chunkOffset = 0; 1056 ut->nativeIndexingLimit = 0; 1057 } 1058 1059 // 1060 // pinIndex Do range pinning on a native index parameter. 1061 // 64 bit pinning is done in place. 1062 // 32 bit truncated result is returned as a convenience for 1063 // use in providers that don't need 64 bits. 1064 static int32_t 1065 pinIndex(int64_t &index, int64_t limit) { 1066 if (index<0) { 1067 index = 0; 1068 } else if (index > limit) { 1069 index = limit; 1070 } 1071 return (int32_t)index; 1072 } 1073 1074 1075 U_CDECL_BEGIN 1076 1077 // 1078 // Pointer relocation function, 1079 // a utility used by shallow clone. 1080 // Adjust a pointer that refers to something within one UText (the source) 1081 // to refer to the same relative offset within a another UText (the target) 1082 // 1083 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { 1084 // convert all pointers to (char *) so that byte address arithmetic will work. 1085 char *dptr = (char *)*destPtr; 1086 char *dUText = (char *)dest; 1087 char *sUText = (char *)src; 1088 1089 if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) { 1090 // target ptr was to something within the src UText's pExtra storage. 1091 // relocate it into the target UText's pExtra region. 1092 *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); 1093 } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { 1094 // target ptr was pointing to somewhere within the source UText itself. 1095 // Move it to the same offset within the target UText. 1096 *destPtr = dUText + (dptr-sUText); 1097 } 1098 } 1099 1100 1101 // 1102 // Clone. This is a generic copy-the-utext-by-value clone function that can be 1103 // used as-is with some utext types, and as a helper by other clones. 1104 // 1105 static UText * U_CALLCONV 1106 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { 1107 if (U_FAILURE(*status)) { 1108 return NULL; 1109 } 1110 int32_t srcExtraSize = src->extraSize; 1111 1112 // 1113 // Use the generic text_setup to allocate storage if required. 1114 // 1115 dest = utext_setup(dest, srcExtraSize, status); 1116 if (U_FAILURE(*status)) { 1117 return dest; 1118 } 1119 1120 // 1121 // flags (how the UText was allocated) and the pointer to the 1122 // extra storage must retain the values in the cloned utext that 1123 // were set up by utext_setup. Save them separately before 1124 // copying the whole struct. 1125 // 1126 void *destExtra = dest->pExtra; 1127 int32_t flags = dest->flags; 1128 1129 1130 // 1131 // Copy the whole UText struct by value. 1132 // Any "Extra" storage is copied also. 1133 // 1134 int sizeToCopy = src->sizeOfStruct; 1135 if (sizeToCopy > dest->sizeOfStruct) { 1136 sizeToCopy = dest->sizeOfStruct; 1137 } 1138 uprv_memcpy(dest, src, sizeToCopy); 1139 dest->pExtra = destExtra; 1140 dest->flags = flags; 1141 if (srcExtraSize > 0) { 1142 uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); 1143 } 1144 1145 // 1146 // Relocate any pointers in the target that refer to the UText itself 1147 // to point to the cloned copy rather than the original source. 1148 // 1149 adjustPointer(dest, &dest->context, src); 1150 adjustPointer(dest, &dest->p, src); 1151 adjustPointer(dest, &dest->q, src); 1152 adjustPointer(dest, &dest->r, src); 1153 adjustPointer(dest, (const void **)&dest->chunkContents, src); 1154 1155 return dest; 1156 } 1157 1158 1159 U_CDECL_END 1160 1161 1162 1163 //------------------------------------------------------------------------------ 1164 // 1165 // UText implementation for UTF-8 char * strings (read-only) 1166 // Limitation: string length must be <= 0x7fffffff in length. 1167 // (length must for in an int32_t variable) 1168 // 1169 // Use of UText data members: 1170 // context pointer to UTF-8 string 1171 // utext.b is the input string length (bytes). 1172 // utext.c Length scanned so far in string 1173 // (for optimizing finding length of zero terminated strings.) 1174 // utext.p pointer to the current buffer 1175 // utext.q pointer to the other buffer. 1176 // 1177 //------------------------------------------------------------------------------ 1178 1179 // Chunk size. 1180 // Must be less than 85, because of byte mapping from UChar indexes to native indexes. 1181 // Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes 1182 // to two UChars.) 1183 // 1184 enum { UTF8_TEXT_CHUNK_SIZE=32 }; 1185 1186 // 1187 // UTF8Buf Two of these structs will be set up in the UText's extra allocated space. 1188 // Each contains the UChar chunk buffer, the to and from native maps, and 1189 // header info. 1190 // 1191 // because backwards iteration fills the buffers starting at the end and 1192 // working towards the front, the filled part of the buffers may not begin 1193 // at the start of the available storage for the buffers. 1194 // 1195 // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for 1196 // the last character added being a supplementary, and thus requiring a surrogate 1197 // pair. Doing this is simpler than checking for the edge case. 1198 // 1199 1200 struct UTF8Buf { 1201 int32_t bufNativeStart; // Native index of first char in UChar buf 1202 int32_t bufNativeLimit; // Native index following last char in buf. 1203 int32_t bufStartIdx; // First filled position in buf. 1204 int32_t bufLimitIdx; // Limit of filled range in buf. 1205 int32_t bufNILimit; // Limit of native indexing part of buf 1206 int32_t toUCharsMapStart; // Native index corresponding to 1207 // mapToUChars[0]. 1208 // Set to bufNativeStart when filling forwards. 1209 // Set to computed value when filling backwards. 1210 1211 UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the 1212 // the chunk size, to allow for surrogate at the end. 1213 // Length must be identical to mapToNative array, below, 1214 // because of the way indexing works when the array is 1215 // filled backwards during a reverse iteration. Thus, 1216 // the additional extra size. 1217 uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to 1218 // native offset from bufNativeStart. 1219 // Requires two extra slots, 1220 // one for a supplementary starting in the last normal position, 1221 // and one for an entry for the buffer limit position. 1222 uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to 1223 // correspoding offset in filled part of buf. 1224 int32_t align; 1225 }; 1226 1227 U_CDECL_BEGIN 1228 1229 // 1230 // utf8TextLength 1231 // 1232 // Get the length of the string. If we don't already know it, 1233 // we'll need to scan for the trailing nul. 1234 // 1235 static int64_t U_CALLCONV 1236 utf8TextLength(UText *ut) { 1237 if (ut->b < 0) { 1238 // Zero terminated string, and we haven't scanned to the end yet. 1239 // Scan it now. 1240 const char *r = (const char *)ut->context + ut->c; 1241 while (*r != 0) { 1242 r++; 1243 } 1244 if ((r - (const char *)ut->context) < 0x7fffffff) { 1245 ut->b = (int32_t)(r - (const char *)ut->context); 1246 } else { 1247 // Actual string was bigger (more than 2 gig) than we 1248 // can handle. Clip it to 2 GB. 1249 ut->b = 0x7fffffff; 1250 } 1251 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); 1252 } 1253 return ut->b; 1254 } 1255 1256 1257 1258 1259 1260 1261 static UBool U_CALLCONV 1262 utf8TextAccess(UText *ut, int64_t index, UBool forward) { 1263 // 1264 // Apologies to those who are allergic to goto statements. 1265 // Consider each goto to a labelled block to be the equivalent of 1266 // call the named block as if it were a function(); 1267 // return; 1268 // 1269 const uint8_t *s8=(const uint8_t *)ut->context; 1270 UTF8Buf *u8b = NULL; 1271 int32_t length = ut->b; // Length of original utf-8 1272 int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. 1273 int32_t mapIndex = 0; 1274 if (index<0) { 1275 ix=0; 1276 } else if (index > 0x7fffffff) { 1277 // Strings with 64 bit lengths not supported by this UTF-8 provider. 1278 ix = 0x7fffffff; 1279 } 1280 1281 // Pin requested index to the string length. 1282 if (ix>length) { 1283 if (length>=0) { 1284 ix=length; 1285 } else if (ix>=ut->c) { 1286 // Zero terminated string, and requested index is beyond 1287 // the region that has already been scanned. 1288 // Scan up to either the end of the string or to the 1289 // requested position, whichever comes first. 1290 while (ut->c<ix && s8[ut->c]!=0) { 1291 ut->c++; 1292 } 1293 // TODO: support for null terminated string length > 32 bits. 1294 if (s8[ut->c] == 0) { 1295 // We just found the actual length of the string. 