Home | History | Annotate | Download | only in Mips
      1 //===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Mips implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Instruction format superclass
     16 //===----------------------------------------------------------------------===//
     17 
     18 include "MipsInstrFormats.td"
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Mips profiles and nodes
     22 //===----------------------------------------------------------------------===//
     23 
     24 def SDT_MipsRet          : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
     25 def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
     26 def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
     27                                                 SDTCisSameAs<1, 2>,
     28                                                 SDTCisSameAs<3, 4>,
     29                                                 SDTCisInt<4>]>;
     30 def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
     31 def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
     32 def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
     33                                          [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
     34                                           SDTCisSameAs<1, 2>,
     35                                           SDTCisSameAs<2, 3>]>;
     36 def SDT_MipsDivRem       : SDTypeProfile<0, 2,
     37                                          [SDTCisInt<0>,
     38                                           SDTCisSameAs<0, 1>]>;
     39 
     40 def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
     41 
     42 def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
     43                                                SDTCisVT<1, iPTR>]>;
     44 def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
     45 
     46 def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
     47                                    SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
     48 def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
     49                                    SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
     50                                    SDTCisSameAs<0, 4>]>;
     51 
     52 // Call
     53 def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
     54                          [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
     55                           SDNPVariadic]>;
     56 
     57 // Hi and Lo nodes are used to handle global addresses. Used on
     58 // MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
     59 // static model. (nothing to do with Mips Registers Hi and Lo)
     60 def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
     61 def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
     62 def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
     63 
     64 // TlsGd node is used to handle General Dynamic TLS
     65 def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
     66 
     67 // TprelHi and TprelLo nodes are used to handle Local Exec TLS
     68 def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
     69 def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
     70 
     71 // Thread pointer
     72 def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
     73 
     74 // Return
     75 def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
     76                      SDNPOptInGlue]>;
     77 
     78 // These are target-independent nodes, but have target-specific formats.
     79 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
     80                            [SDNPHasChain, SDNPOutGlue]>;
     81 def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
     82                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
     83 
     84 // MAdd*/MSub* nodes
     85 def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
     86                            [SDNPOptInGlue, SDNPOutGlue]>;
     87 def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
     88                            [SDNPOptInGlue, SDNPOutGlue]>;
     89 def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
     90                            [SDNPOptInGlue, SDNPOutGlue]>;
     91 def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
     92                            [SDNPOptInGlue, SDNPOutGlue]>;
     93 
     94 // DivRem(u) nodes
     95 def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
     96                            [SDNPOutGlue]>;
     97 def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
     98                            [SDNPOutGlue]>;
     99 
    100 // Target constant nodes that are not part of any isel patterns and remain
    101 // unchanged can cause instructions with illegal operands to be emitted.
    102 // Wrapper node patterns give the instruction selector a chance to replace
    103 // target constant nodes that would otherwise remain unchanged with ADDiu
    104 // nodes. Without these wrapper node patterns, the following conditional move
    105 // instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
    106 // compiled: 
    107 //  movn  %got(d)($gp), %got(c)($gp), $4
    108 // This instruction is illegal since movn can take only register operands.
    109 
    110 def MipsWrapperPIC    : SDNode<"MipsISD::WrapperPIC",  SDTIntUnaryOp>;
    111 
    112 // Pointer to dynamically allocated stack area.
    113 def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
    114                            [SDNPHasChain, SDNPInGlue]>;
    115 
    116 def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
    117 
    118 def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
    119 def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
    120 
    121 //===----------------------------------------------------------------------===//
    122 // Mips Instruction Predicate Definitions.
