1 //===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Mips implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // Instruction format superclass 16 //===----------------------------------------------------------------------===// 17 18 include "MipsInstrFormats.td" 19 20 //===----------------------------------------------------------------------===// 21 // Mips profiles and nodes 22 //===----------------------------------------------------------------------===// 23 24 def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 25 def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; 26 def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, 27 SDTCisSameAs<1, 2>, 28 SDTCisSameAs<3, 4>, 29 SDTCisInt<4>]>; 30 def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; 31 def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 32 def SDT_MipsMAddMSub : SDTypeProfile<0, 4, 33 [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, 34 SDTCisSameAs<1, 2>, 35 SDTCisSameAs<2, 3>]>; 36 def SDT_MipsDivRem : SDTypeProfile<0, 2, 37 [SDTCisInt<0>, 38 SDTCisSameAs<0, 1>]>; 39 40 def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; 41 42 def SDT_MipsDynAlloc : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, 43 SDTCisVT<1, iPTR>]>; 44 def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 45 46 def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 47 SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>; 48 def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 49 SDTCisVT<2, i32>, SDTCisSameAs<2, 3>, 50 SDTCisSameAs<0, 4>]>; 51 52 // Call 53 def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, 54 [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, 55 SDNPVariadic]>; 56 57 // Hi and Lo nodes are used to handle global addresses. Used on 58 // MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol 59 // static model. (nothing to do with Mips Registers Hi and Lo) 60 def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; 61 def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; 62 def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>; 63 64 // TlsGd node is used to handle General Dynamic TLS 65 def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>; 66 67 // TprelHi and TprelLo nodes are used to handle Local Exec TLS 68 def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>; 69 def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>; 70 71 // Thread pointer 72 def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>; 73 74 // Return 75 def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain, 76 SDNPOptInGlue]>; 77 78 // These are target-independent nodes, but have target-specific formats. 79 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart, 80 [SDNPHasChain, SDNPOutGlue]>; 81 def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd, 82 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 83 84 // MAdd*/MSub* nodes 85 def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub, 86 [SDNPOptInGlue, SDNPOutGlue]>; 87 def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub, 88 [SDNPOptInGlue, SDNPOutGlue]>; 89 def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub, 90 [SDNPOptInGlue, SDNPOutGlue]>; 91 def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub, 92 [SDNPOptInGlue, SDNPOutGlue]>; 93 94 // DivRem(u) nodes 95 def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsDivRem, 96 [SDNPOutGlue]>; 97 def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem, 98 [SDNPOutGlue]>; 99 100 // Target constant nodes that are not part of any isel patterns and remain 101 // unchanged can cause instructions with illegal operands to be emitted. 102 // Wrapper node patterns give the instruction selector a chance to replace 103 // target constant nodes that would otherwise remain unchanged with ADDiu 104 // nodes. Without these wrapper node patterns, the following conditional move 105 // instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is 106 // compiled: 107 // movn %got(d)($gp), %got(c)($gp), $4 108 // This instruction is illegal since movn can take only register operands. 109 110 def MipsWrapperPIC : SDNode<"MipsISD::WrapperPIC", SDTIntUnaryOp>; 111 112 // Pointer to dynamically allocated stack area. 113 def MipsDynAlloc : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc, 114 [SDNPHasChain, SDNPInGlue]>; 115 116 def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>; 117 118 def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>; 119 def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>; 120 121 //===----------------------------------------------------------------------===// 122 // Mips Instruction Predicate Definitions. 