1296 // Trim the requested index back to that. 1297 ix = ut->c; 1298 ut->b = ut->c; 1299 length = ut->c; 1300 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); 1301 } 1302 } 1303 } 1304 1305 // 1306 // Dispatch to the appropriate action for a forward iteration request. 1307 // 1308 if (forward) { 1309 if (ix==ut->chunkNativeLimit) { 1310 // Check for normal sequential iteration cases first. 1311 if (ix==length) { 1312 // Just reached end of string 1313 // Don't swap buffers, but do set the 1314 // current buffer position. 1315 ut->chunkOffset = ut->chunkLength; 1316 return FALSE; 1317 } else { 1318 // End of current buffer. 1319 // check whether other buffer already has what we need. 1320 UTF8Buf *altB = (UTF8Buf *)ut->q; 1321 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) { 1322 goto swapBuffers; 1323 } 1324 } 1325 } 1326 1327 // A random access. Desired index could be in either or niether buf. 1328 // For optimizing the order of testing, first check for the index 1329 // being in the other buffer. This will be the case for uses that 1330 // move back and forth over a fairly limited range 1331 { 1332 u8b = (UTF8Buf *)ut->q; // the alternate buffer 1333 if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) { 1334 // Requested index is in the other buffer. 1335 goto swapBuffers; 1336 } 1337 if (ix == length) { 1338 // Requested index is end-of-string. 1339 // (this is the case of randomly seeking to the end. 1340 // The case of iterating off the end is handled earlier.) 1341 if (ix == ut->chunkNativeLimit) { 1342 // Current buffer extends up to the end of the string. 1343 // Leave it as the current buffer. 1344 ut->chunkOffset = ut->chunkLength; 1345 return FALSE; 1346 } 1347 if (ix == u8b->bufNativeLimit) { 1348 // Alternate buffer extends to the end of string. 1349 // Swap it in as the current buffer. 1350 goto swapBuffersAndFail; 1351 } 1352 1353 // Neither existing buffer extends to the end of the string. 1354 goto makeStubBuffer; 1355 } 1356 1357 if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) { 1358 // Requested index is in neither buffer. 1359 goto fillForward; 1360 } 1361 1362 // Requested index is in this buffer. 1363 u8b = (UTF8Buf *)ut->p; // the current buffer 1364 mapIndex = ix - u8b->toUCharsMapStart; 1365 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; 1366 return TRUE; 1367 1368 } 1369 } 1370 1371 1372 // 1373 // Dispatch to the appropriate action for a 1374 // Backwards Diretion iteration request. 1375 // 1376 if (ix==ut->chunkNativeStart) { 1377 // Check for normal sequential iteration cases first. 1378 if (ix==0) { 1379 // Just reached the start of string 1380 // Don't swap buffers, but do set the 1381 // current buffer position. 1382 ut->chunkOffset = 0; 1383 return FALSE; 1384 } else { 1385 // Start of current buffer. 1386 // check whether other buffer already has what we need. 1387 UTF8Buf *altB = (UTF8Buf *)ut->q; 1388 if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { 1389 goto swapBuffers; 1390 } 1391 } 1392 } 1393 1394 // A random access. Desired index could be in either or niether buf. 1395 // For optimizing the order of testing, 1396 // Most likely case: in the other buffer. 1397 // Second most likely: in neither buffer. 1398 // Unlikely, but must work: in the current buffer. 1399 u8b = (UTF8Buf *)ut->q; // the alternate buffer 1400 if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { 1401 // Requested index is in the other buffer. 1402 goto swapBuffers; 1403 } 1404 // Requested index is start-of-string. 1405 // (this is the case of randomly seeking to the start. 1406 // The case of iterating off the start is handled earlier.) 1407 if (ix==0) { 1408 if (u8b->bufNativeStart==0) { 1409 // Alternate buffer contains the data for the start string. 1410 // Make it be the current buffer. 1411 goto swapBuffersAndFail; 1412 } else { 1413 // Request for data before the start of string, 1414 // neither buffer is usable. 1415 // set up a zero-length buffer. 1416 goto makeStubBuffer; 1417 } 1418 } 1419 1420 if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { 1421 // Requested index is in neither buffer. 1422 goto fillReverse; 1423 } 1424 1425 // Requested index is in this buffer. 1426 // Set the utf16 buffer index. 1427 u8b = (UTF8Buf *)ut->p; 1428 mapIndex = ix - u8b->toUCharsMapStart; 1429 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; 1430 if (ut->chunkOffset==0) { 1431 // This occurs when the first character in the text is 1432 // a multi-byte UTF-8 char, and the requested index is to 1433 // one of the trailing bytes. Because there is no preceding , 1434 // character, this access fails. We can't pick up on the 1435 // situation sooner because the requested index is not zero. 1436 return FALSE; 1437 } else { 1438 return TRUE; 1439 } 1440 1441 1442 1443 swapBuffers: 1444 // The alternate buffer (ut->q) has the string data that was requested. 1445 // Swap the primary and alternate buffers, and set the 1446 // chunk index into the new primary buffer. 1447 { 1448 u8b = (UTF8Buf *)ut->q; 1449 ut->q = ut->p; 1450 ut->p = u8b; 1451 ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; 1452 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; 1453 ut->chunkNativeStart = u8b->bufNativeStart; 1454 ut->chunkNativeLimit = u8b->bufNativeLimit; 1455 ut->nativeIndexingLimit = u8b->bufNILimit; 1456 1457 // Index into the (now current) chunk 1458 // Use the map to set the chunk index. It's more trouble than it's worth 1459 // to check whether native indexing can be used. 1460 U_ASSERT(ix>=u8b->bufNativeStart); 1461 U_ASSERT(ix<=u8b->bufNativeLimit); 1462 mapIndex = ix - u8b->toUCharsMapStart; 1463 U_ASSERT(mapIndex>=0); 1464 U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); 1465 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; 1466 1467 return TRUE; 1468 } 1469 1470 1471 swapBuffersAndFail: 1472 // We got a request for either the start or end of the string, 1473 // with iteration continuing in the out-of-bounds direction. 1474 // The alternate buffer already contains the data up to the 1475 // start/end. 1476 // Swap the buffers, then return failure, indicating that we couldn't 1477 // make things correct for continuing the iteration in the requested 1478 // direction. The position & buffer are correct should the 1479 // user decide to iterate in the opposite direction. 1480 u8b = (UTF8Buf *)ut->q; 1481 ut->q = ut->p; 1482 ut->p = u8b; 1483 ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; 1484 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; 1485 ut->chunkNativeStart = u8b->bufNativeStart; 1486 ut->chunkNativeLimit = u8b->bufNativeLimit; 1487 ut->nativeIndexingLimit = u8b->bufNILimit; 1488 1489 // Index into the (now current) chunk 1490 // For this function (swapBuffersAndFail), the requested index 1491 // will always be at either the start or end of the chunk. 1492 if (ix==u8b->bufNativeLimit) { 1493 ut->chunkOffset = ut->chunkLength; 1494 } else { 1495 ut->chunkOffset = 0; 1496 U_ASSERT(ix == u8b->bufNativeStart); 1497 } 1498 return FALSE; 1499 1500 makeStubBuffer: 1501 // The user has done a seek/access past the start or end 1502 // of the string. Rather than loading data that is likely 1503 // to never be used, just set up a zero-length buffer at 1504 // the position. 1505 u8b = (UTF8Buf *)ut->q; 1506 u8b->bufNativeStart = ix; 1507 u8b->bufNativeLimit = ix; 1508 u8b->bufStartIdx = 0; 1509 u8b->bufLimitIdx = 0; 1510 u8b->bufNILimit = 0; 1511 u8b->toUCharsMapStart = ix; 1512 u8b->mapToNative[0] = 0; 1513 u8b->mapToUChars[0] = 0; 1514 goto swapBuffersAndFail; 1515 1516 1517 1518 fillForward: 1519 { 1520 // Move the incoming index to a code point boundary. 1521 U8_SET_CP_START(s8, 0, ix); 1522 1523 // Swap the UText buffers. 1524 // We want to fill what was previously the alternate buffer, 1525 // and make what was the current buffer be the new alternate. 1526 UTF8Buf *u8b = (UTF8Buf *)ut->q; 1527 ut->q = ut->p; 1528 ut->p = u8b; 1529 1530 int32_t strLen = ut->b; 1531 UBool nulTerminated = FALSE; 1532 if (strLen < 0) { 1533 strLen = 0x7fffffff; 1534 nulTerminated = TRUE; 1535 } 1536 1537 UChar *buf = u8b->buf; 1538 uint8_t *mapToNative = u8b->mapToNative; 1539 uint8_t *mapToUChars = u8b->mapToUChars; 1540 int32_t destIx = 0; 1541 int32_t srcIx = ix; 1542 UBool seenNonAscii = FALSE; 1543 UChar32 c = 0; 1544 1545 // Fill the chunk buffer and mapping arrays. 1546 while (destIx<UTF8_TEXT_CHUNK_SIZE) { 1547 c = s8[srcIx]; 1548 if (c>0 && c<0x80) { 1549 // Special case ASCII range for speed. 1550 // zero is excluded to simplify bounds checking. 