Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>LLVM Assembly Language Reference Manual</title>
      6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      7   <meta name="author" content="Chris Lattner">
      8   <meta name="description"
      9   content="LLVM Assembly Language Reference Manual.">
     10   <link rel="stylesheet" href="llvm.css" type="text/css">
     11 </head>
     12 
     13 <body>
     14 
     15 <h1>LLVM Language Reference Manual</h1>
     16 <ol>
     17   <li><a href="#abstract">Abstract</a></li>
     18   <li><a href="#introduction">Introduction</a></li>
     19   <li><a href="#identifiers">Identifiers</a></li>
     20   <li><a href="#highlevel">High Level Structure</a>
     21     <ol>
     22       <li><a href="#modulestructure">Module Structure</a></li>
     23       <li><a href="#linkage">Linkage Types</a>
     24         <ol>
     25           <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
     26           <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
     27           <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
     28           <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
     29           <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
     30           <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
     31           <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
     32           <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
     33           <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
     34           <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
     35           <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
     36           <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
     37           <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
     38           <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
     39           <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
     40           <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
     41         </ol>
     42       </li>
     43       <li><a href="#callingconv">Calling Conventions</a></li>
     44       <li><a href="#namedtypes">Named Types</a></li>
     45       <li><a href="#globalvars">Global Variables</a></li>
     46       <li><a href="#functionstructure">Functions</a></li>
     47       <li><a href="#aliasstructure">Aliases</a></li>
     48       <li><a href="#namedmetadatastructure">Named Metadata</a></li>
     49       <li><a href="#paramattrs">Parameter Attributes</a></li>
     50       <li><a href="#fnattrs">Function Attributes</a></li>
     51       <li><a href="#gc">Garbage Collector Names</a></li>
     52       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
     53       <li><a href="#datalayout">Data Layout</a></li>
     54       <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
     55       <li><a href="#volatile">Volatile Memory Accesses</a></li>
     56       <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
     57       <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
     58     </ol>
     59   </li>
     60   <li><a href="#typesystem">Type System</a>
     61     <ol>
     62       <li><a href="#t_classifications">Type Classifications</a></li>
     63       <li><a href="#t_primitive">Primitive Types</a>
     64         <ol>
     65           <li><a href="#t_integer">Integer Type</a></li>
     66           <li><a href="#t_floating">Floating Point Types</a></li>
     67           <li><a href="#t_x86mmx">X86mmx Type</a></li>
     68           <li><a href="#t_void">Void Type</a></li>
     69           <li><a href="#t_label">Label Type</a></li>
     70           <li><a href="#t_metadata">Metadata Type</a></li>
     71         </ol>
     72       </li>
     73       <li><a href="#t_derived">Derived Types</a>
     74         <ol>
     75           <li><a href="#t_aggregate">Aggregate Types</a>
     76             <ol>
     77               <li><a href="#t_array">Array Type</a></li>
     78               <li><a href="#t_struct">Structure Type</a></li>
     79               <li><a href="#t_opaque">Opaque Structure Types</a></li>
     80               <li><a href="#t_vector">Vector Type</a></li>
     81             </ol>
     82           </li>
     83           <li><a href="#t_function">Function Type</a></li>
     84           <li><a href="#t_pointer">Pointer Type</a></li>
     85         </ol>
     86       </li>
     87     </ol>
     88   </li>
     89   <li><a href="#constants">Constants</a>
     90     <ol>
     91       <li><a href="#simpleconstants">Simple Constants</a></li>
     92       <li><a href="#complexconstants">Complex Constants</a></li>
     93       <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
     94       <li><a href="#undefvalues">Undefined Values</a></li>
     95       <li><a href="#trapvalues">Trap Values</a></li>
     96       <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
     97       <li><a href="#constantexprs">Constant Expressions</a></li>
     98     </ol>
     99   </li>
    100   <li><a href="#othervalues">Other Values</a>
    101     <ol>
    102       <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
    103       <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
    104     </ol>
    105   </li>
    106   <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
    107     <ol>
    108       <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
    109       <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
    110           Global Variable</a></li>
    111       <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
    112          Global Variable</a></li>
    113       <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
    114          Global Variable</a></li>
    115     </ol>
    116   </li>
    117   <li><a href="#instref">Instruction Reference</a>
    118     <ol>
    119       <li><a href="#terminators">Terminator Instructions</a>
    120         <ol>
    121           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
    122           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
    123           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
    124           <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
    125           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
    126           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
    127           <li><a href="#i_resume">'<tt>resume</tt>'  Instruction</a></li>
    128           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
    129         </ol>
    130       </li>
    131       <li><a href="#binaryops">Binary Operations</a>
    132         <ol>
    133           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
    134           <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
    135           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
    136           <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
    137           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
    138           <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
    139           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
    140           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
    141           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
    142           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
    143           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
    144           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
    145         </ol>
    146       </li>
    147       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
    148         <ol>
    149           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
    150           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
    151           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
    152           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
    153           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
    154           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
    155         </ol>
    156       </li>
    157       <li><a href="#vectorops">Vector Operations</a>
    158         <ol>
    159           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
    160           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
    161           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
    162         </ol>
    163       </li>
    164       <li><a href="#aggregateops">Aggregate Operations</a>
    165         <ol>
    166           <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
    167           <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
    168         </ol>
    169       </li>
    170       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
    171         <ol>
    172           <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
    173          <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
    174          <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
    175          <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
    176          <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
    177          <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
    178          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
    179         </ol>
    180       </li>
    181       <li><a href="#convertops">Conversion Operations</a>
    182         <ol>
    183           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
    184           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
    185           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
    186           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
    187           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
    188           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
    189           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
    190           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
    191           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
    192           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
    193           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
    194           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
    195         </ol>
    196       </li>
    197       <li><a href="#otherops">Other Operations</a>
    198         <ol>
    199           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
    200           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
    201           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
    202           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
    203           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
    204           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
    205           <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
    206         </ol>
    207       </li>
    208     </ol>
    209   </li>
    210   <li><a href="#intrinsics">Intrinsic Functions</a>
    211     <ol>
    212       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
    213         <ol>
    214           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
    215           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
    216           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
    217         </ol>
    218       </li>
    219       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
    220         <ol>
    221           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
    222           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
    223           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
    224         </ol>
    225       </li>
    226       <li><a href="#int_codegen">Code Generator Intrinsics</a>
    227         <ol>
    228           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
    229           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
    230           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
    231           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
    232           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
    233           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
    234           <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
    235         </ol>
    236       </li>
    237       <li><a href="#int_libc">Standard C Library Intrinsics</a>
    238         <ol>
    239           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
    240           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
    241           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
    242           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
    243           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
    244           <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
    245           <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
    246           <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
    247           <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
    248           <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
    249           <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
    250         </ol>
    251       </li>
    252       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
    253         <ol>
    254           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
    255           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
    256           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
    257           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
    258         </ol>
    259       </li>
    260       <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
    261         <ol>
    262           <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
    263           <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
    264           <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
    265           <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
    266           <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
    267           <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
    268         </ol>
    269       </li>
    270       <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
    271         <ol>
    272           <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
    273           <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
    274         </ol>
    275       </li>
    276       <li><a href="#int_debugger">Debugger intrinsics</a></li>
    277       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
    278       <li><a href="#int_trampoline">Trampoline Intrinsics</a>
    279         <ol>
    280           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
    281           <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
    282         </ol>
    283       </li>
    284       <li><a href="#int_atomics">Atomic intrinsics</a>
    285         <ol>
    286           <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
    287           <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
    288           <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
    289           <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
    290           <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
    291           <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
    292           <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
    293           <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
    294           <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
    295           <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
    296           <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
    297           <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
    298           <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
    299         </ol>
    300       </li>
    301       <li><a href="#int_memorymarkers">Memory Use Markers</a>
    302         <ol>
    303           <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
    304           <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
    305           <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
    306           <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
    307         </ol>
    308       </li>
    309       <li><a href="#int_general">General intrinsics</a>
    310         <ol>
    311           <li><a href="#int_var_annotation">
    312             '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
    313           <li><a href="#int_annotation">
    314             '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
    315           <li><a href="#int_trap">
    316             '<tt>llvm.trap</tt>' Intrinsic</a></li>
    317           <li><a href="#int_stackprotector">
    318             '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
    319 	  <li><a href="#int_objectsize">
    320             '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
    321         </ol>
    322       </li>
    323     </ol>
    324   </li>
    325 </ol>
    326 
    327 <div class="doc_author">
    328   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
    329             and <a href="mailto:vadve (a] cs.uiuc.edu">Vikram Adve</a></p>
    330 </div>
    331 
    332 <!-- *********************************************************************** -->
    333 <h2><a name="abstract">Abstract</a></h2>
    334 <!-- *********************************************************************** -->
    335 
    336 <div>
    337 
    338 <p>This document is a reference manual for the LLVM assembly language. LLVM is
    339    a Static Single Assignment (SSA) based representation that provides type
    340    safety, low-level operations, flexibility, and the capability of representing
    341    'all' high-level languages cleanly.  It is the common code representation
    342    used throughout all phases of the LLVM compilation strategy.</p>
    343 
    344 </div>
    345 
    346 <!-- *********************************************************************** -->
    347 <h2><a name="introduction">Introduction</a></h2>
    348 <!-- *********************************************************************** -->
    349 
    350 <div>
    351 
    352 <p>The LLVM code representation is designed to be used in three different forms:
    353    as an in-memory compiler IR, as an on-disk bitcode representation (suitable
    354    for fast loading by a Just-In-Time compiler), and as a human readable
    355    assembly language representation.  This allows LLVM to provide a powerful
    356    intermediate representation for efficient compiler transformations and
    357    analysis, while providing a natural means to debug and visualize the
    358    transformations.  The three different forms of LLVM are all equivalent.  This
    359    document describes the human readable representation and notation.</p>
    360 
    361 <p>The LLVM representation aims to be light-weight and low-level while being
    362    expressive, typed, and extensible at the same time.  It aims to be a
    363    "universal IR" of sorts, by being at a low enough level that high-level ideas
    364    may be cleanly mapped to it (similar to how microprocessors are "universal
    365    IR's", allowing many source languages to be mapped to them).  By providing
    366    type information, LLVM can be used as the target of optimizations: for
    367    example, through pointer analysis, it can be proven that a C automatic
    368    variable is never accessed outside of the current function, allowing it to
    369    be promoted to a simple SSA value instead of a memory location.</p>
    370 
    371 <!-- _______________________________________________________________________ -->
    372 <h4>
    373   <a name="wellformed">Well-Formedness</a>
    374 </h4>
    375 
    376 <div>
    377 
    378 <p>It is important to note that this document describes 'well formed' LLVM
    379    assembly language.  There is a difference between what the parser accepts and
    380    what is considered 'well formed'.  For example, the following instruction is
    381    syntactically okay, but not well formed:</p>
    382 
    383 <pre class="doc_code">
    384 %x = <a href="#i_add">add</a> i32 1, %x
    385 </pre>
    386 
    387 <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
    388    LLVM infrastructure provides a verification pass that may be used to verify
    389    that an LLVM module is well formed.  This pass is automatically run by the
    390    parser after parsing input assembly and by the optimizer before it outputs
    391    bitcode.  The violations pointed out by the verifier pass indicate bugs in
    392    transformation passes or input to the parser.</p>
    393 
    394 </div>
    395 
    396 </div>
    397 
    398 <!-- Describe the typesetting conventions here. -->
    399 
    400 <!-- *********************************************************************** -->
    401 <h2><a name="identifiers">Identifiers</a></h2>
    402 <!-- *********************************************************************** -->
    403 
    404 <div>
    405 
    406 <p>LLVM identifiers come in two basic types: global and local. Global
    407    identifiers (functions, global variables) begin with the <tt>'@'</tt>
    408    character. Local identifiers (register names, types) begin with
    409    the <tt>'%'</tt> character. Additionally, there are three different formats
    410    for identifiers, for different purposes:</p>
    411 
    412 <ol>
    413   <li>Named values are represented as a string of characters with their prefix.
    414       For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
    415       <tt>%a.really.long.identifier</tt>. The actual regular expression used is
    416       '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
    417       other characters in their names can be surrounded with quotes. Special
    418       characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
    419       ASCII code for the character in hexadecimal.  In this way, any character
    420       can be used in a name value, even quotes themselves.</li>
    421 
    422   <li>Unnamed values are represented as an unsigned numeric value with their
    423       prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
    424 
    425   <li>Constants, which are described in a <a href="#constants">section about
    426       constants</a>, below.</li>
    427 </ol>
    428 
    429 <p>LLVM requires that values start with a prefix for two reasons: Compilers
    430    don't need to worry about name clashes with reserved words, and the set of
    431    reserved words may be expanded in the future without penalty.  Additionally,
    432    unnamed identifiers allow a compiler to quickly come up with a temporary
    433    variable without having to avoid symbol table conflicts.</p>
    434 
    435 <p>Reserved words in LLVM are very similar to reserved words in other
    436    languages. There are keywords for different opcodes
    437    ('<tt><a href="#i_add">add</a></tt>',
    438    '<tt><a href="#i_bitcast">bitcast</a></tt>',
    439    '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
    440    ('<tt><a href="#t_void">void</a></tt>',
    441    '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
    442    reserved words cannot conflict with variable names, because none of them
    443    start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
    444 
    445 <p>Here is an example of LLVM code to multiply the integer variable
    446    '<tt>%X</tt>' by 8:</p>
    447 
    448 <p>The easy way:</p>
    449 
    450 <pre class="doc_code">
    451 %result = <a href="#i_mul">mul</a> i32 %X, 8
    452 </pre>
    453 
    454 <p>After strength reduction:</p>
    455 
    456 <pre class="doc_code">
    457 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
    458 </pre>
    459 
    460 <p>And the hard way:</p>
    461 
    462 <pre class="doc_code">
    463 %0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
    464 %1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
    465 %result = <a href="#i_add">add</a> i32 %1, %1
    466 </pre>
    467 
    468 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
    469    lexical features of LLVM:</p>
    470 
    471 <ol>
    472   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
    473       line.</li>
    474 
    475   <li>Unnamed temporaries are created when the result of a computation is not
    476       assigned to a named value.</li>
    477 
    478   <li>Unnamed temporaries are numbered sequentially</li>
    479 </ol>
    480 
    481 <p>It also shows a convention that we follow in this document.  When
    482    demonstrating instructions, we will follow an instruction with a comment that
    483    defines the type and name of value produced.  Comments are shown in italic
    484    text.</p>
    485 
    486 </div>
    487 
    488 <!-- *********************************************************************** -->
    489 <h2><a name="highlevel">High Level Structure</a></h2>
    490 <!-- *********************************************************************** -->
    491 <div>
    492 <!-- ======================================================================= -->
    493 <h3>
    494   <a name="modulestructure">Module Structure</a>
    495 </h3>
    496 
    497 <div>
    498 
    499 <p>LLVM programs are composed of "Module"s, each of which is a translation unit
    500    of the input programs.  Each module consists of functions, global variables,
    501    and symbol table entries.  Modules may be combined together with the LLVM
    502    linker, which merges function (and global variable) definitions, resolves
    503    forward declarations, and merges symbol table entries. Here is an example of
    504    the "hello world" module:</p>
    505 
    506 <pre class="doc_code">
    507 <i>; Declare the string constant as a global constant.</i>&nbsp;
    508 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"      <i>; [13 x i8]*</i>&nbsp;
    509 
    510 <i>; External declaration of the puts function</i>&nbsp;
    511 <a href="#functionstructure">declare</a> i32 @puts(i8*)                                      <i>; i32 (i8*)* </i>&nbsp;
    512 
    513 <i>; Definition of main function</i>
    514 define i32 @main() {   <i>; i32()* </i>&nbsp;
    515   <i>; Convert [13 x i8]* to i8  *...</i>&nbsp;
    516   %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0   <i>; i8*</i>&nbsp;
    517 
    518   <i>; Call puts function to write out the string to stdout.</i>&nbsp;
    519   <a href="#i_call">call</a> i32 @puts(i8* %cast210)           <i>; i32</i>&nbsp;
    520   <a href="#i_ret">ret</a> i32 0&nbsp;
    521 }
    522 
    523 <i>; Named metadata</i>
    524 !1 = metadata !{i32 41}
    525 !foo = !{!1, null}
    526 </pre>
    527 
    528 <p>This example is made up of a <a href="#globalvars">global variable</a> named
    529    "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
    530    a <a href="#functionstructure">function definition</a> for
    531    "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> 
    532    "<tt>foo"</tt>.</p>
    533 
    534 <p>In general, a module is made up of a list of global values, where both
    535    functions and global variables are global values.  Global values are
    536    represented by a pointer to a memory location (in this case, a pointer to an
    537    array of char, and a pointer to a function), and have one of the
    538    following <a href="#linkage">linkage types</a>.</p>
    539 
    540 </div>
    541 
    542 <!-- ======================================================================= -->
    543 <h3>
    544   <a name="linkage">Linkage Types</a>
    545 </h3>
    546 
    547 <div>
    548 
    549 <p>All Global Variables and Functions have one of the following types of
    550    linkage:</p>
    551 
    552 <dl>
    553   <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
    554   <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
    555       by objects in the current module. In particular, linking code into a
    556       module with an private global value may cause the private to be renamed as
    557       necessary to avoid collisions.  Because the symbol is private to the
    558       module, all references can be updated. This doesn't show up in any symbol
    559       table in the object file.</dd>
    560 
    561   <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
    562   <dd>Similar to <tt>private</tt>, but the symbol is passed through the
    563       assembler and evaluated by the linker. Unlike normal strong symbols, they
    564       are removed by the linker from the final linked image (executable or
    565       dynamic library).</dd>
    566 
    567   <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
    568   <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
    569       <tt>linker_private_weak</tt> symbols are subject to coalescing by the
    570       linker. The symbols are removed by the linker from the final linked image
    571       (executable or dynamic library).</dd>
    572 
    573   <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
    574   <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
    575       of the object is not taken. For instance, functions that had an inline
    576       definition, but the compiler decided not to inline it. Note,
    577       unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
    578       <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
    579       visibility.  The symbols are removed by the linker from the final linked
    580       image (executable or dynamic library).</dd>
    581 
    582   <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
    583   <dd>Similar to private, but the value shows as a local symbol
    584       (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
    585       corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
    586 
    587   <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
    588   <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
    589       into the object file corresponding to the LLVM module.  They exist to
    590       allow inlining and other optimizations to take place given knowledge of
    591       the definition of the global, which is known to be somewhere outside the
    592       module.  Globals with <tt>available_externally</tt> linkage are allowed to
    593       be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
    594       This linkage type is only allowed on definitions, not declarations.</dd>
    595 
    596   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
    597   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
    598       the same name when linkage occurs.  This can be used to implement
    599       some forms of inline functions, templates, or other code which must be
    600       generated in each translation unit that uses it, but where the body may
    601       be overridden with a more definitive definition later.  Unreferenced
    602       <tt>linkonce</tt> globals are allowed to be discarded.  Note that
    603       <tt>linkonce</tt> linkage does not actually allow the optimizer to
    604       inline the body of this function into callers because it doesn't know if
    605       this definition of the function is the definitive definition within the
    606       program or whether it will be overridden by a stronger definition.
    607       To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
    608       linkage.</dd>
    609 
    610   <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
    611   <dd>"<tt>weak</tt>" linkage has the same merging semantics as
    612       <tt>linkonce</tt> linkage, except that unreferenced globals with
    613       <tt>weak</tt> linkage may not be discarded.  This is used for globals that
    614       are declared "weak" in C source code.</dd>
    615 
    616   <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
    617   <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
    618       they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
    619       global scope.
    620       Symbols with "<tt>common</tt>" linkage are merged in the same way as
    621       <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
    622       <tt>common</tt> symbols may not have an explicit section,
    623       must have a zero initializer, and may not be marked '<a
    624       href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
    625       have common linkage.</dd>
    626 
    627 
    628   <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
    629   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
    630       pointer to array type.  When two global variables with appending linkage
    631       are linked together, the two global arrays are appended together.  This is
    632       the LLVM, typesafe, equivalent of having the system linker append together
    633       "sections" with identical names when .o files are linked.</dd>
    634 
    635   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
    636   <dd>The semantics of this linkage follow the ELF object file model: the symbol
    637       is weak until linked, if not linked, the symbol becomes null instead of
    638       being an undefined reference.</dd>
    639 
    640   <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
    641   <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
    642   <dd>Some languages allow differing globals to be merged, such as two functions
    643       with different semantics.  Other languages, such as <tt>C++</tt>, ensure
    644       that only equivalent globals are ever merged (the "one definition rule"
    645       &mdash; "ODR").  Such languages can use the <tt>linkonce_odr</tt>
    646       and <tt>weak_odr</tt> linkage types to indicate that the global will only
    647       be merged with equivalent globals.  These linkage types are otherwise the
    648       same as their non-<tt>odr</tt> versions.</dd>
    649 
    650   <dt><tt><b><a name="linkage_external">external</a></b></tt>:</dt>
    651   <dd>If none of the above identifiers are used, the global is externally
    652       visible, meaning that it participates in linkage and can be used to
    653       resolve external symbol references.</dd>
    654 </dl>
    655 
    656 <p>The next two types of linkage are targeted for Microsoft Windows platform
    657    only. They are designed to support importing (exporting) symbols from (to)
    658    DLLs (Dynamic Link Libraries).</p>
    659 
    660 <dl>
    661   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
    662   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
    663       or variable via a global pointer to a pointer that is set up by the DLL
    664       exporting the symbol. On Microsoft Windows targets, the pointer name is
    665       formed by combining <code>__imp_</code> and the function or variable
    666       name.</dd>
    667 
    668   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
    669   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
    670       pointer to a pointer in a DLL, so that it can be referenced with the
    671       <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
    672       name is formed by combining <code>__imp_</code> and the function or
    673       variable name.</dd>
    674 </dl>
    675 
    676 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
    677    another module defined a "<tt>.LC0</tt>" variable and was linked with this
    678    one, one of the two would be renamed, preventing a collision.  Since
    679    "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
    680    declarations), they are accessible outside of the current module.</p>
    681 
    682 <p>It is illegal for a function <i>declaration</i> to have any linkage type
    683    other than <tt>external</tt>, <tt>dllimport</tt>
    684   or <tt>extern_weak</tt>.</p>
    685 
    686 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
    687    or <tt>weak_odr</tt> linkages.</p>
    688 
    689 </div>
    690 
    691 <!-- ======================================================================= -->
    692 <h3>
    693   <a name="callingconv">Calling Conventions</a>
    694 </h3>
    695 
    696 <div>
    697 
    698 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
    699    and <a href="#i_invoke">invokes</a> can all have an optional calling
    700    convention specified for the call.  The calling convention of any pair of
    701    dynamic caller/callee must match, or the behavior of the program is
    702    undefined.  The following calling conventions are supported by LLVM, and more
    703    may be added in the future:</p>
    704 
    705 <dl>
    706   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
    707   <dd>This calling convention (the default if no other calling convention is
    708       specified) matches the target C calling conventions.  This calling
    709       convention supports varargs function calls and tolerates some mismatch in
    710       the declared prototype and implemented declaration of the function (as
    711       does normal C).</dd>
    712 
    713   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
    714   <dd>This calling convention attempts to make calls as fast as possible
    715       (e.g. by passing things in registers).  This calling convention allows the
    716       target to use whatever tricks it wants to produce fast code for the
    717       target, without having to conform to an externally specified ABI
    718       (Application Binary Interface).
    719       <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
    720       when this or the GHC convention is used.</a>  This calling convention
    721       does not support varargs and requires the prototype of all callees to
    722       exactly match the prototype of the function definition.</dd>
    723 
    724   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
    725   <dd>This calling convention attempts to make code in the caller as efficient
    726       as possible under the assumption that the call is not commonly executed.
    727       As such, these calls often preserve all registers so that the call does
    728       not break any live ranges in the caller side.  This calling convention
    729       does not support varargs and requires the prototype of all callees to
    730       exactly match the prototype of the function definition.</dd>
    731 
    732   <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
    733   <dd>This calling convention has been implemented specifically for use by the
    734       <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
    735       It passes everything in registers, going to extremes to achieve this by
    736       disabling callee save registers. This calling convention should not be
    737       used lightly but only for specific situations such as an alternative to
    738       the <em>register pinning</em> performance technique often used when
    739       implementing functional programming languages.At the moment only X86
    740       supports this convention and it has the following limitations:
    741       <ul>
    742         <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
    743             floating point types are supported.</li>
    744         <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
    745             6 floating point parameters.</li>
    746       </ul>
    747       This calling convention supports
    748       <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
    749       requires both the caller and callee are using it.
    750   </dd>
    751 
    752   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
    753   <dd>Any calling convention may be specified by number, allowing
    754       target-specific calling conventions to be used.  Target specific calling
    755       conventions start at 64.</dd>
    756 </dl>
    757 
    758 <p>More calling conventions can be added/defined on an as-needed basis, to
    759    support Pascal conventions or any other well-known target-independent
    760    convention.</p>
    761 
    762 </div>
    763 
    764 <!-- ======================================================================= -->
    765 <h3>
    766   <a name="visibility">Visibility Styles</a>
    767 </h3>
    768 
    769 <div>
    770 
    771 <p>All Global Variables and Functions have one of the following visibility
    772    styles:</p>
    773 
    774 <dl>
    775   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
    776   <dd>On targets that use the ELF object file format, default visibility means
    777       that the declaration is visible to other modules and, in shared libraries,
    778       means that the declared entity may be overridden. On Darwin, default
    779       visibility means that the declaration is visible to other modules. Default
    780       visibility corresponds to "external linkage" in the language.</dd>
    781 
    782   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
    783   <dd>Two declarations of an object with hidden visibility refer to the same
    784       object if they are in the same shared object. Usually, hidden visibility
    785       indicates that the symbol will not be placed into the dynamic symbol
    786       table, so no other module (executable or shared library) can reference it
    787       directly.</dd>
    788 
    789   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
    790   <dd>On ELF, protected visibility indicates that the symbol will be placed in
    791       the dynamic symbol table, but that references within the defining module
    792       will bind to the local symbol. That is, the symbol cannot be overridden by
    793       another module.</dd>
    794 </dl>
    795 
    796 </div>
    797 
    798 <!-- ======================================================================= -->
    799 <h3>
    800   <a name="namedtypes">Named Types</a>
    801 </h3>
    802 
    803 <div>
    804 
    805 <p>LLVM IR allows you to specify name aliases for certain types.  This can make
    806    it easier to read the IR and make the IR more condensed (particularly when
    807    recursive types are involved).  An example of a name specification is:</p>
    808 
    809 <pre class="doc_code">
    810 %mytype = type { %mytype*, i32 }
    811 </pre>
    812 
    813 <p>You may give a name to any <a href="#typesystem">type</a> except
    814    "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
    815    is expected with the syntax "%mytype".</p>
    816 
    817 <p>Note that type names are aliases for the structural type that they indicate,
    818    and that you can therefore specify multiple names for the same type.  This
    819    often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
    820    uses structural typing, the name is not part of the type.  When printing out
    821    LLVM IR, the printer will pick <em>one name</em> to render all types of a
    822    particular shape.  This means that if you have code where two different
    823    source types end up having the same LLVM type, that the dumper will sometimes
    824    print the "wrong" or unexpected type.  This is an important design point and
    825    isn't going to change.</p>
    826 
    827 </div>
    828 
    829 <!-- ======================================================================= -->
    830 <h3>
    831   <a name="globalvars">Global Variables</a>
    832 </h3>
    833 
    834 <div>
    835 
    836 <p>Global variables define regions of memory allocated at compilation time
    837    instead of run-time.  Global variables may optionally be initialized, may
    838    have an explicit section to be placed in, and may have an optional explicit
    839    alignment specified.  A variable may be defined as "thread_local", which
    840    means that it will not be shared by threads (each thread will have a
    841    separated copy of the variable).  A variable may be defined as a global
    842    "constant," which indicates that the contents of the variable
    843    will <b>never</b> be modified (enabling better optimization, allowing the
    844    global data to be placed in the read-only section of an executable, etc).
    845    Note that variables that need runtime initialization cannot be marked
    846    "constant" as there is a store to the variable.</p>
    847 
    848 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
    849    constant, even if the final definition of the global is not.  This capability
    850    can be used to enable slightly better optimization of the program, but
    851    requires the language definition to guarantee that optimizations based on the
    852    'constantness' are valid for the translation units that do not include the
    853    definition.</p>
    854 
    855 <p>As SSA values, global variables define pointer values that are in scope
    856    (i.e. they dominate) all basic blocks in the program.  Global variables
    857    always define a pointer to their "content" type because they describe a
    858    region of memory, and all memory objects in LLVM are accessed through
    859    pointers.</p>
    860 
    861 <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
    862   that the address is not significant, only the content. Constants marked
    863   like this can be merged with other constants if they have the same
    864   initializer. Note that a constant with significant address <em>can</em>
    865   be merged with a <tt>unnamed_addr</tt> constant, the result being a
    866   constant whose address is significant.</p>
    867 
    868 <p>A global variable may be declared to reside in a target-specific numbered
    869    address space. For targets that support them, address spaces may affect how
    870    optimizations are performed and/or what target instructions are used to
    871    access the variable. The default address space is zero. The address space
    872    qualifier must precede any other attributes.</p>
    873 
    874 <p>LLVM allows an explicit section to be specified for globals.  If the target
    875    supports it, it will emit globals to the section specified.</p>
    876 
    877 <p>An explicit alignment may be specified for a global, which must be a power
    878    of 2.  If not present, or if the alignment is set to zero, the alignment of
    879    the global is set by the target to whatever it feels convenient.  If an
    880    explicit alignment is specified, the global is forced to have exactly that
    881    alignment.  Targets and optimizers are not allowed to over-align the global
    882    if the global has an assigned section.  In this case, the extra alignment
    883    could be observable: for example, code could assume that the globals are
    884    densely packed in their section and try to iterate over them as an array,
    885    alignment padding would break this iteration.</p>
    886 
    887 <p>For example, the following defines a global in a numbered address space with
    888    an initializer, section, and alignment:</p>
    889 
    890 <pre class="doc_code">
    891 @G = addrspace(5) constant float 1.0, section "foo", align 4
    892 </pre>
    893 
    894 </div>
    895 
    896 
    897 <!-- ======================================================================= -->
    898 <h3>
    899   <a name="functionstructure">Functions</a>
    900 </h3>
    901 
    902 <div>
    903 
    904 <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
    905    optional <a href="#linkage">linkage type</a>, an optional
    906    <a href="#visibility">visibility style</a>, an optional
    907    <a href="#callingconv">calling convention</a>,
    908    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    909    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    910    name, a (possibly empty) argument list (each with optional
    911    <a href="#paramattrs">parameter attributes</a>), optional
    912    <a href="#fnattrs">function attributes</a>, an optional section, an optional
    913    alignment, an optional <a href="#gc">garbage collector name</a>, an opening
    914    curly brace, a list of basic blocks, and a closing curly brace.</p>
    915 
    916 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
    917    optional <a href="#linkage">linkage type</a>, an optional
    918    <a href="#visibility">visibility style</a>, an optional
    919    <a href="#callingconv">calling convention</a>,
    920    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    921    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    922    name, a possibly empty list of arguments, an optional alignment, and an
    923    optional <a href="#gc">garbage collector name</a>.</p>
    924 
    925 <p>A function definition contains a list of basic blocks, forming the CFG
    926    (Control Flow Graph) for the function.  Each basic block may optionally start
    927    with a label (giving the basic block a symbol table entry), contains a list
    928    of instructions, and ends with a <a href="#terminators">terminator</a>
    929    instruction (such as a branch or function return).</p>
    930 
    931 <p>The first basic block in a function is special in two ways: it is immediately
    932    executed on entrance to the function, and it is not allowed to have
    933    predecessor basic blocks (i.e. there can not be any branches to the entry
    934    block of a function).  Because the block can have no predecessors, it also
    935    cannot have any <a href="#i_phi">PHI nodes</a>.</p>
    936 
    937 <p>LLVM allows an explicit section to be specified for functions.  If the target
    938    supports it, it will emit functions to the section specified.</p>
    939 
    940 <p>An explicit alignment may be specified for a function.  If not present, or if
    941    the alignment is set to zero, the alignment of the function is set by the
    942    target to whatever it feels convenient.  If an explicit alignment is
    943    specified, the function is forced to have at least that much alignment.  All
    944    alignments must be a power of 2.</p>
    945 
    946 <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
    947   be significant and two identical functions can be merged</p>.
    948 
    949 <h5>Syntax:</h5>
    950 <pre class="doc_code">
    951 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
    952        [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
    953        &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
    954        [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
    955        [<a href="#gc">gc</a>] { ... }
    956 </pre>
    957 
    958 </div>
    959 
    960 <!-- ======================================================================= -->
    961 <h3>
    962   <a name="aliasstructure">Aliases</a>
    963 </h3>
    964 
    965 <div>
    966 
    967 <p>Aliases act as "second name" for the aliasee value (which can be either
    968    function, global variable, another alias or bitcast of global value). Aliases
    969    may have an optional <a href="#linkage">linkage type</a>, and an
    970    optional <a href="#visibility">visibility style</a>.</p>
    971 
    972 <h5>Syntax:</h5>
    973 <pre class="doc_code">
    974 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
    975 </pre>
    976 
    977 </div>
    978 
    979 <!-- ======================================================================= -->
    980 <h3>
    981   <a name="namedmetadatastructure">Named Metadata</a>
    982 </h3>
    983 
    984 <div>
    985 
    986 <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
    987    nodes</a> (but not metadata strings) are the only valid operands for
    988    a named metadata.</p>
    989 
    990 <h5>Syntax:</h5>
    991 <pre class="doc_code">
    992 ; Some unnamed metadata nodes, which are referenced by the named metadata.
    993 !0 = metadata !{metadata !"zero"}
    994 !1 = metadata !{metadata !"one"}
    995 !2 = metadata !{metadata !"two"}
    996 ; A named metadata.
    997 !name = !{!0, !1, !2}
    998 </pre>
    999 
   1000 </div>
   1001 
   1002 <!-- ======================================================================= -->
   1003 <h3>
   1004   <a name="paramattrs">Parameter Attributes</a>
   1005 </h3>
   1006 
   1007 <div>
   1008 
   1009 <p>The return type and each parameter of a function type may have a set of
   1010    <i>parameter attributes</i> associated with them. Parameter attributes are
   1011    used to communicate additional information about the result or parameters of
   1012    a function. Parameter attributes are considered to be part of the function,
   1013    not of the function type, so functions with different parameter attributes
   1014    can have the same function type.</p>
   1015 
   1016 <p>Parameter attributes are simple keywords that follow the type specified. If
   1017    multiple parameter attributes are needed, they are space separated. For
   1018    example:</p>
   1019 
   1020 <pre class="doc_code">
   1021 declare i32 @printf(i8* noalias nocapture, ...)