123 //===----------------------------------------------------------------------===// 124 def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">; 125 def HasBitCount : Predicate<"Subtarget.hasBitCount()">; 126 def HasSwap : Predicate<"Subtarget.hasSwap()">; 127 def HasCondMov : Predicate<"Subtarget.hasCondMov()">; 128 def HasMips32 : Predicate<"Subtarget.hasMips32()">; 129 def HasMips32r2 : Predicate<"Subtarget.hasMips32r2()">; 130 def HasMips64 : Predicate<"Subtarget.hasMips64()">; 131 def NotMips64 : Predicate<"!Subtarget.hasMips64()">; 132 def HasMips64r2 : Predicate<"Subtarget.hasMips64r2()">; 133 def IsN64 : Predicate<"Subtarget.isABI_N64()">; 134 def NotN64 : Predicate<"!Subtarget.isABI_N64()">; 135 136 //===----------------------------------------------------------------------===// 137 // Mips Operand, Complex Patterns and Transformations Definitions. 138 //===----------------------------------------------------------------------===// 139 140 // Instruction operand types 141 def brtarget : Operand<OtherVT>; 142 def calltarget : Operand<i32>; 143 def simm16 : Operand<i32>; 144 def simm16_64 : Operand<i64>; 145 def shamt : Operand<i32>; 146 147 // Unsigned Operand 148 def uimm16 : Operand<i32> { 149 let PrintMethod = "printUnsignedImm"; 150 } 151 152 // Address operand 153 def mem : Operand<i32> { 154 let PrintMethod = "printMemOperand"; 155 let MIOperandInfo = (ops CPURegs, simm16); 156 let EncoderMethod = "getMemEncoding"; 157 } 158 159 def mem64 : Operand<i64> { 160 let PrintMethod = "printMemOperand"; 161 let MIOperandInfo = (ops CPU64Regs, simm16_64); 162 } 163 164 def mem_ea : Operand<i32> { 165 let PrintMethod = "printMemOperandEA"; 166 let MIOperandInfo = (ops CPURegs, simm16); 167 let EncoderMethod = "getMemEncoding"; 168 } 169 170 // size operand of ext instruction 171 def size_ext : Operand<i32> { 172 let EncoderMethod = "getSizeExtEncoding"; 173 } 174 175 // size operand of ins instruction 176 def size_ins : Operand<i32> { 177 let EncoderMethod = "getSizeInsEncoding"; 178 } 179 180 // Transformation Function - get the lower 16 bits. 181 def LO16 : SDNodeXForm<imm, [{ 182 return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF); 183 }]>; 184 185 // Transformation Function - get the higher 16 bits. 186 def HI16 : SDNodeXForm<imm, [{ 187 return getI32Imm((unsigned)N->getZExtValue() >> 16); 188 }]>; 189 190 // Node immediate fits as 16-bit sign extended on target immediate. 191 // e.g. addi, andi 192 def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>; 193 194 // Node immediate fits as 16-bit zero extended on target immediate. 195 // The LO16 param means that only the lower 16 bits of the node 196 // immediate are caught. 197 // e.g. addiu, sltiu 198 def immZExt16 : PatLeaf<(imm), [{ 199 if (N->getValueType(0) == MVT::i32) 200 return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 201 else 202 return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 203 }], LO16>; 204 205 // shamt field must fit in 5 bits. 206 def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>; 207 208 // Mips Address Mode! SDNode frameindex could possibily be a match 209 // since load and store instructions from stack used it. 210 def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], []>; 211 212 //===----------------------------------------------------------------------===// 213 // Pattern fragment for load/store 214 //===----------------------------------------------------------------------===// 215 class UnalignedLoad<PatFrag Node> : PatFrag<(ops node:$ptr), (Node node:$ptr), [{ 216 LoadSDNode *LD = cast<LoadSDNode>(N); 217 return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment(); 218 }]>; 219 220 class AlignedLoad<PatFrag Node> : PatFrag<(ops node:$ptr), (Node node:$ptr), [{ 221 LoadSDNode *LD = cast<LoadSDNode>(N); 222 return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment(); 223 }]>; 224 225 class UnalignedStore<PatFrag Node> : PatFrag<(ops node:$val, node:$ptr), 226 (Node node:$val, node:$ptr), [{ 227 StoreSDNode *SD = cast<StoreSDNode>(N); 228 return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment(); 229 }]>; 230 231 class AlignedStore<PatFrag Node> : PatFrag<(ops node:$val, node:$ptr), 232 (Node node:$val, node:$ptr), [{ 233 StoreSDNode *SD = cast<StoreSDNode>(N); 234 return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment(); 235 }]>; 236 237 // Load/Store PatFrags. 238 def sextloadi16_a : AlignedLoad<sextloadi16>; 239 def zextloadi16_a : AlignedLoad<zextloadi16>; 240 def extloadi16_a : AlignedLoad<extloadi16>; 241 def load_a : AlignedLoad<load>; 242 def sextloadi32_a : AlignedLoad<sextloadi32>; 243 def zextloadi32_a : AlignedLoad<zextloadi32>; 244 def extloadi32_a : AlignedLoad<extloadi32>; 245 def truncstorei16_a : AlignedStore<truncstorei16>; 246 def store_a : AlignedStore<store>; 247 def truncstorei32_a : AlignedStore<truncstorei32>; 248 def sextloadi16_u : UnalignedLoad<sextloadi16>; 249 def zextloadi16_u : UnalignedLoad<zextloadi16>; 250 def extloadi16_u : UnalignedLoad<extloadi16>; 251 def load_u : UnalignedLoad<load>; 252 def sextloadi32_u : UnalignedLoad<sextloadi32>; 253 def zextloadi32_u : UnalignedLoad<zextloadi32>; 254 def extloadi32_u : UnalignedLoad<extloadi32>; 255 def truncstorei16_u : UnalignedStore<truncstorei16>; 256 def store_u : UnalignedStore<store>; 257 def truncstorei32_u : UnalignedStore<truncstorei32>; 258 259 //===----------------------------------------------------------------------===// 260 // Instructions specific format 261 //===----------------------------------------------------------------------===// 262 263 // Arithmetic and logical instructions with 3 register operands. 