1551 buf[destIx] = (UChar)c; 1552 mapToNative[destIx] = (uint8_t)(srcIx - ix); 1553 mapToUChars[srcIx-ix] = (uint8_t)destIx; 1554 srcIx++; 1555 destIx++; 1556 } else { 1557 // General case, handle everything. 1558 if (seenNonAscii == FALSE) { 1559 seenNonAscii = TRUE; 1560 u8b->bufNILimit = destIx; 1561 } 1562 1563 int32_t cIx = srcIx; 1564 int32_t dIx = destIx; 1565 int32_t dIxSaved = destIx; 1566 U8_NEXT(s8, srcIx, strLen, c); 1567 if (c==0 && nulTerminated) { 1568 srcIx--; 1569 break; 1570 } 1571 if (c<0) { 1572 // Illegal UTF-8. Replace with sub character. 1573 c = 0x0fffd; 1574 } 1575 1576 U16_APPEND_UNSAFE(buf, destIx, c); 1577 do { 1578 mapToNative[dIx++] = (uint8_t)(cIx - ix); 1579 } while (dIx < destIx); 1580 1581 do { 1582 mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; 1583 } while (cIx < srcIx); 1584 } 1585 if (srcIx>=strLen) { 1586 break; 1587 } 1588 1589 } 1590 1591 // store Native <--> Chunk Map entries for the end of the buffer. 1592 // There is no actual character here, but the index position is valid. 1593 mapToNative[destIx] = (uint8_t)(srcIx - ix); 1594 mapToUChars[srcIx - ix] = (uint8_t)destIx; 1595 1596 // fill in Buffer descriptor 1597 u8b->bufNativeStart = ix; 1598 u8b->bufNativeLimit = srcIx; 1599 u8b->bufStartIdx = 0; 1600 u8b->bufLimitIdx = destIx; 1601 if (seenNonAscii == FALSE) { 1602 u8b->bufNILimit = destIx; 1603 } 1604 u8b->toUCharsMapStart = u8b->bufNativeStart; 1605 1606 // Set UText chunk to refer to this buffer. 1607 ut->chunkContents = buf; 1608 ut->chunkOffset = 0; 1609 ut->chunkLength = u8b->bufLimitIdx; 1610 ut->chunkNativeStart = u8b->bufNativeStart; 1611 ut->chunkNativeLimit = u8b->bufNativeLimit; 1612 ut->nativeIndexingLimit = u8b->bufNILimit; 1613 1614 // For zero terminated strings, keep track of the maximum point 1615 // scanned so far. 1616 if (nulTerminated && srcIx>ut->c) { 1617 ut->c = srcIx; 1618 if (c==0) { 1619 // We scanned to the end. 1620 // Remember the actual length. 1621 ut->b = srcIx; 1622 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); 1623 } 1624 } 1625 return TRUE; 1626 } 1627 1628 1629 fillReverse: 1630 { 1631 // Move the incoming index to a code point boundary. 1632 // Can only do this if the incoming index is somewhere in the interior of the string. 1633 // If index is at the end, there is no character there to look at. 1634 if (ix != ut->b) { 1635 U8_SET_CP_START(s8, 0, ix); 1636 } 1637 1638 // Swap the UText buffers. 1639 // We want to fill what was previously the alternate buffer, 1640 // and make what was the current buffer be the new alternate. 1641 UTF8Buf *u8b = (UTF8Buf *)ut->q; 1642 ut->q = ut->p; 1643 ut->p = u8b; 1644 1645 UChar *buf = u8b->buf; 1646 uint8_t *mapToNative = u8b->mapToNative; 1647 uint8_t *mapToUChars = u8b->mapToUChars; 1648 int32_t toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1); 1649 int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region 1650 // at end of buffer to leave room 1651 // for a surrogate pair at the 1652 // buffer start. 1653 int32_t srcIx = ix; 1654 int32_t bufNILimit = destIx; 1655 UChar32 c; 1656 1657 // Map to/from Native Indexes, fill in for the position at the end of 1658 // the buffer. 1659 // 1660 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); 1661 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; 1662 1663 // Fill the chunk buffer 1664 // Work backwards, filling from the end of the buffer towards the front. 1665 // 1666 while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { 1667 srcIx--; 1668 destIx--; 1669 1670 // Get last byte of the UTF-8 character 1671 c = s8[srcIx]; 1672 if (c<0x80) { 1673 // Special case ASCII range for speed. 1674 buf[destIx] = (UChar)c; 1675 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; 1676 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); 1677 } else { 1678 // General case, handle everything non-ASCII. 1679 1680 int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char 1681 1682 // Get the full character from the UTF8 string. 1683 // use code derived from tbe macros in utf.8 1684 // Leaves srcIx pointing at the first byte of the UTF-8 char. 1685 // 1686 if (c<=0xbf) { 1687 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -1); 1688 // leaves srcIx at first byte of the multi-byte char. 1689 } else { 1690 c=0x0fffd; 1691 } 1692 1693 // Store the character in UTF-16 buffer. 1694 if (c<0x10000) { 1695 buf[destIx] = (UChar)c; 1696 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); 1697 } else { 1698 buf[destIx] = U16_TRAIL(c); 1699 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); 1700 buf[--destIx] = U16_LEAD(c); 1701 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); 1702 } 1703 1704 // Fill in the map from native indexes to UChars buf index. 1705 do { 1706 mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; 1707 } while (sIx >= srcIx); 1708 1709 // Set native indexing limit to be the current position. 1710 // We are processing a non-ascii, non-native-indexing char now; 1711 // the limit will be here if the rest of the chars to be 1712 // added to this buffer are ascii. 1713 bufNILimit = destIx; 1714 } 1715 } 1716 u8b->bufNativeStart = srcIx; 1717 u8b->bufNativeLimit = ix; 1718 u8b->bufStartIdx = destIx; 1719 u8b->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; 1720 u8b->bufNILimit = bufNILimit - u8b->bufStartIdx; 1721 u8b->toUCharsMapStart = toUCharsMapStart; 1722 1723 ut->chunkContents = &buf[u8b->bufStartIdx]; 1724 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; 1725 ut->chunkOffset = ut->chunkLength; 1726 ut->chunkNativeStart = u8b->bufNativeStart; 1727 ut->chunkNativeLimit = u8b->bufNativeLimit; 1728 ut->nativeIndexingLimit = u8b->bufNILimit; 1729 return TRUE; 1730 } 1731 1732 } 1733 1734 1735 1736 // 1737 // This is a slightly modified copy of u_strFromUTF8, 1738 // Inserts a Replacement Char rather than failing on invalid UTF-8 1739 // Removes unnecessary features. 1740 // 1741 static UChar* 1742 utext_strFromUTF8(UChar *dest, 1743 int32_t destCapacity, 1744 int32_t *pDestLength, 1745 const char* src, 1746 int32_t srcLength, // required. NUL terminated not supported. 1747 UErrorCode *pErrorCode 1748 ) 1749 { 1750 1751 UChar *pDest = dest; 1752 UChar *pDestLimit = dest+destCapacity; 1753 UChar32 ch=0; 1754 int32_t index = 0; 1755 int32_t reqLength = 0; 1756 uint8_t* pSrc = (uint8_t*) src; 1757 1758 1759 while((index < srcLength)&&(pDest<pDestLimit)){ 1760 ch = pSrc[index++]; 1761 if(ch <=0x7f){ 1762 *pDest++=(UChar)ch; 1763 }else{ 1764 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -1); 1765 if(ch<0){ 1766 ch = 0xfffd; 1767 } 1768 if(U_IS_BMP(ch)){ 1769 *(pDest++)=(UChar)ch; 1770 }else{ 1771 *(pDest++)=UTF16_LEAD(ch); 1772 if(pDest<pDestLimit){ 1773 *(pDest++)=UTF16_TRAIL(ch); 1774 }else{ 1775 reqLength++; 1776 break; 1777 } 1778 } 1779 } 1780 } 1781 /* donot fill the dest buffer just count the UChars needed */ 1782 while(index < srcLength){ 1783 ch = pSrc[index++]; 1784 if(ch <= 0x7f){ 1785 reqLength++; 1786 }else{ 1787 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -1); 1788 if(ch<0){ 1789 ch = 0xfffd; 1790 } 1791 reqLength+=U16_LENGTH(ch); 1792 } 1793 } 1794 1795 reqLength+=(int32_t)(pDest - dest); 1796 1797 if(pDestLength){ 1798 *pDestLength = reqLength; 1799 } 1800 1801 /* Terminate the buffer */ 1802 u_terminateUChars(dest,destCapacity,reqLength,pErrorCode); 1803 1804 return dest; 1805 } 1806 1807 1808 1809 static int32_t U_CALLCONV 1810 utf8TextExtract(UText *ut, 1811 int64_t start, int64_t limit, 1812 UChar *dest, int32_t destCapacity, 1813 UErrorCode *pErrorCode) { 1814 if(U_FAILURE(*pErrorCode)) { 1815 return 0; 1816 } 1817 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { 1818 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 1819 return 0; 1820 } 1821 int32_t length = ut->b; 1822 int32_t start32 = pinIndex(start, length); 1823 int32_t limit32 = pinIndex(limit, length); 1824 1825 if(start32>limit32) { 1826 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 1827 return 0; 1828 } 1829 1830 1831 // adjust the incoming indexes to land on code point boundaries if needed. 1832 // adjust by no more than three, because that is the largest number of trail bytes 1833 // in a well formed UTF8 character. 1834 const uint8_t *buf = (const uint8_t *)ut->context; 1835 int i; 1836 if (start32 < ut->chunkNativeLimit) { 1837 for (i=0; i<3; i++) { 1838 if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) { 1839 break; 1840 } 1841 start32--; 1842 } 1843 } 1844 1845 if (limit32 < ut->chunkNativeLimit) { 1846 for (i=0; i<3; i++) { 1847 if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) { 1848 break; 1849 } 1850 limit32--; 1851 } 1852 } 1853 1854 // Do the actual extract. 