    123 //===----------------------------------------------------------------------===//
    124 def HasSEInReg  : Predicate<"Subtarget.hasSEInReg()">;
    125 def HasBitCount : Predicate<"Subtarget.hasBitCount()">;
    126 def HasSwap     : Predicate<"Subtarget.hasSwap()">;
    127 def HasCondMov  : Predicate<"Subtarget.hasCondMov()">;
    128 def HasMips32    : Predicate<"Subtarget.hasMips32()">;
    129 def HasMips32r2  : Predicate<"Subtarget.hasMips32r2()">;
    130 def HasMips64    : Predicate<"Subtarget.hasMips64()">;
    131 def NotMips64    : Predicate<"!Subtarget.hasMips64()">;
    132 def HasMips64r2  : Predicate<"Subtarget.hasMips64r2()">;
    133 def IsN64       : Predicate<"Subtarget.isABI_N64()">;
    134 def NotN64      : Predicate<"!Subtarget.isABI_N64()">;
    135 
    136 //===----------------------------------------------------------------------===//
    137 // Mips Operand, Complex Patterns and Transformations Definitions.
    138 //===----------------------------------------------------------------------===//
    139 
    140 // Instruction operand types
    141 def brtarget    : Operand<OtherVT>;
    142 def calltarget  : Operand<i32>;
    143 def simm16      : Operand<i32>;
    144 def simm16_64   : Operand<i64>;
    145 def shamt       : Operand<i32>;
    146 
    147 // Unsigned Operand
    148 def uimm16      : Operand<i32> {
    149   let PrintMethod = "printUnsignedImm";
    150 }
    151 
    152 // Address operand
    153 def mem : Operand<i32> {
    154   let PrintMethod = "printMemOperand";
    155   let MIOperandInfo = (ops CPURegs, simm16);
    156   let EncoderMethod = "getMemEncoding";
    157 }
    158 
    159 def mem64 : Operand<i64> {
    160   let PrintMethod = "printMemOperand";
    161   let MIOperandInfo = (ops CPU64Regs, simm16_64);
    162 }
    163 
    164 def mem_ea : Operand<i32> {
    165   let PrintMethod = "printMemOperandEA";
    166   let MIOperandInfo = (ops CPURegs, simm16);
    167   let EncoderMethod = "getMemEncoding";
    168 }
    169 
    170 // size operand of ext instruction
    171 def size_ext : Operand<i32> {
    172   let EncoderMethod = "getSizeExtEncoding";
    173 }
    174 
    175 // size operand of ins instruction
    176 def size_ins : Operand<i32> {
    177   let EncoderMethod = "getSizeInsEncoding";
    178 }
    179 
    180 // Transformation Function - get the lower 16 bits.
    181 def LO16 : SDNodeXForm<imm, [{
    182   return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF);
    183 }]>;
    184 
    185 // Transformation Function - get the higher 16 bits.
    186 def HI16 : SDNodeXForm<imm, [{
    187   return getI32Imm((unsigned)N->getZExtValue() >> 16);
    188 }]>;
    189 
    190 // Node immediate fits as 16-bit sign extended on target immediate.
    191 // e.g. addi, andi
    192 def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
    193 
    194 // Node immediate fits as 16-bit zero extended on target immediate.
    195 // The LO16 param means that only the lower 16 bits of the node
    196 // immediate are caught.
    197 // e.g. addiu, sltiu
    198 def immZExt16  : PatLeaf<(imm), [{
    199   if (N->getValueType(0) == MVT::i32)
    200     return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
    201   else
    202     return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
    203 }], LO16>;
    204 
    205 // shamt field must fit in 5 bits.
    206 def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
    207 
    208 // Mips Address Mode! SDNode frameindex could possibily be a match
    209 // since load and store instructions from stack used it.
    210 def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], []>;
    211 
    212 //===----------------------------------------------------------------------===//
    213 // Pattern fragment for load/store
    214 //===----------------------------------------------------------------------===//
    215 class UnalignedLoad<PatFrag Node> : PatFrag<(ops node:$ptr), (Node node:$ptr), [{
    216   LoadSDNode *LD = cast<LoadSDNode>(N);
    217   return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment();
    218 }]>;
    219 
    220 class AlignedLoad<PatFrag Node> : PatFrag<(ops node:$ptr), (Node node:$ptr), [{
    221   LoadSDNode *LD = cast<LoadSDNode>(N);
    222   return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment();
    223 }]>;
    224 
    225 class UnalignedStore<PatFrag Node> : PatFrag<(ops node:$val, node:$ptr),
    226                                              (Node node:$val, node:$ptr), [{
    227   StoreSDNode *SD = cast<StoreSDNode>(N);
    228   return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment();
    229 }]>;
    230 
    231 class AlignedStore<PatFrag Node> : PatFrag<(ops node:$val, node:$ptr),
    232                                            (Node node:$val, node:$ptr), [{
    233   StoreSDNode *SD = cast<StoreSDNode>(N);
    234   return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment();
    235 }]>;
    236 
    237 // Load/Store PatFrags.