   1022 declare i32 @atoi(i8 zeroext)
   1023 declare signext i8 @returns_signed_char()
   1024 </pre>
   1025 
   1026 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
   1027    <tt>readonly</tt>) come immediately after the argument list.</p>
   1028 
   1029 <p>Currently, only the following parameter attributes are defined:</p>
   1030 
   1031 <dl>
   1032   <dt><tt><b>zeroext</b></tt></dt>
   1033   <dd>This indicates to the code generator that the parameter or return value
   1034       should be zero-extended to the extent required by the target's ABI (which
   1035       is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
   1036       parameter) or the callee (for a return value).</dd>
   1037 
   1038   <dt><tt><b>signext</b></tt></dt>
   1039   <dd>This indicates to the code generator that the parameter or return value
   1040       should be sign-extended to the extent required by the target's ABI (which
   1041       is usually 32-bits) by the caller (for a parameter) or the callee (for a
   1042       return value).</dd>
   1043 
   1044   <dt><tt><b>inreg</b></tt></dt>
   1045   <dd>This indicates that this parameter or return value should be treated in a
   1046       special target-dependent fashion during while emitting code for a function
   1047       call or return (usually, by putting it in a register as opposed to memory,
   1048       though some targets use it to distinguish between two different kinds of
   1049       registers).  Use of this attribute is target-specific.</dd>
   1050 
   1051   <dt><tt><b><a name="byval">byval</a></b></tt></dt>
   1052   <dd><p>This indicates that the pointer parameter should really be passed by
   1053       value to the function.  The attribute implies that a hidden copy of the
   1054       pointee
   1055       is made between the caller and the callee, so the callee is unable to
   1056       modify the value in the callee.  This attribute is only valid on LLVM
   1057       pointer arguments.  It is generally used to pass structs and arrays by
   1058       value, but is also valid on pointers to scalars.  The copy is considered
   1059       to belong to the caller not the callee (for example,
   1060       <tt><a href="#readonly">readonly</a></tt> functions should not write to
   1061       <tt>byval</tt> parameters). This is not a valid attribute for return
   1062       values.</p>
   1063       
   1064       <p>The byval attribute also supports specifying an alignment with
   1065       the align attribute.  It indicates the alignment of the stack slot to
   1066       form and the known alignment of the pointer specified to the call site. If
   1067       the alignment is not specified, then the code generator makes a
   1068       target-specific assumption.</p></dd>
   1069 
   1070   <dt><tt><b><a name="sret">sret</a></b></tt></dt>
   1071   <dd>This indicates that the pointer parameter specifies the address of a
   1072       structure that is the return value of the function in the source program.
   1073       This pointer must be guaranteed by the caller to be valid: loads and
   1074       stores to the structure may be assumed by the callee to not to trap.  This
   1075       may only be applied to the first parameter. This is not a valid attribute
   1076       for return values. </dd>
   1077 
   1078   <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
   1079   <dd>This indicates that pointer values
   1080       <a href="#pointeraliasing"><i>based</i></a> on the argument or return
   1081       value do not alias pointer values which are not <i>based</i> on it,
   1082       ignoring certain "irrelevant" dependencies.
   1083       For a call to the parent function, dependencies between memory
   1084       references from before or after the call and from those during the call
   1085       are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
   1086       return value used in that call.
   1087       The caller shares the responsibility with the callee for ensuring that
   1088       these requirements are met.
   1089       For further details, please see the discussion of the NoAlias response in
   1090       <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
   1091 <br>
   1092       Note that this definition of <tt>noalias</tt> is intentionally
   1093       similar to the definition of <tt>restrict</tt> in C99 for function
   1094       arguments, though it is slightly weaker.
   1095 <br>
   1096       For function return values, C99's <tt>restrict</tt> is not meaningful,
   1097       while LLVM's <tt>noalias</tt> is.
   1098       </dd>
   1099 
   1100   <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
   1101   <dd>This indicates that the callee does not make any copies of the pointer
   1102       that outlive the callee itself. This is not a valid attribute for return
   1103       values.</dd>
   1104 
   1105   <dt><tt><b><a name="nest">nest</a></b></tt></dt>
   1106   <dd>This indicates that the pointer parameter can be excised using the
   1107       <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
   1108       attribute for return values.</dd>
   1109 </dl>
   1110 
   1111 </div>
   1112 
   1113 <!-- ======================================================================= -->
   1114 <h3>
   1115   <a name="gc">Garbage Collector Names</a>
   1116 </h3>
   1117 
   1118 <div>
   1119 
   1120 <p>Each function may specify a garbage collector name, which is simply a
   1121    string:</p>
   1122 
   1123 <pre class="doc_code">
   1124 define void @f() gc "name" { ... }
   1125 </pre>
   1126 
   1127 <p>The compiler declares the supported values of <i>name</i>. Specifying a
   1128    collector which will cause the compiler to alter its output in order to
   1129    support the named garbage collection algorithm.</p>
   1130 
   1131 </div>
   1132 
   1133 <!-- ======================================================================= -->
   1134 <h3>
   1135   <a name="fnattrs">Function Attributes</a>
   1136 </h3>
   1137 
   1138 <div>
   1139 
   1140 <p>Function attributes are set to communicate additional information about a
   1141    function. Function attributes are considered to be part of the function, not
   1142    of the function type, so functions with different parameter attributes can
   1143    have the same function type.</p>
   1144 
   1145 <p>Function attributes are simple keywords that follow the type specified. If
   1146    multiple attributes are needed, they are space separated. For example:</p>
   1147 
   1148 <pre class="doc_code">
   1149 define void @f() noinline { ... }
   1150 define void @f() alwaysinline { ... }
   1151 define void @f() alwaysinline optsize { ... }
   1152 define void @f() optsize { ... }
   1153 </pre>
   1154 
   1155 <dl>
   1156   <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
   1157   <dd>This attribute indicates that, when emitting the prologue and epilogue,
   1158       the backend should forcibly align the stack pointer. Specify the
   1159       desired alignment, which must be a power of two, in parentheses.
   1160 
   1161   <dt><tt><b>alwaysinline</b></tt></dt>
   1162   <dd>This attribute indicates that the inliner should attempt to inline this
   1163       function into callers whenever possible, ignoring any active inlining size
   1164       threshold for this caller.</dd>
   1165 
   1166   <dt><tt><b>nonlazybind</b></tt></dt>
   1167   <dd>This attribute suppresses lazy symbol binding for the function. This
   1168       may make calls to the function faster, at the cost of extra program
   1169       startup time if the function is not called during program startup.</dd>
   1170 
   1171   <dt><tt><b>inlinehint</b></tt></dt>
   1172   <dd>This attribute indicates that the source code contained a hint that inlining
   1173       this function is desirable (such as the "inline" keyword in C/C++).  It
   1174       is just a hint; it imposes no requirements on the inliner.</dd>
   1175 
   1176   <dt><tt><b>naked</b></tt></dt>
   1177   <dd>This attribute disables prologue / epilogue emission for the function.
   1178       This can have very system-specific consequences.</dd>
   1179 
   1180   <dt><tt><b>noimplicitfloat</b></tt></dt>
   1181   <dd>This attributes disables implicit floating point instructions.</dd>
   1182 
   1183   <dt><tt><b>noinline</b></tt></dt>
   1184   <dd>This attribute indicates that the inliner should never inline this
   1185       function in any situation. This attribute may not be used together with
   1186       the <tt>alwaysinline</tt> attribute.</dd>
   1187 
   1188   <dt><tt><b>noredzone</b></tt></dt>
   1189   <dd>This attribute indicates that the code generator should not use a red
   1190       zone, even if the target-specific ABI normally permits it.</dd>
   1191 
   1192   <dt><tt><b>noreturn</b></tt></dt>
   1193   <dd>This function attribute indicates that the function never returns
   1194       normally.  This produces undefined behavior at runtime if the function
   1195       ever does dynamically return.</dd>
   1196 
   1197   <dt><tt><b>nounwind</b></tt></dt>
   1198   <dd>This function attribute indicates that the function never returns with an
   1199       unwind or exceptional control flow.  If the function does unwind, its
   1200       runtime behavior is undefined.</dd>
   1201 
   1202   <dt><tt><b>optsize</b></tt></dt>
   1203   <dd>This attribute suggests that optimization passes and code generator passes
   1204       make choices that keep the code size of this function low, and otherwise
   1205       do optimizations specifically to reduce code size.</dd>
   1206 
   1207   <dt><tt><b>readnone</b></tt></dt>
   1208   <dd>This attribute indicates that the function computes its result (or decides
   1209       to unwind an exception) based strictly on its arguments, without
   1210       dereferencing any pointer arguments or otherwise accessing any mutable
   1211       state (e.g. memory, control registers, etc) visible to caller functions.
   1212       It does not write through any pointer arguments
   1213       (including <tt><a href="#byval">byval</a></tt> arguments) and never
   1214       changes any state visible to callers.  This means that it cannot unwind
   1215       exceptions by calling the <tt>C++</tt> exception throwing methods, but
   1216       could use the <tt>unwind</tt> instruction.</dd>
   1217 
   1218   <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
   1219   <dd>This attribute indicates that the function does not write through any
   1220       pointer arguments (including <tt><a href="#byval">byval</a></tt>
   1221       arguments) or otherwise modify any state (e.g. memory, control registers,
   1222       etc) visible to caller functions.  It may dereference pointer arguments
   1223       and read state that may be set in the caller.  A readonly function always
   1224       returns the same value (or unwinds an exception identically) when called
   1225       with the same set of arguments and global state.  It cannot unwind an
   1226       exception by calling the <tt>C++</tt> exception throwing methods, but may
   1227       use the <tt>unwind</tt> instruction.</dd>
   1228 
   1229   <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
   1230   <dd>This attribute indicates that the function should emit a stack smashing
   1231       protector. It is in the form of a "canary"&mdash;a random value placed on
   1232       the stack before the local variables that's checked upon return from the
   1233       function to see if it has been overwritten. A heuristic is used to
   1234       determine if a function needs stack protectors or not.<br>
   1235 <br>
   1236       If a function that has an <tt>ssp</tt> attribute is inlined into a
   1237       function that doesn't have an <tt>ssp</tt> attribute, then the resulting
   1238       function will have an <tt>ssp</tt> attribute.</dd>
   1239 
   1240   <dt><tt><b>sspreq</b></tt></dt>
   1241   <dd>This attribute indicates that the function should <em>always</em> emit a
   1242       stack smashing protector. This overrides
   1243       the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
   1244 <br>
   1245       If a function that has an <tt>sspreq</tt> attribute is inlined into a
   1246       function that doesn't have an <tt>sspreq</tt> attribute or which has
   1247       an <tt>ssp</tt> attribute, then the resulting function will have
   1248       an <tt>sspreq</tt> attribute.</dd>
   1249 
   1250   <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
   1251   <dd>This attribute indicates that the ABI being targeted requires that
   1252       an unwind table entry be produce for this function even if we can
   1253       show that no exceptions passes by it. This is normally the case for
   1254       the ELF x86-64 abi, but it can be disabled for some compilation
   1255       units.</dd>
   1256 
   1257   <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
   1258   <dd>This attribute indicates that this function can return
   1259   twice. The C <code>setjmp</code> is an example of such a function.
   1260   The compiler disables some optimizations (like tail calls) in the caller of
   1261   these functions.</dd>
   1262 </dl>
   1263 
   1264 </div>
   1265 
   1266 <!-- ======================================================================= -->
   1267 <h3>
   1268   <a name="moduleasm">Module-Level Inline Assembly</a>
   1269 </h3>
   1270 
   1271 <div>
   1272 
   1273 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
   1274    the GCC "file scope inline asm" blocks.  These blocks are internally
   1275    concatenated by LLVM and treated as a single unit, but may be separated in
   1276    the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
   1277 
   1278 <pre class="doc_code">
   1279 module asm "inline asm code goes here"
   1280 module asm "more can go here"
   1281 </pre>
   1282 
   1283 <p>The strings can contain any character by escaping non-printable characters.
   1284    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
   1285    for the number.</p>
   1286 
   1287 <p>The inline asm code is simply printed to the machine code .s file when
   1288    assembly code is generated.</p>
   1289 
   1290 </div>
   1291 
   1292 <!-- ======================================================================= -->
   1293 <h3>
   1294   <a name="datalayout">Data Layout</a>
   1295 </h3>
   1296 
   1297 <div>
   1298 
   1299 <p>A module may specify a target specific data layout string that specifies how
   1300    data is to be laid out in memory. The syntax for the data layout is
   1301    simply:</p>
   1302 
   1303 <pre class="doc_code">
   1304 target datalayout = "<i>layout specification</i>"
   1305 </pre>
   1306 
   1307 <p>The <i>layout specification</i> consists of a list of specifications
   1308    separated by the minus sign character ('-').  Each specification starts with
   1309    a letter and may include other information after the letter to define some
   1310    aspect of the data layout.  The specifications accepted are as follows:</p>
   1311 
   1312 <dl>
   1313   <dt><tt>E</tt></dt>
   1314   <dd>Specifies that the target lays out data in big-endian form. That is, the
   1315       bits with the most significance have the lowest address location.</dd>
   1316 
   1317   <dt><tt>e</tt></dt>
   1318   <dd>Specifies that the target lays out data in little-endian form. That is,
   1319       the bits with the least significance have the lowest address
   1320       location.</dd>
   1321 
   1322   <dt><tt>S<i>size</i></tt></dt>
   1323   <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
   1324       of stack variables is limited to the natural stack alignment to avoid
   1325       dynamic stack realignment. The stack alignment must be a multiple of
   1326       8-bits. If omitted, the natural stack alignment defaults to "unspecified",
   1327       which does not prevent any alignment promotions.</dd>
   1328 
   1329   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1330   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
   1331       <i>preferred</i> alignments. All sizes are in bits. Specifying
   1332       the <i>pref</i> alignment is optional. If omitted, the
   1333       preceding <tt>:</tt> should be omitted too.</dd>
   1334 
   1335   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1336   <dd>This specifies the alignment for an integer type of a given bit
   1337       <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
   1338 
   1339   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1340   <dd>This specifies the alignment for a vector type of a given bit
   1341       <i>size</i>.</dd>
   1342 
   1343   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1344   <dd>This specifies the alignment for a floating point type of a given bit
   1345       <i>size</i>. Only values of <i>size</i> that are supported by the target
   1346       will work.  32 (float) and 64 (double) are supported on all targets;
   1347       80 or 128 (different flavors of long double) are also supported on some
   1348       targets.
   1349 
   1350   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1351   <dd>This specifies the alignment for an aggregate type of a given bit
   1352       <i>size</i>.</dd>
   1353 
   1354   <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1355   <dd>This specifies the alignment for a stack object of a given bit
   1356       <i>size</i>.</dd>
   1357 
   1358   <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
   1359   <dd>This specifies a set of native integer widths for the target CPU
   1360       in bits.  For example, it might contain "n32" for 32-bit PowerPC,
   1361       "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
   1362       this set are considered to support most general arithmetic
   1363       operations efficiently.</dd>
   1364 </dl>
   1365 
   1366 <p>When constructing the data layout for a given target, LLVM starts with a
   1367    default set of specifications which are then (possibly) overridden by the
   1368    specifications in the <tt>datalayout</tt> keyword. The default specifications
   1369    are given in this list:</p>
   1370 
   1371 <ul>
   1372   <li><tt>E</tt> - big endian</li>
   1373   <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
   1374   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
   1375   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
   1376   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
   1377   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
   1378   <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
   1379   alignment of 64-bits</li>
   1380   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
   1381   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
   1382   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
   1383   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
   1384   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
   1385   <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
   1386 </ul>
   1387 
   1388 <p>When LLVM is determining the alignment for a given type, it uses the
   1389    following rules:</p>
   1390 
   1391 <ol>
   1392   <li>If the type sought is an exact match for one of the specifications, that
   1393       specification is used.</li>
   1394 
   1395   <li>If no match is found, and the type sought is an integer type, then the
   1396       smallest integer type that is larger than the bitwidth of the sought type
   1397       is used. If none of the specifications are larger than the bitwidth then
   1398       the the largest integer type is used. For example, given the default
   1399       specifications above, the i7 type will use the alignment of i8 (next
   1400       largest) while both i65 and i256 will use the alignment of i64 (largest
   1401       specified).</li>
   1402 
   1403   <li>If no match is found, and the type sought is a vector type, then the
   1404       largest vector type that is smaller than the sought vector type will be
   1405       used as a fall back.  This happens because &lt;128 x double&gt; can be
   1406       implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
   1407 </ol>
   1408 
   1409 <p>The function of the data layout string may not be what you expect.  Notably,
   1410    this is not a specification from the frontend of what alignment the code
   1411    generator should use.</p>
   1412 
   1413 <p>Instead, if specified, the target data layout is required to match what the 
   1414    ultimate <em>code generator</em> expects.  This string is used by the 
   1415    mid-level optimizers to
   1416    improve code, and this only works if it matches what the ultimate code 
   1417    generator uses.  If you would like to generate IR that does not embed this
   1418    target-specific detail into the IR, then you don't have to specify the 
   1419    string.  This will disable some optimizations that require precise layout
   1420    information, but this also prevents those optimizations from introducing
   1421    target specificity into the IR.</p>
   1422 
   1423 
   1424 
   1425 </div>
   1426 
   1427 <!-- ======================================================================= -->
   1428 <h3>
   1429   <a name="pointeraliasing">Pointer Aliasing Rules</a>
   1430 </h3>
   1431 
   1432 <div>
   1433 
   1434 <p>Any memory access must be done through a pointer value associated
   1435 with an address range of the memory access, otherwise the behavior
   1436 is undefined. Pointer values are associated with address ranges
   1437 according to the following rules:</p>
   1438 
   1439 <ul>
   1440   <li>A pointer value is associated with the addresses associated with
   1441       any value it is <i>based</i> on.
   1442   <li>An address of a global variable is associated with the address
   1443       range of the variable's storage.</li>
   1444   <li>The result value of an allocation instruction is associated with
   1445       the address range of the allocated storage.</li>
   1446   <li>A null pointer in the default address-space is associated with
   1447       no address.</li>
   1448   <li>An integer constant other than zero or a pointer value returned
   1449       from a function not defined within LLVM may be associated with address
   1450       ranges allocated through mechanisms other than those provided by
   1451       LLVM. Such ranges shall not overlap with any ranges of addresses
   1452       allocated by mechanisms provided by LLVM.</li>
   1453 </ul>
   1454 
   1455 <p>A pointer value is <i>based</i> on another pointer value according
   1456    to the following rules:</p>
   1457 
   1458 <ul>
   1459   <li>A pointer value formed from a
   1460       <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
   1461       is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
   1462   <li>The result value of a
   1463       <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
   1464       of the <tt>bitcast</tt>.</li>
   1465   <li>A pointer value formed by an
   1466       <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
   1467       pointer values that contribute (directly or indirectly) to the
   1468       computation of the pointer's value.</li>
   1469   <li>The "<i>based</i> on" relationship is transitive.</li>
   1470 </ul>
   1471 
   1472 <p>Note that this definition of <i>"based"</i> is intentionally
   1473    similar to the definition of <i>"based"</i> in C99, though it is
   1474    slightly weaker.</p>
   1475 
   1476 <p>LLVM IR does not associate types with memory. The result type of a
   1477 <tt><a href="#i_load">load</a></tt> merely indicates the size and
   1478 alignment of the memory from which to load, as well as the
   1479 interpretation of the value. The first operand type of a
   1480 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
   1481 and alignment of the store.</p>
   1482 
   1483 <p>Consequently, type-based alias analysis, aka TBAA, aka
   1484 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
   1485 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
   1486 additional information which specialized optimization passes may use
   1487 to implement type-based alias analysis.</p>
   1488 
   1489 </div>
   1490 
   1491 <!-- ======================================================================= -->
   1492 <h3>
   1493   <a name="volatile">Volatile Memory Accesses</a>
   1494 </h3>
   1495 
   1496 <div>
   1497 
   1498 <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
   1499 href="#i_store"><tt>store</tt></a>s, and <a
   1500 href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
   1501 The optimizers must not change the number of volatile operations or change their
   1502 order of execution relative to other volatile operations.  The optimizers
   1503 <i>may</i> change the order of volatile operations relative to non-volatile
   1504 operations.  This is not Java's "volatile" and has no cross-thread
   1505 synchronization behavior.</p>
   1506 
   1507 </div>
   1508 
   1509 <!-- ======================================================================= -->
   1510 <h3>
   1511   <a name="memmodel">Memory Model for Concurrent Operations</a>
   1512 </h3>
   1513 
   1514 <div>
   1515 
   1516 <p>The LLVM IR does not define any way to start parallel threads of execution
   1517 or to register signal handlers. Nonetheless, there are platform-specific
   1518 ways to create them, and we define LLVM IR's behavior in their presence. This
   1519 model is inspired by the C++0x memory model.</p>
   1520 
   1521 <p>For a more informal introduction to this model, see the
   1522 <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
   1523 
   1524 <p>We define a <i>happens-before</i> partial order as the least partial order
   1525 that</p>
   1526 <ul>
   1527   <li>Is a superset of single-thread program order, and</li>
   1528   <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
   1529       <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
   1530       by platform-specific techniques, like pthread locks, thread
   1531       creation, thread joining, etc., and by atomic instructions.
   1532       (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
   1533       </li>
   1534 </ul>
   1535 
   1536 <p>Note that program order does not introduce <i>happens-before</i> edges
   1537 between a thread and signals executing inside that thread.</p>
   1538 
   1539 <p>Every (defined) read operation (load instructions, memcpy, atomic
   1540 loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
   1541 (defined) write operations (store instructions, atomic
   1542 stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
   1543 initialized globals are considered to have a write of the initializer which is
   1544 atomic and happens before any other read or write of the memory in question.
   1545 For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
   1546 any write to the same byte, except:</p>
   1547 
   1548 <ul>
   1549   <li>If <var>write<sub>1</sub></var> happens before
   1550       <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
   1551       before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
   1552       does not see <var>write<sub>1</sub></var>.
   1553   <li>If <var>R<sub>byte</sub></var> happens before
   1554       <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
   1555       see <var>write<sub>3</sub></var>.
   1556 </ul>
   1557 
   1558 <p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
   1559 <ul>
   1560   <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
   1561       is supposed to give guarantees which can support
   1562       <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
   1563       addresses which do not behave like normal memory.  It does not generally
   1564       provide cross-thread synchronization.)
   1565   <li>Otherwise, if there is no write to the same byte that happens before
   1566     <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns 
   1567     <tt>undef</tt> for that byte.
   1568   <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
   1569       <var>R<sub>byte</sub></var> returns the value written by that
   1570       write.</li>
   1571   <li>Otherwise, if <var>R</var> is atomic, and all the writes
   1572       <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
   1573       values written.  See the <a href="#ordering">Atomic Memory Ordering
   1574       Constraints</a> section for additional constraints on how the choice
   1575       is made.
   1576   <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
   1577 </ul>
   1578 
   1579 <p><var>R</var> returns the value composed of the series of bytes it read.
   1580 This implies that some bytes within the value may be <tt>undef</tt>
   1581 <b>without</b> the entire value being <tt>undef</tt>. Note that this only
   1582 defines the semantics of the operation; it doesn't mean that targets will
   1583 emit more than one instruction to read the series of bytes.</p>
   1584 
   1585 <p>Note that in cases where none of the atomic intrinsics are used, this model
   1586 places only one restriction on IR transformations on top of what is required
   1587 for single-threaded execution: introducing a store to a byte which might not
   1588 otherwise be stored is not allowed in general.  (Specifically, in the case
   1589 where another thread might write to and read from an address, introducing a
   1590 store can change a load that may see exactly one write into a load that may
   1591 see multiple writes.)</p>
   1592 
   1593 <!-- FIXME: This model assumes all targets where concurrency is relevant have
   1594 a byte-size store which doesn't affect adjacent bytes.  As far as I can tell,
   1595 none of the backends currently in the tree fall into this category; however,
   1596 there might be targets which care.  If there are, we want a paragraph
   1597 like the following:
   1598 
   1599 Targets may specify that stores narrower than a certain width are not
   1600 available; on such a target, for the purposes of this model, treat any
   1601 non-atomic write with an alignment or width less than the minimum width
   1602 as if it writes to the relevant surrounding bytes.
   1603 -->
   1604 
   1605 </div>
   1606 
   1607 <!-- ======================================================================= -->
   1608 <h3>
   1609       <a name="ordering">Atomic Memory Ordering Constraints</a>
   1610 </h3>
   1611 
   1612 <div>
   1613 
   1614 <p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
   1615 <a href="#i_atomicrmw"><code>atomicrmw</code></a>,
   1616 <a href="#i_fence"><code>fence</code></a>,
   1617 <a href="#i_load"><code>atomic load</code></a>, and
   1618 <a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
   1619 that determines which other atomic instructions on the same address they
   1620 <i>synchronize with</i>.  These semantics are borrowed from Java and C++0x,
   1621 but are somewhat more colloquial. If these descriptions aren't precise enough,
   1622 check those specs (see spec references in the
   1623 <a href="Atomic.html#introduction">atomics guide</a>).
   1624 <a href="#i_fence"><code>fence</code></a> instructions
   1625 treat these orderings somewhat differently since they don't take an address.
   1626 See that instruction's documentation for details.</p>
   1627 
   1628 <p>For a simpler introduction to the ordering constraints, see the
   1629 <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
   1630 
   1631 <dl>
   1632 <dt><code>unordered</code></dt>
   1633 <dd>The set of values that can be read is governed by the happens-before
   1634 partial order. A value cannot be read unless some operation wrote it.
   1635 This is intended to provide a guarantee strong enough to model Java's
   1636 non-volatile shared variables.  This ordering cannot be specified for
   1637 read-modify-write operations; it is not strong enough to make them atomic
   1638 in any interesting way.</dd>
   1639 <dt><code>monotonic</code></dt>
   1640 <dd>In addition to the guarantees of <code>unordered</code>, there is a single
   1641 total order for modifications by <code>monotonic</code> operations on each
   1642 address. All modification orders must be compatible with the happens-before
   1643 order. There is no guarantee that the modification orders can be combined to
   1644 a global total order for the whole program (and this often will not be
   1645 possible). The read in an atomic read-modify-write operation
   1646 (<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
   1647 <a href="#i_atomicrmw"><code>atomicrmw</code></a>)
   1648 reads the value in the modification order immediately before the value it
   1649 writes. If one atomic read happens before another atomic read of the same
   1650 address, the later read must see the same value or a later value in the
   1651 address's modification order. This disallows reordering of
   1652 <code>monotonic</code> (or stronger) operations on the same address. If an
   1653 address is written <code>monotonic</code>ally by one thread, and other threads
   1654 <code>monotonic</code>ally read that address repeatedly, the other threads must
   1655 eventually see the write. This corresponds to the C++0x/C1x
   1656 <code>memory_order_relaxed</code>.</dd>
   1657 <dt><code>acquire</code></dt>
   1658 <dd>In addition to the guarantees of <code>monotonic</code>,
   1659 a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
   1660 operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
   1661 <dt><code>release</code></dt>
   1662 <dd>In addition to the guarantees of <code>monotonic</code>, if this operation
   1663 writes a value which is subsequently read by an <code>acquire</code> operation,
   1664 it <i>synchronizes-with</i> that operation.  (This isn't a complete
   1665 description; see the C++0x definition of a release sequence.) This corresponds
   1666 to the C++0x/C1x <code>memory_order_release</code>.</dd>
   1667 <dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
   1668 <code>acquire</code> and <code>release</code> operation on its address.
   1669 This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
   1670 <dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
   1671 <dd>In addition to the guarantees of <code>acq_rel</code>
   1672 (<code>acquire</code> for an operation which only reads, <code>release</code>
   1673 for an operation which only writes), there is a global total order on all
   1674 sequentially-consistent operations on all addresses, which is consistent with
   1675 the <i>happens-before</i> partial order and with the modification orders of
   1676 all the affected addresses. Each sequentially-consistent read sees the last
   1677 preceding write to the same address in this global order. This corresponds
   1678 to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
   1679 </dl>
   1680 
   1681 <p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
   1682 it only <i>synchronizes with</i> or participates in modification and seq_cst
   1683 total orderings with other operations running in the same thread (for example,
   1684 in signal handlers).</p>
   1685 
   1686 </div>
   1687 
   1688 </div>
   1689 
   1690 <!-- *********************************************************************** -->
   1691 <h2><a name="typesystem">Type System</a></h2>
   1692 <!-- *********************************************************************** -->
   1693 
   1694 <div>
   1695 
   1696 <p>The LLVM type system is one of the most important features of the
   1697    intermediate representation.  Being typed enables a number of optimizations
   1698    to be performed on the intermediate representation directly, without having
   1699    to do extra analyses on the side before the transformation.  A strong type
   1700    system makes it easier to read the generated code and enables novel analyses
   1701    and transformations that are not feasible to perform on normal three address
   1702    code representations.</p>
   1703 
   1704 <!-- ======================================================================= -->
   1705 <h3>
   1706   <a name="t_classifications">Type Classifications</a>
   1707 </h3>
   1708 
   1709 <div>
   1710 
   1711 <p>The types fall into a few useful classifications:</p>
   1712 
   1713 <table border="1" cellspacing="0" cellpadding="4">
   1714   <tbody>
   1715     <tr><th>Classification</th><th>Types</th></tr>
   1716     <tr>
   1717       <td><a href="#t_integer">integer</a></td>
   1718       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
   1719     </tr>
   1720     <tr>
   1721       <td><a href="#t_floating">floating point</a></td>
   1722       <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
   1723     </tr>
   1724     <tr>
   1725       <td><a name="t_firstclass">first class</a></td>
   1726       <td><a href="#t_integer">integer</a>,
   1727           <a href="#t_floating">floating point</a>,
   1728           <a href="#t_pointer">pointer</a>,
   1729           <a href="#t_vector">vector</a>,
   1730           <a href="#t_struct">structure</a>,
   1731           <a href="#t_array">array</a>,
   1732           <a href="#t_label">label</a>,
   1733           <a href="#t_metadata">metadata</a>.
   1734       </td>
   1735     </tr>
   1736     <tr>
   1737       <td><a href="#t_primitive">primitive</a></td>
   1738       <td><a href="#t_label">label</a>,
   1739           <a href="#t_void">void</a>,
   1740           <a href="#t_integer">integer</a>,
   1741           <a href="#t_floating">floating point</a>,
   1742           <a href="#t_x86mmx">x86mmx</a>,
   1743           <a href="#t_metadata">metadata</a>.</td>
   1744     </tr>
   1745     <tr>
   1746       <td><a href="#t_derived">derived</a></td>
   1747       <td><a href="#t_array">array</a>,
   1748           <a href="#t_function">function</a>,
   1749           <a href="#t_pointer">pointer</a>,
   1750           <a href="#t_struct">structure</a>,
   1751           <a href="#t_vector">vector</a>,
   1752           <a href="#t_opaque">opaque</a>.
   1753       </td>
   1754     </tr>
   1755   </tbody>
   1756 </table>
   1757 
   1758 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
   1759    important.  Values of these types are the only ones which can be produced by
   1760    instructions.</p>
   1761 
   1762 </div>
   1763 
   1764 <!-- ======================================================================= -->
   1765 <h3>
   1766   <a name="t_primitive">Primitive Types</a>
   1767 </h3>
   1768 
   1769 <div>
   1770 
   1771 <p>The primitive types are the fundamental building blocks of the LLVM
   1772    system.</p>
   1773 
   1774 <!-- _______________________________________________________________________ -->
   1775 <h4>
   1776   <a name="t_integer">Integer Type</a>
   1777 </h4>
   1778 
   1779 <div>
   1780 
   1781 <h5>Overview:</h5>
   1782 <p>The integer type is a very simple type that simply specifies an arbitrary
   1783    bit width for the integer type desired. Any bit width from 1 bit to
   1784    2<sup>23</sup>-1 (about 8 million) can be specified.</p>
   1785 
   1786 <h5>Syntax:</h5>
   1787 <pre>
   1788   iN
   1789 </pre>
   1790 
   1791 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
   1792    value.</p>
   1793 
   1794 <h5>Examples:</h5>
   1795 <table class="layout">
   1796   <tr class="layout">
   1797     <td class="left"><tt>i1</tt></td>
   1798     <td class="left">a single-bit integer.</td>
   1799   </tr>
   1800   <tr class="layout">
   1801     <td class="left"><tt>i32</tt></td>
   1802     <td class="left">a 32-bit integer.</td>
   1803   </tr>
   1804   <tr class="layout">
   1805     <td class="left"><tt>i1942652</tt></td>
   1806     <td class="left">a really big integer of over 1 million bits.</td>
   1807   </tr>
   1808 </table>
   1809 
   1810 </div>
   1811 
   1812 <!-- _______________________________________________________________________ -->
   1813 <h4>
   1814   <a name="t_floating">Floating Point Types</a>
   1815 </h4>
   1816 
   1817 <div>
   1818 
   1819 <table>
   1820   <tbody>
   1821     <tr><th>Type</th><th>Description</th></tr>
   1822     <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
   1823     <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
   1824     <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
   1825     <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
   1826     <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
   1827   </tbody>
   1828 </table>
   1829 
   1830 </div>
   1831 
   1832 <!-- _______________________________________________________________________ -->
   1833 <h4>
   1834   <a name="t_x86mmx">X86mmx Type</a>
   1835 </h4>
   1836 
   1837 <div>
   1838 
   1839 <h5>Overview:</h5>
   1840 <p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
   1841 
   1842 <h5>Syntax:</h5>
   1843 <pre>
   1844   x86mmx
   1845 </pre>
   1846 
   1847 </div>
   1848 
   1849 <!-- _______________________________________________________________________ -->
   1850 <h4>
   1851   <a name="t_void">Void Type</a>
   1852 </h4>
   1853 
   1854 <div>
   1855 
   1856 <h5>Overview:</h5>
   1857 <p>The void type does not represent any value and has no size.</p>
   1858 
   1859 <h5>Syntax:</h5>
   1860 <pre>
   1861   void
   1862 </pre>
   1863 
   1864 </div>
   1865 
   1866 <!-- _______________________________________________________________________ -->
   1867 <h4>
   1868   <a name="t_label">Label Type</a>
   1869 </h4>
   1870 
   1871 <div>
   1872 
   1873 <h5>Overview:</h5>
   1874 <p>The label type represents code labels.</p>
   1875 
   1876 <h5>Syntax:</h5>
   1877 <pre>
   1878   label
   1879 </pre>
   1880 
   1881 </div>
   1882 
   1883 <!-- _______________________________________________________________________ -->
   1884 <h4>
   1885   <a name="t_metadata">Metadata Type</a>
   1886 </h4>
   1887 
   1888 <div>
   1889 
   1890 <h5>Overview:</h5>
   1891 <p>The metadata type represents embedded metadata. No derived types may be
   1892    created from metadata except for <a href="#t_function">function</a>
   1893    arguments.