264 class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode, 265 InstrItinClass itin, RegisterClass RC, bit isComm = 0>: 266 FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), 267 !strconcat(instr_asm, "\t$rd, $rs, $rt"), 268 [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> { 269 let shamt = 0; 270 let isCommutable = isComm; 271 } 272 273 class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm, 274 InstrItinClass itin, RegisterClass RC, bit isComm = 0>: 275 FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), 276 !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> { 277 let shamt = 0; 278 let isCommutable = isComm; 279 } 280 281 // Arithmetic and logical instructions with 2 register operands. 282 class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode, 283 Operand Od, PatLeaf imm_type, RegisterClass RC> : 284 FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16), 285 !strconcat(instr_asm, "\t$rt, $rs, $imm16"), 286 [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu>; 287 288 class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode, 289 Operand Od, PatLeaf imm_type, RegisterClass RC> : 290 FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16), 291 !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>; 292 293 // Arithmetic Multiply ADD/SUB 294 let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in 295 class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> : 296 FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt), 297 !strconcat(instr_asm, "\t$rs, $rt"), 298 [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> { 299 let rd = 0; 300 let shamt = 0; 301 let isCommutable = isComm; 302 } 303 304 // Logical 305 class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>: 306 FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), 307 !strconcat(instr_asm, "\t$rd, $rs, $rt"), 308 [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> { 309 let shamt = 0; 310 let isCommutable = 1; 311 } 312 313 // Shifts 314 class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm, 315 SDNode OpNode, PatFrag PF, Operand ImmOpnd, 316 RegisterClass RC>: 317 FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt), 318 !strconcat(instr_asm, "\t$rd, $rt, $shamt"), 319 [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> { 320 let rs = isRotate; 321 } 322 323 // 32-bit shift instructions. 324 class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm, 325 SDNode OpNode>: 326 shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>; 327 328 class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm, 329 SDNode OpNode, RegisterClass RC>: 330 FR<0x00, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), 331 !strconcat(instr_asm, "\t$rd, $rt, $rs"), 332 [(set RC:$rd, (OpNode RC:$rt, RC:$rs))], IIAlu> { 333 let shamt = isRotate; 334 } 335 336 // Load Upper Imediate 337 class LoadUpper<bits<6> op, string instr_asm>: 338 FI<op, (outs CPURegs:$rt), (ins uimm16:$imm16), 339 !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> { 340 let rs = 0; 341 } 342 343 class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern, 344 InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> { 345 bits<21> addr; 346 let Inst{25-21} = addr{20-16}; 347 let Inst{15-0} = addr{15-0}; 348 } 349 350 // Memory Load/Store 351 let canFoldAsLoad = 1 in 352 class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC, 353 Operand MemOpnd, bit Pseudo>: 354 FMem<op, (outs RC:$rt), (ins MemOpnd:$addr), 355 !strconcat(instr_asm, "\t$rt, $addr"), 356 [(set RC:$rt, (OpNode addr:$addr))], IILoad> { 357 let isPseudo = Pseudo; 358 } 359 360 class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC, 361 Operand MemOpnd, bit Pseudo>: 362 FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr), 363 !strconcat(instr_asm, "\t$rt, $addr"), 364 [(OpNode RC:$rt, addr:$addr)], IIStore> { 365 let isPseudo = Pseudo; 366 } 367 368 // 32-bit load. 369 multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode, 370 bit Pseudo = 0> { 371 def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>, 372 Requires<[NotN64]>; 373 def _P8 : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>, 374 Requires<[IsN64]>; 375 } 376 377 // 64-bit load. 378 multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode, 379 bit Pseudo = 0> { 380 def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>, 381 Requires<[NotN64]>; 382 def _P8 : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>, 383 Requires<[IsN64]>; 384 } 385 386 // 32-bit store. 