    238 def sextloadi16_a   : AlignedLoad<sextloadi16>;
    239 def zextloadi16_a   : AlignedLoad<zextloadi16>;
    240 def extloadi16_a    : AlignedLoad<extloadi16>;
    241 def load_a          : AlignedLoad<load>;
    242 def sextloadi32_a   : AlignedLoad<sextloadi32>;
    243 def zextloadi32_a   : AlignedLoad<zextloadi32>;
    244 def extloadi32_a    : AlignedLoad<extloadi32>;
    245 def truncstorei16_a : AlignedStore<truncstorei16>;
    246 def store_a         : AlignedStore<store>;
    247 def truncstorei32_a : AlignedStore<truncstorei32>;
    248 def sextloadi16_u   : UnalignedLoad<sextloadi16>;
    249 def zextloadi16_u   : UnalignedLoad<zextloadi16>;
    250 def extloadi16_u    : UnalignedLoad<extloadi16>;
    251 def load_u          : UnalignedLoad<load>;
    252 def sextloadi32_u   : UnalignedLoad<sextloadi32>;
    253 def zextloadi32_u   : UnalignedLoad<zextloadi32>;
    254 def extloadi32_u    : UnalignedLoad<extloadi32>;
    255 def truncstorei16_u : UnalignedStore<truncstorei16>;
    256 def store_u         : UnalignedStore<store>;
    257 def truncstorei32_u : UnalignedStore<truncstorei32>;
    258 
    259 //===----------------------------------------------------------------------===//
    260 // Instructions specific format
    261 //===----------------------------------------------------------------------===//
    262 
    263 // Arithmetic and logical instructions with 3 register operands.
    264 class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
    265                   InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
    266   FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
    267      !strconcat(instr_asm, "\t$rd, $rs, $rt"),
    268      [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
    269   let shamt = 0;
    270   let isCommutable = isComm;
    271 }
    272 
    273 class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
    274                     InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
    275   FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
    276      !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
    277   let shamt = 0;
    278   let isCommutable = isComm;
    279 }
    280 
    281 // Arithmetic and logical instructions with 2 register operands.
    282 class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
    283                   Operand Od, PatLeaf imm_type, RegisterClass RC> :
    284   FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
    285      !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
    286      [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu>;
    287 
    288 class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
    289                      Operand Od, PatLeaf imm_type, RegisterClass RC> :
    290   FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
    291      !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
    292 
    293 // Arithmetic Multiply ADD/SUB
    294 let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
    295 class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
    296   FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
    297      !strconcat(instr_asm, "\t$rs, $rt"),
    298      [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
    299   let rd = 0;
    300   let shamt = 0;
    301   let isCommutable = isComm;
    302 }
    303 
    304 //  Logical
    305 class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
    306   FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
    307      !strconcat(instr_asm, "\t$rd, $rs, $rt"),
    308      [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
    309   let shamt = 0;
    310   let isCommutable = 1;
    311 }
    312 
    313 // Shifts
    314 class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
    315                        SDNode OpNode, PatFrag PF, Operand ImmOpnd,
    316                        RegisterClass RC>:
    317   FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
    318      !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
    319      [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
    320   let rs = isRotate;
    321 }
    322 
    323 // 32-bit shift instructions.