   1894 
   1895 <h5>Syntax:</h5>
   1896 <pre>
   1897   metadata
   1898 </pre>
   1899 
   1900 </div>
   1901 
   1902 </div>
   1903 
   1904 <!-- ======================================================================= -->
   1905 <h3>
   1906   <a name="t_derived">Derived Types</a>
   1907 </h3>
   1908 
   1909 <div>
   1910 
   1911 <p>The real power in LLVM comes from the derived types in the system.  This is
   1912    what allows a programmer to represent arrays, functions, pointers, and other
   1913    useful types.  Each of these types contain one or more element types which
   1914    may be a primitive type, or another derived type.  For example, it is
   1915    possible to have a two dimensional array, using an array as the element type
   1916    of another array.</p>
   1917 
   1918 </div>
   1919   
   1920 
   1921 <!-- _______________________________________________________________________ -->
   1922 <h4>
   1923   <a name="t_aggregate">Aggregate Types</a>
   1924 </h4>
   1925 
   1926 <div>
   1927 
   1928 <p>Aggregate Types are a subset of derived types that can contain multiple
   1929   member types. <a href="#t_array">Arrays</a>,
   1930   <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
   1931   aggregate types.</p>
   1932 
   1933 </div>
   1934 
   1935 <!-- _______________________________________________________________________ -->
   1936 <h4>
   1937   <a name="t_array">Array Type</a>
   1938 </h4>
   1939 
   1940 <div>
   1941 
   1942 <h5>Overview:</h5>
   1943 <p>The array type is a very simple derived type that arranges elements
   1944    sequentially in memory.  The array type requires a size (number of elements)
   1945    and an underlying data type.</p>
   1946 
   1947 <h5>Syntax:</h5>
   1948 <pre>
   1949   [&lt;# elements&gt; x &lt;elementtype&gt;]
   1950 </pre>
   1951 
   1952 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
   1953    be any type with a size.</p>
   1954 
   1955 <h5>Examples:</h5>
   1956 <table class="layout">
   1957   <tr class="layout">
   1958     <td class="left"><tt>[40 x i32]</tt></td>
   1959     <td class="left">Array of 40 32-bit integer values.</td>
   1960   </tr>
   1961   <tr class="layout">
   1962     <td class="left"><tt>[41 x i32]</tt></td>
   1963     <td class="left">Array of 41 32-bit integer values.</td>
   1964   </tr>
   1965   <tr class="layout">
   1966     <td class="left"><tt>[4 x i8]</tt></td>
   1967     <td class="left">Array of 4 8-bit integer values.</td>
   1968   </tr>
   1969 </table>
   1970 <p>Here are some examples of multidimensional arrays:</p>
   1971 <table class="layout">
   1972   <tr class="layout">
   1973     <td class="left"><tt>[3 x [4 x i32]]</tt></td>
   1974     <td class="left">3x4 array of 32-bit integer values.</td>
   1975   </tr>
   1976   <tr class="layout">
   1977     <td class="left"><tt>[12 x [10 x float]]</tt></td>
   1978     <td class="left">12x10 array of single precision floating point values.</td>
   1979   </tr>
   1980   <tr class="layout">
   1981     <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
   1982     <td class="left">2x3x4 array of 16-bit integer  values.</td>
   1983   </tr>
   1984 </table>
   1985 
   1986 <p>There is no restriction on indexing beyond the end of the array implied by
   1987    a static type (though there are restrictions on indexing beyond the bounds
   1988    of an allocated object in some cases). This means that single-dimension
   1989    'variable sized array' addressing can be implemented in LLVM with a zero
   1990    length array type. An implementation of 'pascal style arrays' in LLVM could
   1991    use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
   1992 
   1993 </div>
   1994 
   1995 <!-- _______________________________________________________________________ -->
   1996 <h4>
   1997   <a name="t_function">Function Type</a>
   1998 </h4>
   1999 
   2000 <div>
   2001 
   2002 <h5>Overview:</h5>
   2003 <p>The function type can be thought of as a function signature.  It consists of
   2004    a return type and a list of formal parameter types. The return type of a
   2005    function type is a first class type or a void type.</p>
   2006 
   2007 <h5>Syntax:</h5>
   2008 <pre>
   2009   &lt;returntype&gt; (&lt;parameter list&gt;)
   2010 </pre>
   2011 
   2012 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
   2013    specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
   2014    which indicates that the function takes a variable number of arguments.
   2015    Variable argument functions can access their arguments with
   2016    the <a href="#int_varargs">variable argument handling intrinsic</a>
   2017    functions.  '<tt>&lt;returntype&gt;</tt>' is any type except
   2018    <a href="#t_label">label</a>.</p>
   2019 
   2020 <h5>Examples:</h5>
   2021 <table class="layout">
   2022   <tr class="layout">
   2023     <td class="left"><tt>i32 (i32)</tt></td>
   2024     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
   2025     </td>
   2026   </tr><tr class="layout">
   2027     <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
   2028     </tt></td>
   2029     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
   2030       an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
   2031       returning <tt>float</tt>.
   2032     </td>
   2033   </tr><tr class="layout">
   2034     <td class="left"><tt>i32 (i8*, ...)</tt></td>
   2035     <td class="left">A vararg function that takes at least one
   2036       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
   2037       which returns an integer.  This is the signature for <tt>printf</tt> in
   2038       LLVM.
   2039     </td>
   2040   </tr><tr class="layout">
   2041     <td class="left"><tt>{i32, i32} (i32)</tt></td>
   2042     <td class="left">A function taking an <tt>i32</tt>, returning a
   2043         <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
   2044     </td>
   2045   </tr>
   2046 </table>
   2047 
   2048 </div>
   2049 
   2050 <!-- _______________________________________________________________________ -->
   2051 <h4>
   2052   <a name="t_struct">Structure Type</a>
   2053 </h4>
   2054 
   2055 <div>
   2056 
   2057 <h5>Overview:</h5>
   2058 <p>The structure type is used to represent a collection of data members together
   2059   in memory.  The elements of a structure may be any type that has a size.</p>
   2060 
   2061 <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
   2062    and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
   2063    with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
   2064    Structures in registers are accessed using the
   2065    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
   2066    '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
   2067   
   2068 <p>Structures may optionally be "packed" structures, which indicate that the 
   2069   alignment of the struct is one byte, and that there is no padding between
   2070   the elements.  In non-packed structs, padding between field types is inserted
   2071   as defined by the TargetData string in the module, which is required to match
   2072   what the underlying code generator expects.</p>
   2073 
   2074 <p>Structures can either be "literal" or "identified".  A literal structure is
   2075   defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
   2076   types are always defined at the top level with a name.  Literal types are
   2077   uniqued by their contents and can never be recursive or opaque since there is
   2078   no way to write one.  Identified types can be recursive, can be opaqued, and are
   2079   never uniqued.
   2080 </p>
   2081   
   2082 <h5>Syntax:</h5>
   2083 <pre>
   2084   %T1 = type { &lt;type list&gt; }     <i>; Identified normal struct type</i>
   2085   %T2 = type &lt;{ &lt;type list&gt; }&gt;   <i>; Identified packed struct type</i>
   2086 </pre>
   2087   
   2088 <h5>Examples:</h5>
   2089 <table class="layout">
   2090   <tr class="layout">
   2091     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
   2092     <td class="left">A triple of three <tt>i32</tt> values</td>
   2093   </tr>
   2094   <tr class="layout">
   2095     <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
   2096     <td class="left">A pair, where the first element is a <tt>float</tt> and the
   2097       second element is a <a href="#t_pointer">pointer</a> to a
   2098       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
   2099       an <tt>i32</tt>.</td>
   2100   </tr>
   2101   <tr class="layout">
   2102     <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
   2103     <td class="left">A packed struct known to be 5 bytes in size.</td>
   2104   </tr>
   2105 </table>
   2106 
   2107 </div>
   2108   
   2109 <!-- _______________________________________________________________________ -->
   2110 <h4>
   2111   <a name="t_opaque">Opaque Structure Types</a>
   2112 </h4>
   2113 
   2114 <div>
   2115 
   2116 <h5>Overview:</h5>
   2117 <p>Opaque structure types are used to represent named structure types that do
   2118    not have a body specified.  This corresponds (for example) to the C notion of
   2119    a forward declared structure.</p>
   2120 
   2121 <h5>Syntax:</h5>
   2122 <pre>
   2123   %X = type opaque
   2124   %52 = type opaque
   2125 </pre>
   2126 
   2127 <h5>Examples:</h5>
   2128 <table class="layout">
   2129   <tr class="layout">
   2130     <td class="left"><tt>opaque</tt></td>
   2131     <td class="left">An opaque type.</td>
   2132   </tr>
   2133 </table>
   2134 
   2135 </div>
   2136 
   2137 
   2138 
   2139 <!-- _______________________________________________________________________ -->
   2140 <h4>
   2141   <a name="t_pointer">Pointer Type</a>
   2142 </h4>
   2143 
   2144 <div>
   2145 
   2146 <h5>Overview:</h5>
   2147 <p>The pointer type is used to specify memory locations.
   2148    Pointers are commonly used to reference objects in memory.</p>
   2149    
   2150 <p>Pointer types may have an optional address space attribute defining the
   2151    numbered address space where the pointed-to object resides. The default
   2152    address space is number zero. The semantics of non-zero address
   2153    spaces are target-specific.</p>
   2154 
   2155 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
   2156    permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
   2157 
   2158 <h5>Syntax:</h5>
   2159 <pre>
   2160   &lt;type&gt; *
   2161 </pre>
   2162 
   2163 <h5>Examples:</h5>
   2164 <table class="layout">
   2165   <tr class="layout">
   2166     <td class="left"><tt>[4 x i32]*</tt></td>
   2167     <td class="left">A <a href="#t_pointer">pointer</a> to <a
   2168                     href="#t_array">array</a> of four <tt>i32</tt> values.</td>
   2169   </tr>
   2170   <tr class="layout">
   2171     <td class="left"><tt>i32 (i32*) *</tt></td>
   2172     <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
   2173       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
   2174       <tt>i32</tt>.</td>
   2175   </tr>
   2176   <tr class="layout">
   2177     <td class="left"><tt>i32 addrspace(5)*</tt></td>
   2178     <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
   2179      that resides in address space #5.</td>
   2180   </tr>
   2181 </table>
   2182 
   2183 </div>
   2184 
   2185 <!-- _______________________________________________________________________ -->
   2186 <h4>
   2187   <a name="t_vector">Vector Type</a>
   2188 </h4>
   2189 
   2190 <div>
   2191 
   2192 <h5>Overview:</h5>
   2193 <p>A vector type is a simple derived type that represents a vector of elements.
   2194    Vector types are used when multiple primitive data are operated in parallel
   2195    using a single instruction (SIMD).  A vector type requires a size (number of
   2196    elements) and an underlying primitive data type.  Vector types are considered
   2197    <a href="#t_firstclass">first class</a>.</p>
   2198 
   2199 <h5>Syntax:</h5>
   2200 <pre>
   2201   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
   2202 </pre>
   2203 
   2204 <p>The number of elements is a constant integer value larger than 0; elementtype
   2205    may be any integer or floating point type.  Vectors of size zero are not
   2206    allowed, and pointers are not allowed as the element type.</p>
   2207 
   2208 <h5>Examples:</h5>
   2209 <table class="layout">
   2210   <tr class="layout">
   2211     <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
   2212     <td class="left">Vector of 4 32-bit integer values.</td>
   2213   </tr>
   2214   <tr class="layout">
   2215     <td class="left"><tt>&lt;8 x float&gt;</tt></td>
   2216     <td class="left">Vector of 8 32-bit floating-point values.</td>
   2217   </tr>
   2218   <tr class="layout">
   2219     <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
   2220     <td class="left">Vector of 2 64-bit integer values.</td>
   2221   </tr>
   2222 </table>
   2223 
   2224 </div>
   2225 
   2226 </div>
   2227 
   2228 <!-- *********************************************************************** -->
   2229 <h2><a name="constants">Constants</a></h2>
   2230 <!-- *********************************************************************** -->
   2231 
   2232 <div>
   2233 
   2234 <p>LLVM has several different basic types of constants.  This section describes
   2235    them all and their syntax.</p>
   2236 
   2237 <!-- ======================================================================= -->
   2238 <h3>
   2239   <a name="simpleconstants">Simple Constants</a>
   2240 </h3>
   2241 
   2242 <div>
   2243 
   2244 <dl>
   2245   <dt><b>Boolean constants</b></dt>
   2246   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
   2247       constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
   2248 
   2249   <dt><b>Integer constants</b></dt>
   2250   <dd>Standard integers (such as '4') are constants of
   2251       the <a href="#t_integer">integer</a> type.  Negative numbers may be used
   2252       with integer types.</dd>
   2253 
   2254   <dt><b>Floating point constants</b></dt>
   2255   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
   2256       exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
   2257       notation (see below).  The assembler requires the exact decimal value of a
   2258       floating-point constant.  For example, the assembler accepts 1.25 but
   2259       rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
   2260       constants must have a <a href="#t_floating">floating point</a> type. </dd>
   2261 
   2262   <dt><b>Null pointer constants</b></dt>
   2263   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
   2264       and must be of <a href="#t_pointer">pointer type</a>.</dd>
   2265 </dl>
   2266 
   2267 <p>The one non-intuitive notation for constants is the hexadecimal form of
   2268    floating point constants.  For example, the form '<tt>double
   2269    0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
   2270    '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
   2271    constants are required (and the only time that they are generated by the
   2272    disassembler) is when a floating point constant must be emitted but it cannot
   2273    be represented as a decimal floating point number in a reasonable number of
   2274    digits.  For example, NaN's, infinities, and other special values are
   2275    represented in their IEEE hexadecimal format so that assembly and disassembly
   2276    do not cause any bits to change in the constants.</p>
   2277 
   2278 <p>When using the hexadecimal form, constants of types float and double are
   2279    represented using the 16-digit form shown above (which matches the IEEE754
   2280    representation for double); float values must, however, be exactly
   2281    representable as IEE754 single precision.  Hexadecimal format is always used
   2282    for long double, and there are three forms of long double.  The 80-bit format
   2283    used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
   2284    The 128-bit format used by PowerPC (two adjacent doubles) is represented
   2285    by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
   2286    is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
   2287    currently supported target uses this format.  Long doubles will only work if
   2288    they match the long double format on your target.  All hexadecimal formats
   2289    are big-endian (sign bit at the left).</p>
   2290 
   2291 <p>There are no constants of type x86mmx.</p>
   2292 </div>
   2293 
   2294 <!-- ======================================================================= -->
   2295 <h3>
   2296 <a name="aggregateconstants"></a> <!-- old anchor -->
   2297 <a name="complexconstants">Complex Constants</a>
   2298 </h3>
   2299 
   2300 <div>
   2301 
   2302 <p>Complex constants are a (potentially recursive) combination of simple
   2303    constants and smaller complex constants.</p>
   2304 
   2305 <dl>
   2306   <dt><b>Structure constants</b></dt>
   2307   <dd>Structure constants are represented with notation similar to structure
   2308       type definitions (a comma separated list of elements, surrounded by braces
   2309       (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
   2310       where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
   2311       Structure constants must have <a href="#t_struct">structure type</a>, and
   2312       the number and types of elements must match those specified by the
   2313       type.</dd>
   2314 
   2315   <dt><b>Array constants</b></dt>
   2316   <dd>Array constants are represented with notation similar to array type
   2317      definitions (a comma separated list of elements, surrounded by square
   2318      brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
   2319      ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
   2320      the number and types of elements must match those specified by the
   2321      type.</dd>
   2322 
   2323   <dt><b>Vector constants</b></dt>
   2324   <dd>Vector constants are represented with notation similar to vector type
   2325       definitions (a comma separated list of elements, surrounded by
   2326       less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
   2327       42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
   2328       have <a href="#t_vector">vector type</a>, and the number and types of
   2329       elements must match those specified by the type.</dd>
   2330 
   2331   <dt><b>Zero initialization</b></dt>
   2332   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
   2333       value to zero of <em>any</em> type, including scalar and
   2334       <a href="#t_aggregate">aggregate</a> types.
   2335       This is often used to avoid having to print large zero initializers
   2336       (e.g. for large arrays) and is always exactly equivalent to using explicit
   2337       zero initializers.</dd>
   2338 
   2339   <dt><b>Metadata node</b></dt>
   2340   <dd>A metadata node is a structure-like constant with
   2341       <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
   2342       i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
   2343       be interpreted as part of the instruction stream, metadata is a place to
   2344       attach additional information such as debug info.</dd>
   2345 </dl>
   2346 
   2347 </div>
   2348 
   2349 <!-- ======================================================================= -->
   2350 <h3>
   2351   <a name="globalconstants">Global Variable and Function Addresses</a>
   2352 </h3>
   2353 
   2354 <div>
   2355 
   2356 <p>The addresses of <a href="#globalvars">global variables</a>
   2357    and <a href="#functionstructure">functions</a> are always implicitly valid
   2358    (link-time) constants.  These constants are explicitly referenced when
   2359    the <a href="#identifiers">identifier for the global</a> is used and always
   2360    have <a href="#t_pointer">pointer</a> type. For example, the following is a
   2361    legal LLVM file:</p>
   2362 
   2363 <pre class="doc_code">
   2364 @X = global i32 17
   2365 @Y = global i32 42
   2366 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
   2367 </pre>
   2368 
   2369 </div>
   2370 
   2371 <!-- ======================================================================= -->
   2372 <h3>
   2373   <a name="undefvalues">Undefined Values</a>
   2374 </h3>
   2375 
   2376 <div>
   2377 
   2378 <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
   2379    indicates that the user of the value may receive an unspecified bit-pattern.
   2380    Undefined values may be of any type (other than '<tt>label</tt>'
   2381    or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
   2382 
   2383 <p>Undefined values are useful because they indicate to the compiler that the
   2384    program is well defined no matter what value is used.  This gives the
   2385    compiler more freedom to optimize.  Here are some examples of (potentially
   2386    surprising) transformations that are valid (in pseudo IR):</p>
   2387 
   2388 
   2389 <pre class="doc_code">
   2390   %A = add %X, undef
   2391   %B = sub %X, undef
   2392   %C = xor %X, undef
   2393 Safe:
   2394   %A = undef
   2395   %B = undef
   2396   %C = undef
   2397 </pre>
   2398 
   2399 <p>This is safe because all of the output bits are affected by the undef bits.
   2400    Any output bit can have a zero or one depending on the input bits.</p>
   2401 
   2402 <pre class="doc_code">
   2403   %A = or %X, undef
   2404   %B = and %X, undef
   2405 Safe:
   2406   %A = -1
   2407   %B = 0
   2408 Unsafe:
   2409   %A = undef
   2410   %B = undef
   2411 </pre>
   2412 
   2413 <p>These logical operations have bits that are not always affected by the input.
   2414    For example, if <tt>%X</tt> has a zero bit, then the output of the
   2415    '<tt>and</tt>' operation will always be a zero for that bit, no matter what
   2416    the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
   2417    optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
   2418    However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
   2419    0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
   2420    all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
   2421    set, allowing the '<tt>or</tt>' to be folded to -1.</p>
   2422 
   2423 <pre class="doc_code">
   2424   %A = select undef, %X, %Y
   2425   %B = select undef, 42, %Y
   2426   %C = select %X, %Y, undef
   2427 Safe:
   2428   %A = %X     (or %Y)
   2429   %B = 42     (or %Y)
   2430   %C = %Y
   2431 Unsafe:
   2432   %A = undef
   2433   %B = undef
   2434   %C = undef
   2435 </pre>
   2436 
   2437 <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
   2438    branch) conditions can go <em>either way</em>, but they have to come from one
   2439    of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
   2440    <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
   2441    have to have a cleared low bit. However, in the <tt>%C</tt> example, the
   2442    optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
   2443    same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
   2444    eliminated.</p>
   2445 
   2446 <pre class="doc_code">
   2447   %A = xor undef, undef
   2448 
   2449   %B = undef
   2450   %C = xor %B, %B
   2451 
   2452   %D = undef
   2453   %E = icmp lt %D, 4
   2454   %F = icmp gte %D, 4
   2455 
   2456 Safe:
   2457   %A = undef
   2458   %B = undef
   2459   %C = undef
   2460   %D = undef
   2461   %E = undef
   2462   %F = undef
   2463 </pre>
   2464 
   2465 <p>This example points out that two '<tt>undef</tt>' operands are not
   2466    necessarily the same. This can be surprising to people (and also matches C
   2467    semantics) where they assume that "<tt>X^X</tt>" is always zero, even
   2468    if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
   2469    short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
   2470    its value over its "live range".  This is true because the variable doesn't
   2471    actually <em>have a live range</em>. Instead, the value is logically read
   2472    from arbitrary registers that happen to be around when needed, so the value
   2473    is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
   2474    need to have the same semantics or the core LLVM "replace all uses with"
   2475    concept would not hold.</p>
   2476 
   2477 <pre class="doc_code">
   2478   %A = fdiv undef, %X
   2479   %B = fdiv %X, undef
   2480 Safe:
   2481   %A = undef
   2482 b: unreachable
   2483 </pre>
   2484 
   2485 <p>These examples show the crucial difference between an <em>undefined
   2486   value</em> and <em>undefined behavior</em>. An undefined value (like
   2487   '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
   2488   the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
   2489   the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
   2490   defined on SNaN's. However, in the second example, we can make a more
   2491   aggressive assumption: because the <tt>undef</tt> is allowed to be an
   2492   arbitrary value, we are allowed to assume that it could be zero. Since a
   2493   divide by zero has <em>undefined behavior</em>, we are allowed to assume that
   2494   the operation does not execute at all. This allows us to delete the divide and
   2495   all code after it. Because the undefined operation "can't happen", the
   2496   optimizer can assume that it occurs in dead code.</p>
   2497 
   2498 <pre class="doc_code">
   2499 a:  store undef -> %X
   2500 b:  store %X -> undef
   2501 Safe:
   2502 a: &lt;deleted&gt;
   2503 b: unreachable
   2504 </pre>
   2505 
   2506 <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
   2507    undefined value can be assumed to not have any effect; we can assume that the
   2508    value is overwritten with bits that happen to match what was already there.
   2509    However, a store <em>to</em> an undefined location could clobber arbitrary
   2510    memory, therefore, it has undefined behavior.</p>
   2511 
   2512 </div>
   2513 
   2514 <!-- ======================================================================= -->
   2515 <h3>
   2516   <a name="trapvalues">Trap Values</a>
   2517 </h3>
   2518 
   2519 <div>
   2520 
   2521 <p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
   2522    instead of representing an unspecified bit pattern, they represent the
   2523    fact that an instruction or constant expression which cannot evoke side
   2524    effects has nevertheless detected a condition which results in undefined
   2525    behavior.</p>
   2526 
   2527 <p>There is currently no way of representing a trap value in the IR; they
   2528    only exist when produced by operations such as
   2529    <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
   2530 
   2531 <p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
   2532 
   2533 <ul>
   2534 <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
   2535     their operands.</li>
   2536 
   2537 <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
   2538     to their dynamic predecessor basic block.</li>
   2539 
   2540 <li>Function arguments depend on the corresponding actual argument values in
   2541     the dynamic callers of their functions.</li>
   2542 
   2543 <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
   2544     <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
   2545     control back to them.</li>
   2546 
   2547 <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
   2548     <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
   2549     or exception-throwing call instructions that dynamically transfer control
   2550     back to them.</li>
   2551 
   2552 <li>Non-volatile loads and stores depend on the most recent stores to all of the
   2553     referenced memory addresses, following the order in the IR
   2554     (including loads and stores implied by intrinsics such as
   2555     <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
   2556 
   2557 <!-- TODO: In the case of multiple threads, this only applies if the store
   2558      "happens-before" the load or store. -->
   2559 
   2560 <!-- TODO: floating-point exception state -->
   2561 
   2562 <li>An instruction with externally visible side effects depends on the most
   2563     recent preceding instruction with externally visible side effects, following
   2564     the order in the IR. (This includes
   2565     <a href="#volatile">volatile operations</a>.)</li>
   2566 
   2567 <li>An instruction <i>control-depends</i> on a
   2568     <a href="#terminators">terminator instruction</a>
   2569     if the terminator instruction has multiple successors and the instruction
   2570     is always executed when control transfers to one of the successors, and
   2571     may not be executed when control is transferred to another.</li>
   2572 
   2573 <li>Additionally, an instruction also <i>control-depends</i> on a terminator
   2574     instruction if the set of instructions it otherwise depends on would be
   2575     different if the terminator had transferred control to a different
   2576     successor.</li>
   2577 
   2578 <li>Dependence is transitive.</li>
   2579 
   2580 </ul>
   2581 
   2582 <p>Whenever a trap value is generated, all values which depend on it evaluate
   2583    to trap. If they have side effects, they evoke their side effects as if each
   2584    operand with a trap value were undef. If they have externally-visible side
   2585    effects, the behavior is undefined.</p>
   2586 
   2587 <p>Here are some examples:</p>
   2588 
   2589 <pre class="doc_code">
   2590 entry:
   2591   %trap = sub nuw i32 0, 1           ; Results in a trap value.
   2592   %still_trap = and i32 %trap, 0     ; Whereas (and i32 undef, 0) would return 0.
   2593   %trap_yet_again = getelementptr i32* @h, i32 %still_trap
   2594   store i32 0, i32* %trap_yet_again  ; undefined behavior
   2595 
   2596   store i32 %trap, i32* @g           ; Trap value conceptually stored to memory.
   2597   %trap2 = load i32* @g              ; Returns a trap value, not just undef.
   2598 
   2599   volatile store i32 %trap, i32* @g  ; External observation; undefined behavior.
   2600 
   2601   %narrowaddr = bitcast i32* @g to i16*
   2602   %wideaddr = bitcast i32* @g to i64*
   2603   %trap3 = load i16* %narrowaddr     ; Returns a trap value.
   2604   %trap4 = load i64* %wideaddr       ; Returns a trap value.
   2605 
   2606   %cmp = icmp slt i32 %trap, 0       ; Returns a trap value.
   2607   br i1 %cmp, label %true, label %end ; Branch to either destination.
   2608 
   2609 true:
   2610   volatile store i32 0, i32* @g      ; This is control-dependent on %cmp, so
   2611                                      ; it has undefined behavior.
   2612   br label %end
   2613 
   2614 end:
   2615   %p = phi i32 [ 0, %entry ], [ 1, %true ]
   2616                                      ; Both edges into this PHI are
   2617                                      ; control-dependent on %cmp, so this
   2618                                      ; always results in a trap value.
   2619 
   2620   volatile store i32 0, i32* @g      ; This would depend on the store in %true
   2621                                      ; if %cmp is true, or the store in %entry
   2622                                      ; otherwise, so this is undefined behavior.
   2623 
   2624   br i1 %cmp, label %second_true, label %second_end
   2625                                      ; The same branch again, but this time the
   2626                                      ; true block doesn't have side effects.
   2627 
   2628 second_true:
   2629   ; No side effects!
   2630   ret void
   2631 
   2632 second_end:
   2633   volatile store i32 0, i32* @g      ; This time, the instruction always depends
   2634                                      ; on the store in %end. Also, it is
   2635                                      ; control-equivalent to %end, so this is
   2636                                      ; well-defined (again, ignoring earlier
   2637                                      ; undefined behavior in this example).
   2638 </pre>
   2639 
   2640 </div>
   2641 
   2642 <!-- ======================================================================= -->
   2643 <h3>
   2644   <a name="blockaddress">Addresses of Basic Blocks</a>
   2645 </h3>
   2646 
   2647 <div>
   2648 
   2649 <p><b><tt>blockaddress(@function, %block)</tt></b></p>
   2650 
   2651 <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
   2652    basic block in the specified function, and always has an i8* type.  Taking
   2653    the address of the entry block is illegal.</p>
   2654 
   2655 <p>This value only has defined behavior when used as an operand to the
   2656    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
   2657    comparisons against null. Pointer equality tests between labels addresses
   2658    results in undefined behavior &mdash; though, again, comparison against null
   2659    is ok, and no label is equal to the null pointer. This may be passed around
   2660    as an opaque pointer sized value as long as the bits are not inspected. This
   2661    allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
   2662    long as the original value is reconstituted before the <tt>indirectbr</tt>
   2663    instruction.</p>
   2664 
   2665 <p>Finally, some targets may provide defined semantics when using the value as
   2666    the operand to an inline assembly, but that is target specific.</p>
   2667 
   2668 </div>
   2669 
   2670 
   2671 <!-- ======================================================================= -->
   2672 <h3>
   2673   <a name="constantexprs">Constant Expressions</a>
   2674 </h3>
   2675 
   2676 <div>
   2677 
   2678 <p>Constant expressions are used to allow expressions involving other constants
   2679    to be used as constants.  Constant expressions may be of
   2680    any <a href="#t_firstclass">first class</a> type and may involve any LLVM
   2681    operation that does not have side effects (e.g. load and call are not
   2682    supported). The following is the syntax for constant expressions:</p>
   2683 
   2684 <dl>
   2685   <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
   2686   <dd>Truncate a constant to another type. The bit size of CST must be larger
   2687       than the bit size of TYPE. Both types must be integers.</dd>
   2688 
   2689   <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
   2690   <dd>Zero extend a constant to another type. The bit size of CST must be
   2691       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2692 
   2693   <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
   2694   <dd>Sign extend a constant to another type. The bit size of CST must be
   2695       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2696 
   2697   <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
   2698   <dd>Truncate a floating point constant to another floating point type. The
   2699       size of CST must be larger than the size of TYPE. Both types must be
   2700       floating point.</dd>
   2701 
   2702   <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
   2703   <dd>Floating point extend a constant to another type. The size of CST must be
   2704       smaller or equal to the size of TYPE. Both types must be floating
   2705       point.</dd>
   2706 
   2707   <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
   2708   <dd>Convert a floating point constant to the corresponding unsigned integer
   2709       constant. TYPE must be a scalar or vector integer type. CST must be of
   2710       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2711       or vectors of the same number of elements. If the value won't fit in the
   2712       integer type, the results are undefined.</dd>
   2713 
   2714   <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
   2715   <dd>Convert a floating point constant to the corresponding signed integer
   2716       constant.  TYPE must be a scalar or vector integer type. CST must be of
   2717       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2718       or vectors of the same number of elements. If the value won't fit in the
   2719       integer type, the results are undefined.</dd>
   2720 
   2721   <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
   2722   <dd>Convert an unsigned integer constant to the corresponding floating point
   2723       constant. TYPE must be a scalar or vector floating point type. CST must be
   2724       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2725       vectors of the same number of elements. If the value won't fit in the
   2726       floating point type, the results are undefined.</dd>
   2727 
   2728   <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
   2729   <dd>Convert a signed integer constant to the corresponding floating point
   2730       constant. TYPE must be a scalar or vector floating point type. CST must be
   2731       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2732       vectors of the same number of elements. If the value won't fit in the
   2733       floating point type, the results are undefined.</dd>
   2734 
   2735   <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
   2736   <dd>Convert a pointer typed constant to the corresponding integer constant
   2737       <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
   2738       type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
   2739       make it fit in <tt>TYPE</tt>.</dd>
   2740 
   2741   <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
   2742   <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer
   2743       type.  CST must be of integer type. The CST value is zero extended,
   2744       truncated, or unchanged to make it fit in a pointer size. This one is
   2745       <i>really</i> dangerous!</dd>
   2746 
   2747   <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
   2748   <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
   2749       are the same as those for the <a href="#i_bitcast">bitcast
   2750       instruction</a>.</dd>
   2751 
   2752   <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2753   <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2754   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
   2755       constants.  As with the <a href="#i_getelementptr">getelementptr</a>
   2756       instruction, the index list may have zero or more indexes, which are
   2757       required to make sense for the type of "CSTPTR".</dd>
   2758 
   2759   <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
   2760   <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
   2761 
   2762   <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
   2763   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
   2764 
   2765   <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
   2766   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
   2767 
   2768   <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
   2769   <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
   2770       constants.</dd>
   2771 
   2772   <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
   2773   <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
   2774     constants.</dd>
   2775 
   2776   <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
   2777   <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
   2778       constants.</dd>
   2779 
   2780   <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
   2781   <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
   2782     constants. The index list is interpreted in a similar manner as indices in
   2783     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2784     index value must be specified.</dd>
   2785 
   2786   <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
   2787   <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
   2788     constants. The index list is interpreted in a similar manner as indices in
   2789     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2790     index value must be specified.</dd>
   2791 
   2792   <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
   2793   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
   2794       be any of the <a href="#binaryops">binary</a>
   2795       or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
   2796       on operands are the same as those for the corresponding instruction
   2797       (e.g. no bitwise operations on floating point values are allowed).</dd>
   2798 </dl>
   2799 
   2800 </div>
   2801 
   2802 </div>
   2803 
   2804 <!-- *********************************************************************** -->
   2805 <h2><a name="othervalues">Other Values</a></h2>
   2806 <!-- *********************************************************************** -->
   2807 <div>
   2808 <!-- ======================================================================= -->
   2809 <h3>
   2810 <a name="inlineasm">Inline Assembler Expressions</a>
   2811 </h3>
   2812 
   2813 <div>
   2814 
   2815 <p>LLVM supports inline assembler expressions (as opposed
   2816    to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
   2817    a special value.  This value represents the inline assembler as a string
   2818    (containing the instructions to emit), a list of operand constraints (stored
   2819    as a string), a flag that indicates whether or not the inline asm
   2820    expression has side effects, and a flag indicating whether the function
   2821    containing the asm needs to align its stack conservatively.  An example
   2822    inline assembler expression is:</p>
   2823 
   2824 <pre class="doc_code">
   2825 i32 (i32) asm "bswap $0", "=r,r"
   2826 </pre>
   2827 
   2828 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
   2829    a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we
   2830    have:</p>
   2831 
   2832 <pre class="doc_code">
   2833 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
   2834 </pre>
   2835 
   2836 <p>Inline asms with side effects not visible in the constraint list must be
   2837    marked as having side effects.  This is done through the use of the
   2838    '<tt>sideeffect</tt>' keyword, like so:</p>
   2839 
   2840 <pre class="doc_code">
   2841 call void asm sideeffect "eieio", ""()
   2842 </pre>
   2843 
   2844 <p>In some cases inline asms will contain code that will not work unless the
   2845    stack is aligned in some way, such as calls or SSE instructions on x86,
   2846    yet will not contain code that does that alignment within the asm.
   2847    The compiler should make conservative assumptions about what the asm might
   2848    contain and should generate its usual stack alignment code in the prologue
   2849    if the '<tt>alignstack</tt>' keyword is present:</p>
   2850 
   2851 <pre class="doc_code">
   2852 call void asm alignstack "eieio", ""()
   2853 </pre>
   2854 
   2855 <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
   2856    first.</p>
   2857 
   2858 <p>TODO: The format of the asm and constraints string still need to be
   2859    documented here.  Constraints on what can be done (e.g. duplication, moving,
   2860    etc need to be documented).  This is probably best done by reference to
   2861    another document that covers inline asm from a holistic perspective.</p>
   2862 
   2863 <h4>
   2864 <a name="inlineasm_md">Inline Asm Metadata</a>
   2865 </h4>
   2866 
   2867 <div>
   2868 
   2869 <p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
   2870    attached to it that contains a list of constant integers.  If present, the
   2871   code generator will use the integer as the location cookie value when report
   2872    errors through the LLVMContext error reporting mechanisms.  This allows a
   2873    front-end to correlate backend errors that occur with inline asm back to the
   2874    source code that produced it.  For example:</p>
   2875 
   2876 <pre class="doc_code">
   2877 call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
   2878 ...
   2879 !42 = !{ i32 1234567 }
   2880 </pre>
   2881 
   2882 <p>It is up to the front-end to make sense of the magic numbers it places in the
   2883    IR.  If the MDNode contains multiple constants, the code generator will use
   2884    the one that corresponds to the line of the asm that the error occurs on.</p>
   2885 
   2886 </div>
   2887 
   2888 </div>
   2889 
   2890 <!-- ======================================================================= -->
   2891 <h3>
   2892   <a name="metadata">Metadata Nodes and Metadata Strings</a>
   2893 </h3>
   2894 
   2895 <div>
   2896 
   2897 <p>LLVM IR allows metadata to be attached to instructions in the program that
   2898    can convey extra information about the code to the optimizers and code
   2899    generator.  One example application of metadata is source-level debug
   2900    information.  There are two metadata primitives: strings and nodes. All
   2901    metadata has the <tt>metadata</tt> type and is identified in syntax by a
   2902    preceding exclamation point ('<tt>!</tt>').</p>
   2903 
   2904 <p>A metadata string is a string surrounded by double quotes.  It can contain
   2905    any character by escaping non-printable characters with "\xx" where "xx" is
   2906    the two digit hex code.  For example: "<tt>!"test\00"</tt>".</p>
   2907 
   2908 <p>Metadata nodes are represented with notation similar to structure constants
   2909    (a comma separated list of elements, surrounded by braces and preceded by an
   2910    exclamation point).  For example: "<tt>!{ metadata !"test\00", i32
   2911    10}</tt>".  Metadata nodes can have any values as their operand.</p>
   2912 
   2913 <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of 
   2914    metadata nodes, which can be looked up in the module symbol table. For
   2915    example: "<tt>!foo =  metadata !{!4, !3}</tt>".