387 multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode, 388 bit Pseudo = 0> { 389 def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>, 390 Requires<[NotN64]>; 391 def _P8 : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>, 392 Requires<[IsN64]>; 393 } 394 395 // 64-bit store. 396 multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode, 397 bit Pseudo = 0> { 398 def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>, 399 Requires<[NotN64]>; 400 def _P8 : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>, 401 Requires<[IsN64]>; 402 } 403 404 // Conditional Branch 405 class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>: 406 CBranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16), 407 !strconcat(instr_asm, "\t$rs, $rt, $imm16"), 408 [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> { 409 let isBranch = 1; 410 let isTerminator = 1; 411 let hasDelaySlot = 1; 412 } 413 414 class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op, 415 RegisterClass RC>: 416 CBranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16), 417 !strconcat(instr_asm, "\t$rs, $imm16"), 418 [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> { 419 let rt = _rt; 420 let isBranch = 1; 421 let isTerminator = 1; 422 let hasDelaySlot = 1; 423 } 424 425 // SetCC 426 class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op, 427 RegisterClass RC>: 428 FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt), 429 !strconcat(instr_asm, "\t$rd, $rs, $rt"), 430 [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))], 431 IIAlu> { 432 let shamt = 0; 433 } 434 435 class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od, 436 PatLeaf imm_type, RegisterClass RC>: 437 FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16), 438 !strconcat(instr_asm, "\t$rt, $rs, $imm16"), 439 [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))], 440 IIAlu>; 441 442 // Unconditional branch 443 let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in 444 class JumpFJ<bits<6> op, string instr_asm>: 445 FJ<op, (outs), (ins brtarget:$target), 446 !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch>; 447 448 let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in 449 class JumpFR<bits<6> op, bits<6> func, string instr_asm>: 450 FR<op, func, (outs), (ins CPURegs:$rs), 451 !strconcat(instr_asm, "\t$rs"), [(brind CPURegs:$rs)], IIBranch> { 452 let rt = 0; 453 let rd = 0; 454 let shamt = 0; 455 } 456 457 // Jump and Link (Call) 458 let isCall=1, hasDelaySlot=1, 459 // All calls clobber the non-callee saved registers... 460 Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, 461 K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in { 462 class JumpLink<bits<6> op, string instr_asm>: 463 FJ<op, (outs), (ins calltarget:$target, variable_ops), 464 !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)], 465 IIBranch>; 466 467 class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>: 468 FR<op, func, (outs), (ins CPURegs:$rs, variable_ops), 469 !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink CPURegs:$rs)], IIBranch> { 470 let rt = 0; 471 let rd = 31; 472 let shamt = 0; 473 } 474 475 class BranchLink<string instr_asm>: 476 FI<0x1, (outs), (ins CPURegs:$rs, brtarget:$imm16, variable_ops), 477 !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>; 478 } 479 480 // Mul, Div 481 class Mult<bits<6> func, string instr_asm, InstrItinClass itin, 482 RegisterClass RC, list<Register> DefRegs>: 483 FR<0x00, func, (outs), (ins RC:$rs, RC:$rt), 484 !strconcat(instr_asm, "\t$rs, $rt"), [], itin> { 485 let rd = 0; 486 let shamt = 0; 487 let isCommutable = 1; 488 let Defs = DefRegs; 489 } 490 491 class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>: 492 Mult<func, instr_asm, itin, CPURegs, [HI, LO]>; 493 494 class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin, 495 RegisterClass RC, list<Register> DefRegs>: 496 FR<0x00, func, (outs), (ins RC:$rs, RC:$rt), 497 !strconcat(instr_asm, "\t$$zero, $rs, $rt"), 498 [(op RC:$rs, RC:$rt)], itin> { 499 let rd = 0; 500 let shamt = 0; 501 let Defs = DefRegs; 502 } 503 504 class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>: 505 Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>; 506 507 // Move from Hi/Lo 508 class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC, 509 list<Register> UseRegs>: 510 FR<0x00, func, (outs RC:$rd), (ins), 511 !strconcat(instr_asm, "\t$rd"), [], IIHiLo> { 512 let rs = 0; 513 let rt = 0; 514 let shamt = 0; 515 let Uses = UseRegs; 516 } 517 518 class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC, 519 list<Register> DefRegs>: 520 FR<0x00, func, (outs), (ins RC:$rs), 521 !strconcat(instr_asm, "\t$rs"), [], IIHiLo> { 522 let rt = 0; 523 let rd = 0; 524 let shamt = 0; 525 let Defs = DefRegs; 526 } 527 528 class EffectiveAddress<string instr_asm> : 529 FMem<0x09, (outs CPURegs:$rt), (ins mem_ea:$addr), 530 instr_asm, [(set CPURegs:$rt, addr:$addr)], IIAlu>; 531 532 // Count Leading Ones/Zeros in Word 533 class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>: 534 FR<0x1c, func, (outs RC:$rd), (ins RC:$rs), 535 !strconcat(instr_asm, "\t$rd, $rs"), 536 [(set RC:$rd, (ctlz RC:$rs))], IIAlu>, 537 Requires<[HasBitCount]> { 538 let shamt = 0; 539 let rt = rd; 540 } 541 542 class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>: 543 FR<0x1c, func, (outs RC:$rd), (ins RC:$rs), 544 !strconcat(instr_asm, "\t$rd, $rs"), 545 [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>, 546 Requires<[HasBitCount]> { 547 let shamt = 0; 548 let rt = rd; 549 } 550 551 // Sign Extend in Register. 