    324 class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
    325                          SDNode OpNode>:
    326   shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
    327 
    328 class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
    329                        SDNode OpNode, RegisterClass RC>:
    330   FR<0x00, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
    331      !strconcat(instr_asm, "\t$rd, $rt, $rs"),
    332      [(set RC:$rd, (OpNode RC:$rt, RC:$rs))], IIAlu> {
    333   let shamt = isRotate;
    334 }
    335 
    336 // Load Upper Imediate
    337 class LoadUpper<bits<6> op, string instr_asm>:
    338   FI<op, (outs CPURegs:$rt), (ins uimm16:$imm16),
    339      !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
    340   let rs = 0;
    341 }
    342 
    343 class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
    344           InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
    345   bits<21> addr;
    346   let Inst{25-21} = addr{20-16};
    347   let Inst{15-0}  = addr{15-0};
    348 }
    349 
    350 // Memory Load/Store
    351 let canFoldAsLoad = 1 in
    352 class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
    353             Operand MemOpnd, bit Pseudo>:
    354   FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
    355      !strconcat(instr_asm, "\t$rt, $addr"),
    356      [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
    357   let isPseudo = Pseudo;
    358 }
    359 
    360 class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
    361              Operand MemOpnd, bit Pseudo>:
    362   FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
    363      !strconcat(instr_asm, "\t$rt, $addr"),
    364      [(OpNode RC:$rt, addr:$addr)], IIStore> {
    365   let isPseudo = Pseudo;
    366 }
    367 
    368 // 32-bit load.
    369 multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
    370                    bit Pseudo = 0> {
    371   def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
    372                Requires<[NotN64]>;
    373   def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
    374                Requires<[IsN64]>;
    375 } 
    376 
    377 // 64-bit load.
    378 multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
    379                    bit Pseudo = 0> {
    380   def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
    381                Requires<[NotN64]>;
    382   def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
    383                Requires<[IsN64]>;
    384 } 
    385 
    386 // 32-bit store.
    387 multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
    388                     bit Pseudo = 0> {
    389   def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
    390                Requires<[NotN64]>;
    391   def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
    392                Requires<[IsN64]>;
    393 }
    394 
    395 // 64-bit store.
    396 multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
    397                     bit Pseudo = 0> {
    398   def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
    399                Requires<[NotN64]>;
    400   def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
    401                Requires<[IsN64]>;
    402 }
    403 
    404 // Conditional Branch
    405 class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
    406   CBranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
    407               !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
    408               [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
    409   let isBranch = 1;
    410   let isTerminator = 1;
    411   let hasDelaySlot = 1;
    412 }
    413 
    414 class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
    415                   RegisterClass RC>:
    416   CBranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
    417               !strconcat(instr_asm, "\t$rs, $imm16"),
    418               [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
    419   let rt = _rt;
    420   let isBranch = 1;
    421   let isTerminator = 1;
    422   let hasDelaySlot = 1;
    423 }
    424 
    425 // SetCC
    426 class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
    427               RegisterClass RC>:
    428   FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
    429      !strconcat(instr_asm, "\t$rd, $rs, $rt"),
    430      [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
    431      IIAlu> {
    432   let shamt = 0;
    433 }
    434 
    435 class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
    436               PatLeaf imm_type, RegisterClass RC>:
    437   FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
    438      !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
    439      [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
    440      IIAlu>;
    441 
    442 // Unconditional branch
    443 let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
    444 class JumpFJ<bits<6> op, string instr_asm>:
    445   FJ<op, (outs), (ins brtarget:$target),
    446      !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch>;
    447 
    448 let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
    449 class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
    450   FR<op, func, (outs), (ins CPURegs:$rs),
    451      !strconcat(instr_asm, "\t$rs"), [(brind CPURegs:$rs)], IIBranch> {
    452   let rt = 0;
    453   let rd = 0;
    454   let shamt = 0;
    455 }
    456 
    457 // Jump and Link (Call)
    458 let isCall=1, hasDelaySlot=1,
    459   // All calls clobber the non-callee saved registers...