   2916 
   2917 <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt> 
   2918    function is using two metadata arguments.</p>
   2919 
   2920 <div class="doc_code">
   2921 <pre>
   2922 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
   2923 </pre>
   2924 </div>
   2925 
   2926 <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
   2927    attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
   2928 
   2929 <div class="doc_code">
   2930 <pre>
   2931 %indvar.next = add i64 %indvar, 1, !dbg !21
   2932 </pre>
   2933 </div>
   2934 
   2935 </div>
   2936 
   2937 </div>
   2938 
   2939 <!-- *********************************************************************** -->
   2940 <h2>
   2941   <a name="intrinsic_globals">Intrinsic Global Variables</a>
   2942 </h2>
   2943 <!-- *********************************************************************** -->
   2944 <div>
   2945 <p>LLVM has a number of "magic" global variables that contain data that affect
   2946 code generation or other IR semantics.  These are documented here.  All globals
   2947 of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
   2948 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
   2949 by LLVM.</p>
   2950 
   2951 <!-- ======================================================================= -->
   2952 <h3>
   2953 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
   2954 </h3>
   2955 
   2956 <div>
   2957 
   2958 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
   2959 href="#linkage_appending">appending linkage</a>.  This array contains a list of
   2960 pointers to global variables and functions which may optionally have a pointer
   2961 cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
   2962 
   2963 <pre>
   2964   @X = global i8 4
   2965   @Y = global i32 123
   2966 
   2967   @llvm.used = appending global [2 x i8*] [
   2968      i8* @X,
   2969      i8* bitcast (i32* @Y to i8*)
   2970   ], section "llvm.metadata"
   2971 </pre>
   2972 
   2973 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
   2974 compiler, assembler, and linker are required to treat the symbol as if there is
   2975 a reference to the global that it cannot see.  For example, if a variable has
   2976 internal linkage and no references other than that from the <tt>@llvm.used</tt>
   2977 list, it cannot be deleted.  This is commonly used to represent references from
   2978 inline asms and other things the compiler cannot "see", and corresponds to
   2979 "attribute((used))" in GNU C.</p>
   2980 
   2981 <p>On some targets, the code generator must emit a directive to the assembler or
   2982 object file to prevent the assembler and linker from molesting the symbol.</p>
   2983 
   2984 </div>
   2985 
   2986 <!-- ======================================================================= -->
   2987 <h3>
   2988   <a name="intg_compiler_used">
   2989     The '<tt>llvm.compiler.used</tt>' Global Variable
   2990   </a>
   2991 </h3>
   2992 
   2993 <div>
   2994 
   2995 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
   2996 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
   2997 touching the symbol.  On targets that support it, this allows an intelligent
   2998 linker to optimize references to the symbol without being impeded as it would be
   2999 by <tt>@llvm.used</tt>.</p>
   3000 
   3001 <p>This is a rare construct that should only be used in rare circumstances, and
   3002 should not be exposed to source languages.</p>
   3003 
   3004 </div>
   3005 
   3006 <!-- ======================================================================= -->
   3007 <h3>
   3008 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
   3009 </h3>
   3010 
   3011 <div>
   3012 <pre>
   3013 %0 = type { i32, void ()* }
   3014 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
   3015 </pre>
   3016 <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities.  The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded.  The order of functions with the same priority is not defined.
   3017 </p>
   3018 
   3019 </div>
   3020 
   3021 <!-- ======================================================================= -->
   3022 <h3>
   3023 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
   3024 </h3>
   3025 
   3026 <div>
   3027 <pre>
   3028 %0 = type { i32, void ()* }
   3029 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
   3030 </pre>
   3031 
   3032 <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities.  The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded.  The order of functions with the same priority is not defined.
   3033 </p>
   3034 
   3035 </div>
   3036 
   3037 </div>
   3038 
   3039 <!-- *********************************************************************** -->
   3040 <h2><a name="instref">Instruction Reference</a></h2>
   3041 <!-- *********************************************************************** -->
   3042 
   3043 <div>
   3044 
   3045 <p>The LLVM instruction set consists of several different classifications of
   3046    instructions: <a href="#terminators">terminator
   3047    instructions</a>, <a href="#binaryops">binary instructions</a>,
   3048    <a href="#bitwiseops">bitwise binary instructions</a>,
   3049    <a href="#memoryops">memory instructions</a>, and
   3050    <a href="#otherops">other instructions</a>.</p>
   3051 
   3052 <!-- ======================================================================= -->
   3053 <h3>
   3054   <a name="terminators">Terminator Instructions</a>
   3055 </h3>
   3056 
   3057 <div>
   3058 
   3059 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
   3060    in a program ends with a "Terminator" instruction, which indicates which
   3061    block should be executed after the current block is finished. These
   3062    terminator instructions typically yield a '<tt>void</tt>' value: they produce
   3063    control flow, not values (the one exception being the
   3064    '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
   3065 
   3066 <p>The terminator instructions are: 
   3067    '<a href="#i_ret"><tt>ret</tt></a>', 
   3068    '<a href="#i_br"><tt>br</tt></a>',
   3069    '<a href="#i_switch"><tt>switch</tt></a>', 
   3070    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
   3071    '<a href="#i_invoke"><tt>invoke</tt></a>', 
   3072    '<a href="#i_unwind"><tt>unwind</tt></a>',
   3073    '<a href="#i_resume"><tt>resume</tt></a>', and 
   3074    '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
   3075 
   3076 <!-- _______________________________________________________________________ -->
   3077 <h4>
   3078   <a name="i_ret">'<tt>ret</tt>' Instruction</a>
   3079 </h4>
   3080 
   3081 <div>
   3082 
   3083 <h5>Syntax:</h5>
   3084 <pre>
   3085   ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
   3086   ret void                 <i>; Return from void function</i>
   3087 </pre>
   3088 
   3089 <h5>Overview:</h5>
   3090 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
   3091    a value) from a function back to the caller.</p>
   3092 
   3093 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
   3094    value and then causes control flow, and one that just causes control flow to
   3095    occur.</p>
   3096 
   3097 <h5>Arguments:</h5>
   3098 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
   3099    return value. The type of the return value must be a
   3100    '<a href="#t_firstclass">first class</a>' type.</p>
   3101 
   3102 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
   3103    non-void return type and contains a '<tt>ret</tt>' instruction with no return
   3104    value or a return value with a type that does not match its type, or if it
   3105    has a void return type and contains a '<tt>ret</tt>' instruction with a
   3106    return value.</p>
   3107 
   3108 <h5>Semantics:</h5>
   3109 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
   3110    the calling function's context.  If the caller is a
   3111    "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
   3112    instruction after the call.  If the caller was an
   3113    "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
   3114    the beginning of the "normal" destination block.  If the instruction returns
   3115    a value, that value shall set the call or invoke instruction's return
   3116    value.</p>
   3117 
   3118 <h5>Example:</h5>
   3119 <pre>
   3120   ret i32 5                       <i>; Return an integer value of 5</i>
   3121   ret void                        <i>; Return from a void function</i>
   3122   ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
   3123 </pre>
   3124 
   3125 </div>
   3126 <!-- _______________________________________________________________________ -->
   3127 <h4>
   3128   <a name="i_br">'<tt>br</tt>' Instruction</a>
   3129 </h4>
   3130 
   3131 <div>
   3132 
   3133 <h5>Syntax:</h5>
   3134 <pre>
   3135   br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
   3136   br label &lt;dest&gt;          <i>; Unconditional branch</i>
   3137 </pre>
   3138 
   3139 <h5>Overview:</h5>
   3140 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
   3141    different basic block in the current function.  There are two forms of this
   3142    instruction, corresponding to a conditional branch and an unconditional
   3143    branch.</p>
   3144 
   3145 <h5>Arguments:</h5>
   3146 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
   3147    '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
   3148    of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
   3149    target.</p>
   3150 
   3151 <h5>Semantics:</h5>
   3152 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
   3153    argument is evaluated.  If the value is <tt>true</tt>, control flows to the
   3154    '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
   3155    control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
   3156 
   3157 <h5>Example:</h5>
   3158 <pre>
   3159 Test:
   3160   %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
   3161   br i1 %cond, label %IfEqual, label %IfUnequal
   3162 IfEqual:
   3163   <a href="#i_ret">ret</a> i32 1
   3164 IfUnequal:
   3165   <a href="#i_ret">ret</a> i32 0
   3166 </pre>
   3167 
   3168 </div>
   3169 
   3170 <!-- _______________________________________________________________________ -->
   3171 <h4>
   3172    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
   3173 </h4>
   3174 
   3175 <div>
   3176 
   3177 <h5>Syntax:</h5>
   3178 <pre>
   3179   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
   3180 </pre>
   3181 
   3182 <h5>Overview:</h5>
   3183 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
   3184    several different places.  It is a generalization of the '<tt>br</tt>'
   3185    instruction, allowing a branch to occur to one of many possible
   3186    destinations.</p>
   3187 
   3188 <h5>Arguments:</h5>
   3189 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
   3190    comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
   3191    and an array of pairs of comparison value constants and '<tt>label</tt>'s.
   3192    The table is not allowed to contain duplicate constant entries.</p>
   3193 
   3194 <h5>Semantics:</h5>
   3195 <p>The <tt>switch</tt> instruction specifies a table of values and
   3196    destinations. When the '<tt>switch</tt>' instruction is executed, this table
   3197    is searched for the given value.  If the value is found, control flow is
   3198    transferred to the corresponding destination; otherwise, control flow is
   3199    transferred to the default destination.</p>
   3200 
   3201 <h5>Implementation:</h5>
   3202 <p>Depending on properties of the target machine and the particular
   3203    <tt>switch</tt> instruction, this instruction may be code generated in
   3204    different ways.  For example, it could be generated as a series of chained
   3205    conditional branches or with a lookup table.</p>
   3206 
   3207 <h5>Example:</h5>
   3208 <pre>
   3209  <i>; Emulate a conditional br instruction</i>
   3210  %Val = <a href="#i_zext">zext</a> i1 %value to i32
   3211  switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
   3212 
   3213  <i>; Emulate an unconditional br instruction</i>
   3214  switch i32 0, label %dest [ ]
   3215 
   3216  <i>; Implement a jump table:</i>
   3217  switch i32 %val, label %otherwise [ i32 0, label %onzero
   3218                                      i32 1, label %onone
   3219                                      i32 2, label %ontwo ]
   3220 </pre>
   3221 
   3222 </div>
   3223 
   3224 
   3225 <!-- _______________________________________________________________________ -->
   3226 <h4>
   3227    <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
   3228 </h4>
   3229 
   3230 <div>
   3231 
   3232 <h5>Syntax:</h5>
   3233 <pre>
   3234   indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
   3235 </pre>
   3236 
   3237 <h5>Overview:</h5>
   3238 
   3239 <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
   3240    within the current function, whose address is specified by
   3241    "<tt>address</tt>".  Address must be derived from a <a
   3242    href="#blockaddress">blockaddress</a> constant.</p>
   3243 
   3244 <h5>Arguments:</h5>
   3245 
   3246 <p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
   3247    rest of the arguments indicate the full set of possible destinations that the
   3248    address may point to.  Blocks are allowed to occur multiple times in the
   3249    destination list, though this isn't particularly useful.</p>
   3250 
   3251 <p>This destination list is required so that dataflow analysis has an accurate
   3252    understanding of the CFG.</p>
   3253 
   3254 <h5>Semantics:</h5>
   3255 
   3256 <p>Control transfers to the block specified in the address argument.  All
   3257    possible destination blocks must be listed in the label list, otherwise this
   3258    instruction has undefined behavior.  This implies that jumps to labels
   3259    defined in other functions have undefined behavior as well.</p>
   3260 
   3261 <h5>Implementation:</h5>
   3262 
   3263 <p>This is typically implemented with a jump through a register.</p>
   3264 
   3265 <h5>Example:</h5>
   3266 <pre>
   3267  indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
   3268 </pre>
   3269 
   3270 </div>
   3271 
   3272 
   3273 <!-- _______________________________________________________________________ -->
   3274 <h4>
   3275   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
   3276 </h4>
   3277 
   3278 <div>
   3279 
   3280 <h5>Syntax:</h5>
   3281 <pre>
   3282   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   3283                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
   3284 </pre>
   3285 
   3286 <h5>Overview:</h5>
   3287 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
   3288    function, with the possibility of control flow transfer to either the
   3289    '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
   3290    function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
   3291    control flow will return to the "normal" label.  If the callee (or any
   3292    indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
   3293    instruction, control is interrupted and continued at the dynamically nearest
   3294    "exception" label.</p>
   3295 
   3296 <p>The '<tt>exception</tt>' label is a
   3297    <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
   3298    exception. As such, '<tt>exception</tt>' label is required to have the
   3299    "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
   3300    the information about about the behavior of the program after unwinding
   3301    happens, as its first non-PHI instruction. The restrictions on the
   3302    "<tt>landingpad</tt>" instruction's tightly couples it to the
   3303    "<tt>invoke</tt>" instruction, so that the important information contained
   3304    within the "<tt>landingpad</tt>" instruction can't be lost through normal
   3305    code motion.</p>
   3306 
   3307 <h5>Arguments:</h5>
   3308 <p>This instruction requires several arguments:</p>
   3309 
   3310 <ol>
   3311   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   3312       convention</a> the call should use.  If none is specified, the call
   3313       defaults to using C calling conventions.</li>
   3314 
   3315   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   3316       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   3317       '<tt>inreg</tt>' attributes are valid here.</li>
   3318 
   3319   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
   3320       function value being invoked.  In most cases, this is a direct function
   3321       invocation, but indirect <tt>invoke</tt>s are just as possible, branching
   3322       off an arbitrary pointer to function value.</li>
   3323 
   3324   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
   3325       function to be invoked. </li>
   3326 
   3327   <li>'<tt>function args</tt>': argument list whose types match the function
   3328       signature argument types and parameter attributes. All arguments must be
   3329       of <a href="#t_firstclass">first class</a> type. If the function
   3330       signature indicates the function accepts a variable number of arguments,
   3331       the extra arguments can be specified.</li>
   3332 
   3333   <li>'<tt>normal label</tt>': the label reached when the called function
   3334       executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
   3335 
   3336   <li>'<tt>exception label</tt>': the label reached when a callee returns with
   3337       the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
   3338 
   3339   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   3340       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   3341       '<tt>readnone</tt>' attributes are valid here.</li>
   3342 </ol>
   3343 
   3344 <h5>Semantics:</h5>
   3345 <p>This instruction is designed to operate as a standard
   3346    '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
   3347    primary difference is that it establishes an association with a label, which
   3348    is used by the runtime library to unwind the stack.</p>
   3349 
   3350 <p>This instruction is used in languages with destructors to ensure that proper
   3351    cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
   3352    exception.  Additionally, this is important for implementation of
   3353    '<tt>catch</tt>' clauses in high-level languages that support them.</p>
   3354 
   3355 <p>For the purposes of the SSA form, the definition of the value returned by the
   3356    '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
   3357    block to the "normal" label. If the callee unwinds then no return value is
   3358    available.</p>
   3359 
   3360 <p>Note that the code generator does not yet completely support unwind, and
   3361 that the invoke/unwind semantics are likely to change in future versions.</p>
   3362 
   3363 <h5>Example:</h5>
   3364 <pre>
   3365   %retval = invoke i32 @Test(i32 15) to label %Continue
   3366               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3367   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
   3368               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3369 </pre>
   3370 
   3371 </div>
   3372 
   3373 <!-- _______________________________________________________________________ -->
   3374 
   3375 <h4>
   3376   <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
   3377 </h4>
   3378 
   3379 <div>
   3380 
   3381 <h5>Syntax:</h5>
   3382 <pre>
   3383   unwind
   3384 </pre>
   3385 
   3386 <h5>Overview:</h5>
   3387 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
   3388    at the first callee in the dynamic call stack which used
   3389    an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
   3390    This is primarily used to implement exception handling.</p>
   3391 
   3392 <h5>Semantics:</h5>
   3393 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
   3394    immediately halt.  The dynamic call stack is then searched for the
   3395    first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
   3396    Once found, execution continues at the "exceptional" destination block
   3397    specified by the <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt>
   3398    instruction in the dynamic call chain, undefined behavior results.</p>
   3399 
   3400 <p>Note that the code generator does not yet completely support unwind, and
   3401 that the invoke/unwind semantics are likely to change in future versions.</p>
   3402 
   3403 </div>
   3404 
   3405  <!-- _______________________________________________________________________ -->
   3406  
   3407 <h4>
   3408   <a name="i_resume">'<tt>resume</tt>' Instruction</a>
   3409 </h4>
   3410 
   3411 <div>
   3412 
   3413 <h5>Syntax:</h5>
   3414 <pre>
   3415   resume &lt;type&gt; &lt;value&gt;
   3416 </pre>
   3417 
   3418 <h5>Overview:</h5>
   3419 <p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
   3420    successors.</p>
   3421 
   3422 <h5>Arguments:</h5>
   3423 <p>The '<tt>resume</tt>' instruction requires one argument, which must have the
   3424    same type as the result of any '<tt>landingpad</tt>' instruction in the same
   3425    function.</p>
   3426 
   3427 <h5>Semantics:</h5>
   3428 <p>The '<tt>resume</tt>' instruction resumes propagation of an existing
   3429    (in-flight) exception whose unwinding was interrupted with
   3430    a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
   3431 
   3432 <h5>Example:</h5>
   3433 <pre>
   3434   resume { i8*, i32 } %exn
   3435 </pre>
   3436 
   3437 </div>
   3438 
   3439 <!-- _______________________________________________________________________ -->
   3440 
   3441 <h4>
   3442   <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
   3443 </h4>
   3444 
   3445 <div>
   3446 
   3447 <h5>Syntax:</h5>
   3448 <pre>
   3449   unreachable
   3450 </pre>
   3451 
   3452 <h5>Overview:</h5>
   3453 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
   3454    instruction is used to inform the optimizer that a particular portion of the
   3455    code is not reachable.  This can be used to indicate that the code after a
   3456    no-return function cannot be reached, and other facts.</p>
   3457 
   3458 <h5>Semantics:</h5>
   3459 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
   3460 
   3461 </div>
   3462 
   3463 </div>
   3464 
   3465 <!-- ======================================================================= -->
   3466 <h3>
   3467   <a name="binaryops">Binary Operations</a>
   3468 </h3>
   3469 
   3470 <div>
   3471 
   3472 <p>Binary operators are used to do most of the computation in a program.  They
   3473    require two operands of the same type, execute an operation on them, and
   3474    produce a single value.  The operands might represent multiple data, as is
   3475    the case with the <a href="#t_vector">vector</a> data type.  The result value
   3476    has the same type as its operands.</p>
   3477 
   3478 <p>There are several different binary operators:</p>
   3479 
   3480 <!-- _______________________________________________________________________ -->
   3481 <h4>
   3482   <a name="i_add">'<tt>add</tt>' Instruction</a>
   3483 </h4>
   3484 
   3485 <div>
   3486 
   3487 <h5>Syntax:</h5>
   3488 <pre>
   3489   &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3490   &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3491   &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3492   &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3493 </pre>
   3494 
   3495 <h5>Overview:</h5>
   3496 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
   3497 
   3498 <h5>Arguments:</h5>
   3499 <p>The two arguments to the '<tt>add</tt>' instruction must
   3500    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3501    integer values. Both arguments must have identical types.</p>
   3502 
   3503 <h5>Semantics:</h5>
   3504 <p>The value produced is the integer sum of the two operands.</p>
   3505 
   3506 <p>If the sum has unsigned overflow, the result returned is the mathematical
   3507    result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
   3508 
   3509 <p>Because LLVM integers use a two's complement representation, this instruction
   3510    is appropriate for both signed and unsigned integers.</p>
   3511 
   3512 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3513    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3514    <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
   3515    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3516    respectively, occurs.</p>
   3517 
   3518 <h5>Example:</h5>
   3519 <pre>
   3520   &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
   3521 </pre>
   3522 
   3523 </div>
   3524 
   3525 <!-- _______________________________________________________________________ -->
   3526 <h4>
   3527   <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
   3528 </h4>
   3529 
   3530 <div>
   3531 
   3532 <h5>Syntax:</h5>
   3533 <pre>
   3534   &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3535 </pre>
   3536 
   3537 <h5>Overview:</h5>
   3538 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
   3539 
   3540 <h5>Arguments:</h5>
   3541 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
   3542    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3543    floating point values. Both arguments must have identical types.</p>
   3544 
   3545 <h5>Semantics:</h5>
   3546 <p>The value produced is the floating point sum of the two operands.</p>
   3547 
   3548 <h5>Example:</h5>
   3549 <pre>
   3550   &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
   3551 </pre>
   3552 
   3553 </div>
   3554 
   3555 <!-- _______________________________________________________________________ -->
   3556 <h4>
   3557    <a name="i_sub">'<tt>sub</tt>' Instruction</a>
   3558 </h4>
   3559 
   3560 <div>
   3561 
   3562 <h5>Syntax:</h5>
   3563 <pre>
   3564   &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3565   &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3566   &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3567   &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3568 </pre>
   3569 
   3570 <h5>Overview:</h5>
   3571 <p>The '<tt>sub</tt>' instruction returns the difference of its two
   3572    operands.</p>
   3573 
   3574 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
   3575    '<tt>neg</tt>' instruction present in most other intermediate
   3576    representations.</p>
   3577 
   3578 <h5>Arguments:</h5>
   3579 <p>The two arguments to the '<tt>sub</tt>' instruction must
   3580    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3581    integer values.  Both arguments must have identical types.</p>
   3582 
   3583 <h5>Semantics:</h5>
   3584 <p>The value produced is the integer difference of the two operands.</p>
   3585 
   3586 <p>If the difference has unsigned overflow, the result returned is the
   3587    mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
   3588    result.</p>
   3589 
   3590 <p>Because LLVM integers use a two's complement representation, this instruction
   3591    is appropriate for both signed and unsigned integers.</p>
   3592 
   3593 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3594    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3595    <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
   3596    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3597    respectively, occurs.</p>
   3598 
   3599 <h5>Example:</h5>
   3600 <pre>
   3601   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
   3602   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
   3603 </pre>
   3604 
   3605 </div>
   3606 
   3607 <!-- _______________________________________________________________________ -->
   3608 <h4>
   3609    <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
   3610 </h4>
   3611 
   3612 <div>
   3613 
   3614 <h5>Syntax:</h5>
   3615 <pre>
   3616   &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3617 </pre>
   3618 
   3619 <h5>Overview:</h5>
   3620 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
   3621    operands.</p>
   3622 
   3623 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
   3624    '<tt>fneg</tt>' instruction present in most other intermediate
   3625    representations.</p>
   3626 
   3627 <h5>Arguments:</h5>
   3628 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
   3629    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3630    floating point values.  Both arguments must have identical types.</p>
   3631 
   3632 <h5>Semantics:</h5>
   3633 <p>The value produced is the floating point difference of the two operands.</p>
   3634 
   3635 <h5>Example:</h5>
   3636 <pre>
   3637   &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
   3638   &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
   3639 </pre>
   3640 
   3641 </div>
   3642 
   3643 <!-- _______________________________________________________________________ -->
   3644 <h4>
   3645   <a name="i_mul">'<tt>mul</tt>' Instruction</a>
   3646 </h4>
   3647 
   3648 <div>
   3649 
   3650 <h5>Syntax:</h5>
   3651 <pre>
   3652   &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3653   &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3654   &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3655   &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3656 </pre>
   3657 
   3658 <h5>Overview:</h5>
   3659 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
   3660 
   3661 <h5>Arguments:</h5>
   3662 <p>The two arguments to the '<tt>mul</tt>' instruction must
   3663    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3664    integer values.  Both arguments must have identical types.</p>
   3665 
   3666 <h5>Semantics:</h5>
   3667 <p>The value produced is the integer product of the two operands.</p>
   3668 
   3669 <p>If the result of the multiplication has unsigned overflow, the result
   3670    returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
   3671    width of the result.</p>
   3672 
   3673 <p>Because LLVM integers use a two's complement representation, and the result
   3674    is the same width as the operands, this instruction returns the correct
   3675    result for both signed and unsigned integers.  If a full product
   3676    (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
   3677    be sign-extended or zero-extended as appropriate to the width of the full
   3678    product.</p>
   3679 
   3680 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3681    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3682    <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
   3683    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3684    respectively, occurs.</p>
   3685 
   3686 <h5>Example:</h5>
   3687 <pre>
   3688   &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
   3689 </pre>
   3690 
   3691 </div>
   3692 
   3693 <!-- _______________________________________________________________________ -->
   3694 <h4>
   3695   <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
   3696 </h4>
   3697 
   3698 <div>
   3699 
   3700 <h5>Syntax:</h5>
   3701 <pre>
   3702   &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3703 </pre>
   3704 
   3705 <h5>Overview:</h5>
   3706 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
   3707 
   3708 <h5>Arguments:</h5>
   3709 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
   3710    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3711    floating point values.  Both arguments must have identical types.</p>
   3712 
   3713 <h5>Semantics:</h5>
   3714 <p>The value produced is the floating point product of the two operands.</p>
   3715 
   3716 <h5>Example:</h5>
   3717 <pre>
   3718   &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
   3719 </pre>
   3720 
   3721 </div>
   3722 
   3723 <!-- _______________________________________________________________________ -->
   3724 <h4>
   3725   <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
   3726 </h4>
   3727 
   3728 <div>
   3729 
   3730 <h5>Syntax:</h5>
   3731 <pre>
   3732   &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   3733   &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3734 </pre>
   3735 
   3736 <h5>Overview:</h5>
   3737 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
   3738 
   3739 <h5>Arguments:</h5>
   3740 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
   3741    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3742    values.  Both arguments must have identical types.</p>
   3743 
   3744 <h5>Semantics:</h5>
   3745 <p>The value produced is the unsigned integer quotient of the two operands.</p>
   3746 
   3747 <p>Note that unsigned integer division and signed integer division are distinct
   3748    operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
   3749 
   3750 <p>Division by zero leads to undefined behavior.</p>
   3751 
   3752 <p>If the <tt>exact</tt> keyword is present, the result value of the
   3753    <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
   3754   multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
   3755 
   3756 
   3757 <h5>Example:</h5>
   3758 <pre>
   3759   &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   3760 </pre>
   3761 
   3762 </div>
   3763 
   3764 <!-- _______________________________________________________________________ -->
   3765 <h4>
   3766   <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
   3767 </h4>
   3768 
   3769 <div>
   3770 
   3771 <h5>Syntax:</h5>
   3772 <pre>
   3773   &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   3774   &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3775 </pre>
   3776 
   3777 <h5>Overview:</h5>
   3778 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
   3779 
   3780 <h5>Arguments:</h5>
   3781 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
   3782    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3783    values.  Both arguments must have identical types.</p>
   3784 
   3785 <h5>Semantics:</h5>
   3786 <p>The value produced is the signed integer quotient of the two operands rounded
   3787    towards zero.</p>
   3788 
   3789 <p>Note that signed integer division and unsigned integer division are distinct
   3790    operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
   3791 
   3792 <p>Division by zero leads to undefined behavior. Overflow also leads to
   3793    undefined behavior; this is a rare case, but can occur, for example, by doing
   3794    a 32-bit division of -2147483648 by -1.</p>
   3795 
   3796 <p>If the <tt>exact</tt> keyword is present, the result value of the
   3797    <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
   3798    be rounded.</p>
   3799 
   3800 <h5>Example:</h5>
   3801 <pre>
   3802   &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   3803 </pre>
   3804 
   3805 </div>
   3806 
   3807 <!-- _______________________________________________________________________ -->
   3808 <h4>
   3809   <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
   3810 </h4>
   3811 
   3812 <div>
   3813 
   3814 <h5>Syntax:</h5>
   3815 <pre>
   3816   &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3817 </pre>
   3818 
   3819 <h5>Overview:</h5>
   3820 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
   3821 
   3822 <h5>Arguments:</h5>
   3823 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
   3824    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3825    floating point values.  Both arguments must have identical types.</p>
   3826 
   3827 <h5>Semantics:</h5>
   3828 <p>The value produced is the floating point quotient of the two operands.</p>
   3829 
   3830 <h5>Example:</h5>
   3831 <pre>
   3832   &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
   3833 </pre>
   3834 
   3835 </div>
   3836 
   3837 <!-- _______________________________________________________________________ -->
   3838 <h4>
   3839   <a name="i_urem">'<tt>urem</tt>' Instruction</a>
   3840 </h4>
   3841 
   3842 <div>
   3843 
   3844 <h5>Syntax:</h5>
   3845 <pre>
   3846   &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3847 </pre>
   3848 
   3849 <h5>Overview:</h5>
   3850 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
   3851    division of its two arguments.</p>
   3852 
   3853 <h5>Arguments:</h5>
   3854 <p>The two arguments to the '<tt>urem</tt>' instruction must be
   3855    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3856    values.  Both arguments must have identical types.</p>
   3857 
   3858 <h5>Semantics:</h5>
   3859 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
   3860    This instruction always performs an unsigned division to get the
   3861    remainder.</p>
   3862 
   3863 <p>Note that unsigned integer remainder and signed integer remainder are
   3864    distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
   3865 
   3866 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
   3867 
   3868 <h5>Example:</h5>
   3869 <pre>
   3870   &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   3871 </pre>
   3872 
   3873 </div>
   3874 
   3875 <!-- _______________________________________________________________________ -->
   3876 <h4>
   3877   <a name="i_srem">'<tt>srem</tt>' Instruction</a>
   3878 </h4>
   3879 
   3880 <div>
   3881 
   3882 <h5>Syntax:</h5>
   3883 <pre>
   3884   &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3885 </pre>
   3886 
   3887 <h5>Overview:</h5>
   3888 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
   3889    division of its two operands. This instruction can also take
   3890    <a href="#t_vector">vector</a> versions of the values in which case the
   3891    elements must be integers.</p>
   3892 
   3893 <h5>Arguments:</h5>
   3894 <p>The two arguments to the '<tt>srem</tt>' instruction must be
   3895    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3896    values.  Both arguments must have identical types.</p>
   3897 
   3898 <h5>Semantics:</h5>
   3899 <p>This instruction returns the <i>remainder</i> of a division (where the result
   3900    is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
   3901    <i>modulo</i> operator (where the result is either zero or has the same sign
   3902    as the divisor, <tt>op2</tt>) of a value.
   3903    For more information about the difference,
   3904    see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
   3905    Math Forum</a>. For a table of how this is implemented in various languages,
   3906    please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
   3907    Wikipedia: modulo operation</a>.</p>
   3908 
   3909 <p>Note that signed integer remainder and unsigned integer remainder are
   3910    distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
   3911 
   3912 <p>Taking the remainder of a division by zero leads to undefined behavior.
   3913    Overflow also leads to undefined behavior; this is a rare case, but can
   3914    occur, for example, by taking the remainder of a 32-bit division of
   3915    -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
   3916    lets srem be implemented using instructions that return both the result of
   3917    the division and the remainder.)</p>
   3918 
   3919 <h5>Example:</h5>
   3920 <pre>
   3921   &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   3922 </pre>
   3923 
   3924 </div>
   3925 
   3926 <!-- _______________________________________________________________________ -->
   3927 <h4>
   3928   <a name="i_frem">'<tt>frem</tt>' Instruction</a>
   3929 </h4>
   3930 
   3931 <div>
   3932 
   3933 <h5>Syntax:</h5>
   3934 <pre>
   3935   &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3936 </pre>
   3937 
   3938 <h5>Overview:</h5>
   3939 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
   3940    its two operands.</p>
   3941 
   3942 <h5>Arguments:</h5>
   3943 <p>The two arguments to the '<tt>frem</tt>' instruction must be
   3944    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3945    floating point values.  Both arguments must have identical types.</p>
   3946 
   3947 <h5>Semantics:</h5>
   3948 <p>This instruction returns the <i>remainder</i> of a division.  The remainder
   3949    has the same sign as the dividend.</p>
   3950 
   3951 <h5>Example:</h5>
   3952 <pre>
   3953   &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
   3954 </pre>
   3955 
   3956 </div>
   3957 
   3958 </div>
   3959 
   3960 <!-- ======================================================================= -->
   3961 <h3>
   3962   <a name="bitwiseops">Bitwise Binary Operations</a>
   3963 </h3>
   3964 
   3965 <div>
   3966 
   3967 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
   3968    program.  They are generally very efficient instructions and can commonly be
   3969    strength reduced from other instructions.  They require two operands of the
   3970    same type, execute an operation on them, and produce a single value.  The
   3971    resulting value is the same type as its operands.</p>
   3972 
   3973 <!-- _______________________________________________________________________ -->
   3974 <h4>
   3975   <a name="i_shl">'<tt>shl</tt>' Instruction</a>
   3976 </h4>
   3977 
   3978 <div>
   3979 
   3980 <h5>Syntax:</h5>
   3981 <pre>
   3982   &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;           <i>; yields {ty}:result</i>
   3983   &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   3984   &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   3985   &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3986 </pre>
   3987 
   3988 <h5>Overview:</h5>
   3989 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
   3990    a specified number of bits.</p>
   3991 
   3992 <h5>Arguments:</h5>
   3993 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
   3994     same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3995     integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   3996 
   3997 <h5>Semantics:</h5>
   3998 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
   3999    2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
   4000    is (statically or dynamically) negative or equal to or larger than the number
   4001    of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
   4002    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   4003    shift amount in <tt>op2</tt>.</p>
   4004 
   4005 <p>If the <tt>nuw</tt> keyword is present, then the shift produces a 
   4006    <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits.  If
   4007    the <tt>nsw</tt> keyword is present, then the shift produces a
   4008    <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
   4009    with the resultant sign bit.  As such, NUW/NSW have the same semantics as
   4010    they would if the shift were expressed as a mul instruction with the same
   4011    nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
   4012 
   4013 <h5>Example:</h5>
   4014 <pre>
   4015   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
   4016   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
   4017   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
   4018   &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
   4019   &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
   4020 </pre>
   4021 
   4022 </div>
   4023 
   4024 <!-- _______________________________________________________________________ -->
   4025 <h4>
   4026   <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
   4027 </h4>
   4028 
   4029 <div>
   4030 
   4031 <h5>Syntax:</h5>
   4032 <pre>
   4033   &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4034   &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4035 </pre>
   4036 
   4037 <h5>Overview:</h5>
   4038 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
   4039    operand shifted to the right a specified number of bits with zero fill.</p>
   4040 
   4041 <h5>Arguments:</h5>
   4042 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
   4043    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4044    type. '<tt>op2</tt>' is treated as an unsigned value.</p>
   4045 
   4046 <h5>Semantics:</h5>
   4047 <p>This instruction always performs a logical shift right operation. The most
   4048    significant bits of the result will be filled with zero bits after the shift.