552 class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt>: 553 FR<0x1f, 0x20, (outs CPURegs:$rd), (ins CPURegs:$rt), 554 !strconcat(instr_asm, "\t$rd, $rt"), 555 [(set CPURegs:$rd, (sext_inreg CPURegs:$rt, vt))], NoItinerary> { 556 let rs = 0; 557 let shamt = sa; 558 let Predicates = [HasSEInReg]; 559 } 560 561 // Byte Swap 562 class ByteSwap<bits<6> func, bits<5> sa, string instr_asm>: 563 FR<0x1f, func, (outs CPURegs:$rd), (ins CPURegs:$rt), 564 !strconcat(instr_asm, "\t$rd, $rt"), 565 [(set CPURegs:$rd, (bswap CPURegs:$rt))], NoItinerary> { 566 let rs = 0; 567 let shamt = sa; 568 let Predicates = [HasSwap]; 569 } 570 571 // Read Hardware 572 class ReadHardware: FR<0x1f, 0x3b, (outs CPURegs:$rt), (ins HWRegs:$rd), 573 "rdhwr\t$rt, $rd", [], IIAlu> { 574 let rs = 0; 575 let shamt = 0; 576 } 577 578 // Ext and Ins 579 class ExtIns<bits<6> _funct, string instr_asm, dag outs, dag ins, 580 list<dag> pattern, InstrItinClass itin>: 581 FR<0x1f, _funct, outs, ins, !strconcat(instr_asm, " $rt, $rs, $pos, $sz"), 582 pattern, itin>, Requires<[HasMips32r2]> { 583 bits<5> pos; 584 bits<5> sz; 585 let rd = sz; 586 let shamt = pos; 587 } 588 589 // Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*). 590 class Atomic2Ops<PatFrag Op, string Opstr> : 591 MipsPseudo<(outs CPURegs:$dst), (ins CPURegs:$ptr, CPURegs:$incr), 592 !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"), 593 [(set CPURegs:$dst, 594 (Op CPURegs:$ptr, CPURegs:$incr))]>; 595 596 // Atomic Compare & Swap. 597 class AtomicCmpSwap<PatFrag Op, string Width> : 598 MipsPseudo<(outs CPURegs:$dst), 599 (ins CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap), 600 !strconcat("atomic_cmp_swap_", Width, 601 "\t$dst, $ptr, $cmp, $swap"), 602 [(set CPURegs:$dst, 603 (Op CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap))]>; 604 605 //===----------------------------------------------------------------------===// 606 // Pseudo instructions 607 //===----------------------------------------------------------------------===// 608 609 // As stack alignment is always done with addiu, we need a 16-bit immediate 610 let Defs = [SP], Uses = [SP] in { 611 def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt), 612 "!ADJCALLSTACKDOWN $amt", 613 [(callseq_start timm:$amt)]>; 614 def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2), 615 "!ADJCALLSTACKUP $amt1", 616 [(callseq_end timm:$amt1, timm:$amt2)]>; 617 } 618 619 // Some assembly macros need to avoid pseudoinstructions and assembler 620 // automatic reodering, we should reorder ourselves. 621 def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>; 622 def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>; 623 def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>; 624 def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>; 625 626 // These macros are inserted to prevent GAS from complaining 627 // when using the AT register. 628 def NOAT : MipsPseudo<(outs), (ins), ".set\tnoat", []>; 629 def ATMACRO : MipsPseudo<(outs), (ins), ".set\tat", []>; 630 631 // When handling PIC code the assembler needs .cpload and .cprestore 632 // directives. If the real instructions corresponding these directives 633 // are used, we have the same behavior, but get also a bunch of warnings 634 // from the assembler. 635 def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>; 636 def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc), ".cprestore\t$loc", []>; 637 638 let usesCustomInserter = 1 in { 639 def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, "load_add_8">; 640 def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, "load_add_16">; 641 def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, "load_add_32">; 642 def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, "load_sub_8">; 643 def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, "load_sub_16">; 644 def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, "load_sub_32">; 645 def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, "load_and_8">; 646 def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, "load_and_16">; 647 def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, "load_and_32">; 648 def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, "load_or_8">; 649 def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, "load_or_16">; 650 def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, "load_or_32">; 651 def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, "load_xor_8">; 652 