1855 int32_t destLength=0; 1856 utext_strFromUTF8(dest, destCapacity, &destLength, 1857 (const char *)ut->context+start32, limit32-start32, 1858 pErrorCode); 1859 utf8TextAccess(ut, limit32, TRUE); 1860 return destLength; 1861 } 1862 1863 // 1864 // utf8TextMapOffsetToNative 1865 // 1866 // Map a chunk (UTF-16) offset to a native index. 1867 static int64_t U_CALLCONV 1868 utf8TextMapOffsetToNative(const UText *ut) { 1869 // 1870 UTF8Buf *u8b = (UTF8Buf *)ut->p; 1871 U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength); 1872 int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart; 1873 U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit); 1874 return nativeOffset; 1875 } 1876 1877 // 1878 // Map a native index to the corrsponding chunk offset 1879 // 1880 static int32_t U_CALLCONV 1881 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { 1882 U_ASSERT(index64 <= 0x7fffffff); 1883 int32_t index = (int32_t)index64; 1884 UTF8Buf *u8b = (UTF8Buf *)ut->p; 1885 U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); 1886 U_ASSERT(index<=ut->chunkNativeLimit); 1887 int32_t mapIndex = index - u8b->toUCharsMapStart; 1888 int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; 1889 U_ASSERT(offset>=0 && offset<=ut->chunkLength); 1890 return offset; 1891 } 1892 1893 static UText * U_CALLCONV 1894 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) 1895 { 1896 // First do a generic shallow clone. Does everything needed for the UText struct itself. 1897 dest = shallowTextClone(dest, src, status); 1898 1899 // For deep clones, make a copy of the string. 1900 // The copied storage is owned by the newly created clone. 1901 // 1902 // TODO: There is an isssue with using utext_nativeLength(). 1903 // That function is non-const in cases where the input was NUL terminated 1904 // and the length has not yet been determined. 1905 // This function (clone()) is const. 1906 // There potentially a thread safety issue lurking here. 1907 // 1908 if (deep && U_SUCCESS(*status)) { 1909 int32_t len = (int32_t)utext_nativeLength((UText *)src); 1910 char *copyStr = (char *)uprv_malloc(len+1); 1911 if (copyStr == NULL) { 1912 *status = U_MEMORY_ALLOCATION_ERROR; 1913 } else { 1914 uprv_memcpy(copyStr, src->context, len+1); 1915 dest->context = copyStr; 1916 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); 1917 } 1918 } 1919 return dest; 1920 } 1921 1922 1923 static void U_CALLCONV 1924 utf8TextClose(UText *ut) { 1925 // Most of the work of close is done by the generic UText framework close. 1926 // All that needs to be done here is to delete the UTF8 string if the UText 1927 // owns it. This occurs if the UText was created by cloning. 1928 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { 1929 char *s = (char *)ut->context; 1930 uprv_free(s); 1931 ut->context = NULL; 1932 } 1933 } 1934 1935 U_CDECL_END 1936 1937 1938 static const struct UTextFuncs utf8Funcs = 1939 { 1940 sizeof(UTextFuncs), 1941 0, 0, 0, // Reserved alignment padding 1942 utf8TextClone, 1943 utf8TextLength, 1944 utf8TextAccess, 1945 utf8TextExtract, 1946 NULL, /* replace*/ 1947 NULL, /* copy */ 1948 utf8TextMapOffsetToNative, 1949 utf8TextMapIndexToUTF16, 1950 utf8TextClose, 1951 NULL, // spare 1 1952 NULL, // spare 2 1953 NULL // spare 3 1954 }; 1955 1956 1957 static const char gEmptyString[] = {0}; 1958 1959 U_CAPI UText * U_EXPORT2 1960 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { 1961 if(U_FAILURE(*status)) { 1962 return NULL; 1963 } 1964 if(s==NULL && length==0) { 1965 s = gEmptyString; 1966 } 1967 1968 if(s==NULL || length<-1 || length>INT32_MAX) { 1969 *status=U_ILLEGAL_ARGUMENT_ERROR; 1970 return NULL; 1971 } 1972 1973 ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); 1974 if (U_FAILURE(*status)) { 1975 return ut; 1976 } 1977 1978 ut->pFuncs = &utf8Funcs; 1979 ut->context = s; 1980 ut->b = (int32_t)length; 1981 ut->c = (int32_t)length; 1982 if (ut->c < 0) { 1983 ut->c = 0; 1984 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); 1985 } 1986 ut->p = ut->pExtra; 1987 ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); 1988 return ut; 1989 1990 } 1991 1992 1993 1994 1995 1996 1997 1998 1999 //------------------------------------------------------------------------------ 2000 // 2001 // UText implementation wrapper for Replaceable (read/write) 2002 // 2003 // Use of UText data members: 2004 // context pointer to Replaceable. 2005 // p pointer to Replaceable if it is owned by the UText. 2006 // 2007 //------------------------------------------------------------------------------ 2008 2009 2010 2011 // minimum chunk size for this implementation: 3 2012 // to allow for possible trimming for code point boundaries 2013 enum { REP_TEXT_CHUNK_SIZE=10 }; 2014 2015 struct ReplExtra { 2016 /* 2017 * Chunk UChars. 2018 * +1 to simplify filling with surrogate pair at the end. 2019 */ 2020 UChar s[REP_TEXT_CHUNK_SIZE+1]; 2021 }; 2022 2023 2024 U_CDECL_BEGIN 2025 2026 static UText * U_CALLCONV 2027 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { 2028 // First do a generic shallow clone. Does everything needed for the UText struct itself. 2029 dest = shallowTextClone(dest, src, status); 2030 2031 // For deep clones, make a copy of the Replaceable. 2032 // The copied Replaceable storage is owned by the newly created UText clone. 2033 // A non-NULL pointer in UText.p is the signal to the close() function to delete 2034 // it. 2035 // 2036 if (deep && U_SUCCESS(*status)) { 2037 const Replaceable *replSrc = (const Replaceable *)src->context; 2038 dest->context = replSrc->clone(); 2039 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); 2040 2041 // with deep clone, the copy is writable, even when the source is not. 2042 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); 2043 } 2044 return dest; 2045 } 2046 2047 2048 static void U_CALLCONV 2049 repTextClose(UText *ut) { 2050 // Most of the work of close is done by the generic UText framework close. 2051 // All that needs to be done here is delete the Replaceable if the UText 2052 // owns it. This occurs if the UText was created by cloning. 2053 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { 2054 Replaceable *rep = (Replaceable *)ut->context; 2055 delete rep; 2056 ut->context = NULL; 2057 } 2058 } 2059 2060 2061 static int64_t U_CALLCONV 2062 repTextLength(UText *ut) { 2063 const Replaceable *replSrc = (const Replaceable *)ut->context; 2064 int32_t len = replSrc->length(); 2065 return len; 2066 } 2067 2068 2069 static UBool U_CALLCONV 2070 repTextAccess(UText *ut, int64_t index, UBool forward) { 2071 const Replaceable *rep=(const Replaceable *)ut->context; 2072 int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) 2073 2074 // clip the requested index to the limits of the text. 2075 int32_t index32 = pinIndex(index, length); 2076 U_ASSERT(index<=INT32_MAX); 2077 2078 2079 /* 2080 * Compute start/limit boundaries around index, for a segment of text 2081 * to be extracted. 2082 * To allow for the possibility that our user gave an index to the trailing 2083 * half of a surrogate pair, we must request one extra preceding UChar when 2084 * going in the forward direction. This will ensure that the buffer has the 2085 * entire code point at the specified index. 2086 */ 2087 if(forward) { 2088 2089 if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) { 2090 // Buffer already contains the requested position. 2091 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); 2092 return TRUE; 2093 } 2094 if (index32>=length && ut->chunkNativeLimit==length) { 2095 // Request for end of string, and buffer already extends up to it. 2096 // Can't get the data, but don't change the buffer. 2097 ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; 2098 return FALSE; 2099 } 2100 2101 ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; 2102 // Going forward, so we want to have the buffer with stuff at and beyond 2103 // the requested index. The -1 gets us one code point before the 2104 // requested index also, to handle the case of the index being on 2105 // a trail surrogate of a surrogate pair. 2106 if(ut->chunkNativeLimit > length) { 2107 ut->chunkNativeLimit = length; 2108 } 2109 // unless buffer ran off end, start is index-1. 2110 ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; 2111 if(ut->chunkNativeStart < 0) { 2112 ut->chunkNativeStart = 0; 2113 } 2114 } else { 2115 // Reverse iteration. Fill buffer with data preceding the requested index. 