   4049    If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
   4050    number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
   4051    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   4052    shift amount in <tt>op2</tt>.</p>
   4053 
   4054 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4055    <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
   4056    shifted out are non-zero.</p>
   4057 
   4058 
   4059 <h5>Example:</h5>
   4060 <pre>
   4061   &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
   4062   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
   4063   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
   4064   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
   4065   &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
   4066   &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
   4067 </pre>
   4068 
   4069 </div>
   4070 
   4071 <!-- _______________________________________________________________________ -->
   4072 <h4>
   4073   <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
   4074 </h4>
   4075 
   4076 <div>
   4077 
   4078 <h5>Syntax:</h5>
   4079 <pre>
   4080   &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4081   &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4082 </pre>
   4083 
   4084 <h5>Overview:</h5>
   4085 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
   4086    operand shifted to the right a specified number of bits with sign
   4087    extension.</p>
   4088 
   4089 <h5>Arguments:</h5>
   4090 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
   4091    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4092    type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   4093 
   4094 <h5>Semantics:</h5>
   4095 <p>This instruction always performs an arithmetic shift right operation, The
   4096    most significant bits of the result will be filled with the sign bit
   4097    of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
   4098    larger than the number of bits in <tt>op1</tt>, the result is undefined. If
   4099    the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
   4100    the corresponding shift amount in <tt>op2</tt>.</p>
   4101 
   4102 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4103    <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
   4104    shifted out are non-zero.</p>
   4105 
   4106 <h5>Example:</h5>
   4107 <pre>
   4108   &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
   4109   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
   4110   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
   4111   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
   4112   &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
   4113   &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
   4114 </pre>
   4115 
   4116 </div>
   4117 
   4118 <!-- _______________________________________________________________________ -->
   4119 <h4>
   4120   <a name="i_and">'<tt>and</tt>' Instruction</a>
   4121 </h4>
   4122 
   4123 <div>
   4124 
   4125 <h5>Syntax:</h5>
   4126 <pre>
   4127   &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4128 </pre>
   4129 
   4130 <h5>Overview:</h5>
   4131 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
   4132    operands.</p>
   4133 
   4134 <h5>Arguments:</h5>
   4135 <p>The two arguments to the '<tt>and</tt>' instruction must be
   4136    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4137    values.  Both arguments must have identical types.</p>
   4138 
   4139 <h5>Semantics:</h5>
   4140 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
   4141 
   4142 <table border="1" cellspacing="0" cellpadding="4">
   4143   <tbody>
   4144     <tr>
   4145       <td>In0</td>
   4146       <td>In1</td>
   4147       <td>Out</td>
   4148     </tr>
   4149     <tr>
   4150       <td>0</td>
   4151       <td>0</td>
   4152       <td>0</td>
   4153     </tr>
   4154     <tr>
   4155       <td>0</td>
   4156       <td>1</td>
   4157       <td>0</td>
   4158     </tr>
   4159     <tr>
   4160       <td>1</td>
   4161       <td>0</td>
   4162       <td>0</td>
   4163     </tr>
   4164     <tr>
   4165       <td>1</td>
   4166       <td>1</td>
   4167       <td>1</td>
   4168     </tr>
   4169   </tbody>
   4170 </table>
   4171 
   4172 <h5>Example:</h5>
   4173 <pre>
   4174   &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
   4175   &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
   4176   &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
   4177 </pre>
   4178 </div>
   4179 <!-- _______________________________________________________________________ -->
   4180 <h4>
   4181   <a name="i_or">'<tt>or</tt>' Instruction</a>
   4182 </h4>
   4183 
   4184 <div>
   4185 
   4186 <h5>Syntax:</h5>
   4187 <pre>
   4188   &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4189 </pre>
   4190 
   4191 <h5>Overview:</h5>
   4192 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
   4193    two operands.</p>
   4194 
   4195 <h5>Arguments:</h5>
   4196 <p>The two arguments to the '<tt>or</tt>' instruction must be
   4197    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4198    values.  Both arguments must have identical types.</p>
   4199 
   4200 <h5>Semantics:</h5>
   4201 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
   4202 
   4203 <table border="1" cellspacing="0" cellpadding="4">
   4204   <tbody>
   4205     <tr>
   4206       <td>In0</td>
   4207       <td>In1</td>
   4208       <td>Out</td>
   4209     </tr>
   4210     <tr>
   4211       <td>0</td>
   4212       <td>0</td>
   4213       <td>0</td>
   4214     </tr>
   4215     <tr>
   4216       <td>0</td>
   4217       <td>1</td>
   4218       <td>1</td>
   4219     </tr>
   4220     <tr>
   4221       <td>1</td>
   4222       <td>0</td>
   4223       <td>1</td>
   4224     </tr>
   4225     <tr>
   4226       <td>1</td>
   4227       <td>1</td>
   4228       <td>1</td>
   4229     </tr>
   4230   </tbody>
   4231 </table>
   4232 
   4233 <h5>Example:</h5>
   4234 <pre>
   4235   &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
   4236   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
   4237   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
   4238 </pre>
   4239 
   4240 </div>
   4241 
   4242 <!-- _______________________________________________________________________ -->
   4243 <h4>
   4244   <a name="i_xor">'<tt>xor</tt>' Instruction</a>
   4245 </h4>
   4246 
   4247 <div>
   4248 
   4249 <h5>Syntax:</h5>
   4250 <pre>
   4251   &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4252 </pre>
   4253 
   4254 <h5>Overview:</h5>
   4255 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
   4256    its two operands.  The <tt>xor</tt> is used to implement the "one's
   4257    complement" operation, which is the "~" operator in C.</p>
   4258 
   4259 <h5>Arguments:</h5>
   4260 <p>The two arguments to the '<tt>xor</tt>' instruction must be
   4261    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4262    values.  Both arguments must have identical types.</p>
   4263 
   4264 <h5>Semantics:</h5>
   4265 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
   4266 
   4267 <table border="1" cellspacing="0" cellpadding="4">
   4268   <tbody>
   4269     <tr>
   4270       <td>In0</td>
   4271       <td>In1</td>
   4272       <td>Out</td>
   4273     </tr>
   4274     <tr>
   4275       <td>0</td>
   4276       <td>0</td>
   4277       <td>0</td>
   4278     </tr>
   4279     <tr>
   4280       <td>0</td>
   4281       <td>1</td>
   4282       <td>1</td>
   4283     </tr>
   4284     <tr>
   4285       <td>1</td>
   4286       <td>0</td>
   4287       <td>1</td>
   4288     </tr>
   4289     <tr>
   4290       <td>1</td>
   4291       <td>1</td>
   4292       <td>0</td>
   4293     </tr>
   4294   </tbody>
   4295 </table>
   4296 
   4297 <h5>Example:</h5>
   4298 <pre>
   4299   &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
   4300   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
   4301   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
   4302   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
   4303 </pre>
   4304 
   4305 </div>
   4306 
   4307 </div>
   4308 
   4309 <!-- ======================================================================= -->
   4310 <h3>
   4311   <a name="vectorops">Vector Operations</a>
   4312 </h3>
   4313 
   4314 <div>
   4315 
   4316 <p>LLVM supports several instructions to represent vector operations in a
   4317    target-independent manner.  These instructions cover the element-access and
   4318    vector-specific operations needed to process vectors effectively.  While LLVM
   4319    does directly support these vector operations, many sophisticated algorithms
   4320    will want to use target-specific intrinsics to take full advantage of a
   4321    specific target.</p>
   4322 
   4323 <!-- _______________________________________________________________________ -->
   4324 <h4>
   4325    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
   4326 </h4>
   4327 
   4328 <div>
   4329 
   4330 <h5>Syntax:</h5>
   4331 <pre>
   4332   &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
   4333 </pre>
   4334 
   4335 <h5>Overview:</h5>
   4336 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
   4337    from a vector at a specified index.</p>
   4338 
   4339 
   4340 <h5>Arguments:</h5>
   4341 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
   4342    of <a href="#t_vector">vector</a> type.  The second operand is an index
   4343    indicating the position from which to extract the element.  The index may be
   4344    a variable.</p>
   4345 
   4346 <h5>Semantics:</h5>
   4347 <p>The result is a scalar of the same type as the element type of
   4348    <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
   4349    <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4350    results are undefined.</p>
   4351 
   4352 <h5>Example:</h5>
   4353 <pre>
   4354   &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
   4355 </pre>
   4356 
   4357 </div>
   4358 
   4359 <!-- _______________________________________________________________________ -->
   4360 <h4>
   4361    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
   4362 </h4>
   4363 
   4364 <div>
   4365 
   4366 <h5>Syntax:</h5>
   4367 <pre>
   4368   &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
   4369 </pre>
   4370 
   4371 <h5>Overview:</h5>
   4372 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
   4373    vector at a specified index.</p>
   4374 
   4375 <h5>Arguments:</h5>
   4376 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
   4377    of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
   4378    whose type must equal the element type of the first operand.  The third
   4379    operand is an index indicating the position at which to insert the value.
   4380    The index may be a variable.</p>
   4381 
   4382 <h5>Semantics:</h5>
   4383 <p>The result is a vector of the same type as <tt>val</tt>.  Its element values
   4384    are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
   4385    value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4386    results are undefined.</p>
   4387 
   4388 <h5>Example:</h5>
   4389 <pre>
   4390   &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
   4391 </pre>
   4392 
   4393 </div>
   4394 
   4395 <!-- _______________________________________________________________________ -->
   4396 <h4>
   4397    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
   4398 </h4>
   4399 
   4400 <div>
   4401 
   4402 <h5>Syntax:</h5>
   4403 <pre>
   4404   &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
   4405 </pre>
   4406 
   4407 <h5>Overview:</h5>
   4408 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
   4409    from two input vectors, returning a vector with the same element type as the
   4410    input and length that is the same as the shuffle mask.</p>
   4411 
   4412 <h5>Arguments:</h5>
   4413 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
   4414    with types that match each other. The third argument is a shuffle mask whose
   4415    element type is always 'i32'.  The result of the instruction is a vector
   4416    whose length is the same as the shuffle mask and whose element type is the
   4417    same as the element type of the first two operands.</p>
   4418 
   4419 <p>The shuffle mask operand is required to be a constant vector with either
   4420    constant integer or undef values.</p>
   4421 
   4422 <h5>Semantics:</h5>
   4423 <p>The elements of the two input vectors are numbered from left to right across
   4424    both of the vectors.  The shuffle mask operand specifies, for each element of
   4425    the result vector, which element of the two input vectors the result element
   4426    gets.  The element selector may be undef (meaning "don't care") and the
   4427    second operand may be undef if performing a shuffle from only one vector.</p>
   4428 
   4429 <h5>Example:</h5>
   4430 <pre>
   4431   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4432                           &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4433   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
   4434                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
   4435   &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
   4436                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4437   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4438                           &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
   4439 </pre>
   4440 
   4441 </div>
   4442 
   4443 </div>
   4444 
   4445 <!-- ======================================================================= -->
   4446 <h3>
   4447   <a name="aggregateops">Aggregate Operations</a>
   4448 </h3>
   4449 
   4450 <div>
   4451 
   4452 <p>LLVM supports several instructions for working with
   4453   <a href="#t_aggregate">aggregate</a> values.</p>
   4454 
   4455 <!-- _______________________________________________________________________ -->
   4456 <h4>
   4457    <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
   4458 </h4>
   4459 
   4460 <div>
   4461 
   4462 <h5>Syntax:</h5>
   4463 <pre>
   4464   &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
   4465 </pre>
   4466 
   4467 <h5>Overview:</h5>
   4468 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
   4469    from an <a href="#t_aggregate">aggregate</a> value.</p>
   4470 
   4471 <h5>Arguments:</h5>
   4472 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
   4473    of <a href="#t_struct">struct</a> or
   4474    <a href="#t_array">array</a> type.  The operands are constant indices to
   4475    specify which value to extract in a similar manner as indices in a
   4476    '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
   4477    <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
   4478      <ul>
   4479        <li>Since the value being indexed is not a pointer, the first index is
   4480            omitted and assumed to be zero.</li>
   4481        <li>At least one index must be specified.</li>
   4482        <li>Not only struct indices but also array indices must be in
   4483            bounds.</li>
   4484      </ul>
   4485 
   4486 <h5>Semantics:</h5>
   4487 <p>The result is the value at the position in the aggregate specified by the
   4488    index operands.</p>
   4489 
   4490 <h5>Example:</h5>
   4491 <pre>
   4492   &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
   4493 </pre>
   4494 
   4495 </div>
   4496 
   4497 <!-- _______________________________________________________________________ -->
   4498 <h4>
   4499    <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
   4500 </h4>
   4501 
   4502 <div>
   4503 
   4504 <h5>Syntax:</h5>
   4505 <pre>
   4506   &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}*    <i>; yields &lt;aggregate type&gt;</i>
   4507 </pre>
   4508 
   4509 <h5>Overview:</h5>
   4510 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
   4511    in an <a href="#t_aggregate">aggregate</a> value.</p>
   4512 
   4513 <h5>Arguments:</h5>
   4514 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
   4515    of <a href="#t_struct">struct</a> or
   4516    <a href="#t_array">array</a> type.  The second operand is a first-class
   4517    value to insert.  The following operands are constant indices indicating
   4518    the position at which to insert the value in a similar manner as indices in a
   4519    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
   4520    value to insert must have the same type as the value identified by the
   4521    indices.</p>
   4522 
   4523 <h5>Semantics:</h5>
   4524 <p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
   4525    that of <tt>val</tt> except that the value at the position specified by the
   4526    indices is that of <tt>elt</tt>.</p>
   4527 
   4528 <h5>Example:</h5>
   4529 <pre>
   4530   %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
   4531   %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
   4532   %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
   4533 </pre>
   4534 
   4535 </div>
   4536 
   4537 </div>
   4538 
   4539 <!-- ======================================================================= -->
   4540 <h3>
   4541   <a name="memoryops">Memory Access and Addressing Operations</a>
   4542 </h3>
   4543 
   4544 <div>
   4545 
   4546 <p>A key design point of an SSA-based representation is how it represents
   4547    memory.  In LLVM, no memory locations are in SSA form, which makes things
   4548    very simple.  This section describes how to read, write, and allocate
   4549    memory in LLVM.</p>
   4550 
   4551 <!-- _______________________________________________________________________ -->
   4552 <h4>
   4553   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
   4554 </h4>
   4555 
   4556 <div>
   4557 
   4558 <h5>Syntax:</h5>
   4559 <pre>
   4560   &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
   4561 </pre>
   4562 
   4563 <h5>Overview:</h5>
   4564 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
   4565    currently executing function, to be automatically released when this function
   4566    returns to its caller. The object is always allocated in the generic address
   4567    space (address space zero).</p>
   4568 
   4569 <h5>Arguments:</h5>
   4570 <p>The '<tt>alloca</tt>' instruction
   4571    allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
   4572    runtime stack, returning a pointer of the appropriate type to the program.
   4573    If "NumElements" is specified, it is the number of elements allocated,
   4574    otherwise "NumElements" is defaulted to be one.  If a constant alignment is
   4575    specified, the value result of the allocation is guaranteed to be aligned to
   4576    at least that boundary.  If not specified, or if zero, the target can choose
   4577    to align the allocation on any convenient boundary compatible with the
   4578    type.</p>
   4579 
   4580 <p>'<tt>type</tt>' may be any sized type.</p>
   4581 
   4582 <h5>Semantics:</h5>
   4583 <p>Memory is allocated; a pointer is returned.  The operation is undefined if
   4584    there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
   4585    memory is automatically released when the function returns.  The
   4586    '<tt>alloca</tt>' instruction is commonly used to represent automatic
   4587    variables that must have an address available.  When the function returns
   4588    (either with the <tt><a href="#i_ret">ret</a></tt>
   4589    or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
   4590    reclaimed.  Allocating zero bytes is legal, but the result is undefined.</p>
   4591 
   4592 <h5>Example:</h5>
   4593 <pre>
   4594   %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
   4595   %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
   4596   %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
   4597   %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
   4598 </pre>
   4599 
   4600 </div>
   4601 
   4602 <!-- _______________________________________________________________________ -->
   4603 <h4>
   4604   <a name="i_load">'<tt>load</tt>' Instruction</a>
   4605 </h4>
   4606 
   4607 <div>
   4608 
   4609 <h5>Syntax:</h5>
   4610 <pre>
   4611   &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
   4612   &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
   4613   !&lt;index&gt; = !{ i32 1 }
   4614 </pre>
   4615 
   4616 <h5>Overview:</h5>
   4617 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
   4618 
   4619 <h5>Arguments:</h5>
   4620 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
   4621    from which to load.  The pointer must point to
   4622    a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
   4623    marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
   4624    number or order of execution of this <tt>load</tt> with other <a
   4625    href="#volatile">volatile operations</a>.</p>
   4626 
   4627 <p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
   4628    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
   4629    argument.  The <code>release</code> and <code>acq_rel</code> orderings are
   4630    not valid on <code>load</code> instructions.  Atomic loads produce <a
   4631    href="#memorymodel">defined</a> results when they may see multiple atomic
   4632    stores.  The type of the pointee must be an integer type whose bit width
   4633    is a power of two greater than or equal to eight and less than or equal
   4634    to a target-specific size limit. <code>align</code> must be explicitly 
   4635    specified on atomic loads, and the load has undefined behavior if the
   4636    alignment is not set to a value which is at least the size in bytes of
   4637    the pointee. <code>!nontemporal</code> does not have any defined semantics
   4638    for atomic loads.</p>
   4639 
   4640 <p>The optional constant <tt>align</tt> argument specifies the alignment of the
   4641    operation (that is, the alignment of the memory address). A value of 0 or an
   4642    omitted <tt>align</tt> argument means that the operation has the preferential
   4643    alignment for the target. It is the responsibility of the code emitter to
   4644    ensure that the alignment information is correct. Overestimating the
   4645    alignment results in undefined behavior. Underestimating the alignment may
   4646    produce less efficient code. An alignment of 1 is always safe.</p>
   4647 
   4648 <p>The optional <tt>!nontemporal</tt> metadata must reference a single
   4649    metatadata name &lt;index&gt; corresponding to a metadata node with
   4650    one <tt>i32</tt> entry of value 1.  The existence of
   4651    the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
   4652    and code generator that this load is not expected to be reused in the cache.
   4653    The code generator may select special instructions to save cache bandwidth,
   4654    such as the <tt>MOVNT</tt> instruction on x86.</p>
   4655 
   4656 <h5>Semantics:</h5>
   4657 <p>The location of memory pointed to is loaded.  If the value being loaded is of
   4658    scalar type then the number of bytes read does not exceed the minimum number
   4659    of bytes needed to hold all bits of the type.  For example, loading an
   4660    <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
   4661    <tt>i20</tt> with a size that is not an integral number of bytes, the result
   4662    is undefined if the value was not originally written using a store of the
   4663    same type.</p>
   4664 
   4665 <h5>Examples:</h5>
   4666 <pre>
   4667   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   4668   <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
   4669   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   4670 </pre>
   4671 
   4672 </div>
   4673 
   4674 <!-- _______________________________________________________________________ -->
   4675 <h4>
   4676   <a name="i_store">'<tt>store</tt>' Instruction</a>
   4677 </h4>
   4678 
   4679 <div>
   4680 
   4681 <h5>Syntax:</h5>
   4682 <pre>
   4683   store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]                   <i>; yields {void}</i>
   4684   store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;             <i>; yields {void}</i>
   4685 </pre>
   4686 
   4687 <h5>Overview:</h5>
   4688 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
   4689 
   4690 <h5>Arguments:</h5>
   4691 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
   4692    and an address at which to store it.  The type of the
   4693    '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
   4694    the <a href="#t_firstclass">first class</a> type of the
   4695    '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
   4696    <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
   4697    order of execution of this <tt>store</tt> with other <a
   4698    href="#volatile">volatile operations</a>.</p>
   4699 
   4700 <p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
   4701    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
   4702    argument.  The <code>acquire</code> and <code>acq_rel</code> orderings aren't
   4703    valid on <code>store</code> instructions.  Atomic loads produce <a
   4704    href="#memorymodel">defined</a> results when they may see multiple atomic
   4705    stores. The type of the pointee must be an integer type whose bit width
   4706    is a power of two greater than or equal to eight and less than or equal
   4707    to a target-specific size limit. <code>align</code> must be explicitly 
   4708    specified on atomic stores, and the store has undefined behavior if the
   4709    alignment is not set to a value which is at least the size in bytes of
   4710    the pointee. <code>!nontemporal</code> does not have any defined semantics
   4711    for atomic stores.</p>
   4712 
   4713 <p>The optional constant "align" argument specifies the alignment of the
   4714    operation (that is, the alignment of the memory address). A value of 0 or an
   4715    omitted "align" argument means that the operation has the preferential
   4716    alignment for the target. It is the responsibility of the code emitter to
   4717    ensure that the alignment information is correct. Overestimating the
   4718    alignment results in an undefined behavior. Underestimating the alignment may
   4719    produce less efficient code. An alignment of 1 is always safe.</p>
   4720 
   4721 <p>The optional !nontemporal metadata must reference a single metatadata
   4722    name &lt;index&gt; corresponding to a metadata node with one i32 entry of
   4723    value 1.  The existence of the !nontemporal metatadata on the
   4724    instruction tells the optimizer and code generator that this load is
   4725    not expected to be reused in the cache.  The code generator may
   4726    select special instructions to save cache bandwidth, such as the
   4727    MOVNT instruction on x86.</p>
   4728 
   4729 
   4730 <h5>Semantics:</h5>
   4731 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
   4732    location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
   4733    '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
   4734    does not exceed the minimum number of bytes needed to hold all bits of the
   4735    type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
   4736    writing a value of a type like <tt>i20</tt> with a size that is not an
   4737    integral number of bytes, it is unspecified what happens to the extra bits
   4738    that do not belong to the type, but they will typically be overwritten.</p>
   4739 
   4740 <h5>Example:</h5>
   4741 <pre>
   4742   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   4743   store i32 3, i32* %ptr                          <i>; yields {void}</i>
   4744   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   4745 </pre>
   4746 
   4747 </div>
   4748 
   4749 <!-- _______________________________________________________________________ -->
   4750 <h4>
   4751 <a name="i_fence">'<tt>fence</tt>' Instruction</a>
   4752 </h4>
   4753 
   4754 <div>
   4755 
   4756 <h5>Syntax:</h5>
   4757 <pre>
   4758   fence [singlethread] &lt;ordering&gt;                   <i>; yields {void}</i>
   4759 </pre>
   4760 
   4761 <h5>Overview:</h5>
   4762 <p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
   4763 between operations.</p>
   4764 
   4765 <h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
   4766 href="#ordering">ordering</a> argument which defines what
   4767 <i>synchronizes-with</i> edges they add.  They can only be given
   4768 <code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
   4769 <code>seq_cst</code> orderings.</p>
   4770 
   4771 <h5>Semantics:</h5>
   4772 <p>A fence <var>A</var> which has (at least) <code>release</code> ordering
   4773 semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
   4774 <code>acquire</code> ordering semantics if and only if there exist atomic
   4775 operations <var>X</var> and <var>Y</var>, both operating on some atomic object
   4776 <var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
   4777 <var>X</var> modifies <var>M</var> (either directly or through some side effect
   4778 of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
   4779 <var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
   4780 <i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
   4781 than an explicit <code>fence</code>, one (but not both) of the atomic operations
   4782 <var>X</var> or <var>Y</var> might provide a <code>release</code> or
   4783 <code>acquire</code> (resp.) ordering constraint and still
   4784 <i>synchronize-with</i> the explicit <code>fence</code> and establish the
   4785 <i>happens-before</i> edge.</p>
   4786 
   4787 <p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
   4788 having both <code>acquire</code> and <code>release</code> semantics specified
   4789 above, participates in the global program order of other <code>seq_cst</code>
   4790 operations and/or fences.</p>
   4791 
   4792 <p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
   4793 specifies that the fence only synchronizes with other fences in the same
   4794 thread.  (This is useful for interacting with signal handlers.)</p>
   4795 
   4796 <h5>Example:</h5>
   4797 <pre>
   4798   fence acquire                          <i>; yields {void}</i>
   4799   fence singlethread seq_cst             <i>; yields {void}</i>
   4800 </pre>
   4801 
   4802 </div>
   4803 
   4804 <!-- _______________________________________________________________________ -->
   4805 <h4>
   4806 <a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
   4807 </h4>
   4808 
   4809 <div>
   4810 
   4811 <h5>Syntax:</h5>
   4812 <pre>
   4813   cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt;                   <i>; yields {ty}</i>
   4814 </pre>
   4815 
   4816 <h5>Overview:</h5>
   4817 <p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
   4818 It loads a value in memory and compares it to a given value. If they are
   4819 equal, it stores a new value into the memory.</p>
   4820 
   4821 <h5>Arguments:</h5>
   4822 <p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
   4823 address to operate on, a value to compare to the value currently be at that
   4824 address, and a new value to place at that address if the compared values are
   4825 equal.  The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
   4826 bit width is a power of two greater than or equal to eight and less than
   4827 or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
   4828 '<var>&lt;new&gt;</var>' must have the same type, and the type of
   4829 '<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
   4830 <code>cmpxchg</code> is marked as <code>volatile</code>, then the
   4831 optimizer is not allowed to modify the number or order of execution
   4832 of this <code>cmpxchg</code> with other <a href="#volatile">volatile
   4833 operations</a>.</p>
   4834 
   4835 <!-- FIXME: Extend allowed types. -->
   4836 
   4837 <p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
   4838 <code>cmpxchg</code> synchronizes with other atomic operations.</p>
   4839 
   4840 <p>The optional "<code>singlethread</code>" argument declares that the
   4841 <code>cmpxchg</code> is only atomic with respect to code (usually signal
   4842 handlers) running in the same thread as the <code>cmpxchg</code>.  Otherwise the
   4843 cmpxchg is atomic with respect to all other code in the system.</p>
   4844 
   4845 <p>The pointer passed into cmpxchg must have alignment greater than or equal to
   4846 the size in memory of the operand.
   4847 
   4848 <h5>Semantics:</h5>
   4849 <p>The contents of memory at the location specified by the
   4850 '<tt>&lt;pointer&gt;</tt>' operand is read and compared to
   4851 '<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
   4852 '<tt>&lt;new&gt;</tt>' is written.  The original value at the location
   4853 is returned.
   4854 
   4855 <p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
   4856 purpose of identifying <a href="#release_sequence">release sequences</a>.  A
   4857 failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
   4858 parameter determined by dropping any <code>release</code> part of the
   4859 <code>cmpxchg</code>'s ordering.</p>
   4860 
   4861 <!--
   4862 FIXME: Is compare_exchange_weak() necessary?  (Consider after we've done
   4863 optimization work on ARM.)
   4864 
   4865 FIXME: Is a weaker ordering constraint on failure helpful in practice?
   4866 -->
   4867 
   4868 <h5>Example:</h5>
   4869 <pre>
   4870 entry:
   4871   %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered                       <i>; yields {i32}</i>
   4872   <a href="#i_br">br</a> label %loop
   4873 
   4874 loop:
   4875   %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
   4876   %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
   4877   %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared                       <i>; yields {i32}</i>
   4878   %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
   4879   <a href="#i_br">br</a> i1 %success, label %done, label %loop
   4880 
   4881 done:
   4882   ...
   4883 </pre>
   4884 
   4885 </div>
   4886 
   4887 <!-- _______________________________________________________________________ -->
   4888 <h4>
   4889 <a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
   4890 </h4>
   4891 
   4892 <div>
   4893 
   4894 <h5>Syntax:</h5>
   4895 <pre>
   4896   atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt;                   <i>; yields {ty}</i>
   4897 </pre>
   4898 
   4899 <h5>Overview:</h5>
   4900 <p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
   4901 
   4902 <h5>Arguments:</h5>
   4903 <p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
   4904 operation to apply, an address whose value to modify, an argument to the
   4905 operation.  The operation must be one of the following keywords:</p>
   4906 <ul>
   4907   <li>xchg</li>
   4908   <li>add</li>
   4909   <li>sub</li>
   4910   <li>and</li>
   4911   <li>nand</li>
   4912   <li>or</li>
   4913   <li>xor</li>
   4914   <li>max</li>
   4915   <li>min</li>
   4916   <li>umax</li>
   4917   <li>umin</li>
   4918 </ul>
   4919 
   4920 <p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
   4921 bit width is a power of two greater than or equal to eight and less than
   4922 or equal to a target-specific size limit.  The type of the
   4923 '<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
   4924 If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
   4925 optimizer is not allowed to modify the number or order of execution of this
   4926 <code>atomicrmw</code> with other <a href="#volatile">volatile
   4927   operations</a>.</p>
   4928 
   4929 <!-- FIXME: Extend allowed types. -->
   4930 
   4931 <h5>Semantics:</h5>
   4932 <p>The contents of memory at the location specified by the
   4933 '<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
   4934 back.  The original value at the location is returned.  The modification is
   4935 specified by the <var>operation</var> argument:</p>
   4936 
   4937 <ul>
   4938   <li>xchg: <code>*ptr = val</code></li>
   4939   <li>add: <code>*ptr = *ptr + val</code></li>
   4940   <li>sub: <code>*ptr = *ptr - val</code></li>
   4941   <li>and: <code>*ptr = *ptr &amp; val</code></li>
   4942   <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
   4943   <li>or: <code>*ptr = *ptr | val</code></li>
   4944   <li>xor: <code>*ptr = *ptr ^ val</code></li>
   4945   <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
   4946   <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
   4947   <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
   4948   <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
   4949 </ul>
   4950 
   4951 <h5>Example:</h5>
   4952 <pre>
   4953   %old = atomicrmw add i32* %ptr, i32 1 acquire                        <i>; yields {i32}</i>
   4954 </pre>
   4955 
   4956 </div>
   4957 
   4958 <!-- _______________________________________________________________________ -->
   4959 <h4>
   4960    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
   4961 </h4>
   4962 
   4963 <div>
   4964 
   4965 <h5>Syntax:</h5>
   4966 <pre>
   4967   &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   4968   &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   4969 </pre>
   4970 
   4971 <h5>Overview:</h5>
   4972 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
   4973    subelement of an <a href="#t_aggregate">aggregate</a> data structure.
   4974    It performs address calculation only and does not access memory.</p>
   4975 
   4976 <h5>Arguments:</h5>
   4977 <p>The first argument is always a pointer, and forms the basis of the
   4978    calculation. The remaining arguments are indices that indicate which of the
   4979    elements of the aggregate object are indexed. The interpretation of each
   4980    index is dependent on the type being indexed into. The first index always
   4981    indexes the pointer value given as the first argument, the second index
   4982    indexes a value of the type pointed to (not necessarily the value directly
   4983    pointed to, since the first index can be non-zero), etc. The first type
   4984    indexed into must be a pointer value, subsequent types can be arrays,
   4985    vectors, and structs. Note that subsequent types being indexed into
   4986    can never be pointers, since that would require loading the pointer before
   4987    continuing calculation.</p>
   4988 
   4989 <p>The type of each index argument depends on the type it is indexing into.
   4990    When indexing into a (optionally packed) structure, only <tt>i32</tt>
   4991    integer <b>constants</b> are allowed.  When indexing into an array, pointer
   4992    or vector, integers of any width are allowed, and they are not required to be
   4993    constant.  These integers are treated as signed values where relevant.</p>
   4994 
   4995 <p>For example, let's consider a C code fragment and how it gets compiled to
   4996    LLVM:</p>
   4997 
   4998 <pre class="doc_code">
   4999 struct RT {
   5000   char A;
   5001   int B[10][20];
   5002   char C;
   5003 };
   5004 struct ST {
   5005   int X;
   5006   double Y;
   5007   struct RT Z;
   5008 };
   5009 
   5010 int *foo(struct ST *s) {
   5011   return &amp;s[1].Z.B[5][13];
   5012 }
   5013 </pre>
   5014 
   5015 <p>The LLVM code generated by the GCC frontend is:</p>
   5016 
   5017 <pre class="doc_code">
   5018 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8  }
   5019 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
   5020 
   5021 define i32* @foo(%ST* %s) {
   5022 entry:
   5023   %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
   5024   ret i32* %reg
   5025 }
   5026 </pre>
   5027 
   5028 <h5>Semantics:</h5>
   5029 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
   5030    type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
   5031    }</tt>' type, a structure.  The second index indexes into the third element
   5032    of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
   5033    i8 }</tt>' type, another structure.  The third index indexes into the second
   5034    element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
   5035    array.  The two dimensions of the array are subscripted into, yielding an
   5036    '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a
   5037    pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
   5038 
   5039 <p>Note that it is perfectly legal to index partially through a structure,
   5040    returning a pointer to an inner element.  Because of this, the LLVM code for
   5041    the given testcase is equivalent to:</p>
   5042 
   5043 <pre>
   5044   define i32* @foo(%ST* %s) {
   5045     %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i>
   5046     %t2 = getelementptr %ST* %t1, i32 0, i32 2                <i>; yields %RT*:%t2</i>
   5047     %t3 = getelementptr %RT* %t2, i32 0, i32 1                <i>; yields [10 x [20 x i32]]*:%t3</i>
   5048     %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
   5049     %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
   5050     ret i32* %t5
   5051   }
   5052 </pre>
   5053 
   5054 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
   5055    <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
   5056    base pointer is not an <i>in bounds</i> address of an allocated object,
   5057    or if any of the addresses that would be formed by successive addition of
   5058    the offsets implied by the indices to the base address with infinitely
   5059    precise signed arithmetic are not an <i>in bounds</i> address of that
   5060    allocated object. The <i>in bounds</i> addresses for an allocated object
   5061    are all the addresses that point into the object, plus the address one
   5062    byte past the end.</p>
   5063 
   5064 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
   5065    the base address with silently-wrapping two's complement arithmetic. If the
   5066    offsets have a different width from the pointer, they are sign-extended or
   5067    truncated to the width of the pointer. The result value of the
   5068    <tt>getelementptr</tt> may be outside the object pointed to by the base
   5069    pointer. The result value may not necessarily be used to access memory
   5070    though, even if it happens to point into allocated storage. See the
   5071    <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
   5072    information.</p>
   5073 
   5074 <p>The getelementptr instruction is often confusing.  For some more insight into
   5075    how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
   5076 
   5077 <h5>Example:</h5>
   5078 <pre>
   5079     <i>; yields [12 x i8]*:aptr</i>
   5080     %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
   5081     <i>; yields i8*:vptr</i>
   5082     %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
   5083     <i>; yields i8*:eptr</i>
   5084     %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
   5085     <i>; yields i32*:iptr</i>
   5086     %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
   5087 </pre>
   5088 
   5089 </div>
   5090 
   5091 </div>
   5092 
   5093 <!-- ======================================================================= -->
   5094 <h3>
   5095   <a name="convertops">Conversion Operations</a>
   5096 </h3>
   5097 
   5098 <div>
   5099 
   5100 <p>The instructions in this category are the conversion instructions (casting)
   5101    which all take a single operand and a type. They perform various bit
   5102    conversions on the operand.</p>
   5103 
   5104 <!-- _______________________________________________________________________ -->
   5105 <h4>
   5106    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
   5107 </h4>
   5108 
   5109 <div>
   5110 
   5111 <h5>Syntax:</h5>
   5112 <pre>
   5113   &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5114 </pre>
   5115 
   5116 <h5>Overview:</h5>
   5117 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
   5118    type <tt>ty2</tt>.</p>
   5119 
   5120 <h5>Arguments:</h5>
   5121 <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
   5122    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5123    of the same number of integers.
   5124    The bit size of the <tt>value</tt> must be larger than
   5125    the bit size of the destination type, <tt>ty2</tt>.
   5126    Equal sized types are not allowed.</p>
   5127 
   5128 <h5>Semantics:</h5>
   5129 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
   5130    in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
   5131    source size must be larger than the destination size, <tt>trunc</tt> cannot
   5132    be a <i>no-op cast</i>.  It will always truncate bits.</p>
   5133 
   5134 <h5>Example:</h5>
   5135 <pre>
   5136   %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
   5137   %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
   5138   %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
   5139   %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
   5140 </pre>
   5141 
   5142 </div>
   5143 
   5144 <!-- _______________________________________________________________________ -->
   5145 <h4>
   5146    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
   5147 </h4>
   5148 
   5149 <div>
   5150 
   5151 <h5>Syntax:</h5>
   5152 <pre>
   5153   &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5154 </pre>
   5155 
   5156 <h5>Overview:</h5>
   5157 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
   5158    <tt>ty2</tt>.</p>
   5159 
   5160 
   5161 <h5>Arguments:</h5>
   5162 <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
   5163    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5164    of the same number of integers.
   5165    The bit size of the <tt>value</tt> must be smaller than
   5166    the bit size of the destination type,
   5167    <tt>ty2</tt>.</p>
   5168 
   5169 <h5>Semantics:</h5>
   5170 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
   5171    bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
   5172 
   5173 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
   5174 
   5175 <h5>Example:</h5>
   5176 <pre>
   5177   %X = zext i32 257 to i64              <i>; yields i64:257</i>
   5178   %Y = zext i1 true to i32              <i>; yields i32:1</i>
   5179   %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   5180 </pre>
   5181 
   5182 </div>
   5183 
   5184 <!-- _______________________________________________________________________ -->
   5185 <h4>
   5186    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
   5187 </h4>
   5188 
   5189 <div>
   5190 
   5191 <h5>Syntax:</h5>
   5192 <pre>
   5193   &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5194 </pre>
   5195 
   5196 <h5>Overview:</h5>
   5197 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
   5198 
   5199 <h5>Arguments:</h5>
   5200 <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
   5201    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5202    of the same number of integers.