def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, "load_xor_16">; 653 def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, "load_xor_32">; 654 def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, "load_nand_8">; 655 def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, "load_nand_16">; 656 def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, "load_nand_32">; 657 658 def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, "swap_8">; 659 def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, "swap_16">; 660 def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, "swap_32">; 661 662 def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, "8">; 663 def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, "16">; 664 def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, "32">; 665 } 666 667 //===----------------------------------------------------------------------===// 668 // Instruction definition 669 //===----------------------------------------------------------------------===// 670 671 //===----------------------------------------------------------------------===// 672 // MipsI Instructions 673 //===----------------------------------------------------------------------===// 674 675 /// Arithmetic Instructions (ALU Immediate) 676 def ADDiu : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>; 677 def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>; 678 def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>; 679 def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>; 680 def ANDi : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>; 681 def ORi : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>; 682 def XORi : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>; 683 def LUi : LoadUpper<0x0f, "lui">; 684 685 /// Arithmetic Instructions (3-Operand, R-Type) 686 def ADDu : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>; 687 def SUBu : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>; 688 def ADD : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>; 689 def SUB : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>; 690 def SLT : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>; 691 def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>; 692 def AND : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>; 693 def OR : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPURegs, 1>; 694 def XOR : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>; 695 def NOR : LogicNOR<0x00, 0x27, "nor", CPURegs>; 696 697 /// Shift Instructions 698 def SLL : shift_rotate_imm32<0x00, 0x00, "sll", shl>; 699 def SRL : shift_rotate_imm32<0x02, 0x00, "srl", srl>; 700 def SRA : shift_rotate_imm32<0x03, 0x00, "sra", sra>; 701 def SLLV : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>; 702 def SRLV : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>; 703 def SRAV : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>; 704 705 // Rotate Instructions 706 let Predicates = [HasMips32r2] in { 707 def ROTR : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>; 708 def ROTRV : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>; 709 } 710 711 /// Load and Store Instructions 712 /// aligned 713 defm LB : LoadM32<0x20, "lb", sextloadi8>; 714 defm LBu : LoadM32<0x24, "lbu", zextloadi8>; 715 defm LH : LoadM32<0x21, "lh", sextloadi16_a>; 716 defm LHu : LoadM32<0x25, "lhu", zextloadi16_a>; 717 defm LW : LoadM32<0x23, "lw", load_a>; 718 defm SB : StoreM32<0x28, "sb", truncstorei8>; 719 defm SH : StoreM32<0x29, "sh", truncstorei16_a>; 720 defm SW : StoreM32<0x2b, "sw", store_a>; 721 722 /// unaligned 723 defm ULH : LoadM32<0x21, "ulh", sextloadi16_u, 1>; 724 defm ULHu : LoadM32<0x25, "ulhu", zextloadi16_u, 1>; 725 defm ULW : LoadM32<0x23, "ulw", load_u, 1>; 726 defm USH : StoreM32<0x29, "ush", truncstorei16_u, 1>; 727 defm USW : StoreM32<0x2b, "usw", store_u, 1>; 728 729 let hasSideEffects = 1 in 730 def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype", 731 [(MipsSync imm:$stype)], NoItinerary, FrmOther> 732 { 733 bits<5> stype; 734 let Opcode = 0; 735 let Inst{25-11} = 0; 736 let Inst{10-6} = stype; 737 let Inst{5-0} = 15; 738 } 739 740 /// Load-linked, Store-conditional 741 let mayLoad = 1 in 742 def LL : FMem<0x30, (outs CPURegs:$rt), (ins mem:$addr), 743 "ll\t$rt, $addr", [], IILoad>; 744 let mayStore = 1, Constraints = "$rt = $dst" in 745 def SC : FMem<0x38, (outs CPURegs:$dst), (ins CPURegs:$rt, mem:$addr), 746 "sc\t$rt, $addr", [], IIStore>; 747 748 /// Jump and Branch Instructions 749 def J : JumpFJ<0x02, "j">; 750 let isIndirectBranch = 1 in 751 def JR : JumpFR<0x00, 0x08, "jr">; 752 def JAL : JumpLink<0x03, "jal">; 753 def JALR : JumpLinkReg<0x00, 0x09, "jalr">; 754 def BEQ : CBranch<0x04, "beq", seteq, CPURegs>; 755 def BNE : CBranch<0x05, "bne", setne, CPURegs>; 756 def BGEZ : CBranchZero<0x01, 1, "bgez", setge, CPURegs>; 757 def BGTZ : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>; 758 def BLEZ : CBranchZero<0x06, 0, "blez", setle, CPURegs>; 759 def BLTZ : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>; 760 761 let rt=0x11 in 762 def BGEZAL : BranchLink<"bgezal">; 763 let rt=0x10 in 764 def BLTZAL : BranchLink<"bltzal">; 765 766 let isReturn=1, isTerminator=1, hasDelaySlot=1, 767 isBarrier=1, hasCtrlDep=1, rd=0, rt=0, shamt=0 in 768 def RET : FR <0x00, 0x08, (outs), (ins CPURegs:$target), 769 "jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>; 770 771 /// Multiply and Divide Instructions. 