2116 if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { 2117 // Requested position already in buffer. 2118 ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; 2119 return TRUE; 2120 } 2121 if (index32==0 && ut->chunkNativeStart==0) { 2122 // Request for start, buffer already begins at start. 2123 // No data, but keep the buffer as is. 2124 ut->chunkOffset = 0; 2125 return FALSE; 2126 } 2127 2128 // Figure out the bounds of the chunk to extract for reverse iteration. 2129 // Need to worry about chunk not splitting surrogate pairs, and while still 2130 // containing the data we need. 2131 // Fix by requesting a chunk that includes an extra UChar at the end. 2132 // If this turns out to be a lead surrogate, we can lop it off and still have 2133 // the data we wanted. 2134 ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; 2135 if (ut->chunkNativeStart < 0) { 2136 ut->chunkNativeStart = 0; 2137 } 2138 2139 ut->chunkNativeLimit = index32 + 1; 2140 if (ut->chunkNativeLimit > length) { 2141 ut->chunkNativeLimit = length; 2142 } 2143 } 2144 2145 // Extract the new chunk of text from the Replaceable source. 2146 ReplExtra *ex = (ReplExtra *)ut->pExtra; 2147 // UnicodeString with its buffer a writable alias to the chunk buffer 2148 UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); 2149 rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer); 2150 2151 ut->chunkContents = ex->s; 2152 ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); 2153 ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); 2154 2155 // Surrogate pairs from the input text must not span chunk boundaries. 2156 // If end of chunk could be the start of a surrogate, trim it off. 2157 if (ut->chunkNativeLimit < length && 2158 U16_IS_LEAD(ex->s[ut->chunkLength-1])) { 2159 ut->chunkLength--; 2160 ut->chunkNativeLimit--; 2161 if (ut->chunkOffset > ut->chunkLength) { 2162 ut->chunkOffset = ut->chunkLength; 2163 } 2164 } 2165 2166 // if the first UChar in the chunk could be the trailing half of a surrogate pair, 2167 // trim it off. 2168 if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { 2169 ++(ut->chunkContents); 2170 ++(ut->chunkNativeStart); 2171 --(ut->chunkLength); 2172 --(ut->chunkOffset); 2173 } 2174 2175 // adjust the index/chunkOffset to a code point boundary 2176 U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); 2177 2178 // Use fast indexing for get/setNativeIndex() 2179 ut->nativeIndexingLimit = ut->chunkLength; 2180 2181 return TRUE; 2182 } 2183 2184 2185 2186 static int32_t U_CALLCONV 2187 repTextExtract(UText *ut, 2188 int64_t start, int64_t limit, 2189 UChar *dest, int32_t destCapacity, 2190 UErrorCode *status) { 2191 const Replaceable *rep=(const Replaceable *)ut->context; 2192 int32_t length=rep->length(); 2193 2194 if(U_FAILURE(*status)) { 2195 return 0; 2196 } 2197 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { 2198 *status=U_ILLEGAL_ARGUMENT_ERROR; 2199 } 2200 if(start>limit) { 2201 *status=U_INDEX_OUTOFBOUNDS_ERROR; 2202 return 0; 2203 } 2204 2205 int32_t start32 = pinIndex(start, length); 2206 int32_t limit32 = pinIndex(limit, length); 2207 2208 // adjust start, limit if they point to trail half of surrogates 2209 if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) && 2210 U_IS_SUPPLEMENTARY(rep->char32At(start32))){ 2211 start32--; 2212 } 2213 if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) && 2214 U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ 2215 limit32--; 2216 } 2217 2218 length=limit32-start32; 2219 if(length>destCapacity) { 2220 limit32 = start32 + destCapacity; 2221 } 2222 UnicodeString buffer(dest, 0, destCapacity); // writable alias 2223 rep->extractBetween(start32, limit32, buffer); 2224 repTextAccess(ut, limit32, TRUE); 2225 2226 return u_terminateUChars(dest, destCapacity, length, status); 2227 } 2228 2229 static int32_t U_CALLCONV 2230 repTextReplace(UText *ut, 2231 int64_t start, int64_t limit, 2232 const UChar *src, int32_t length, 2233 UErrorCode *status) { 2234 Replaceable *rep=(Replaceable *)ut->context; 2235 int32_t oldLength; 2236 2237 if(U_FAILURE(*status)) { 2238 return 0; 2239 } 2240 if(src==NULL && length!=0) { 2241 *status=U_ILLEGAL_ARGUMENT_ERROR; 2242 return 0; 2243 } 2244 oldLength=rep->length(); // will subtract from new length 2245 if(start>limit ) { 2246 *status=U_INDEX_OUTOFBOUNDS_ERROR; 2247 return 0; 2248 } 2249 2250 int32_t start32 = pinIndex(start, oldLength); 2251 int32_t limit32 = pinIndex(limit, oldLength); 2252 2253 // Snap start & limit to code point boundaries. 2254 if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) && 2255 start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) 2256 { 2257 start32--; 2258 } 2259 if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) && 2260 U16_IS_TRAIL(rep->charAt(limit32))) 2261 { 2262 limit32++; 2263 } 2264 2265 // Do the actual replace operation using methods of the Replaceable class 2266 UnicodeString replStr((UBool)(length<0), src, length); // read-only alias 2267 rep->handleReplaceBetween(start32, limit32, replStr); 2268 int32_t newLength = rep->length(); 2269 int32_t lengthDelta = newLength - oldLength; 2270 2271 // Is the UText chunk buffer OK? 2272 if (ut->chunkNativeLimit > start32) { 2273 // this replace operation may have impacted the current chunk. 2274 // invalidate it, which will force a reload on the next access. 2275 invalidateChunk(ut); 2276 } 2277 2278 // set the iteration position to the end of the newly inserted replacement text. 2279 int32_t newIndexPos = limit32 + lengthDelta; 2280 repTextAccess(ut, newIndexPos, TRUE); 2281 2282 return lengthDelta; 2283 } 2284 2285 2286 static void U_CALLCONV 2287 repTextCopy(UText *ut, 2288 int64_t start, int64_t limit, 2289 int64_t destIndex, 2290 UBool move, 2291 UErrorCode *status) 2292 { 2293 Replaceable *rep=(Replaceable *)ut->context; 2294 int32_t length=rep->length(); 2295 2296 if(U_FAILURE(*status)) { 2297 return; 2298 } 2299 if (start>limit || (start<destIndex && destIndex<limit)) 2300 { 2301 *status=U_INDEX_OUTOFBOUNDS_ERROR; 2302 return; 2303 } 2304 2305 int32_t start32 = pinIndex(start, length); 2306 int32_t limit32 = pinIndex(limit, length); 2307 int32_t destIndex32 = pinIndex(destIndex, length); 2308 2309 // TODO: snap input parameters to code point boundaries. 2310 2311 if(move) { 2312 // move: copy to destIndex, then replace original with nothing 2313 int32_t segLength=limit32-start32; 2314 rep->copy(start32, limit32, destIndex32); 2315 if(destIndex32<start32) { 2316 start32+=segLength; 2317 limit32+=segLength; 2318 } 2319 rep->handleReplaceBetween(start32, limit32, UnicodeString()); 2320 } else { 2321 // copy 2322 rep->copy(start32, limit32, destIndex32); 2323 } 2324 2325 // If the change to the text touched the region in the chunk buffer, 2326 // invalidate the buffer. 2327 int32_t firstAffectedIndex = destIndex32; 2328 if (move && start32<firstAffectedIndex) { 2329 firstAffectedIndex = start32; 2330 } 2331 if (firstAffectedIndex < ut->chunkNativeLimit) { 2332 // changes may have affected range covered by the chunk 2333 invalidateChunk(ut); 2334 } 2335 2336 // Put iteration position at the newly inserted (moved) block, 2337 int32_t nativeIterIndex = destIndex32 + limit32 - start32; 2338 if (move && destIndex32>start32) { 2339 // moved a block of text towards the end of the string. 2340 nativeIterIndex = destIndex32; 2341 } 2342 2343 // Set position, reload chunk if needed. 2344 repTextAccess(ut, nativeIterIndex, TRUE); 2345 } 2346 2347 static const struct UTextFuncs repFuncs = 2348 { 2349 sizeof(UTextFuncs), 2350 0, 0, 0, // Reserved alignment padding 2351 repTextClone, 2352 repTextLength, 2353 repTextAccess, 2354 repTextExtract, 2355 repTextReplace, 2356 repTextCopy, 2357 NULL, // MapOffsetToNative, 2358 NULL, // MapIndexToUTF16, 2359 repTextClose, 2360 NULL, // spare 1 2361 NULL, // spare 2 2362 NULL // spare 3 2363 }; 2364 2365 2366 U_CAPI UText * U_EXPORT2 2367 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) 2368 { 2369 if(U_FAILURE(*status)) { 2370 return NULL; 2371 } 2372 if(rep==NULL) { 2373 *status=U_ILLEGAL_ARGUMENT_ERROR; 2374 return NULL; 2375 } 2376 ut = utext_setup(ut, sizeof(ReplExtra), status); 2377 2378 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); 2379 if(rep->hasMetaData()) { 2380 ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); 2381 } 2382 2383 ut->pFuncs = &repFuncs; 2384 ut->context = rep; 2385 return ut; 2386 } 2387 2388 U_CDECL_END 2389 2390 2391 2392 2393 2394 2395 2396 2397 //------------------------------------------------------------------------------ 2398 // 2399 // UText implementation for UnicodeString (read/write) and 2400 // for const UnicodeString (read only) 2401 // (same implementation, only the flags are different) 2402 // 2403 // Use of UText data members: 2404 // context pointer to UnicodeString 2405 // p pointer to UnicodeString IF this UText owns the string 2406 // and it must be deleted on close(). NULL otherwise. 