   5203    The bit size of the <tt>value</tt> must be smaller than
   5204    the bit size of the destination type,
   5205    <tt>ty2</tt>.</p>
   5206 
   5207 <h5>Semantics:</h5>
   5208 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
   5209    bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
   5210    of the type <tt>ty2</tt>.</p>
   5211 
   5212 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
   5213 
   5214 <h5>Example:</h5>
   5215 <pre>
   5216   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
   5217   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
   5218   %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   5219 </pre>
   5220 
   5221 </div>
   5222 
   5223 <!-- _______________________________________________________________________ -->
   5224 <h4>
   5225    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
   5226 </h4>
   5227 
   5228 <div>
   5229 
   5230 <h5>Syntax:</h5>
   5231 <pre>
   5232   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5233 </pre>
   5234 
   5235 <h5>Overview:</h5>
   5236 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
   5237    <tt>ty2</tt>.</p>
   5238 
   5239 <h5>Arguments:</h5>
   5240 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
   5241    point</a> value to cast and a <a href="#t_floating">floating point</a> type
   5242    to cast it to. The size of <tt>value</tt> must be larger than the size of
   5243    <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
   5244    <i>no-op cast</i>.</p>
   5245 
   5246 <h5>Semantics:</h5>
   5247 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
   5248    <a href="#t_floating">floating point</a> type to a smaller
   5249    <a href="#t_floating">floating point</a> type.  If the value cannot fit
   5250    within the destination type, <tt>ty2</tt>, then the results are
   5251    undefined.</p>
   5252 
   5253 <h5>Example:</h5>
   5254 <pre>
   5255   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
   5256   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
   5257 </pre>
   5258 
   5259 </div>
   5260 
   5261 <!-- _______________________________________________________________________ -->
   5262 <h4>
   5263    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
   5264 </h4>
   5265 
   5266 <div>
   5267 
   5268 <h5>Syntax:</h5>
   5269 <pre>
   5270   &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5271 </pre>
   5272 
   5273 <h5>Overview:</h5>
   5274 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
   5275    floating point value.</p>
   5276 
   5277 <h5>Arguments:</h5>
   5278 <p>The '<tt>fpext</tt>' instruction takes a
   5279    <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
   5280    a <a href="#t_floating">floating point</a> type to cast it to. The source
   5281    type must be smaller than the destination type.</p>
   5282 
   5283 <h5>Semantics:</h5>
   5284 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
   5285    <a href="#t_floating">floating point</a> type to a larger
   5286    <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
   5287    used to make a <i>no-op cast</i> because it always changes bits. Use
   5288    <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
   5289 
   5290 <h5>Example:</h5>
   5291 <pre>
   5292   %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
   5293   %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
   5294 </pre>
   5295 
   5296 </div>
   5297 
   5298 <!-- _______________________________________________________________________ -->
   5299 <h4>
   5300    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
   5301 </h4>
   5302 
   5303 <div>
   5304 
   5305 <h5>Syntax:</h5>
   5306 <pre>
   5307   &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5308 </pre>
   5309 
   5310 <h5>Overview:</h5>
   5311 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
   5312    unsigned integer equivalent of type <tt>ty2</tt>.</p>
   5313 
   5314 <h5>Arguments:</h5>
   5315 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
   5316    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   5317    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   5318    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   5319    vector integer type with the same number of elements as <tt>ty</tt></p>
   5320 
   5321 <h5>Semantics:</h5>
   5322 <p>The '<tt>fptoui</tt>' instruction converts its
   5323    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   5324    towards zero) unsigned integer value. If the value cannot fit
   5325    in <tt>ty2</tt>, the results are undefined.</p>
   5326 
   5327 <h5>Example:</h5>
   5328 <pre>
   5329   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
   5330   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
   5331   %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
   5332 </pre>
   5333 
   5334 </div>
   5335 
   5336 <!-- _______________________________________________________________________ -->
   5337 <h4>
   5338    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
   5339 </h4>
   5340 
   5341 <div>
   5342 
   5343 <h5>Syntax:</h5>
   5344 <pre>
   5345   &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5346 </pre>
   5347 
   5348 <h5>Overview:</h5>
   5349 <p>The '<tt>fptosi</tt>' instruction converts
   5350    <a href="#t_floating">floating point</a> <tt>value</tt> to
   5351    type <tt>ty2</tt>.</p>
   5352 
   5353 <h5>Arguments:</h5>
   5354 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
   5355    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   5356    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   5357    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   5358    vector integer type with the same number of elements as <tt>ty</tt></p>
   5359 
   5360 <h5>Semantics:</h5>
   5361 <p>The '<tt>fptosi</tt>' instruction converts its
   5362    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   5363    towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
   5364    the results are undefined.</p>
   5365 
   5366 <h5>Example:</h5>
   5367 <pre>
   5368   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
   5369   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
   5370   %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
   5371 </pre>
   5372 
   5373 </div>
   5374 
   5375 <!-- _______________________________________________________________________ -->
   5376 <h4>
   5377    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
   5378 </h4>
   5379 
   5380 <div>
   5381 
   5382 <h5>Syntax:</h5>
   5383 <pre>
   5384   &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5385 </pre>
   5386 
   5387 <h5>Overview:</h5>
   5388 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
   5389    integer and converts that value to the <tt>ty2</tt> type.</p>
   5390 
   5391 <h5>Arguments:</h5>
   5392 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
   5393    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   5394    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   5395    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   5396    floating point type with the same number of elements as <tt>ty</tt></p>
   5397 
   5398 <h5>Semantics:</h5>
   5399 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
   5400    integer quantity and converts it to the corresponding floating point
   5401    value. If the value cannot fit in the floating point value, the results are
   5402    undefined.</p>
   5403 
   5404 <h5>Example:</h5>
   5405 <pre>
   5406   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
   5407   %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
   5408 </pre>
   5409 
   5410 </div>
   5411 
   5412 <!-- _______________________________________________________________________ -->
   5413 <h4>
   5414    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
   5415 </h4>
   5416 
   5417 <div>
   5418 
   5419 <h5>Syntax:</h5>
   5420 <pre>
   5421   &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5422 </pre>
   5423 
   5424 <h5>Overview:</h5>
   5425 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
   5426    and converts that value to the <tt>ty2</tt> type.</p>
   5427 
   5428 <h5>Arguments:</h5>
   5429 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
   5430    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   5431    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   5432    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   5433    floating point type with the same number of elements as <tt>ty</tt></p>
   5434 
   5435 <h5>Semantics:</h5>
   5436 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
   5437    quantity and converts it to the corresponding floating point value. If the
   5438    value cannot fit in the floating point value, the results are undefined.</p>
   5439 
   5440 <h5>Example:</h5>
   5441 <pre>
   5442   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
   5443   %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
   5444 </pre>
   5445 
   5446 </div>
   5447 
   5448 <!-- _______________________________________________________________________ -->
   5449 <h4>
   5450    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
   5451 </h4>
   5452 
   5453 <div>
   5454 
   5455 <h5>Syntax:</h5>
   5456 <pre>
   5457   &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5458 </pre>
   5459 
   5460 <h5>Overview:</h5>
   5461 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
   5462    the integer type <tt>ty2</tt>.</p>
   5463 
   5464 <h5>Arguments:</h5>
   5465 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
   5466    must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
   5467    <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
   5468 
   5469 <h5>Semantics:</h5>
   5470 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
   5471    <tt>ty2</tt> by interpreting the pointer value as an integer and either
   5472    truncating or zero extending that value to the size of the integer type. If
   5473    <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
   5474    <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
   5475    are the same size, then nothing is done (<i>no-op cast</i>) other than a type
   5476    change.</p>
   5477 
   5478 <h5>Example:</h5>
   5479 <pre>
   5480   %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>
   5481   %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>
   5482 </pre>
   5483 
   5484 </div>
   5485 
   5486 <!-- _______________________________________________________________________ -->
   5487 <h4>
   5488    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
   5489 </h4>
   5490 
   5491 <div>
   5492 
   5493 <h5>Syntax:</h5>
   5494 <pre>
   5495   &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5496 </pre>
   5497 
   5498 <h5>Overview:</h5>
   5499 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
   5500    pointer type, <tt>ty2</tt>.</p>
   5501 
   5502 <h5>Arguments:</h5>
   5503 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
   5504    value to cast, and a type to cast it to, which must be a
   5505    <a href="#t_pointer">pointer</a> type.</p>
   5506 
   5507 <h5>Semantics:</h5>
   5508 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
   5509    <tt>ty2</tt> by applying either a zero extension or a truncation depending on
   5510    the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
   5511    size of a pointer then a truncation is done. If <tt>value</tt> is smaller
   5512    than the size of a pointer then a zero extension is done. If they are the
   5513    same size, nothing is done (<i>no-op cast</i>).</p>
   5514 
   5515 <h5>Example:</h5>
   5516 <pre>
   5517   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
   5518   %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
   5519   %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
   5520 </pre>
   5521 
   5522 </div>
   5523 
   5524 <!-- _______________________________________________________________________ -->
   5525 <h4>
   5526    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
   5527 </h4>
   5528 
   5529 <div>
   5530 
   5531 <h5>Syntax:</h5>
   5532 <pre>
   5533   &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5534 </pre>
   5535 
   5536 <h5>Overview:</h5>
   5537 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5538    <tt>ty2</tt> without changing any bits.</p>
   5539 
   5540 <h5>Arguments:</h5>
   5541 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
   5542    non-aggregate first class value, and a type to cast it to, which must also be
   5543    a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
   5544    of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
   5545    identical. If the source type is a pointer, the destination type must also be
   5546    a pointer.  This instruction supports bitwise conversion of vectors to
   5547    integers and to vectors of other types (as long as they have the same
   5548    size).</p>
   5549 
   5550 <h5>Semantics:</h5>
   5551 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5552    <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
   5553    this conversion.  The conversion is done as if the <tt>value</tt> had been
   5554    stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
   5555    be converted to other pointer types with this instruction. To convert
   5556    pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
   5557    <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
   5558 
   5559 <h5>Example:</h5>
   5560 <pre>
   5561   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
   5562   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
   5563   %Z = bitcast &lt;2 x int&gt; %V to i64;      <i>; yields i64: %V</i>
   5564 </pre>
   5565 
   5566 </div>
   5567 
   5568 </div>
   5569 
   5570 <!-- ======================================================================= -->
   5571 <h3>
   5572   <a name="otherops">Other Operations</a>
   5573 </h3>
   5574 
   5575 <div>
   5576 
   5577 <p>The instructions in this category are the "miscellaneous" instructions, which
   5578    defy better classification.</p>
   5579 
   5580 <!-- _______________________________________________________________________ -->
   5581 <h4>
   5582   <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
   5583 </h4>
   5584 
   5585 <div>
   5586 
   5587 <h5>Syntax:</h5>
   5588 <pre>
   5589   &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   5590 </pre>
   5591 
   5592 <h5>Overview:</h5>
   5593 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
   5594    boolean values based on comparison of its two integer, integer vector, or
   5595    pointer operands.</p>
   5596 
   5597 <h5>Arguments:</h5>
   5598 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
   5599    the condition code indicating the kind of comparison to perform. It is not a
   5600    value, just a keyword. The possible condition code are:</p>
   5601 
   5602 <ol>
   5603   <li><tt>eq</tt>: equal</li>
   5604   <li><tt>ne</tt>: not equal </li>
   5605   <li><tt>ugt</tt>: unsigned greater than</li>
   5606   <li><tt>uge</tt>: unsigned greater or equal</li>
   5607   <li><tt>ult</tt>: unsigned less than</li>
   5608   <li><tt>ule</tt>: unsigned less or equal</li>
   5609   <li><tt>sgt</tt>: signed greater than</li>
   5610   <li><tt>sge</tt>: signed greater or equal</li>
   5611   <li><tt>slt</tt>: signed less than</li>
   5612   <li><tt>sle</tt>: signed less or equal</li>
   5613 </ol>
   5614 
   5615 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
   5616    <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
   5617    typed.  They must also be identical types.</p>
   5618 
   5619 <h5>Semantics:</h5>
   5620 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
   5621    condition code given as <tt>cond</tt>. The comparison performed always yields
   5622    either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
   5623    result, as follows:</p>
   5624 
   5625 <ol>
   5626   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
   5627       <tt>false</tt> otherwise. No sign interpretation is necessary or
   5628       performed.</li>
   5629 
   5630   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
   5631       <tt>false</tt> otherwise. No sign interpretation is necessary or
   5632       performed.</li>
   5633 
   5634   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
   5635       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5636 
   5637   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
   5638       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   5639       to <tt>op2</tt>.</li>
   5640 
   5641   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
   5642       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5643 
   5644   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
   5645       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5646 
   5647   <li><tt>sgt</tt>: interprets the operands as signed values and yields
   5648       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5649 
   5650   <li><tt>sge</tt>: interprets the operands as signed values and yields
   5651       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   5652       to <tt>op2</tt>.</li>
   5653 
   5654   <li><tt>slt</tt>: interprets the operands as signed values and yields
   5655       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5656 
   5657   <li><tt>sle</tt>: interprets the operands as signed values and yields
   5658       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5659 </ol>
   5660 
   5661 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
   5662    values are compared as if they were integers.</p>
   5663 
   5664 <p>If the operands are integer vectors, then they are compared element by
   5665    element. The result is an <tt>i1</tt> vector with the same number of elements
   5666    as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
   5667 
   5668 <h5>Example:</h5>
   5669 <pre>
   5670   &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
   5671   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
   5672   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
   5673   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
   5674   &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
   5675   &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
   5676 </pre>
   5677 
   5678 <p>Note that the code generator does not yet support vector types with
   5679    the <tt>icmp</tt> instruction.</p>
   5680 
   5681 </div>
   5682 
   5683 <!-- _______________________________________________________________________ -->
   5684 <h4>
   5685   <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
   5686 </h4>
   5687 
   5688 <div>
   5689 
   5690 <h5>Syntax:</h5>
   5691 <pre>
   5692   &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   5693 </pre>
   5694 
   5695 <h5>Overview:</h5>
   5696 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
   5697    values based on comparison of its operands.</p>
   5698 
   5699 <p>If the operands are floating point scalars, then the result type is a boolean
   5700 (<a href="#t_integer"><tt>i1</tt></a>).</p>
   5701 
   5702 <p>If the operands are floating point vectors, then the result type is a vector
   5703    of boolean with the same number of elements as the operands being
   5704    compared.</p>
   5705 
   5706 <h5>Arguments:</h5>
   5707 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
   5708    the condition code indicating the kind of comparison to perform. It is not a
   5709    value, just a keyword. The possible condition code are:</p>
   5710 
   5711 <ol>
   5712   <li><tt>false</tt>: no comparison, always returns false</li>
   5713   <li><tt>oeq</tt>: ordered and equal</li>
   5714   <li><tt>ogt</tt>: ordered and greater than </li>
   5715   <li><tt>oge</tt>: ordered and greater than or equal</li>
   5716   <li><tt>olt</tt>: ordered and less than </li>
   5717   <li><tt>ole</tt>: ordered and less than or equal</li>
   5718   <li><tt>one</tt>: ordered and not equal</li>
   5719   <li><tt>ord</tt>: ordered (no nans)</li>
   5720   <li><tt>ueq</tt>: unordered or equal</li>
   5721   <li><tt>ugt</tt>: unordered or greater than </li>
   5722   <li><tt>uge</tt>: unordered or greater than or equal</li>
   5723   <li><tt>ult</tt>: unordered or less than </li>
   5724   <li><tt>ule</tt>: unordered or less than or equal</li>
   5725   <li><tt>une</tt>: unordered or not equal</li>
   5726   <li><tt>uno</tt>: unordered (either nans)</li>
   5727   <li><tt>true</tt>: no comparison, always returns true</li>
   5728 </ol>
   5729 
   5730 <p><i>Ordered</i> means that neither operand is a QNAN while
   5731    <i>unordered</i> means that either operand may be a QNAN.</p>
   5732 
   5733 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
   5734    a <a href="#t_floating">floating point</a> type or
   5735    a <a href="#t_vector">vector</a> of floating point type.  They must have
   5736    identical types.</p>
   5737 
   5738 <h5>Semantics:</h5>
   5739 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
   5740    according to the condition code given as <tt>cond</tt>.  If the operands are
   5741    vectors, then the vectors are compared element by element.  Each comparison
   5742    performed always yields an <a href="#t_integer">i1</a> result, as
   5743    follows:</p>
   5744 
   5745 <ol>
   5746   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
   5747 
   5748   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5749       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   5750 
   5751   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5752       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5753 
   5754   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5755       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   5756 
   5757   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5758       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5759 
   5760   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5761       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5762 
   5763   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5764       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   5765 
   5766   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
   5767 
   5768   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5769       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   5770 
   5771   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5772       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5773 
   5774   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5775       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   5776 
   5777   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5778       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5779 
   5780   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5781       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5782 
   5783   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5784       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   5785 
   5786   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
   5787 
   5788   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
   5789 </ol>
   5790 
   5791 <h5>Example:</h5>
   5792 <pre>
   5793   &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
   5794   &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
   5795   &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
   5796   &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
   5797 </pre>
   5798 
   5799 <p>Note that the code generator does not yet support vector types with
   5800    the <tt>fcmp</tt> instruction.</p>
   5801 
   5802 </div>
   5803 
   5804 <!-- _______________________________________________________________________ -->
   5805 <h4>
   5806   <a name="i_phi">'<tt>phi</tt>' Instruction</a>
   5807 </h4>
   5808 
   5809 <div>
   5810 
   5811 <h5>Syntax:</h5>
   5812 <pre>
   5813   &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
   5814 </pre>
   5815 
   5816 <h5>Overview:</h5>
   5817 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
   5818    SSA graph representing the function.</p>
   5819 
   5820 <h5>Arguments:</h5>
   5821 <p>The type of the incoming values is specified with the first type field. After
   5822    this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
   5823    one pair for each predecessor basic block of the current block.  Only values
   5824    of <a href="#t_firstclass">first class</a> type may be used as the value
   5825    arguments to the PHI node.  Only labels may be used as the label
   5826    arguments.</p>
   5827 
   5828 <p>There must be no non-phi instructions between the start of a basic block and
   5829    the PHI instructions: i.e. PHI instructions must be first in a basic
   5830    block.</p>
   5831 
   5832 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
   5833    occur on the edge from the corresponding predecessor block to the current
   5834    block (but after any definition of an '<tt>invoke</tt>' instruction's return
   5835    value on the same edge).</p>
   5836 
   5837 <h5>Semantics:</h5>
   5838 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
   5839    specified by the pair corresponding to the predecessor basic block that
   5840    executed just prior to the current block.</p>
   5841 
   5842 <h5>Example:</h5>
   5843 <pre>
   5844 Loop:       ; Infinite loop that counts from 0 on up...
   5845   %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
   5846   %nextindvar = add i32 %indvar, 1
   5847   br label %Loop
   5848 </pre>
   5849 
   5850 </div>
   5851 
   5852 <!-- _______________________________________________________________________ -->
   5853 <h4>
   5854    <a name="i_select">'<tt>select</tt>' Instruction</a>
   5855 </h4>
   5856 
   5857 <div>
   5858 
   5859 <h5>Syntax:</h5>
   5860 <pre>
   5861   &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
   5862 
   5863   <i>selty</i> is either i1 or {&lt;N x i1&gt;}
   5864 </pre>
   5865 
   5866 <h5>Overview:</h5>
   5867 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
   5868    condition, without branching.</p>
   5869 
   5870 
   5871 <h5>Arguments:</h5>
   5872 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
   5873    values indicating the condition, and two values of the
   5874    same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
   5875    vectors and the condition is a scalar, then entire vectors are selected, not
   5876    individual elements.</p>
   5877 
   5878 <h5>Semantics:</h5>
   5879 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
   5880    first value argument; otherwise, it returns the second value argument.</p>
   5881 
   5882 <p>If the condition is a vector of i1, then the value arguments must be vectors
   5883    of the same size, and the selection is done element by element.</p>
   5884 
   5885 <h5>Example:</h5>
   5886 <pre>
   5887   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
   5888 </pre>
   5889 
   5890 <p>Note that the code generator does not yet support conditions
   5891    with vector type.</p>
   5892 
   5893 </div>
   5894 
   5895 <!-- _______________________________________________________________________ -->
   5896 <h4>
   5897   <a name="i_call">'<tt>call</tt>' Instruction</a>
   5898 </h4>
   5899 
   5900 <div>
   5901 
   5902 <h5>Syntax:</h5>
   5903 <pre>
   5904   &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   5905 </pre>
   5906 
   5907 <h5>Overview:</h5>
   5908 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
   5909 
   5910 <h5>Arguments:</h5>
   5911 <p>This instruction requires several arguments:</p>
   5912 
   5913 <ol>
   5914   <li>The optional "tail" marker indicates that the callee function does not
   5915       access any allocas or varargs in the caller.  Note that calls may be
   5916       marked "tail" even if they do not occur before
   5917       a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
   5918       present, the function call is eligible for tail call optimization,
   5919       but <a href="CodeGenerator.html#tailcallopt">might not in fact be
   5920       optimized into a jump</a>.  The code generator may optimize calls marked
   5921       "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
   5922       sibling call optimization</a> when the caller and callee have
   5923       matching signatures, or 2) forced tail call optimization when the
   5924       following extra requirements are met:
   5925       <ul>
   5926         <li>Caller and callee both have the calling
   5927             convention <tt>fastcc</tt>.</li>
   5928         <li>The call is in tail position (ret immediately follows call and ret
   5929             uses value of call or is void).</li>
   5930         <li>Option <tt>-tailcallopt</tt> is enabled,
   5931             or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
   5932         <li><a href="CodeGenerator.html#tailcallopt">Platform specific
   5933             constraints are met.</a></li>
   5934       </ul>
   5935   </li>
   5936 
   5937   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   5938       convention</a> the call should use.  If none is specified, the call
   5939       defaults to using C calling conventions.  The calling convention of the
   5940       call must match the calling convention of the target function, or else the
   5941       behavior is undefined.</li>
   5942 
   5943   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   5944       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   5945       '<tt>inreg</tt>' attributes are valid here.</li>
   5946 
   5947   <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
   5948       type of the return value.  Functions that return no value are marked
   5949       <tt><a href="#t_void">void</a></tt>.</li>
   5950 
   5951   <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
   5952       being invoked.  The argument types must match the types implied by this
   5953       signature.  This type can be omitted if the function is not varargs and if
   5954       the function type does not return a pointer to a function.</li>
   5955 
   5956   <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
   5957       be invoked. In most cases, this is a direct function invocation, but
   5958       indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
   5959       to function value.</li>
   5960 
   5961   <li>'<tt>function args</tt>': argument list whose types match the function
   5962       signature argument types and parameter attributes. All arguments must be
   5963       of <a href="#t_firstclass">first class</a> type. If the function
   5964       signature indicates the function accepts a variable number of arguments,
   5965       the extra arguments can be specified.</li>
   5966 
   5967   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   5968       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   5969       '<tt>readnone</tt>' attributes are valid here.</li>
   5970 </ol>
   5971 
   5972 <h5>Semantics:</h5>
   5973 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
   5974    a specified function, with its incoming arguments bound to the specified
   5975    values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
   5976    function, control flow continues with the instruction after the function
   5977    call, and the return value of the function is bound to the result
   5978    argument.</p>
   5979 
   5980 <h5>Example:</h5>
   5981 <pre>
   5982   %retval = call i32 @test(i32 %argc)
   5983   call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
   5984   %X = tail call i32 @foo()                                    <i>; yields i32</i>
   5985   %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
   5986   call void %foo(i8 97 signext)
   5987 
   5988   %struct.A = type { i32, i8 }
   5989   %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
   5990   %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
   5991   %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
   5992   %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
   5993   %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
   5994 </pre>
   5995 
   5996 <p>llvm treats calls to some functions with names and arguments that match the
   5997 standard C99 library as being the C99 library functions, and may perform
   5998 optimizations or generate code for them under that assumption.  This is
   5999 something we'd like to change in the future to provide better support for
   6000 freestanding environments and non-C-based languages.</p>
   6001 
   6002 </div>
   6003 
   6004 <!-- _______________________________________________________________________ -->
   6005 <h4>
   6006   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
   6007 </h4>
   6008 
   6009 <div>
   6010 
   6011 <h5>Syntax:</h5>
   6012 <pre>
   6013   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
   6014 </pre>
   6015 
   6016 <h5>Overview:</h5>
   6017 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
   6018    the "variable argument" area of a function call.  It is used to implement the
   6019    <tt>va_arg</tt> macro in C.</p>
   6020 
   6021 <h5>Arguments:</h5>
   6022 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
   6023    argument. It returns a value of the specified argument type and increments
   6024    the <tt>va_list</tt> to point to the next argument.  The actual type
   6025    of <tt>va_list</tt> is target specific.</p>
   6026 
   6027 <h5>Semantics:</h5>
   6028 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
   6029    from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
   6030    to the next argument.  For more information, see the variable argument
   6031    handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
   6032 
   6033 <p>It is legal for this instruction to be called in a function which does not
   6034    take a variable number of arguments, for example, the <tt>vfprintf</tt>
   6035    function.</p>
   6036 
   6037 <p><tt>va_arg</tt> is an LLVM instruction instead of
   6038    an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
   6039    argument.</p>
   6040 
   6041 <h5>Example:</h5>
   6042 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
   6043 
   6044 <p>Note that the code generator does not yet fully support va_arg on many
   6045    targets. Also, it does not currently support va_arg with aggregate types on
   6046    any target.</p>
   6047 
   6048 </div>
   6049 
   6050 <!-- _______________________________________________________________________ -->
   6051 <h4>
   6052   <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
   6053 </h4>
   6054 
   6055 <div>
   6056 
   6057 <h5>Syntax:</h5>
   6058 <pre>
   6059   &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
   6060   &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
   6061 
   6062   &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
   6063   &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
   6064 </pre>
   6065 
   6066 <h5>Overview:</h5>
   6067 <p>The '<tt>landingpad</tt>' instruction is used by
   6068    <a href="ExceptionHandling.html#overview">LLVM's exception handling
   6069    system</a> to specify that a basic block is a landing pad &mdash; one where
   6070    the exception lands, and corresponds to the code found in the
   6071    <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
   6072    defines values supplied by the personality function (<tt>pers_fn</tt>) upon
   6073    re-entry to the function. The <tt>resultval</tt> has the
   6074    type <tt>somety</tt>.</p>
   6075 
   6076 <h5>Arguments:</h5>
   6077 <p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
   6078    function associated with the unwinding mechanism. The optional
   6079    <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
   6080 
   6081 <p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
   6082    or <tt>filter</tt> &mdash; and contains the global variable representing the
   6083    "type" that may be caught or filtered respectively. Unlike the
   6084    <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
   6085    its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
   6086    throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
   6087    one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
   6088 
   6089 <h5>Semantics:</h5>
   6090 <p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
   6091    personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
   6092    therefore the "result type" of the <tt>landingpad</tt> instruction. As with
   6093    calling conventions, how the personality function results are represented in
   6094    LLVM IR is target specific.</p>
   6095 
   6096 <p>The clauses are applied in order from top to bottom. If two
   6097    <tt>landingpad</tt> instructions are merged together through inlining, the
   6098    clauses from the calling function are appended to the list of clauses.</p>
   6099 
   6100 <p>The <tt>landingpad</tt> instruction has several restrictions:</p>
   6101 
   6102 <ul>
   6103   <li>A landing pad block is a basic block which is the unwind destination of an
   6104       '<tt>invoke</tt>' instruction.</li>
   6105   <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
   6106       first non-PHI instruction.</li>
   6107   <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
   6108       pad block.</li>
   6109   <li>A basic block that is not a landing pad block may not include a
   6110       '<tt>landingpad</tt>' instruction.</li>
   6111   <li>All '<tt>landingpad</tt>' instructions in a function must have the same
   6112       personality function.</li>
   6113 </ul>
   6114 
   6115 <h5>Example:</h5>
   6116 <pre>
   6117   ;; A landing pad which can catch an integer.
   6118   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6119            catch i8** @_ZTIi
   6120   ;; A landing pad that is a cleanup.
   6121   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6122            cleanup
   6123   ;; A landing pad which can catch an integer and can only throw a double.
   6124   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6125            catch i8** @_ZTIi
   6126            filter [1 x i8**] [@_ZTId]
   6127 </pre>
   6128 
   6129 </div>
   6130 
   6131 </div>
   6132 
   6133 </div>
   6134 
   6135 <!-- *********************************************************************** -->
   6136 <h2><a name="intrinsics">Intrinsic Functions</a></h2>
   6137 <!-- *********************************************************************** -->
   6138 
   6139 <div>
   6140 
   6141 <p>LLVM supports the notion of an "intrinsic function".  These functions have
   6142    well known names and semantics and are required to follow certain
   6143    restrictions.  Overall, these intrinsics represent an extension mechanism for
   6144    the LLVM language that does not require changing all of the transformations
   6145    in LLVM when adding to the language (or the bitcode reader/writer, the
   6146    parser, etc...).</p>
   6147 
   6148 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
   6149    prefix is reserved in LLVM for intrinsic names; thus, function names may not
   6150    begin with this prefix.  Intrinsic functions must always be external
   6151    functions: you cannot define the body of intrinsic functions.  Intrinsic
   6152    functions may only be used in call or invoke instructions: it is illegal to
   6153    take the address of an intrinsic function.  Additionally, because intrinsic
   6154    functions are part of the LLVM language, it is required if any are added that
   6155    they be documented here.</p>
   6156 
   6157 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
   6158    family of functions that perform the same operation but on different data
   6159    types. Because LLVM can represent over 8 million different integer types,
   6160    overloading is used commonly to allow an intrinsic function to operate on any
   6161    integer type. One or more of the argument types or the result type can be
   6162    overloaded to accept any integer type. Argument types may also be defined as
   6163    exactly matching a previous argument's type or the result type. This allows
   6164    an intrinsic function which accepts multiple arguments, but needs all of them
   6165    to be of the same type, to only be overloaded with respect to a single
   6166    argument or the result.</p>
   6167 
   6168 <p>Overloaded intrinsics will have the names of its overloaded argument types
   6169    encoded into its function name, each preceded by a period. Only those types
   6170    which are overloaded result in a name suffix. Arguments whose type is matched
   6171    against another type do not. For example, the <tt>llvm.ctpop</tt> function
   6172    can take an integer of any width and returns an integer of exactly the same
   6173    integer width. This leads to a family of functions such as
   6174    <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
   6175    %val)</tt>.  Only one type, the return type, is overloaded, and only one type
   6176    suffix is required. Because the argument's type is matched against the return
   6177    type, it does not require its own name suffix.</p>
   6178 
   6179 <p>To learn how to add an intrinsic function, please see the
   6180    <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
   6181 
   6182 <!-- ======================================================================= -->
   6183 <h3>
   6184   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
   6185 </h3>
   6186 
   6187 <div>
   6188 
   6189 <p>Variable argument support is defined in LLVM with
   6190    the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
   6191    intrinsic functions.  These functions are related to the similarly named
   6192    macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
   6193 
   6194 <p>All of these functions operate on arguments that use a target-specific value
   6195    type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
   6196    not define what this type is, so all transformations should be prepared to
   6197    handle these functions regardless of the type used.</p>
   6198 
   6199 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
   6200    instruction and the variable argument handling intrinsic functions are
   6201    used.</p>
   6202 
   6203 <pre class="doc_code">
   6204 define i32 @test(i32 %X, ...) {
   6205   ; Initialize variable argument processing
   6206   %ap = alloca i8*
   6207   %ap2 = bitcast i8** %ap to i8*
   6208   call void @llvm.va_start(i8* %ap2)
   6209 
   6210   ; Read a single integer argument
   6211   %tmp = va_arg i8** %ap, i32
   6212 
   6213   ; Demonstrate usage of llvm.va_copy and llvm.va_end
   6214   %aq = alloca i8*
   6215   %aq2 = bitcast i8** %aq to i8*
   6216   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
   6217   call void @llvm.va_end(i8* %aq2)
   6218 
   6219   ; Stop processing of arguments.
   6220   call void @llvm.va_end(i8* %ap2)
   6221   ret i32 %tmp
   6222 }
   6223 
   6224 declare void @llvm.va_start(i8*)
   6225 declare void @llvm.va_copy(i8*, i8*)
   6226 declare void @llvm.va_end(i8*)
   6227 </pre>
   6228 
   6229 <!-- _______________________________________________________________________ -->
   6230 <h4>
   6231   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
   6232 </h4>
   6233 
   6234 
   6235 <div>
   6236 
   6237 <h5>Syntax:</h5>
   6238 <pre>
   6239   declare void %llvm.va_start(i8* &lt;arglist&gt;)
   6240 </pre>
   6241 
   6242 <h5>Overview:</h5>
   6243 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
   6244    for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
   6245 
   6246 <h5>Arguments:</h5>
   6247 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
   6248 
   6249 <h5>Semantics:</h5>
   6250 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
   6251    macro available in C.  In a target-dependent way, it initializes
   6252    the <tt>va_list</tt> element to which the argument points, so that the next
   6253    call to <tt>va_arg</tt> will produce the first variable argument passed to
   6254    the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
   6255    need to know the last argument of the function as the compiler can figure
   6256    that out.</p>
   6257 
   6258 </div>
   6259 
   6260 <!-- _______________________________________________________________________ -->
   6261 <h4>
   6262  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
   6263 </h4>
   6264 
   6265 <div>
   6266 
   6267 <h5>Syntax:</h5>
   6268 <pre>
   6269   declare void @llvm.va_end(i8* &lt;arglist&gt;)
   6270 </pre>
   6271 
   6272 <h5>Overview:</h5>
   6273 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
   6274    which has been initialized previously
   6275    with <tt><a href="#int_va_start">llvm.va_start</a></tt>
   6276    or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
   6277 
   6278 <h5>Arguments:</h5>
   6279 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
   6280 
   6281 <h5>Semantics:</h5>
   6282 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
   6283    macro available in C.  In a target-dependent way, it destroys
   6284    the <tt>va_list</tt> element to which the argument points.  Calls
   6285    to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
   6286    and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
   6287    with calls to <tt>llvm.va_end</tt>.</p>
   6288 
   6289 </div>
   6290 
   6291 <!-- _______________________________________________________________________ -->
   6292 <h4>
   6293   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
   6294 </h4>
   6295 
   6296 <div>
   6297 
   6298 <h5>Syntax:</h5>
   6299 <pre>
   6300   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
   6301 </pre>
   6302 
   6303 <h5>Overview:</h5>
   6304 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
   6305    from the source argument list to the destination argument list.</p>
   6306 
   6307 <h5>Arguments:</h5>
   6308 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
   6309    The second argument is a pointer to a <tt>va_list</tt> element to copy
   6310    from.</p>
   6311 
   6312 <h5>Semantics:</h5>
   6313 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
   6314    macro available in C.  In a target-dependent way, it copies the
   6315    source <tt>va_list</tt> element into the destination <tt>va_list</tt>
   6316    element.  This intrinsic is necessary because
   6317    the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
   6318    arbitrarily complex and require, for example, memory allocation.</p>
   6319 
   6320 </div>
   6321 
   6322 </div>
   6323 
   6324 </div>
   6325 
   6326 <!-- ======================================================================= -->
   6327 <h3>
   6328   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
   6329 </h3>
   6330 
   6331 <div>
   6332 
   6333 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
   6334 Collection</a> (GC) requires the implementation and generation of these
   6335 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
   6336 roots on the stack</a>, as well as garbage collector implementations that
   6337 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
   6338 barriers.  Front-ends for type-safe garbage collected languages should generate
   6339 these intrinsics to make use of the LLVM garbage collectors.  For more details,
   6340 see <a href="GarbageCollection.html">Accurate Garbage Collection with
   6341 LLVM</a>.</p>
   6342 
   6343 <p>The garbage collection intrinsics only operate on objects in the generic
   6344    address space (address space zero).</p>
   6345 
   6346 <!-- _______________________________________________________________________ -->
   6347 <h4>
   6348   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
   6349 </h4>
   6350 
   6351 <div>
   6352 
   6353 <h5>Syntax:</h5>
   6354 <pre>
   6355   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
   6356 </pre>
   6357 
   6358 <h5>Overview:</h5>
   6359 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
   6360    the code generator, and allows some metadata to be associated with it.</p>
   6361 
   6362 <h5>Arguments:</h5>
   6363 <p>The first argument specifies the address of a stack object that contains the
   6364    root pointer.  The second pointer (which must be either a constant or a
   6365    global value address) contains the meta-data to be associated with the
   6366    root.</p>
   6367 
   6368 <h5>Semantics:</h5>
   6369 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
   6370    location.  At compile-time, the code generator generates information to allow
   6371    the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
   6372    intrinsic may only be used in a function which <a href="#gc">specifies a GC
   6373    algorithm</a>.</p>
   6374 
   6375 </div>
   6376 
   6377 <!-- _______________________________________________________________________ -->
   6378 <h4>
   6379   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
   6380 </h4>
   6381 
   6382 <div>
   6383 
   6384 <h5>Syntax:</h5>
   6385 <pre>
   6386   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
   6387 </pre>
   6388 
   6389 <h5>Overview:</h5>
   6390 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
   6391    locations, allowing garbage collector implementations that require read
   6392    barriers.</p>
   6393 
   6394 <h5>Arguments:</h5>
   6395 <p>The second argument is the address to read from, which should be an address
   6396    allocated from the garbage collector.  The first object is a pointer to the
   6397    start of the referenced object, if needed by the language runtime (otherwise
   6398    null).</p>
   6399 
   6400 <h5>Semantics:</h5>
   6401 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
   6402    instruction, but may be replaced with substantially more complex code by the
   6403    garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
   6404    may only be used in a function which <a href="#gc">specifies a GC
   6405    algorithm</a>.</p>
   6406 
   6407 </div>
   6408 
   6409 <!-- _______________________________________________________________________ -->
   6410 <h4>
   6411   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
   6412 </h4>
   6413 
   6414 <div>
   6415 
   6416 <h5>Syntax:</h5>
   6417 <pre>
   6418   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
   6419 </pre>
   6420 
   6421 <h5>Overview:</h5>
   6422 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
   6423    locations, allowing garbage collector implementations that require write
   6424    barriers (such as generational or reference counting collectors).</p>
   6425 
   6426 <h5>Arguments:</h5>
   6427 <p>The first argument is the reference to store, the second is the start of the
   6428    object to store it to, and the third is the address of the field of Obj to
   6429    store to.  If the runtime does not require a pointer to the object, Obj may
   6430    be null.</p>
   6431 
   6432 <h5>Semantics:</h5>
   6433 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
   6434    instruction, but may be replaced with substantially more complex code by the
   6435    garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
   6436    may only be used in a function which <a href="#gc">specifies a GC
   6437    algorithm</a>.</p>
   6438 
   6439 </div>
   6440 
   6441 </div>
   6442 
   6443 <!-- ======================================================================= -->
   6444 <h3>
   6445   <a name="int_codegen">Code Generator Intrinsics</a>
   6446 </h3>
   6447 
   6448 <div>
   6449 
   6450 <p>These intrinsics are provided by LLVM to expose special features that may
   6451    only be implemented with code generator support.</p>
   6452 
   6453 <!-- _______________________________________________________________________ -->
   6454 <h4>
   6455   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
   6456 </h4>
   6457 
   6458 <div>
   6459 
   6460 <h5>Syntax:</h5>
   6461 <pre>
   6462   declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
   6463 </pre>
   6464 
   6465 <h5>Overview:</h5>
   6466 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
   6467    target-specific value indicating the return address of the current function
   6468    or one of its callers.</p>
   6469 
   6470 <h5>Arguments:</h5>
   6471 <p>The argument to this intrinsic indicates which function to return the address
   6472    for.  Zero indicates the calling function, one indicates its caller, etc.