772 def MULT : Mult32<0x18, "mult", IIImul>; 773 def MULTu : Mult32<0x19, "multu", IIImul>; 774 def SDIV : Div32<MipsDivRem, 0x1a, "div", IIIdiv>; 775 def UDIV : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>; 776 777 def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>; 778 def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>; 779 def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>; 780 def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>; 781 782 /// Sign Ext In Register Instructions. 783 def SEB : SignExtInReg<0x10, "seb", i8>; 784 def SEH : SignExtInReg<0x18, "seh", i16>; 785 786 /// Count Leading 787 def CLZ : CountLeading0<0x20, "clz", CPURegs>; 788 def CLO : CountLeading1<0x21, "clo", CPURegs>; 789 790 /// Byte Swap 791 def WSBW : ByteSwap<0x20, 0x2, "wsbw">; 792 793 /// No operation 794 let addr=0 in 795 def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>; 796 797 // FrameIndexes are legalized when they are operands from load/store 798 // instructions. The same not happens for stack address copies, so an 799 // add op with mem ComplexPattern is used and the stack address copy 800 // can be matched. It's similar to Sparc LEA_ADDRi 801 def LEA_ADDiu : EffectiveAddress<"addiu\t$rt, $addr">; 802 803 // DynAlloc node points to dynamically allocated stack space. 804 // $sp is added to the list of implicitly used registers to prevent dead code 805 // elimination from removing instructions that modify $sp. 806 let Uses = [SP] in 807 def DynAlloc : EffectiveAddress<"addiu\t$rt, $addr">; 808 809 // MADD*/MSUB* 810 def MADD : MArithR<0, "madd", MipsMAdd, 1>; 811 def MADDU : MArithR<1, "maddu", MipsMAddu, 1>; 812 def MSUB : MArithR<4, "msub", MipsMSub>; 813 def MSUBU : MArithR<5, "msubu", MipsMSubu>; 814 815 // MUL is a assembly macro in the current used ISAs. In recent ISA's 816 // it is a real instruction. 817 def MUL : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>, 818 Requires<[HasMips32]>; 819 820 def RDHWR : ReadHardware; 821 822 def EXT : ExtIns<0, "ext", (outs CPURegs:$rt), 823 (ins CPURegs:$rs, uimm16:$pos, size_ext:$sz), 824 [(set CPURegs:$rt, 825 (MipsExt CPURegs:$rs, immZExt5:$pos, immZExt5:$sz))], 826 NoItinerary>; 827 828 let Constraints = "$src = $rt" in 829 def INS : ExtIns<4, "ins", (outs CPURegs:$rt), 830 (ins CPURegs:$rs, uimm16:$pos, size_ins:$sz, CPURegs:$src), 831 [(set CPURegs:$rt, 832 (MipsIns CPURegs:$rs, immZExt5:$pos, immZExt5:$sz, 833 CPURegs:$src))], 834 NoItinerary>; 835 836 //===----------------------------------------------------------------------===// 837 // Arbitrary patterns that map to one or more instructions 838 //===----------------------------------------------------------------------===// 839 840 // Small immediates 841 def : Pat<(i32 immSExt16:$in), 842 (ADDiu ZERO, imm:$in)>; 843 def : Pat<(i32 immZExt16:$in), 844 (ORi ZERO, imm:$in)>; 845 846 // Arbitrary immediates 847 def : Pat<(i32 imm:$imm), 848 (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; 849 850 // Carry patterns 851 def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs), 852 (SUBu CPURegs:$lhs, CPURegs:$rhs)>; 853 def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs), 854 (ADDu CPURegs:$lhs, CPURegs:$rhs)>; 855 def : Pat<(addc CPURegs:$src, immSExt16:$imm), 856 (ADDiu CPURegs:$src, imm:$imm)>; 857 858 // Call 859 def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), 860 (JAL tglobaladdr:$dst)>; 861 def : Pat<(MipsJmpLink (i32 texternalsym:$dst)), 862 (JAL texternalsym:$dst)>; 863 //def : Pat<(MipsJmpLink CPURegs:$dst), 864 // (JALR CPURegs:$dst)>; 865 866 // hi/lo relocs 867 def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; 868 def : Pat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>; 869 def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>; 870 def : Pat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>; 871 def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)), 872 (ADDiu CPURegs:$hi, tglobaladdr:$lo)>; 873 def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)), 874 (ADDiu CPURegs:$hi, tblockaddress:$lo)>; 875 876 def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>; 877 def : Pat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>; 878 def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)), 879 (ADDiu CPURegs:$hi, tjumptable:$lo)>; 880 881 def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>; 882 def : Pat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>; 883 def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)), 