2407 // 2408 //------------------------------------------------------------------------------ 2409 2410 U_CDECL_BEGIN 2411 2412 2413 static UText * U_CALLCONV 2414 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { 2415 // First do a generic shallow clone. Does everything needed for the UText struct itself. 2416 dest = shallowTextClone(dest, src, status); 2417 2418 // For deep clones, make a copy of the UnicodeSring. 2419 // The copied UnicodeString storage is owned by the newly created UText clone. 2420 // A non-NULL pointer in UText.p is the signal to the close() function to delete 2421 // the UText. 2422 // 2423 if (deep && U_SUCCESS(*status)) { 2424 const UnicodeString *srcString = (const UnicodeString *)src->context; 2425 dest->context = new UnicodeString(*srcString); 2426 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); 2427 2428 // with deep clone, the copy is writable, even when the source is not. 2429 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); 2430 } 2431 return dest; 2432 } 2433 2434 static void U_CALLCONV 2435 unistrTextClose(UText *ut) { 2436 // Most of the work of close is done by the generic UText framework close. 2437 // All that needs to be done here is delete the UnicodeString if the UText 2438 // owns it. This occurs if the UText was created by cloning. 2439 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { 2440 UnicodeString *str = (UnicodeString *)ut->context; 2441 delete str; 2442 ut->context = NULL; 2443 } 2444 } 2445 2446 2447 static int64_t U_CALLCONV 2448 unistrTextLength(UText *t) { 2449 return ((const UnicodeString *)t->context)->length(); 2450 } 2451 2452 2453 static UBool U_CALLCONV 2454 unistrTextAccess(UText *ut, int64_t index, UBool forward) { 2455 int32_t length = ut->chunkLength; 2456 ut->chunkOffset = pinIndex(index, length); 2457 2458 // Check whether request is at the start or end 2459 UBool retVal = (forward && index<length) || (!forward && index>0); 2460 return retVal; 2461 } 2462 2463 2464 2465 static int32_t U_CALLCONV 2466 unistrTextExtract(UText *t, 2467 int64_t start, int64_t limit, 2468 UChar *dest, int32_t destCapacity, 2469 UErrorCode *pErrorCode) { 2470 const UnicodeString *us=(const UnicodeString *)t->context; 2471 int32_t length=us->length(); 2472 2473 if(U_FAILURE(*pErrorCode)) { 2474 return 0; 2475 } 2476 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { 2477 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 2478 } 2479 if(start<0 || start>limit) { 2480 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 2481 return 0; 2482 } 2483 2484 int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length; 2485 int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length; 2486 2487 length=limit32-start32; 2488 if (destCapacity>0 && dest!=NULL) { 2489 int32_t trimmedLength = length; 2490 if(trimmedLength>destCapacity) { 2491 trimmedLength=destCapacity; 2492 } 2493 us->extract(start32, trimmedLength, dest); 2494 t->chunkOffset = start32+trimmedLength; 2495 } else { 2496 t->chunkOffset = start32; 2497 } 2498 u_terminateUChars(dest, destCapacity, length, pErrorCode); 2499 return length; 2500 } 2501 2502 static int32_t U_CALLCONV 2503 unistrTextReplace(UText *ut, 2504 int64_t start, int64_t limit, 2505 const UChar *src, int32_t length, 2506 UErrorCode *pErrorCode) { 2507 UnicodeString *us=(UnicodeString *)ut->context; 2508 int32_t oldLength; 2509 2510 if(U_FAILURE(*pErrorCode)) { 2511 return 0; 2512 } 2513 if(src==NULL && length!=0) { 2514 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 2515 } 2516 if(start>limit) { 2517 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 2518 return 0; 2519 } 2520 oldLength=us->length(); 2521 int32_t start32 = pinIndex(start, oldLength); 2522 int32_t limit32 = pinIndex(limit, oldLength); 2523 if (start32 < oldLength) { 2524 start32 = us->getChar32Start(start32); 2525 } 2526 if (limit32 < oldLength) { 2527 limit32 = us->getChar32Start(limit32); 2528 } 2529 2530 // replace 2531 us->replace(start32, limit32-start32, src, length); 2532 int32_t newLength = us->length(); 2533 2534 // Update the chunk description. 2535 ut->chunkContents = us->getBuffer(); 2536 ut->chunkLength = newLength; 2537 ut->chunkNativeLimit = newLength; 2538 ut->nativeIndexingLimit = newLength; 2539 2540 // Set iteration position to the point just following the newly inserted text. 2541 int32_t lengthDelta = newLength - oldLength; 2542 ut->chunkOffset = limit32 + lengthDelta; 2543 2544 return lengthDelta; 2545 } 2546 2547 static void U_CALLCONV 2548 unistrTextCopy(UText *ut, 2549 int64_t start, int64_t limit, 2550 int64_t destIndex, 2551 UBool move, 2552 UErrorCode *pErrorCode) { 2553 UnicodeString *us=(UnicodeString *)ut->context; 2554 int32_t length=us->length(); 2555 2556 if(U_FAILURE(*pErrorCode)) { 2557 return; 2558 } 2559 int32_t start32 = pinIndex(start, length); 2560 int32_t limit32 = pinIndex(limit, length); 2561 int32_t destIndex32 = pinIndex(destIndex, length); 2562 2563 if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) { 2564 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 2565 return; 2566 } 2567 2568 if(move) { 2569 // move: copy to destIndex, then replace original with nothing 2570 int32_t segLength=limit32-start32; 2571 us->copy(start32, limit32, destIndex32); 2572 if(destIndex32<start32) { 2573 start32+=segLength; 2574 } 2575 us->replace(start32, segLength, NULL, 0); 2576 } else { 2577 // copy 2578 us->copy(start32, limit32, destIndex32); 2579 } 2580 2581 // update chunk description, set iteration position. 2582 ut->chunkContents = us->getBuffer(); 2583 if (move==FALSE) { 2584 // copy operation, string length grows 2585 ut->chunkLength += limit32-start32; 2586 ut->chunkNativeLimit = ut->chunkLength; 2587 ut->nativeIndexingLimit = ut->chunkLength; 2588 } 2589 2590 // Iteration position to end of the newly inserted text. 2591 ut->chunkOffset = destIndex32+limit32-start32; 2592 if (move && destIndex32>start32) { 2593 ut->chunkOffset = destIndex32; 2594 } 2595 2596 } 2597 2598 static const struct UTextFuncs unistrFuncs = 2599 { 2600 sizeof(UTextFuncs), 2601 0, 0, 0, // Reserved alignment padding 2602 unistrTextClone, 2603 unistrTextLength, 2604 unistrTextAccess, 2605 unistrTextExtract, 2606 unistrTextReplace, 2607 unistrTextCopy, 2608 NULL, // MapOffsetToNative, 2609 NULL, // MapIndexToUTF16, 2610 unistrTextClose, 2611 NULL, // spare 1 2612 NULL, // spare 2 2613 NULL // spare 3 2614 }; 2615 2616 2617 2618 U_CDECL_END 2619 2620 2621 U_CAPI UText * U_EXPORT2 2622 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { 2623 // TODO: use openConstUnicodeString, then add in the differences. 2624 // 2625 ut = utext_setup(ut, 0, status); 2626 if (U_SUCCESS(*status)) { 2627 ut->pFuncs = &unistrFuncs; 2628 ut->context = s; 2629 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS)| 2630 I32_FLAG(UTEXT_PROVIDER_WRITABLE); 2631 2632 ut->chunkContents = s->getBuffer(); 2633 ut->chunkLength = s->length(); 2634 ut->chunkNativeStart = 0; 2635 ut->chunkNativeLimit = ut->chunkLength; 2636 ut->nativeIndexingLimit = ut->chunkLength; 2637 } 2638 return ut; 2639 } 2640 2641 2642 2643 U_CAPI UText * U_EXPORT2 2644 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { 2645 ut = utext_setup(ut, 0, status); 2646 // note: use the standard (writable) function table for UnicodeString. 2647 // The flag settings disable writing, so having the functions in 2648 // the table is harmless. 2649 if (U_SUCCESS(*status)) { 2650 ut->pFuncs = &unistrFuncs; 2651 ut->context = s; 2652 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); 2653 ut->chunkContents = s->getBuffer(); 2654 ut->chunkLength = s->length(); 2655 ut->chunkNativeStart = 0; 2656 ut->chunkNativeLimit = ut->chunkLength; 2657 ut->nativeIndexingLimit = ut->chunkLength; 2658 } 2659 return ut; 2660 } 2661 2662 //------------------------------------------------------------------------------ 2663 // 2664 // UText implementation for const UChar * strings 2665 // 2666 // Use of UText data members: 2667 // context pointer to UnicodeString 2668 // a length. -1 if not yet known. 2669 // 2670 // TODO: support 64 bit lengths. 