   6473    The argument is <b>required</b> to be a constant integer value.</p>
   6474 
   6475 <h5>Semantics:</h5>
   6476 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
   6477    indicating the return address of the specified call frame, or zero if it
   6478    cannot be identified.  The value returned by this intrinsic is likely to be
   6479    incorrect or 0 for arguments other than zero, so it should only be used for
   6480    debugging purposes.</p>
   6481 
   6482 <p>Note that calling this intrinsic does not prevent function inlining or other
   6483    aggressive transformations, so the value returned may not be that of the
   6484    obvious source-language caller.</p>
   6485 
   6486 </div>
   6487 
   6488 <!-- _______________________________________________________________________ -->
   6489 <h4>
   6490   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
   6491 </h4>
   6492 
   6493 <div>
   6494 
   6495 <h5>Syntax:</h5>
   6496 <pre>
   6497   declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
   6498 </pre>
   6499 
   6500 <h5>Overview:</h5>
   6501 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
   6502    target-specific frame pointer value for the specified stack frame.</p>
   6503 
   6504 <h5>Arguments:</h5>
   6505 <p>The argument to this intrinsic indicates which function to return the frame
   6506    pointer for.  Zero indicates the calling function, one indicates its caller,
   6507    etc.  The argument is <b>required</b> to be a constant integer value.</p>
   6508 
   6509 <h5>Semantics:</h5>
   6510 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
   6511    indicating the frame address of the specified call frame, or zero if it
   6512    cannot be identified.  The value returned by this intrinsic is likely to be
   6513    incorrect or 0 for arguments other than zero, so it should only be used for
   6514    debugging purposes.</p>
   6515 
   6516 <p>Note that calling this intrinsic does not prevent function inlining or other
   6517    aggressive transformations, so the value returned may not be that of the
   6518    obvious source-language caller.</p>
   6519 
   6520 </div>
   6521 
   6522 <!-- _______________________________________________________________________ -->
   6523 <h4>
   6524   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
   6525 </h4>
   6526 
   6527 <div>
   6528 
   6529 <h5>Syntax:</h5>
   6530 <pre>
   6531   declare i8* @llvm.stacksave()
   6532 </pre>
   6533 
   6534 <h5>Overview:</h5>
   6535 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
   6536    of the function stack, for use
   6537    with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
   6538    useful for implementing language features like scoped automatic variable
   6539    sized arrays in C99.</p>
   6540 
   6541 <h5>Semantics:</h5>
   6542 <p>This intrinsic returns a opaque pointer value that can be passed
   6543    to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
   6544    an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
   6545    from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
   6546    to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
   6547    In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
   6548    stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
   6549 
   6550 </div>
   6551 
   6552 <!-- _______________________________________________________________________ -->
   6553 <h4>
   6554   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
   6555 </h4>
   6556 
   6557 <div>
   6558 
   6559 <h5>Syntax:</h5>
   6560 <pre>
   6561   declare void @llvm.stackrestore(i8* %ptr)
   6562 </pre>
   6563 
   6564 <h5>Overview:</h5>
   6565 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
   6566    the function stack to the state it was in when the
   6567    corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
   6568    executed.  This is useful for implementing language features like scoped
   6569    automatic variable sized arrays in C99.</p>
   6570 
   6571 <h5>Semantics:</h5>
   6572 <p>See the description
   6573    for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
   6574 
   6575 </div>
   6576 
   6577 <!-- _______________________________________________________________________ -->
   6578 <h4>
   6579   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
   6580 </h4>
   6581 
   6582 <div>
   6583 
   6584 <h5>Syntax:</h5>
   6585 <pre>
   6586   declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
   6587 </pre>
   6588 
   6589 <h5>Overview:</h5>
   6590 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
   6591    insert a prefetch instruction if supported; otherwise, it is a noop.
   6592    Prefetches have no effect on the behavior of the program but can change its
   6593    performance characteristics.</p>
   6594 
   6595 <h5>Arguments:</h5>
   6596 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
   6597    specifier determining if the fetch should be for a read (0) or write (1),
   6598    and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
   6599    locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
   6600    specifies whether the prefetch is performed on the data (1) or instruction (0)
   6601    cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
   6602    must be constant integers.</p>
   6603 
   6604 <h5>Semantics:</h5>
   6605 <p>This intrinsic does not modify the behavior of the program.  In particular,
   6606    prefetches cannot trap and do not produce a value.  On targets that support
   6607    this intrinsic, the prefetch can provide hints to the processor cache for
   6608    better performance.</p>
   6609 
   6610 </div>
   6611 
   6612 <!-- _______________________________________________________________________ -->
   6613 <h4>
   6614   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
   6615 </h4>
   6616 
   6617 <div>
   6618 
   6619 <h5>Syntax:</h5>
   6620 <pre>
   6621   declare void @llvm.pcmarker(i32 &lt;id&gt;)
   6622 </pre>
   6623 
   6624 <h5>Overview:</h5>
   6625 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
   6626    Counter (PC) in a region of code to simulators and other tools.  The method
   6627    is target specific, but it is expected that the marker will use exported
   6628    symbols to transmit the PC of the marker.  The marker makes no guarantees
   6629    that it will remain with any specific instruction after optimizations.  It is
   6630    possible that the presence of a marker will inhibit optimizations.  The
   6631    intended use is to be inserted after optimizations to allow correlations of
   6632    simulation runs.</p>
   6633 
   6634 <h5>Arguments:</h5>
   6635 <p><tt>id</tt> is a numerical id identifying the marker.</p>
   6636 
   6637 <h5>Semantics:</h5>
   6638 <p>This intrinsic does not modify the behavior of the program.  Backends that do
   6639    not support this intrinsic may ignore it.</p>
   6640 
   6641 </div>
   6642 
   6643 <!-- _______________________________________________________________________ -->
   6644 <h4>
   6645   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
   6646 </h4>
   6647 
   6648 <div>
   6649 
   6650 <h5>Syntax:</h5>
   6651 <pre>
   6652   declare i64 @llvm.readcyclecounter()
   6653 </pre>
   6654 
   6655 <h5>Overview:</h5>
   6656 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
   6657    counter register (or similar low latency, high accuracy clocks) on those
   6658    targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
   6659    should map to RPCC.  As the backing counters overflow quickly (on the order
   6660    of 9 seconds on alpha), this should only be used for small timings.</p>
   6661 
   6662 <h5>Semantics:</h5>
   6663 <p>When directly supported, reading the cycle counter should not modify any
   6664    memory.  Implementations are allowed to either return a application specific
   6665    value or a system wide value.  On backends without support, this is lowered
   6666    to a constant 0.</p>
   6667 
   6668 </div>
   6669 
   6670 </div>
   6671 
   6672 <!-- ======================================================================= -->
   6673 <h3>
   6674   <a name="int_libc">Standard C Library Intrinsics</a>
   6675 </h3>
   6676 
   6677 <div>
   6678 
   6679 <p>LLVM provides intrinsics for a few important standard C library functions.
   6680    These intrinsics allow source-language front-ends to pass information about
   6681    the alignment of the pointer arguments to the code generator, providing
   6682    opportunity for more efficient code generation.</p>
   6683 
   6684 <!-- _______________________________________________________________________ -->
   6685 <h4>
   6686   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
   6687 </h4>
   6688 
   6689 <div>
   6690 
   6691 <h5>Syntax:</h5>
   6692 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
   6693    integer bit width and for different address spaces. Not all targets support
   6694    all bit widths however.</p>
   6695 
   6696 <pre>
   6697   declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6698                                           i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6699   declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6700                                           i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6701 </pre>
   6702 
   6703 <h5>Overview:</h5>
   6704 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   6705    source location to the destination location.</p>
   6706 
   6707 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
   6708    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   6709    and the pointers can be in specified address spaces.</p>
   6710 
   6711 <h5>Arguments:</h5>
   6712 
   6713 <p>The first argument is a pointer to the destination, the second is a pointer
   6714    to the source.  The third argument is an integer argument specifying the
   6715    number of bytes to copy, the fourth argument is the alignment of the
   6716    source and destination locations, and the fifth is a boolean indicating a
   6717    volatile access.</p>
   6718 
   6719 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6720    then the caller guarantees that both the source and destination pointers are
   6721    aligned to that boundary.</p>
   6722 
   6723 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6724    <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
   6725    The detailed access behavior is not very cleanly specified and it is unwise
   6726    to depend on it.</p>
   6727 
   6728 <h5>Semantics:</h5>
   6729 
   6730 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   6731    source location to the destination location, which are not allowed to
   6732    overlap.  It copies "len" bytes of memory over.  If the argument is known to
   6733    be aligned to some boundary, this can be specified as the fourth argument,
   6734    otherwise it should be set to 0 or 1.</p>
   6735 
   6736 </div>
   6737 
   6738 <!-- _______________________________________________________________________ -->
   6739 <h4>
   6740   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
   6741 </h4>
   6742 
   6743 <div>
   6744 
   6745 <h5>Syntax:</h5>
   6746 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
   6747    width and for different address space. Not all targets support all bit
   6748    widths however.</p>
   6749 
   6750 <pre>
   6751   declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6752                                            i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6753   declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6754                                            i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6755 </pre>
   6756 
   6757 <h5>Overview:</h5>
   6758 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
   6759    source location to the destination location. It is similar to the
   6760    '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
   6761    overlap.</p>
   6762 
   6763 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
   6764    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   6765    and the pointers can be in specified address spaces.</p>
   6766 
   6767 <h5>Arguments:</h5>
   6768 
   6769 <p>The first argument is a pointer to the destination, the second is a pointer
   6770    to the source.  The third argument is an integer argument specifying the
   6771    number of bytes to copy, the fourth argument is the alignment of the
   6772    source and destination locations, and the fifth is a boolean indicating a
   6773    volatile access.</p>
   6774 
   6775 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6776    then the caller guarantees that the source and destination pointers are
   6777    aligned to that boundary.</p>
   6778 
   6779 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6780    <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
   6781    The detailed access behavior is not very cleanly specified and it is unwise
   6782    to depend on it.</p>
   6783 
   6784 <h5>Semantics:</h5>
   6785 
   6786 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
   6787    source location to the destination location, which may overlap.  It copies
   6788    "len" bytes of memory over.  If the argument is known to be aligned to some
   6789    boundary, this can be specified as the fourth argument, otherwise it should
   6790    be set to 0 or 1.</p>
   6791 
   6792 </div>
   6793 
   6794 <!-- _______________________________________________________________________ -->
   6795 <h4>
   6796   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
   6797 </h4>
   6798 
   6799 <div>
   6800 
   6801 <h5>Syntax:</h5>
   6802 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
   6803    width and for different address spaces. However, not all targets support all
   6804    bit widths.</p>
   6805 
   6806 <pre>
   6807   declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   6808                                      i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6809   declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   6810                                      i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6811 </pre>
   6812 
   6813 <h5>Overview:</h5>
   6814 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
   6815    particular byte value.</p>
   6816 
   6817 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
   6818    intrinsic does not return a value and takes extra alignment/volatile
   6819    arguments.  Also, the destination can be in an arbitrary address space.</p>
   6820 
   6821 <h5>Arguments:</h5>
   6822 <p>The first argument is a pointer to the destination to fill, the second is the
   6823    byte value with which to fill it, the third argument is an integer argument
   6824    specifying the number of bytes to fill, and the fourth argument is the known
   6825    alignment of the destination location.</p>
   6826 
   6827 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6828    then the caller guarantees that the destination pointer is aligned to that
   6829    boundary.</p>
   6830 
   6831 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6832    <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
   6833    The detailed access behavior is not very cleanly specified and it is unwise
   6834    to depend on it.</p>
   6835 
   6836 <h5>Semantics:</h5>
   6837 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
   6838    at the destination location.  If the argument is known to be aligned to some
   6839    boundary, this can be specified as the fourth argument, otherwise it should
   6840    be set to 0 or 1.</p>
   6841 
   6842 </div>
   6843 
   6844 <!-- _______________________________________________________________________ -->
   6845 <h4>
   6846   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
   6847 </h4>
   6848 
   6849 <div>
   6850 
   6851 <h5>Syntax:</h5>
   6852 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
   6853    floating point or vector of floating point type. Not all targets support all
   6854    types however.</p>
   6855 
   6856 <pre>
   6857   declare float     @llvm.sqrt.f32(float %Val)
   6858   declare double    @llvm.sqrt.f64(double %Val)
   6859   declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
   6860   declare fp128     @llvm.sqrt.f128(fp128 %Val)
   6861   declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
   6862 </pre>
   6863 
   6864 <h5>Overview:</h5>
   6865 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
   6866    returning the same value as the libm '<tt>sqrt</tt>' functions would.
   6867    Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
   6868    behavior for negative numbers other than -0.0 (which allows for better
   6869    optimization, because there is no need to worry about errno being
   6870    set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
   6871 
   6872 <h5>Arguments:</h5>
   6873 <p>The argument and return value are floating point numbers of the same
   6874    type.</p>
   6875 
   6876 <h5>Semantics:</h5>
   6877 <p>This function returns the sqrt of the specified operand if it is a
   6878    nonnegative floating point number.</p>
   6879 
   6880 </div>
   6881 
   6882 <!-- _______________________________________________________________________ -->
   6883 <h4>
   6884   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
   6885 </h4>
   6886 
   6887 <div>
   6888 
   6889 <h5>Syntax:</h5>
   6890 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
   6891    floating point or vector of floating point type. Not all targets support all
   6892    types however.</p>
   6893 
   6894 <pre>
   6895   declare float     @llvm.powi.f32(float  %Val, i32 %power)
   6896   declare double    @llvm.powi.f64(double %Val, i32 %power)
   6897   declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
   6898   declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
   6899   declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
   6900 </pre>
   6901 
   6902 <h5>Overview:</h5>
   6903 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
   6904    specified (positive or negative) power.  The order of evaluation of
   6905    multiplications is not defined.  When a vector of floating point type is
   6906    used, the second argument remains a scalar integer value.</p>
   6907 
   6908 <h5>Arguments:</h5>
   6909 <p>The second argument is an integer power, and the first is a value to raise to
   6910    that power.</p>
   6911 
   6912 <h5>Semantics:</h5>
   6913 <p>This function returns the first value raised to the second power with an
   6914    unspecified sequence of rounding operations.</p>
   6915 
   6916 </div>
   6917 
   6918 <!-- _______________________________________________________________________ -->
   6919 <h4>
   6920   <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
   6921 </h4>
   6922 
   6923 <div>
   6924 
   6925 <h5>Syntax:</h5>
   6926 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
   6927    floating point or vector of floating point type. Not all targets support all
   6928    types however.</p>
   6929 
   6930 <pre>
   6931   declare float     @llvm.sin.f32(float  %Val)
   6932   declare double    @llvm.sin.f64(double %Val)
   6933   declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
   6934   declare fp128     @llvm.sin.f128(fp128 %Val)
   6935   declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
   6936 </pre>
   6937 
   6938 <h5>Overview:</h5>
   6939 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
   6940 
   6941 <h5>Arguments:</h5>
   6942 <p>The argument and return value are floating point numbers of the same
   6943    type.</p>
   6944 
   6945 <h5>Semantics:</h5>
   6946 <p>This function returns the sine of the specified operand, returning the same
   6947    values as the libm <tt>sin</tt> functions would, and handles error conditions
   6948    in the same way.</p>
   6949 
   6950 </div>
   6951 
   6952 <!-- _______________________________________________________________________ -->
   6953 <h4>
   6954   <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
   6955 </h4>
   6956 
   6957 <div>
   6958 
   6959 <h5>Syntax:</h5>
   6960 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
   6961    floating point or vector of floating point type. Not all targets support all
   6962    types however.</p>
   6963 
   6964 <pre>
   6965   declare float     @llvm.cos.f32(float  %Val)
   6966   declare double    @llvm.cos.f64(double %Val)
   6967   declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
   6968   declare fp128     @llvm.cos.f128(fp128 %Val)
   6969   declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
   6970 </pre>
   6971 
   6972 <h5>Overview:</h5>
   6973 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
   6974 
   6975 <h5>Arguments:</h5>
   6976 <p>The argument and return value are floating point numbers of the same
   6977    type.</p>
   6978 
   6979 <h5>Semantics:</h5>
   6980 <p>This function returns the cosine of the specified operand, returning the same
   6981    values as the libm <tt>cos</tt> functions would, and handles error conditions
   6982    in the same way.</p>
   6983 
   6984 </div>
   6985 
   6986 <!-- _______________________________________________________________________ -->
   6987 <h4>
   6988   <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
   6989 </h4>
   6990 
   6991 <div>
   6992 
   6993 <h5>Syntax:</h5>
   6994 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
   6995    floating point or vector of floating point type. Not all targets support all
   6996    types however.</p>
   6997 
   6998 <pre>
   6999   declare float     @llvm.pow.f32(float  %Val, float %Power)
   7000   declare double    @llvm.pow.f64(double %Val, double %Power)
   7001   declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
   7002   declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
   7003   declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
   7004 </pre>
   7005 
   7006 <h5>Overview:</h5>
   7007 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
   7008    specified (positive or negative) power.</p>
   7009 
   7010 <h5>Arguments:</h5>
   7011 <p>The second argument is a floating point power, and the first is a value to
   7012    raise to that power.</p>
   7013 
   7014 <h5>Semantics:</h5>
   7015 <p>This function returns the first value raised to the second power, returning
   7016    the same values as the libm <tt>pow</tt> functions would, and handles error
   7017    conditions in the same way.</p>
   7018 
   7019 </div>
   7020 
   7021 </div>
   7022 
   7023 <!-- _______________________________________________________________________ -->
   7024 <h4>
   7025   <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
   7026 </h4>
   7027 
   7028 <div>
   7029 
   7030 <h5>Syntax:</h5>
   7031 <p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
   7032    floating point or vector of floating point type. Not all targets support all
   7033    types however.</p>
   7034 
   7035 <pre>
   7036   declare float     @llvm.exp.f32(float  %Val)
   7037   declare double    @llvm.exp.f64(double %Val)
   7038   declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
   7039   declare fp128     @llvm.exp.f128(fp128 %Val)
   7040   declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
   7041 </pre>
   7042 
   7043 <h5>Overview:</h5>
   7044 <p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
   7045 
   7046 <h5>Arguments:</h5>
   7047 <p>The argument and return value are floating point numbers of the same
   7048    type.</p>
   7049 
   7050 <h5>Semantics:</h5>
   7051 <p>This function returns the same values as the libm <tt>exp</tt> functions
   7052    would, and handles error conditions in the same way.</p>
   7053 
   7054 </div>
   7055 
   7056 <!-- _______________________________________________________________________ -->
   7057 <h4>
   7058   <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
   7059 </h4>
   7060 
   7061 <div>
   7062 
   7063 <h5>Syntax:</h5>
   7064 <p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
   7065    floating point or vector of floating point type. Not all targets support all
   7066    types however.</p>
   7067 
   7068 <pre>
   7069   declare float     @llvm.log.f32(float  %Val)
   7070   declare double    @llvm.log.f64(double %Val)
   7071   declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
   7072   declare fp128     @llvm.log.f128(fp128 %Val)
   7073   declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
   7074 </pre>
   7075 
   7076 <h5>Overview:</h5>
   7077 <p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
   7078 
   7079 <h5>Arguments:</h5>
   7080 <p>The argument and return value are floating point numbers of the same
   7081    type.</p>
   7082 
   7083 <h5>Semantics:</h5>
   7084 <p>This function returns the same values as the libm <tt>log</tt> functions
   7085    would, and handles error conditions in the same way.</p>
   7086 
   7087 <h4>
   7088   <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
   7089 </h4>
   7090 
   7091 <div>
   7092 
   7093 <h5>Syntax:</h5>
   7094 <p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
   7095    floating point or vector of floating point type. Not all targets support all
   7096    types however.</p>
   7097 
   7098 <pre>
   7099   declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
   7100   declare double    @llvm.fma.f64(double %a, double %b, double %c)
   7101   declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
   7102   declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
   7103   declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
   7104 </pre>
   7105 
   7106 <h5>Overview:</h5>
   7107 <p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
   7108    operation.</p>
   7109 
   7110 <h5>Arguments:</h5>
   7111 <p>The argument and return value are floating point numbers of the same
   7112    type.</p>
   7113 
   7114 <h5>Semantics:</h5>
   7115 <p>This function returns the same values as the libm <tt>fma</tt> functions
   7116    would.</p>
   7117 
   7118 </div>
   7119 
   7120 <!-- ======================================================================= -->
   7121 <h3>
   7122   <a name="int_manip">Bit Manipulation Intrinsics</a>
   7123 </h3>
   7124 
   7125 <div>
   7126 
   7127 <p>LLVM provides intrinsics for a few important bit manipulation operations.
   7128    These allow efficient code generation for some algorithms.</p>
   7129 
   7130 <!-- _______________________________________________________________________ -->
   7131 <h4>
   7132   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
   7133 </h4>
   7134 
   7135 <div>
   7136 
   7137 <h5>Syntax:</h5>
   7138 <p>This is an overloaded intrinsic function. You can use bswap on any integer
   7139    type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
   7140 
   7141 <pre>
   7142   declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
   7143   declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
   7144   declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
   7145 </pre>
   7146 
   7147 <h5>Overview:</h5>
   7148 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
   7149    values with an even number of bytes (positive multiple of 16 bits).  These
   7150    are useful for performing operations on data that is not in the target's
   7151    native byte order.</p>
   7152 
   7153 <h5>Semantics:</h5>
   7154 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
   7155    and low byte of the input i16 swapped.  Similarly,
   7156    the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
   7157    bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
   7158    2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
   7159    The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
   7160    extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
   7161    more, respectively).</p>
   7162 
   7163 </div>
   7164 
   7165 <!-- _______________________________________________________________________ -->
   7166 <h4>
   7167   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
   7168 </h4>
   7169 
   7170 <div>
   7171 
   7172 <h5>Syntax:</h5>
   7173 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
   7174    width, or on any vector with integer elements. Not all targets support all
   7175   bit widths or vector types, however.</p>
   7176 
   7177 <pre>
   7178   declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
   7179   declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
   7180   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
   7181   declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
   7182   declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
   7183   declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
   7184 </pre>
   7185 
   7186 <h5>Overview:</h5>
   7187 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
   7188    in a value.</p>
   7189 
   7190 <h5>Arguments:</h5>
   7191 <p>The only argument is the value to be counted.  The argument may be of any
   7192    integer type, or a vector with integer elements.
   7193    The return type must match the argument type.</p>
   7194 
   7195 <h5>Semantics:</h5>
   7196 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
   7197    element of a vector.</p>
   7198 
   7199 </div>
   7200 
   7201 <!-- _______________________________________________________________________ -->
   7202 <h4>
   7203   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
   7204 </h4>
   7205 
   7206 <div>
   7207 
   7208 <h5>Syntax:</h5>
   7209 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
   7210    integer bit width, or any vector whose elements are integers. Not all
   7211    targets support all bit widths or vector types, however.</p>
   7212 
   7213 <pre>
   7214   declare i8 @llvm.ctlz.i8 (i8  &lt;src&gt;)
   7215   declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
   7216   declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
   7217   declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
   7218   declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
   7219   declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
   7220 </pre>
   7221 
   7222 <h5>Overview:</h5>
   7223 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
   7224    leading zeros in a variable.</p>
   7225 
   7226 <h5>Arguments:</h5>
   7227 <p>The only argument is the value to be counted.  The argument may be of any
   7228    integer type, or any vector type with integer element type.
   7229    The return type must match the argument type.</p>
   7230 
   7231 <h5>Semantics:</h5>
   7232 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
   7233    zeros in a variable, or within each element of the vector if the operation
   7234    is of vector type.  If the src == 0 then the result is the size in bits of
   7235    the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
   7236 
   7237 </div>
   7238 
   7239 <!-- _______________________________________________________________________ -->
   7240 <h4>
   7241   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
   7242 </h4>
   7243 
   7244 <div>
   7245 
   7246 <h5>Syntax:</h5>
   7247 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
   7248    integer bit width, or any vector of integer elements. Not all targets
   7249    support all bit widths or vector types, however.</p>
   7250 
   7251 <pre>
   7252   declare i8 @llvm.cttz.i8 (i8  &lt;src&gt;)
   7253   declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
   7254   declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
   7255   declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
   7256   declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
   7257   declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
   7258 </pre>
   7259 
   7260 <h5>Overview:</h5>
   7261 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
   7262    trailing zeros.</p>
   7263 
   7264 <h5>Arguments:</h5>
   7265 <p>The only argument is the value to be counted.  The argument may be of any
   7266    integer type, or a vectory with integer element type..  The return type
   7267    must match the argument type.</p>
   7268 
   7269 <h5>Semantics:</h5>
   7270 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
   7271    zeros in a variable, or within each element of a vector.