884 (ADDiu CPURegs:$hi, tconstpool:$lo)>; 885 886 // gp_rel relocs 887 def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)), 888 (ADDiu CPURegs:$gp, tglobaladdr:$in)>; 889 def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)), 890 (ADDiu CPURegs:$gp, tconstpool:$in)>; 891 892 // tlsgd 893 def : Pat<(add CPURegs:$gp, (MipsTlsGd tglobaltlsaddr:$in)), 894 (ADDiu CPURegs:$gp, tglobaltlsaddr:$in)>; 895 896 // tprel hi/lo 897 def : Pat<(MipsTprelHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>; 898 def : Pat<(MipsTprelLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>; 899 def : Pat<(add CPURegs:$hi, (MipsTprelLo tglobaltlsaddr:$lo)), 900 (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>; 901 902 // wrapper_pic 903 class WrapperPICPat<SDNode node>: 904 Pat<(MipsWrapperPIC node:$in), 905 (ADDiu GP, node:$in)>; 906 907 def : WrapperPICPat<tglobaladdr>; 908 def : WrapperPICPat<tconstpool>; 909 def : WrapperPICPat<texternalsym>; 910 def : WrapperPICPat<tblockaddress>; 911 def : WrapperPICPat<tjumptable>; 912 913 // Mips does not have "not", so we expand our way 914 def : Pat<(not CPURegs:$in), 915 (NOR CPURegs:$in, ZERO)>; 916 917 // extended load and stores 918 def : Pat<(extloadi1 addr:$src), (LBu addr:$src)>; 919 def : Pat<(extloadi8 addr:$src), (LBu addr:$src)>; 920 def : Pat<(extloadi16_a addr:$src), (LHu addr:$src)>; 921 def : Pat<(extloadi16_u addr:$src), (ULHu addr:$src)>; 922 923 // peepholes 924 def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>; 925 926 // brcond patterns 927 multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp, 928 Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp, 929 Instruction SLTiuOp, Register ZEROReg> { 930 def : Pat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst), 931 (BNEOp RC:$lhs, ZEROReg, bb:$dst)>; 932 def : Pat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst), 933 (BEQOp RC:$lhs, ZEROReg, bb:$dst)>; 934 935 def : Pat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst), 936 (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; 937 def : Pat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst), 938 (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; 939 def : Pat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst), 940 (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; 941 def : Pat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst), 942 (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; 943 944 def : Pat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst), 945 (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; 946 def : Pat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst), 947 (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; 948 949 def : Pat<(brcond RC:$cond, bb:$dst), 950 (BNEOp RC:$cond, ZEROReg, bb:$dst)>; 951 } 952 953 defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>; 954 955 // setcc patterns 956 multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp, 957 Instruction SLTuOp, Register ZEROReg> { 958 def : Pat<(seteq RC:$lhs, RC:$rhs), 959 (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>; 960 def : Pat<(setne RC:$lhs, RC:$rhs), 961 (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>; 962 } 963 964 multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 965 def : Pat<(setle RC:$lhs, RC:$rhs), 966 (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>; 967 def : Pat<(setule RC:$lhs, RC:$rhs), 968 (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>; 969 } 970 971 multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 972 def : Pat<(setgt RC:$lhs, RC:$rhs), 973 (SLTOp RC:$rhs, RC:$lhs)>; 974 def : Pat<(setugt RC:$lhs, RC:$rhs), 975 (SLTuOp RC:$rhs, RC:$lhs)>; 976 } 977 978 multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 979 def : Pat<(setge RC:$lhs, RC:$rhs), 980 (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>; 981 def : Pat<(setuge RC:$lhs, RC:$rhs), 982 (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>; 983 } 984 985 multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp, 986 Instruction SLTiuOp> { 987 def : Pat<(setge RC:$lhs, immSExt16:$rhs), 988 (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>; 989 def : Pat<(setuge RC:$lhs, immSExt16:$rhs), 990 (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>; 991 } 992 993 defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>; 994 defm : SetlePats<CPURegs, SLT, SLTu>; 995 defm : SetgtPats<CPURegs, SLT, SLTu>; 996 defm : SetgePats<CPURegs, SLT, SLTu>; 997 defm : SetgeImmPats<CPURegs, SLTi, SLTiu>; 998 999 // select MipsDynAlloc 1000 def : Pat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>; 1001 1002 //===----------------------------------------------------------------------===// 1003 // Floating Point Support 1004 //===----------------------------------------------------------------------===// 1005 1006 include "MipsInstrFPU.td" 1007 include "Mips64InstrInfo.td" 1008 include "MipsCondMov.td" 1009 1010