2671 // 2672 //------------------------------------------------------------------------------ 2673 2674 U_CDECL_BEGIN 2675 2676 2677 static UText * U_CALLCONV 2678 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { 2679 // First do a generic shallow clone. 2680 dest = shallowTextClone(dest, src, status); 2681 2682 // For deep clones, make a copy of the string. 2683 // The copied storage is owned by the newly created clone. 2684 // A non-NULL pointer in UText.p is the signal to the close() function to delete 2685 // it. 2686 // 2687 if (deep && U_SUCCESS(*status)) { 2688 U_ASSERT(utext_nativeLength(dest) < INT32_MAX); 2689 int32_t len = (int32_t)utext_nativeLength(dest); 2690 2691 // The cloned string IS going to be NUL terminated, whether or not the original was. 2692 const UChar *srcStr = (const UChar *)src->context; 2693 UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar)); 2694 if (copyStr == NULL) { 2695 *status = U_MEMORY_ALLOCATION_ERROR; 2696 } else { 2697 int64_t i; 2698 for (i=0; i<len; i++) { 2699 copyStr[i] = srcStr[i]; 2700 } 2701 copyStr[len] = 0; 2702 dest->context = copyStr; 2703 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); 2704 } 2705 } 2706 return dest; 2707 } 2708 2709 2710 static void U_CALLCONV 2711 ucstrTextClose(UText *ut) { 2712 // Most of the work of close is done by the generic UText framework close. 2713 // All that needs to be done here is delete the string if the UText 2714 // owns it. This occurs if the UText was created by cloning. 2715 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { 2716 UChar *s = (UChar *)ut->context; 2717 uprv_free(s); 2718 ut->context = NULL; 2719 } 2720 } 2721 2722 2723 2724 static int64_t U_CALLCONV 2725 ucstrTextLength(UText *ut) { 2726 if (ut->a < 0) { 2727 // null terminated, we don't yet know the length. Scan for it. 2728 // Access is not convenient for doing this 2729 // because the current interation postion can't be changed. 2730 const UChar *str = (const UChar *)ut->context; 2731 for (;;) { 2732 if (str[ut->chunkNativeLimit] == 0) { 2733 break; 2734 } 2735 ut->chunkNativeLimit++; 2736 } 2737 ut->a = ut->chunkNativeLimit; 2738 ut->chunkLength = (int32_t)ut->chunkNativeLimit; 2739 ut->nativeIndexingLimit = ut->chunkLength; 2740 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); 2741 } 2742 return ut->a; 2743 } 2744 2745 2746 static UBool U_CALLCONV 2747 ucstrTextAccess(UText *ut, int64_t index, UBool forward) { 2748 const UChar *str = (const UChar *)ut->context; 2749 2750 // pin the requested index to the bounds of the string, 2751 // and set current iteration position. 2752 if (index<0) { 2753 index = 0; 2754 } else if (index < ut->chunkNativeLimit) { 2755 // The request data is within the chunk as it is known so far. 2756 // Put index on a code point boundary. 2757 U16_SET_CP_START(str, 0, index); 2758 } else if (ut->a >= 0) { 2759 // We know the length of this string, and the user is requesting something 2760 // at or beyond the length. Pin the requested index to the length. 2761 index = ut->a; 2762 } else { 2763 // Null terminated string, length not yet known, and the requested index 2764 // is beyond where we have scanned so far. 2765 // Scan to 32 UChars beyond the requested index. The strategy here is 2766 // to avoid fully scanning a long string when the caller only wants to 2767 // see a few characters at its beginning. 2768 int32_t scanLimit = (int32_t)index + 32; 2769 if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression 2770 scanLimit = INT32_MAX; 2771 } 2772 2773 int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; 2774 for (; chunkLimit<scanLimit; chunkLimit++) { 2775 if (str[chunkLimit] == 0) { 2776 // We found the end of the string. Remember it, pin the requested index to it, 2777 // and bail out of here. 2778 ut->a = chunkLimit; 2779 ut->chunkLength = chunkLimit; 2780 ut->nativeIndexingLimit = chunkLimit; 2781 if (index >= chunkLimit) { 2782 index = chunkLimit; 2783 } else { 2784 U16_SET_CP_START(str, 0, index); 2785 } 2786 2787 ut->chunkNativeLimit = chunkLimit; 2788 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); 2789 goto breakout; 2790 } 2791 } 2792 // We scanned through the next batch of UChars without finding the end. 2793 U16_SET_CP_START(str, 0, index); 2794 if (chunkLimit == INT32_MAX) { 2795 // Scanned to the limit of a 32 bit length. 2796 // Forceably trim the overlength string back so length fits in int32 2797 // TODO: add support for 64 bit strings. 2798 ut->a = chunkLimit; 2799 ut->chunkLength = chunkLimit; 2800 ut->nativeIndexingLimit = chunkLimit; 2801 if (index > chunkLimit) { 2802 index = chunkLimit; 2803 } 2804 ut->chunkNativeLimit = chunkLimit; 2805 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); 2806 } else { 2807 // The endpoint of a chunk must not be left in the middle of a surrogate pair. 2808 // If the current end is on a lead surrogate, back the end up by one. 2809 // It doesn't matter if the end char happens to be an unpaired surrogate, 2810 // and it's simpler not to worry about it. 2811 if (U16_IS_LEAD(str[chunkLimit-1])) { 2812 --chunkLimit; 2813 } 2814 // Null-terminated chunk with end still unknown. 2815 // Update the chunk length to reflect what has been scanned thus far. 2816 // That the full length is still unknown is (still) flagged by 2817 // ut->a being < 0. 2818 ut->chunkNativeLimit = chunkLimit; 2819 ut->nativeIndexingLimit = chunkLimit; 2820 ut->chunkLength = chunkLimit; 2821 } 2822 2823 } 2824 breakout: 2825 U_ASSERT(index<=INT32_MAX); 2826 ut->chunkOffset = (int32_t)index; 2827 2828 // Check whether request is at the start or end 2829 UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0); 2830 return retVal; 2831 } 2832 2833 2834 2835 static int32_t U_CALLCONV 2836 ucstrTextExtract(UText *ut, 2837 int64_t start, int64_t limit, 2838 UChar *dest, int32_t destCapacity, 2839 UErrorCode *pErrorCode) 2840 { 2841 if(U_FAILURE(*pErrorCode)) { 2842 return 0; 2843 } 2844 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { 2845 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 2846 return 0; 2847 } 2848 2849 const UChar *s=(const UChar *)ut->context; 2850 int32_t si, di; 2851 2852 int32_t start32; 2853 int32_t limit32; 2854 2855 // Access the start. Does two things we need: 2856 // Pins 'start' to the length of the string, if it came in out-of-bounds. 2857 // Snaps 'start' to the beginning of a code point. 2858 ucstrTextAccess(ut, start, TRUE); 2859 U_ASSERT(start <= INT32_MAX); 2860 start32 = (int32_t)start; 2861 2862 int32_t strLength=(int32_t)ut->a; 2863 if (strLength >= 0) { 2864 limit32 = pinIndex(limit, strLength); 2865 } else { 2866 limit32 = pinIndex(limit, INT32_MAX); 2867 } 2868 2869 di = 0; 2870 for (si=start32; si<limit32; si++) { 2871 if (strLength<0 && s[si]==0) { 2872 // Just hit the end of a null-terminated string. 2873 ut->a = si; // set string length for this UText 2874 ut->chunkNativeLimit = si; 2875 ut->chunkLength = si; 2876 ut->nativeIndexingLimit = si; 2877 strLength = si; 2878 break; 2879 } 2880 if (di<destCapacity) { 2881 // only store if there is space. 2882 dest[di] = s[si]; 2883 } else { 2884 if (strLength>=0) { 2885 // We have filled the destination buffer, and the string length is known. 2886 // Cut the loop short. There is no need to scan string termination. 2887 di = limit32 - start32; 2888 si = limit32; 2889 break; 2890 } 2891 } 2892 di++; 2893 } 2894 2895 // If the limit index points to a lead surrogate of a pair, 2896 // add the corresponding trail surrogate to the destination. 2897 if (si>0 && U16_IS_LEAD(s[si-1]) && 2898 ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si]))) 2899 { 2900 if (di<destCapacity) { 2901 // store only if there is space in the output buffer. 2902 dest[di++] = s[si++]; 2903 } 2904 } 2905 2906 // Put iteration position at the point just following the extracted text 2907 ut->chunkOffset = uprv_min(strLength, start32 + destCapacity); 2908 2909 // Add a terminating NUL if space in the buffer permits, 2910 // and set the error status as required. 