   7272    If the src == 0 then the result is the size in bits of
   7273    the type of src.  For example, <tt>llvm.cttz(2) = 1</tt>.</p>
   7274 
   7275 </div>
   7276 
   7277 </div>
   7278 
   7279 <!-- ======================================================================= -->
   7280 <h3>
   7281   <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
   7282 </h3>
   7283 
   7284 <div>
   7285 
   7286 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
   7287 
   7288 <!-- _______________________________________________________________________ -->
   7289 <h4>
   7290   <a name="int_sadd_overflow">
   7291     '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
   7292   </a>
   7293 </h4>
   7294 
   7295 <div>
   7296 
   7297 <h5>Syntax:</h5>
   7298 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
   7299    on any integer bit width.</p>
   7300 
   7301 <pre>
   7302   declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
   7303   declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7304   declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
   7305 </pre>
   7306 
   7307 <h5>Overview:</h5>
   7308 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   7309    a signed addition of the two arguments, and indicate whether an overflow
   7310    occurred during the signed summation.</p>
   7311 
   7312 <h5>Arguments:</h5>
   7313 <p>The arguments (%a and %b) and the first element of the result structure may
   7314    be of integer types of any bit width, but they must have the same bit
   7315    width. The second element of the result structure must be of
   7316    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7317    undergo signed addition.</p>
   7318 
   7319 <h5>Semantics:</h5>
   7320 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   7321    a signed addition of the two variables. They return a structure &mdash; the
   7322    first element of which is the signed summation, and the second element of
   7323    which is a bit specifying if the signed summation resulted in an
   7324    overflow.</p>
   7325 
   7326 <h5>Examples:</h5>
   7327 <pre>
   7328   %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7329   %sum = extractvalue {i32, i1} %res, 0
   7330   %obit = extractvalue {i32, i1} %res, 1
   7331   br i1 %obit, label %overflow, label %normal
   7332 </pre>
   7333 
   7334 </div>
   7335 
   7336 <!-- _______________________________________________________________________ -->
   7337 <h4>
   7338   <a name="int_uadd_overflow">
   7339     '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
   7340   </a>
   7341 </h4>
   7342 
   7343 <div>
   7344 
   7345 <h5>Syntax:</h5>
   7346 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
   7347    on any integer bit width.</p>
   7348 
   7349 <pre>
   7350   declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
   7351   declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7352   declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
   7353 </pre>
   7354 
   7355 <h5>Overview:</h5>
   7356 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   7357    an unsigned addition of the two arguments, and indicate whether a carry
   7358    occurred during the unsigned summation.</p>
   7359 
   7360 <h5>Arguments:</h5>
   7361 <p>The arguments (%a and %b) and the first element of the result structure may
   7362    be of integer types of any bit width, but they must have the same bit
   7363    width. The second element of the result structure must be of
   7364    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7365    undergo unsigned addition.</p>
   7366 
   7367 <h5>Semantics:</h5>
   7368 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   7369    an unsigned addition of the two arguments. They return a structure &mdash;
   7370    the first element of which is the sum, and the second element of which is a
   7371    bit specifying if the unsigned summation resulted in a carry.</p>
   7372 
   7373 <h5>Examples:</h5>
   7374 <pre>
   7375   %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7376   %sum = extractvalue {i32, i1} %res, 0
   7377   %obit = extractvalue {i32, i1} %res, 1
   7378   br i1 %obit, label %carry, label %normal
   7379 </pre>
   7380 
   7381 </div>
   7382 
   7383 <!-- _______________________________________________________________________ -->
   7384 <h4>
   7385   <a name="int_ssub_overflow">
   7386     '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
   7387   </a>
   7388 </h4>
   7389 
   7390 <div>
   7391 
   7392 <h5>Syntax:</h5>
   7393 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
   7394    on any integer bit width.</p>
   7395 
   7396 <pre>
   7397   declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
   7398   declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7399   declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
   7400 </pre>
   7401 
   7402 <h5>Overview:</h5>
   7403 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   7404    a signed subtraction of the two arguments, and indicate whether an overflow
   7405    occurred during the signed subtraction.</p>
   7406 
   7407 <h5>Arguments:</h5>
   7408 <p>The arguments (%a and %b) and the first element of the result structure may
   7409    be of integer types of any bit width, but they must have the same bit
   7410    width. The second element of the result structure must be of
   7411    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7412    undergo signed subtraction.</p>
   7413 
   7414 <h5>Semantics:</h5>
   7415 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   7416    a signed subtraction of the two arguments. They return a structure &mdash;
   7417    the first element of which is the subtraction, and the second element of
   7418    which is a bit specifying if the signed subtraction resulted in an
   7419    overflow.</p>
   7420 
   7421 <h5>Examples:</h5>
   7422 <pre>
   7423   %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7424   %sum = extractvalue {i32, i1} %res, 0
   7425   %obit = extractvalue {i32, i1} %res, 1
   7426   br i1 %obit, label %overflow, label %normal
   7427 </pre>
   7428 
   7429 </div>
   7430 
   7431 <!-- _______________________________________________________________________ -->
   7432 <h4>
   7433   <a name="int_usub_overflow">
   7434     '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
   7435   </a>
   7436 </h4>
   7437 
   7438 <div>
   7439 
   7440 <h5>Syntax:</h5>
   7441 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
   7442    on any integer bit width.</p>
   7443 
   7444 <pre>
   7445   declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
   7446   declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7447   declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
   7448 </pre>
   7449 
   7450 <h5>Overview:</h5>
   7451 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   7452    an unsigned subtraction of the two arguments, and indicate whether an
   7453    overflow occurred during the unsigned subtraction.</p>
   7454 
   7455 <h5>Arguments:</h5>
   7456 <p>The arguments (%a and %b) and the first element of the result structure may
   7457    be of integer types of any bit width, but they must have the same bit
   7458    width. The second element of the result structure must be of
   7459    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7460    undergo unsigned subtraction.</p>
   7461 
   7462 <h5>Semantics:</h5>
   7463 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   7464    an unsigned subtraction of the two arguments. They return a structure &mdash;
   7465    the first element of which is the subtraction, and the second element of
   7466    which is a bit specifying if the unsigned subtraction resulted in an
   7467    overflow.</p>
   7468 
   7469 <h5>Examples:</h5>
   7470 <pre>
   7471   %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7472   %sum = extractvalue {i32, i1} %res, 0
   7473   %obit = extractvalue {i32, i1} %res, 1
   7474   br i1 %obit, label %overflow, label %normal
   7475 </pre>
   7476 
   7477 </div>
   7478 
   7479 <!-- _______________________________________________________________________ -->
   7480 <h4>
   7481   <a name="int_smul_overflow">
   7482     '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
   7483   </a>
   7484 </h4>
   7485 
   7486 <div>
   7487 
   7488 <h5>Syntax:</h5>
   7489 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
   7490    on any integer bit width.</p>
   7491 
   7492 <pre>
   7493   declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
   7494   declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7495   declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
   7496 </pre>
   7497 
   7498 <h5>Overview:</h5>
   7499 
   7500 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   7501    a signed multiplication of the two arguments, and indicate whether an
   7502    overflow occurred during the signed multiplication.</p>
   7503 
   7504 <h5>Arguments:</h5>
   7505 <p>The arguments (%a and %b) and the first element of the result structure may
   7506    be of integer types of any bit width, but they must have the same bit
   7507    width. The second element of the result structure must be of
   7508    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7509    undergo signed multiplication.</p>
   7510 
   7511 <h5>Semantics:</h5>
   7512 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   7513    a signed multiplication of the two arguments. They return a structure &mdash;
   7514    the first element of which is the multiplication, and the second element of
   7515    which is a bit specifying if the signed multiplication resulted in an
   7516    overflow.</p>
   7517 
   7518 <h5>Examples:</h5>
   7519 <pre>
   7520   %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7521   %sum = extractvalue {i32, i1} %res, 0
   7522   %obit = extractvalue {i32, i1} %res, 1
   7523   br i1 %obit, label %overflow, label %normal
   7524 </pre>
   7525 
   7526 </div>
   7527 
   7528 <!-- _______________________________________________________________________ -->
   7529 <h4>
   7530   <a name="int_umul_overflow">
   7531     '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
   7532   </a>
   7533 </h4>
   7534 
   7535 <div>
   7536 
   7537 <h5>Syntax:</h5>
   7538 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
   7539    on any integer bit width.</p>
   7540 
   7541 <pre>
   7542   declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
   7543   declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   7544   declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
   7545 </pre>
   7546 
   7547 <h5>Overview:</h5>
   7548 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   7549    a unsigned multiplication of the two arguments, and indicate whether an
   7550    overflow occurred during the unsigned multiplication.</p>
   7551 
   7552 <h5>Arguments:</h5>
   7553 <p>The arguments (%a and %b) and the first element of the result structure may
   7554    be of integer types of any bit width, but they must have the same bit
   7555    width. The second element of the result structure must be of
   7556    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7557    undergo unsigned multiplication.</p>
   7558 
   7559 <h5>Semantics:</h5>
   7560 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   7561    an unsigned multiplication of the two arguments. They return a structure
   7562    &mdash; the first element of which is the multiplication, and the second
   7563    element of which is a bit specifying if the unsigned multiplication resulted
   7564    in an overflow.</p>
   7565 
   7566 <h5>Examples:</h5>
   7567 <pre>
   7568   %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   7569   %sum = extractvalue {i32, i1} %res, 0
   7570   %obit = extractvalue {i32, i1} %res, 1
   7571   br i1 %obit, label %overflow, label %normal
   7572 </pre>
   7573 
   7574 </div>
   7575 
   7576 </div>
   7577 
   7578 <!-- ======================================================================= -->
   7579 <h3>
   7580   <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
   7581 </h3>
   7582 
   7583 <div>
   7584 
   7585 <p>Half precision floating point is a storage-only format. This means that it is
   7586    a dense encoding (in memory) but does not support computation in the
   7587    format.</p>
   7588    
   7589 <p>This means that code must first load the half-precision floating point
   7590    value as an i16, then convert it to float with <a
   7591    href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
   7592    Computation can then be performed on the float value (including extending to
   7593    double etc).  To store the value back to memory, it is first converted to
   7594    float if needed, then converted to i16 with
   7595    <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
   7596    storing as an i16 value.</p>
   7597 
   7598 <!-- _______________________________________________________________________ -->
   7599 <h4>
   7600   <a name="int_convert_to_fp16">
   7601     '<tt>llvm.convert.to.fp16</tt>' Intrinsic
   7602   </a>
   7603 </h4>
   7604 
   7605 <div>
   7606 
   7607 <h5>Syntax:</h5>
   7608 <pre>
   7609   declare i16 @llvm.convert.to.fp16(f32 %a)
   7610 </pre>
   7611 
   7612 <h5>Overview:</h5>
   7613 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   7614    a conversion from single precision floating point format to half precision
   7615    floating point format.</p>
   7616 
   7617 <h5>Arguments:</h5>
   7618 <p>The intrinsic function contains single argument - the value to be
   7619    converted.</p>
   7620 
   7621 <h5>Semantics:</h5>
   7622 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   7623    a conversion from single precision floating point format to half precision
   7624    floating point format. The return value is an <tt>i16</tt> which
   7625    contains the converted number.</p>
   7626 
   7627 <h5>Examples:</h5>
   7628 <pre>
   7629   %res = call i16 @llvm.convert.to.fp16(f32 %a)
   7630   store i16 %res, i16* @x, align 2
   7631 </pre>
   7632 
   7633 </div>
   7634 
   7635 <!-- _______________________________________________________________________ -->
   7636 <h4>
   7637   <a name="int_convert_from_fp16">
   7638     '<tt>llvm.convert.from.fp16</tt>' Intrinsic
   7639   </a>
   7640 </h4>
   7641 
   7642 <div>
   7643 
   7644 <h5>Syntax:</h5>
   7645 <pre>
   7646   declare f32 @llvm.convert.from.fp16(i16 %a)
   7647 </pre>
   7648 
   7649 <h5>Overview:</h5>
   7650 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
   7651    a conversion from half precision floating point format to single precision
   7652    floating point format.</p>
   7653 
   7654 <h5>Arguments:</h5>
   7655 <p>The intrinsic function contains single argument - the value to be
   7656    converted.</p>
   7657 
   7658 <h5>Semantics:</h5>
   7659 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
   7660    conversion from half single precision floating point format to single
   7661    precision floating point format. The input half-float value is represented by
   7662    an <tt>i16</tt> value.</p>
   7663 
   7664 <h5>Examples:</h5>
   7665 <pre>
   7666   %a = load i16* @x, align 2
   7667   %res = call f32 @llvm.convert.from.fp16(i16 %a)
   7668 </pre>
   7669 
   7670 </div>
   7671 
   7672 </div>
   7673 
   7674 <!-- ======================================================================= -->
   7675 <h3>
   7676   <a name="int_debugger">Debugger Intrinsics</a>
   7677 </h3>
   7678 
   7679 <div>
   7680 
   7681 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
   7682    prefix), are described in
   7683    the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
   7684    Level Debugging</a> document.</p>
   7685 
   7686 </div>
   7687 
   7688 <!-- ======================================================================= -->
   7689 <h3>
   7690   <a name="int_eh">Exception Handling Intrinsics</a>
   7691 </h3>
   7692 
   7693 <div>
   7694 
   7695 <p>The LLVM exception handling intrinsics (which all start with
   7696    <tt>llvm.eh.</tt> prefix), are described in
   7697    the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
   7698    Handling</a> document.</p>
   7699 
   7700 </div>
   7701 
   7702 <!-- ======================================================================= -->
   7703 <h3>
   7704   <a name="int_trampoline">Trampoline Intrinsics</a>
   7705 </h3>
   7706 
   7707 <div>
   7708 
   7709 <p>These intrinsics make it possible to excise one parameter, marked with
   7710    the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
   7711    The result is a callable
   7712    function pointer lacking the nest parameter - the caller does not need to
   7713    provide a value for it.  Instead, the value to use is stored in advance in a
   7714    "trampoline", a block of memory usually allocated on the stack, which also
   7715    contains code to splice the nest value into the argument list.  This is used
   7716    to implement the GCC nested function address extension.</p>
   7717 
   7718 <p>For example, if the function is
   7719    <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
   7720    pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
   7721    follows:</p>
   7722 
   7723 <pre class="doc_code">
   7724   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   7725   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
   7726   call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
   7727   %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
   7728   %fp = bitcast i8* %p to i32 (i32, i32)*
   7729 </pre>
   7730 
   7731 <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
   7732    to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
   7733 
   7734 <!-- _______________________________________________________________________ -->
   7735 <h4>
   7736   <a name="int_it">
   7737     '<tt>llvm.init.trampoline</tt>' Intrinsic
   7738   </a>
   7739 </h4>
   7740 
   7741 <div>
   7742 
   7743 <h5>Syntax:</h5>
   7744 <pre>
   7745   declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
   7746 </pre>
   7747 
   7748 <h5>Overview:</h5>
   7749 <p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
   7750    turning it into a trampoline.</p>
   7751 
   7752 <h5>Arguments:</h5>
   7753 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
   7754    pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
   7755    sufficiently aligned block of memory; this memory is written to by the
   7756    intrinsic.  Note that the size and the alignment are target-specific - LLVM
   7757    currently provides no portable way of determining them, so a front-end that
   7758    generates this intrinsic needs to have some target-specific knowledge.
   7759    The <tt>func</tt> argument must hold a function bitcast to
   7760    an <tt>i8*</tt>.</p>
   7761 
   7762 <h5>Semantics:</h5>
   7763 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
   7764    dependent code, turning it into a function.  Then <tt>tramp</tt> needs to be
   7765    passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
   7766    which can be <a href="#int_trampoline">bitcast (to a new function) and
   7767    called</a>.  The new function's signature is the same as that of
   7768    <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
   7769    removed.  At most one such <tt>nest</tt> argument is allowed, and it must be of
   7770    pointer type.  Calling the new function is equivalent to calling <tt>func</tt>
   7771    with the same argument list, but with <tt>nval</tt> used for the missing
   7772    <tt>nest</tt> argument.  If, after calling <tt>llvm.init.trampoline</tt>, the
   7773    memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
   7774    to the returned function pointer is undefined.</p>
   7775 </div>
   7776 
   7777 <!-- _______________________________________________________________________ -->
   7778 <h4>
   7779   <a name="int_at">
   7780     '<tt>llvm.adjust.trampoline</tt>' Intrinsic
   7781   </a>
   7782 </h4>
   7783 
   7784 <div>
   7785 
   7786 <h5>Syntax:</h5>
   7787 <pre>
   7788   declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
   7789 </pre>
   7790 
   7791 <h5>Overview:</h5>
   7792 <p>This performs any required machine-specific adjustment to the address of a
   7793    trampoline (passed as <tt>tramp</tt>).</p>
   7794 
   7795 <h5>Arguments:</h5>
   7796 <p><tt>tramp</tt> must point to a block of memory which already has trampoline code
   7797    filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
   7798    </a>.</p>
   7799 
   7800 <h5>Semantics:</h5>
   7801 <p>On some architectures the address of the code to be executed needs to be
   7802    different to the address where the trampoline is actually stored.  This
   7803    intrinsic returns the executable address corresponding to <tt>tramp</tt>
   7804    after performing the required machine specific adjustments.
   7805    The pointer returned can then be <a href="#int_trampoline"> bitcast and
   7806    executed</a>.
   7807 </p>
   7808 
   7809 </div>
   7810 
   7811 </div>
   7812 
   7813 <!-- ======================================================================= -->
   7814 <h3>
   7815   <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
   7816 </h3>
   7817 
   7818 <div>
   7819 
   7820 <p>These intrinsic functions expand the "universal IR" of LLVM to represent
   7821    hardware constructs for atomic operations and memory synchronization.  This
   7822    provides an interface to the hardware, not an interface to the programmer. It
   7823    is aimed at a low enough level to allow any programming models or APIs
   7824    (Application Programming Interfaces) which need atomic behaviors to map
   7825    cleanly onto it. It is also modeled primarily on hardware behavior. Just as
   7826    hardware provides a "universal IR" for source languages, it also provides a
   7827    starting point for developing a "universal" atomic operation and
   7828    synchronization IR.</p>
   7829 
   7830 <p>These do <em>not</em> form an API such as high-level threading libraries,
   7831    software transaction memory systems, atomic primitives, and intrinsic
   7832    functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
   7833    application libraries.  The hardware interface provided by LLVM should allow
   7834    a clean implementation of all of these APIs and parallel programming models.
   7835    No one model or paradigm should be selected above others unless the hardware
   7836    itself ubiquitously does so.</p>
   7837 
   7838 <!-- _______________________________________________________________________ -->
   7839 <h4>
   7840   <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
   7841 </h4>
   7842 
   7843 <div>
   7844 <h5>Syntax:</h5>
   7845 <pre>
   7846   declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
   7847 </pre>
   7848 
   7849 <h5>Overview:</h5>
   7850 <p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
   7851    specific pairs of memory access types.</p>
   7852 
   7853 <h5>Arguments:</h5>
   7854 <p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
   7855    The first four arguments enables a specific barrier as listed below.  The
   7856    fifth argument specifies that the barrier applies to io or device or uncached
   7857    memory.</p>
   7858 
   7859 <ul>
   7860   <li><tt>ll</tt>: load-load barrier</li>
   7861   <li><tt>ls</tt>: load-store barrier</li>
   7862   <li><tt>sl</tt>: store-load barrier</li>
   7863   <li><tt>ss</tt>: store-store barrier</li>
   7864   <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
   7865 </ul>
   7866 
   7867 <h5>Semantics:</h5>
   7868 <p>This intrinsic causes the system to enforce some ordering constraints upon
   7869    the loads and stores of the program. This barrier does not
   7870    indicate <em>when</em> any events will occur, it only enforces
   7871    an <em>order</em> in which they occur. For any of the specified pairs of load
   7872    and store operations (f.ex.  load-load, or store-load), all of the first
   7873    operations preceding the barrier will complete before any of the second
   7874    operations succeeding the barrier begin. Specifically the semantics for each
   7875    pairing is as follows:</p>
   7876 
   7877 <ul>
   7878   <li><tt>ll</tt>: All loads before the barrier must complete before any load
   7879       after the barrier begins.</li>
   7880   <li><tt>ls</tt>: All loads before the barrier must complete before any
   7881       store after the barrier begins.</li>
   7882   <li><tt>ss</tt>: All stores before the barrier must complete before any
   7883       store after the barrier begins.</li>
   7884   <li><tt>sl</tt>: All stores before the barrier must complete before any
   7885       load after the barrier begins.</li>
   7886 </ul>
   7887 
   7888 <p>These semantics are applied with a logical "and" behavior when more than one
   7889    is enabled in a single memory barrier intrinsic.</p>
   7890 
   7891 <p>Backends may implement stronger barriers than those requested when they do
   7892    not support as fine grained a barrier as requested.  Some architectures do
   7893    not need all types of barriers and on such architectures, these become
   7894    noops.</p>
   7895 
   7896 <h5>Example:</h5>
   7897 <pre>
   7898 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7899 %ptr      = bitcast i8* %mallocP to i32*
   7900             store i32 4, %ptr
   7901 
   7902 %result1  = load i32* %ptr      <i>; yields {i32}:result1 = 4</i>
   7903             call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
   7904                                 <i>; guarantee the above finishes</i>
   7905             store i32 8, %ptr   <i>; before this begins</i>
   7906 </pre>
   7907 
   7908 </div>
   7909 
   7910 <!-- _______________________________________________________________________ -->
   7911 <h4>
   7912   <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
   7913 </h4>
   7914 
   7915 <div>
   7916 
   7917 <h5>Syntax:</h5>
   7918 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
   7919    any integer bit width and for different address spaces. Not all targets
   7920    support all bit widths however.</p>
   7921 
   7922 <pre>
   7923   declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
   7924   declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
   7925   declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
   7926   declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
   7927 </pre>
   7928 
   7929 <h5>Overview:</h5>
   7930 <p>This loads a value in memory and compares it to a given value. If they are
   7931    equal, it stores a new value into the memory.</p>
   7932 
   7933 <h5>Arguments:</h5>
   7934 <p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
   7935    as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
   7936    same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
   7937    this integer type. While any bit width integer may be used, targets may only
   7938    lower representations they support in hardware.</p>
   7939 
   7940 <h5>Semantics:</h5>
   7941 <p>This entire intrinsic must be executed atomically. It first loads the value
   7942    in memory pointed to by <tt>ptr</tt> and compares it with the
   7943    value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
   7944    memory. The loaded value is yielded in all cases. This provides the
   7945    equivalent of an atomic compare-and-swap operation within the SSA
   7946    framework.</p>
   7947 
   7948 <h5>Examples:</h5>
   7949 <pre>
   7950 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   7951 %ptr      = bitcast i8* %mallocP to i32*
   7952             store i32 4, %ptr
   7953 
   7954 %val1     = add i32 4, 4
   7955 %result1  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
   7956                                           <i>; yields {i32}:result1 = 4</i>
   7957 %stored1  = icmp eq i32 %result1, 4       <i>; yields {i1}:stored1 = true</i>
   7958 %memval1  = load i32* %ptr                <i>; yields {i32}:memval1 = 8</i>
   7959 
   7960 %val2     = add i32 1, 1
   7961 %result2  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
   7962                                           <i>; yields {i32}:result2 = 8</i>
   7963 %stored2  = icmp eq i32 %result2, 5       <i>; yields {i1}:stored2 = false</i>
   7964 
   7965 %memval2  = load i32* %ptr                <i>; yields {i32}:memval2 = 8</i>
   7966 </pre>
   7967 
   7968 </div>
   7969 
   7970 <!-- _______________________________________________________________________ -->
   7971 <h4>
   7972   <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
   7973 </h4>
   7974 
   7975 <div>
   7976 <h5>Syntax:</h5>
   7977 
   7978 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
   7979    integer bit width. Not all targets support all bit widths however.</p>
   7980 
   7981 <pre>
   7982   declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
   7983   declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
   7984   declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
   7985   declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
   7986 </pre>
   7987 
   7988 <h5>Overview:</h5>
   7989 <p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
   7990    the value from memory. It then stores the value in <tt>val</tt> in the memory
   7991    at <tt>ptr</tt>.</p>
   7992 
   7993 <h5>Arguments:</h5>
   7994 <p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
   7995   the <tt>val</tt> argument and the result must be integers of the same bit
   7996   width.  The first argument, <tt>ptr</tt>, must be a pointer to a value of this
   7997   integer type. The targets may only lower integer representations they
   7998   support.</p>
   7999 
   8000 <h5>Semantics:</h5>
   8001 <p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
   8002    stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
   8003    equivalent of an atomic swap operation within the SSA framework.</p>
   8004 
   8005 <h5>Examples:</h5>
   8006 <pre>
   8007 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   8008 %ptr      = bitcast i8* %mallocP to i32*
   8009             store i32 4, %ptr
   8010 
   8011 %val1     = add i32 4, 4
   8012 %result1  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
   8013                                         <i>; yields {i32}:result1 = 4</i>
   8014 %stored1  = icmp eq i32 %result1, 4     <i>; yields {i1}:stored1 = true</i>
   8015 %memval1  = load i32* %ptr              <i>; yields {i32}:memval1 = 8</i>
   8016 
   8017 %val2     = add i32 1, 1
   8018 %result2  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
   8019                                         <i>; yields {i32}:result2 = 8</i>
   8020 
   8021 %stored2  = icmp eq i32 %result2, 8     <i>; yields {i1}:stored2 = true</i>
   8022 %memval2  = load i32* %ptr              <i>; yields {i32}:memval2 = 2</i>
   8023 </pre>
   8024 
   8025 </div>
   8026 
   8027 <!-- _______________________________________________________________________ -->
   8028 <h4>
   8029   <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
   8030 </h4>
   8031 
   8032 <div>
   8033 
   8034 <h5>Syntax:</h5>
   8035 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
   8036    any integer bit width. Not all targets support all bit widths however.</p>
   8037 
   8038 <pre>
   8039   declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8040   declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8041   declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8042   declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8043 </pre>
   8044 
   8045 <h5>Overview:</h5>
   8046 <p>This intrinsic adds <tt>delta</tt> to the value stored in memory
   8047    at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
   8048 
   8049 <h5>Arguments:</h5>
   8050 <p>The intrinsic takes two arguments, the first a pointer to an integer value
   8051    and the second an integer value. The result is also an integer value. These
   8052    integer types can have any bit width, but they must all have the same bit
   8053    width. The targets may only lower integer representations they support.</p>
   8054 
   8055 <h5>Semantics:</h5>
   8056 <p>This intrinsic does a series of operations atomically. It first loads the
   8057    value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
   8058    to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
   8059 
   8060 <h5>Examples:</h5>
   8061 <pre>
   8062 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   8063 %ptr      = bitcast i8* %mallocP to i32*
   8064             store i32 4, %ptr
   8065 %result1  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
   8066                                 <i>; yields {i32}:result1 = 4</i>
   8067 %result2  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
   8068                                 <i>; yields {i32}:result2 = 8</i>
   8069 %result3  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
   8070                                 <i>; yields {i32}:result3 = 10</i>
   8071 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 15</i>
   8072 </pre>
   8073 
   8074 </div>
   8075 
   8076 <!-- _______________________________________________________________________ -->
   8077 <h4>
   8078   <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
   8079 </h4>
   8080 
   8081 <div>
   8082 
   8083 <h5>Syntax:</h5>
   8084 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
   8085    any integer bit width and for different address spaces. Not all targets
   8086    support all bit widths however.</p>
   8087 
   8088 <pre>
   8089   declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8090   declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8091   declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8092   declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8093 </pre>
   8094 
   8095 <h5>Overview:</h5>
   8096 <p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
   8097    <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
   8098 
   8099 <h5>Arguments:</h5>
   8100 <p>The intrinsic takes two arguments, the first a pointer to an integer value
   8101    and the second an integer value. The result is also an integer value. These
   8102    integer types can have any bit width, but they must all have the same bit
   8103    width. The targets may only lower integer representations they support.</p>
   8104 
   8105 <h5>Semantics:</h5>
   8106 <p>This intrinsic does a series of operations atomically. It first loads the
   8107    value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
   8108    result to <tt>ptr</tt>. It yields the original value stored
   8109    at <tt>ptr</tt>.</p>
   8110 
   8111 <h5>Examples:</h5>
   8112 <pre>
   8113 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   8114 %ptr      = bitcast i8* %mallocP to i32*
   8115             store i32 8, %ptr
   8116 %result1  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
   8117                                 <i>; yields {i32}:result1 = 8</i>
   8118 %result2  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
   8119                                 <i>; yields {i32}:result2 = 4</i>
   8120 %result3  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
   8121                                 <i>; yields {i32}:result3 = 2</i>
   8122 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = -3</i>
   8123 </pre>
   8124 
   8125 </div>
   8126 
   8127 <!-- _______________________________________________________________________ -->
   8128 <h4>
   8129   <a name="int_atomic_load_and">
   8130     '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
   8131   </a>
   8132   <br>
   8133   <a name="int_atomic_load_nand">
   8134     '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
   8135   </a>
   8136   <br>
   8137   <a name="int_atomic_load_or">
   8138     '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
   8139   </a>
   8140   <br>
   8141   <a name="int_atomic_load_xor">
   8142     '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
   8143   </a>
   8144 </h4>
   8145 
   8146 <div>
   8147 
   8148 <h5>Syntax:</h5>
   8149 <p>These are overloaded intrinsics. You can
   8150   use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
   8151   <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
   8152   bit width and for different address spaces. Not all targets support all bit
   8153   widths however.</p>
   8154 
   8155 <pre>
   8156   declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8157   declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8158   declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8159   declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8160 </pre>
   8161 
   8162 <pre>
   8163   declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8164   declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8165   declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8166   declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8167 </pre>
   8168 
   8169 <pre>
   8170   declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8171   declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8172   declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8173   declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8174 </pre>
   8175 
   8176 <pre>
   8177   declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8178   declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8179   declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8180   declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8181 </pre>
   8182 
   8183 <h5>Overview:</h5>
   8184 <p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
   8185    the value stored in memory at <tt>ptr</tt>. It yields the original value
   8186    at <tt>ptr</tt>.</p>
   8187 
   8188 <h5>Arguments:</h5>
   8189 <p>These intrinsics take two arguments, the first a pointer to an integer value
   8190    and the second an integer value. The result is also an integer value. These
   8191    integer types can have any bit width, but they must all have the same bit
   8192    width. The targets may only lower integer representations they support.</p>
   8193 
   8194 <h5>Semantics:</h5>
   8195 <p>These intrinsics does a series of operations atomically. They first load the
   8196    value stored at <tt>ptr</tt>. They then do the bitwise
   8197    operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
   8198    original value stored at <tt>ptr</tt>.</p>
   8199 
   8200 <h5>Examples:</h5>
   8201 <pre>
   8202 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   8203 %ptr      = bitcast i8* %mallocP to i32*
   8204             store i32 0x0F0F, %ptr
   8205 %result0  = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
   8206                                 <i>; yields {i32}:result0 = 0x0F0F</i>
   8207 %result1  = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
   8208                                 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
   8209 %result2  = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
   8210                                 <i>; yields {i32}:result2 = 0xF0</i>
   8211 %result3  = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
   8212                                 <i>; yields {i32}:result3 = FF</i>
   8213 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = F0</i>
   8214 </pre>
   8215 
   8216 </div>
   8217 
   8218 <!-- _______________________________________________________________________ -->
   8219 <h4>
   8220   <a name="int_atomic_load_max">
   8221     '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
   8222   </a>
   8223   <br>
   8224   <a name="int_atomic_load_min">
   8225     '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
   8226   </a>
   8227   <br>
   8228   <a name="int_atomic_load_umax">
   8229     '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
   8230   </a>
   8231   <br>
   8232   <a name="int_atomic_load_umin">
   8233     '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
   8234   </a>
   8235 </h4>
   8236 
   8237 <div>
   8238 
   8239 <h5>Syntax:</h5>
   8240 <p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
   8241    <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
   8242    <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
   8243    address spaces. Not all targets support all bit widths however.</p>
   8244 
   8245 <pre>
   8246   declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8247   declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8248   declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8249   declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8250 </pre>
   8251 
   8252 <pre>
   8253   declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8254   declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8255   declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8256   declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8257 </pre>
   8258 
   8259 <pre>
   8260   declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8261   declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8262   declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8263   declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8264 </pre>
   8265 
   8266 <pre>
   8267   declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
   8268   declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
   8269   declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
   8270   declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
   8271 </pre>
   8272 
   8273 <h5>Overview:</h5>
   8274 <p>These intrinsics takes the signed or unsigned minimum or maximum of
   8275    <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
   8276    original value at <tt>ptr</tt>.</p>
   8277 
   8278 <h5>Arguments:</h5>
   8279 <p>These intrinsics take two arguments, the first a pointer to an integer value
   8280    and the second an integer value. The result is also an integer value. These
   8281    integer types can have any bit width, but they must all have the same bit
   8282    width. The targets may only lower integer representations they support.</p>
   8283 
   8284 <h5>Semantics:</h5>
   8285 <p>These intrinsics does a series of operations atomically. They first load the
   8286    value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
   8287    max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
   8288    yield the original value stored at <tt>ptr</tt>.</p>
   8289 
   8290 <h5>Examples:</h5>
   8291 <pre>
   8292 %mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
   8293 %ptr      = bitcast i8* %mallocP to i32*
   8294             store i32 7, %ptr
   8295 %result0  = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
   8296                                 <i>; yields {i32}:result0 = 7</i>
   8297 %result1  = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
   8298                                 <i>; yields {i32}:result1 = -2</i>
   8299 %result2  = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
   8300                                 <i>; yields {i32}:result2 = 8</i>
   8301 %result3  = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
   8302                                 <i>; yields {i32}:result3 = 8</i>
   8303 %memval1  = load i32* %ptr      <i>; yields {i32}:memval1 = 30</i>
   8304 </pre>
   8305 
   8306 </div>
   8307 
   8308 </div>
   8309 
   8310 <!-- ======================================================================= -->
   8311 <h3>
   8312   <a name="int_memorymarkers">Memory Use Markers</a>
   8313 </h3>
   8314 
   8315 <div>
   8316 
   8317 <p>This class of intrinsics exists to information about the lifetime of memory
   8318    objects and ranges where variables are immutable.</p>
   8319 
   8320 <!-- _______________________________________________________________________ -->
   8321 <h4>
   8322   <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
   8323 </h4>
   8324 
   8325 <div>
   8326 
   8327 <h5>Syntax:</h5>
   8328 <pre>
   8329   declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8330 </pre>
   8331 
   8332 <h5>Overview:</h5>
   8333 <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
   8334    object's lifetime.</p>
   8335 
   8336 <h5>Arguments:</h5>
   8337 <p>The first argument is a constant integer representing the size of the
   8338    object, or -1 if it is variable sized.  The second argument is a pointer to
   8339    the object.</p>
   8340 
   8341 <h5>Semantics:</h5>
   8342 <p>This intrinsic indicates that before this point in the code, the value of the
   8343    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   8344    never be used and has an undefined value.  A load from the pointer that
   8345    precedes this intrinsic can be replaced with
   8346    <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
   8347 
   8348 </div>
   8349 
   8350 <!-- _______________________________________________________________________ -->
   8351 <h4>
   8352   <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
   8353 </h4>
   8354 
   8355 <div>
   8356 
   8357 <h5>Syntax:</h5>
   8358 <pre>
   8359   declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8360 </pre>
   8361 
   8362 <h5>Overview:</h5>
   8363 <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
   8364    object's lifetime.</p>
   8365 
   8366 <h5>Arguments:</h5>
   8367 <p>The first argument is a constant integer representing the size of the
   8368    object, or -1 if it is variable sized.  The second argument is a pointer to
   8369    the object.</p>
   8370 
   8371 <h5>Semantics:</h5>
   8372 <p>This intrinsic indicates that after this point in the code, the value of the
   8373    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   8374    never be used and has an undefined value.  Any stores into the memory object
   8375    following this intrinsic may be removed as dead.
   8376 
   8377 </div>
   8378 
   8379 <!-- _______________________________________________________________________ -->
   8380 <h4>
   8381   <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
   8382 </h4>
   8383 
   8384 <div>
   8385 
   8386 <h5>Syntax:</h5>
   8387 <pre>
   8388   declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8389 </pre>
   8390 
   8391 <h5>Overview:</h5>
   8392 <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
   8393    a memory object will not change.</p>
   8394 
   8395 <h5>Arguments:</h5>
   8396 <p>The first argument is a constant integer representing the size of the
   8397    object, or -1 if it is variable sized.  The second argument is a pointer to
   8398    the object.</p>
   8399 
   8400 <h5>Semantics:</h5>
   8401 <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
   8402    the return value, the referenced memory location is constant and
   8403    unchanging.</p>
   8404 
   8405 </div>
   8406 
   8407 <!-- _______________________________________________________________________ -->
   8408 <h4>
   8409   <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
   8410 </h4>
   8411 
   8412 <div>
   8413 
   8414 <h5>Syntax:</h5>
   8415 <pre>
   8416   declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8417 </pre>
   8418 
   8419 <h5>Overview:</h5>
   8420 <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
   8421    a memory object are mutable.</p>
   8422 
   8423 <h5>Arguments:</h5>
   8424 <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
   8425    The second argument is a constant integer representing the size of the
   8426    object, or -1 if it is variable sized and the third argument is a pointer
   8427    to the object.</p>
   8428 
   8429 <h5>Semantics:</h5>
   8430 <p>This intrinsic indicates that the memory is mutable again.</p>
   8431 
   8432 </div>
   8433 
   8434 </div>
   8435 
   8436 <!-- ======================================================================= -->
   8437 <h3>
   8438   <a name="int_general">General Intrinsics</a>
   8439 </h3>
   8440 
   8441 <div>
   8442 
   8443 <p>This class of intrinsics is designed to be generic and has no specific
   8444    purpose.</p>
   8445 
   8446 <!-- _______________________________________________________________________ -->
   8447 <h4>
   8448   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
   8449 </h4>
   8450 
   8451 <div>
   8452 
   8453 <h5>Syntax:</h5>
   8454 <pre>
   8455   declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8456 </pre>
   8457 
   8458 <h5>Overview:</h5>
   8459 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
   8460 
   8461 <h5>Arguments:</h5>
   8462 <p>The first argument is a pointer to a value, the second is a pointer to a
   8463    global string, the third is a pointer to a global string which is the source
   8464    file name, and the last argument is the line number.</p>
   8465 
   8466 <h5>Semantics:</h5>
   8467 <p>This intrinsic allows annotation of local variables with arbitrary strings.
   8468    This can be useful for special purpose optimizations that want to look for
   8469    these annotations.  These have no other defined use; they are ignored by code
   8470    generation and optimization.</p>
   8471 
   8472 </div>
   8473 
   8474 <!-- _______________________________________________________________________ -->
   8475 <h4>
   8476   <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
   8477 </h4>
   8478 
   8479 <div>
   8480 
   8481 <h5>Syntax:</h5>
   8482 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
   8483    any integer bit width.</p>
   8484 
   8485 <pre>
   8486   declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8487   declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8488   declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8489   declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8490   declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8491 </pre>
   8492 
   8493 <h5>Overview:</h5>
   8494 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
   8495 
   8496 <h5>Arguments:</h5>
   8497 <p>The first argument is an integer value (result of some expression), the
   8498    second is a pointer to a global string, the third is a pointer to a global
   8499    string which is the source file name, and the last argument is the line
   8500    number.  It returns the value of the first argument.</p>
   8501 
   8502 <h5>Semantics:</h5>
   8503 <p>This intrinsic allows annotations to be put on arbitrary expressions with
   8504    arbitrary strings.  This can be useful for special purpose optimizations that
   8505    want to look for these annotations.  These have no other defined use; they
   8506    are ignored by code generation and optimization.</p>
   8507 
   8508 </div>
   8509 
   8510 <!-- _______________________________________________________________________ -->
   8511 <h4>
   8512   <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
   8513 </h4>
   8514 
   8515 <div>
   8516 
   8517 <h5>Syntax:</h5>
   8518 <pre>
   8519   declare void @llvm.trap()
   8520 </pre>
   8521 
   8522 <h5>Overview:</h5>
   8523 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
   8524 
   8525 <h5>Arguments:</h5>
   8526 <p>None.</p>
   8527 
   8528 <h5>Semantics:</h5>
   8529 <p>This intrinsics is lowered to the target dependent trap instruction. If the
   8530    target does not have a trap instruction, this intrinsic will be lowered to
   8531    the call of the <tt>abort()</tt> function.</p>
   8532 
   8533 </div>
   8534 
   8535 <!-- _______________________________________________________________________ -->
   8536 <h4>
   8537   <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
   8538 </h4>
   8539 
   8540 <div>
   8541 
   8542 <h5>Syntax:</h5>
   8543 <pre>
   8544   declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
   8545 </pre>
   8546 
   8547 <h5>Overview:</h5>
   8548 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
   8549    stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
   8550    ensure that it is placed on the stack before local variables.</p>
   8551 
   8552 <h5>Arguments:</h5>
   8553 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
   8554    arguments. The first argument is the value loaded from the stack
   8555    guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
   8556    that has enough space to hold the value of the guard.</p>
   8557 
   8558 <h5>Semantics:</h5>
   8559 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
   8560    the <tt>AllocaInst</tt> stack slot to be before local variables on the
   8561    stack. This is to ensure that if a local variable on the stack is
   8562    overwritten, it will destroy the value of the guard. When the function exits,
   8563    the guard on the stack is checked against the original guard. If they are
   8564    different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
   8565    function.</p>
   8566 
   8567 </div>
   8568 
   8569 <!-- _______________________________________________________________________ -->
   8570 <h4>
   8571   <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
   8572 </h4>
   8573 
   8574 <div>
   8575 
   8576 <h5>Syntax:</h5>
   8577 <pre>
   8578   declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
   8579   declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
   8580 </pre>
   8581 
   8582 <h5>Overview:</h5>
   8583 <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
   8584    the optimizers to determine at compile time whether a) an operation (like
   8585    memcpy) will overflow a buffer that corresponds to an object, or b) that a
   8586    runtime check for overflow isn't necessary. An object in this context means
   8587    an allocation of a specific class, structure, array, or other object.</p>
   8588 
   8589 <h5>Arguments:</h5>
   8590 <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
   8591    argument is a pointer to or into the <tt>object</tt>. The second argument
   8592    is a boolean 0 or 1. This argument determines whether you want the 
   8593    maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
   8594    1, variables are not allowed.</p>
   8595    
   8596 <h5>Semantics:</h5>
   8597 <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
   8598    representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
   8599    depending on the <tt>type</tt> argument, if the size cannot be determined at
   8600    compile time.</p>
   8601 
   8602 </div>
   8603 
   8604 </div>
   8605 
   8606 </div>
   8607 
   8608 <!-- *********************************************************************** -->
   8609 <hr>
   8610 <address>
   8611   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   8612   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   8613   <a href="http://validator.w3.org/check/referer"><img
   8614   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   8615 
   8616   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   8617   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   8618   Last modified: $Date$
   8619 </address>
   8620 
   8621 </body>
   8622 </html>
   8623