2911 u_terminateUChars(dest, destCapacity, di, pErrorCode); 2912 return di; 2913 } 2914 2915 static const struct UTextFuncs ucstrFuncs = 2916 { 2917 sizeof(UTextFuncs), 2918 0, 0, 0, // Reserved alignment padding 2919 ucstrTextClone, 2920 ucstrTextLength, 2921 ucstrTextAccess, 2922 ucstrTextExtract, 2923 NULL, // Replace 2924 NULL, // Copy 2925 NULL, // MapOffsetToNative, 2926 NULL, // MapIndexToUTF16, 2927 ucstrTextClose, 2928 NULL, // spare 1 2929 NULL, // spare 2 2930 NULL, // spare 3 2931 }; 2932 2933 U_CDECL_END 2934 2935 static const UChar gEmptyUString[] = {0}; 2936 2937 U_CAPI UText * U_EXPORT2 2938 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) { 2939 if (U_FAILURE(*status)) { 2940 return NULL; 2941 } 2942 if(s==NULL && length==0) { 2943 s = gEmptyUString; 2944 } 2945 if (s==NULL || length < -1 || length>INT32_MAX) { 2946 *status = U_ILLEGAL_ARGUMENT_ERROR; 2947 return NULL; 2948 } 2949 ut = utext_setup(ut, 0, status); 2950 if (U_SUCCESS(*status)) { 2951 ut->pFuncs = &ucstrFuncs; 2952 ut->context = s; 2953 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); 2954 if (length==-1) { 2955 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); 2956 } 2957 ut->a = length; 2958 ut->chunkContents = s; 2959 ut->chunkNativeStart = 0; 2960 ut->chunkNativeLimit = length>=0? length : 0; 2961 ut->chunkLength = (int32_t)ut->chunkNativeLimit; 2962 ut->chunkOffset = 0; 2963 ut->nativeIndexingLimit = ut->chunkLength; 2964 } 2965 return ut; 2966 } 2967 2968 2969 //------------------------------------------------------------------------------ 2970 // 2971 // UText implementation for text from ICU CharacterIterators 2972 // 2973 // Use of UText data members: 2974 // context pointer to the CharacterIterator 2975 // a length of the full text. 2976 // p pointer to buffer 1 2977 // b start index of local buffer 1 contents 2978 // q pointer to buffer 2 2979 // c start index of local buffer 2 contents 2980 // r pointer to the character iterator if the UText owns it. 2981 // Null otherwise. 2982 // 2983 //------------------------------------------------------------------------------ 2984 #define CIBufSize 16 2985 2986 U_CDECL_BEGIN 2987 static void U_CALLCONV 2988 charIterTextClose(UText *ut) { 2989 // Most of the work of close is done by the generic UText framework close. 2990 // All that needs to be done here is delete the CharacterIterator if the UText 2991 // owns it. This occurs if the UText was created by cloning. 2992 CharacterIterator *ci = (CharacterIterator *)ut->r; 2993 delete ci; 2994 ut->r = NULL; 2995 } 2996 2997 static int64_t U_CALLCONV 2998 charIterTextLength(UText *ut) { 2999 return (int32_t)ut->a; 3000 } 3001 3002 static UBool U_CALLCONV 3003 charIterTextAccess(UText *ut, int64_t index, UBool forward) { 3004 CharacterIterator *ci = (CharacterIterator *)ut->context; 3005 3006 int32_t clippedIndex = (int32_t)index; 3007 if (clippedIndex<0) { 3008 clippedIndex=0; 3009 } else if (clippedIndex>=ut->a) { 3010 clippedIndex=(int32_t)ut->a; 3011 } 3012 int32_t neededIndex = clippedIndex; 3013 if (!forward && neededIndex>0) { 3014 // reverse iteration, want the position just before what was asked for. 3015 neededIndex--; 3016 } else if (forward && neededIndex==ut->a && neededIndex>0) { 3017 // Forward iteration, don't ask for something past the end of the text. 3018 neededIndex--; 3019 } 3020 3021 // Find the native index of the start of the buffer containing what we want. 3022 neededIndex -= neededIndex % CIBufSize; 3023 3024 UChar *buf = NULL; 3025 UBool needChunkSetup = TRUE; 3026 int i; 3027 if (ut->chunkNativeStart == neededIndex) { 3028 // The buffer we want is already the current chunk. 3029 needChunkSetup = FALSE; 3030 } else if (ut->b == neededIndex) { 3031 // The first buffer (buffer p) has what we need. 3032 buf = (UChar *)ut->p; 3033 } else if (ut->c == neededIndex) { 3034 // The second buffer (buffer q) has what we need. 3035 buf = (UChar *)ut->q; 3036 } else { 3037 // Neither buffer already has what we need. 3038 // Load new data from the character iterator. 3039 // Use the buf that is not the current buffer. 3040 buf = (UChar *)ut->p; 3041 if (ut->p == ut->chunkContents) { 3042 buf = (UChar *)ut->q; 3043 } 3044 ci->setIndex(neededIndex); 3045 for (i=0; i<CIBufSize; i++) { 3046 buf[i] = ci->nextPostInc(); 3047 if (i+neededIndex > ut->a) { 3048 break; 3049 } 3050 } 3051 } 3052 3053 // We have a buffer with the data we need. 3054 // Set it up as the current chunk, if it wasn't already. 3055 if (needChunkSetup) { 3056 ut->chunkContents = buf; 3057 ut->chunkLength = CIBufSize; 3058 ut->chunkNativeStart = neededIndex; 3059 ut->chunkNativeLimit = neededIndex + CIBufSize; 3060 if (ut->chunkNativeLimit > ut->a) { 3061 ut->chunkNativeLimit = ut->a; 3062 ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart); 3063 } 3064 ut->nativeIndexingLimit = ut->chunkLength; 3065 U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize); 3066 } 3067 ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart; 3068 UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0); 3069 return success; 3070 } 3071 3072 static UText * U_CALLCONV 3073 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) { 3074 if (U_FAILURE(*status)) { 3075 return NULL; 3076 } 3077 3078 if (deep) { 3079 // There is no CharacterIterator API for cloning the underlying text storage. 3080 *status = U_UNSUPPORTED_ERROR; 3081 return NULL; 3082 } else { 3083 CharacterIterator *srcCI =(CharacterIterator *)src->context; 3084 srcCI = srcCI->clone(); 3085 dest = utext_openCharacterIterator(dest, srcCI, status); 3086 // cast off const on getNativeIndex. 3087 // For CharacterIterator based UTexts, this is safe, the operation is const. 3088 int64_t ix = utext_getNativeIndex((UText *)src); 3089 utext_setNativeIndex(dest, ix); 3090 dest->r = srcCI; // flags that this UText owns the CharacterIterator 3091 } 3092 return dest; 3093 } 3094 3095 static int32_t U_CALLCONV 3096 charIterTextExtract(UText *ut, 3097 int64_t start, int64_t limit, 3098 UChar *dest, int32_t destCapacity, 3099 UErrorCode *status) 3100 { 3101 if(U_FAILURE(*status)) { 3102 return 0; 3103 } 3104 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { 3105 *status=U_ILLEGAL_ARGUMENT_ERROR; 3106 return 0; 3107 } 3108 int32_t length = (int32_t)ut->a; 3109 int32_t start32 = pinIndex(start, length); 3110 int32_t limit32 = pinIndex(limit, length); 3111 int32_t desti = 0; 3112 int32_t srci; 3113 int32_t copyLimit; 3114 3115 CharacterIterator *ci = (CharacterIterator *)ut->context; 3116 ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed. 3117 srci = ci->getIndex(); 3118 copyLimit = srci; 3119 while (srci<limit32) { 3120 UChar32 c = ci->next32PostInc(); 3121 int32_t len = U16_LENGTH(c); 3122 if (desti+len <= destCapacity) { 3123 U16_APPEND_UNSAFE(dest, desti, c); 3124 copyLimit = srci+len; 3125 } else { 3126 desti += len; 3127 *status = U_BUFFER_OVERFLOW_ERROR; 3128 } 3129 srci += len; 3130 } 3131 3132 charIterTextAccess(ut, copyLimit, TRUE); 3133 3134 u_terminateUChars(dest, destCapacity, desti, status); 3135 return desti; 3136 } 3137 3138 static const struct UTextFuncs charIterFuncs = 3139 { 3140 sizeof(UTextFuncs), 3141 0, 0, 0, // Reserved alignment padding 3142 charIterTextClone, 3143 charIterTextLength, 3144 charIterTextAccess, 3145 charIterTextExtract, 3146 NULL, // Replace 3147 NULL, // Copy 3148 NULL, // MapOffsetToNative, 3149 NULL, // MapIndexToUTF16, 3150 charIterTextClose, 3151 NULL, // spare 1 3152 NULL, // spare 2 3153 NULL // spare 3 3154 }; 3155 U_CDECL_END 3156 3157 3158 U_CAPI UText * U_EXPORT2 3159 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) { 3160 if (U_FAILURE(*status)) { 3161 return NULL; 3162 } 3163 3164 if (ci->startIndex() > 0) { 3165 // No support for CharacterIterators that do not start indexing from zero. 3166 *status = U_UNSUPPORTED_ERROR; 3167 return NULL; 3168 } 3169 3170 // Extra space in UText for 2 buffers of CIBufSize UChars each. 3171 int32_t extraSpace = 2 * CIBufSize * sizeof(UChar); 3172 ut = utext_setup(ut, extraSpace, status); 3173 if (U_SUCCESS(*status)) { 3174 ut->pFuncs = &charIterFuncs; 3175 ut->context = ci; 3176 ut->providerProperties = 0; 3177 ut->a = ci->endIndex(); // Length of text 3178 ut->p = ut->pExtra; // First buffer 3179 ut->b = -1; // Native index of first buffer contents 3180 ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer 3181 ut->c = -1; // Native index of second buffer contents 3182 3183 // Initialize current chunk contents to be empty. 3184 // First access will fault something in. 3185 // Note: The initial nativeStart and chunkOffset must sum to zero 3186 // so that getNativeIndex() will correctly compute to zero 3187 // if no call to Access() has ever been made. They can't be both 3188 // zero without Access() thinking that the chunk is valid. 3189 ut->chunkContents = (UChar *)ut->p; 3190 ut->chunkNativeStart = -1; 3191 ut->chunkOffset = 1; 3192 ut->chunkNativeLimit = 0; 3193 ut->chunkLength = 0; 3194 ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing 3195 } 3196 return ut; 3197 } 3198 3199 3200 3201