    460   Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
    461           K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
    462   class JumpLink<bits<6> op, string instr_asm>:
    463     FJ<op, (outs), (ins calltarget:$target, variable_ops),
    464        !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
    465        IIBranch>;
    466 
    467   class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
    468     FR<op, func, (outs), (ins CPURegs:$rs, variable_ops),
    469        !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink CPURegs:$rs)], IIBranch> {
    470     let rt = 0;
    471     let rd = 31;
    472     let shamt = 0;
    473   }
    474 
    475   class BranchLink<string instr_asm>:
    476     FI<0x1, (outs), (ins CPURegs:$rs, brtarget:$imm16, variable_ops),
    477        !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>;
    478 }
    479 
    480 // Mul, Div
    481 class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
    482            RegisterClass RC, list<Register> DefRegs>:
    483   FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
    484      !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
    485   let rd = 0;
    486   let shamt = 0;
    487   let isCommutable = 1;
    488   let Defs = DefRegs;
    489 }
    490 
    491 class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
    492   Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
    493 
    494 class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
    495           RegisterClass RC, list<Register> DefRegs>:
    496   FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
    497      !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
    498      [(op RC:$rs, RC:$rt)], itin> {
    499   let rd = 0;
    500   let shamt = 0;
    501   let Defs = DefRegs;
    502 }
    503 
    504 class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
    505   Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
    506 
    507 // Move from Hi/Lo
    508 class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
    509                    list<Register> UseRegs>:
    510   FR<0x00, func, (outs RC:$rd), (ins),
    511      !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
    512   let rs = 0;
    513   let rt = 0;
    514   let shamt = 0;
    515   let Uses = UseRegs;
    516 }
    517 
    518 class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
    519                  list<Register> DefRegs>:
    520   FR<0x00, func, (outs), (ins RC:$rs),
    521      !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
    522   let rt = 0;
    523   let rd = 0;
    524   let shamt = 0;
    525   let Defs = DefRegs;
    526 }
    527 
    528 class EffectiveAddress<string instr_asm> :
    529   FMem<0x09, (outs CPURegs:$rt), (ins mem_ea:$addr),
    530      instr_asm, [(set CPURegs:$rt, addr:$addr)], IIAlu>;
    531 
    532 // Count Leading Ones/Zeros in Word
    533 class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
    534   FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
    535      !strconcat(instr_asm, "\t$rd, $rs"),
    536      [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
    537      Requires<[HasBitCount]> {
    538   let shamt = 0;
    539   let rt = rd;
    540 }
    541 
    542 class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
    543   FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
    544      !strconcat(instr_asm, "\t$rd, $rs"),
    545      [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
    546      Requires<[HasBitCount]> {
    547   let shamt = 0;
    548   let rt = rd;
    549 }
    550 
    551 // Sign Extend in Register.
    552 class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt>:
    553   FR<0x1f, 0x20, (outs CPURegs:$rd), (ins CPURegs:$rt),
    554      !strconcat(instr_asm, "\t$rd, $rt"),
    555      [(set CPURegs:$rd, (sext_inreg CPURegs:$rt, vt))], NoItinerary> {
    556   let rs = 0;
    557   let shamt = sa;
    558   let Predicates = [HasSEInReg];
    559 }
    560 
    561 // Byte Swap
    562 class ByteSwap<bits<6> func, bits<5> sa, string instr_asm>:
    563   FR<0x1f, func, (outs CPURegs:$rd), (ins CPURegs:$rt),
    564      !strconcat(instr_asm, "\t$rd, $rt"),
    565      [(set CPURegs:$rd, (bswap CPURegs:$rt))], NoItinerary> {
    566   let rs = 0;
    567   let shamt = sa;
    568   let Predicates = [HasSwap];
    569 }
    570 
    571 // Read Hardware
    572 class ReadHardware: FR<0x1f, 0x3b, (outs CPURegs:$rt), (ins HWRegs:$rd),
    573     "rdhwr\t$rt, $rd", [], IIAlu> {
    574   let rs = 0;
    575   let shamt = 0;
    576 }
    577 
    578 // Ext and Ins
    579 class ExtIns<bits<6> _funct, string instr_asm, dag outs, dag ins,
    580              list<dag> pattern, InstrItinClass itin>:
    581   FR<0x1f, _funct, outs, ins, !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
    582      pattern, itin>, Requires<[HasMips32r2]> {
    583   bits<5> pos;
    584   bits<5> sz;
    585   let rd = sz;
    586   let shamt = pos;
    587 }
    588 
    589 // Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
    590 class Atomic2Ops<PatFrag Op, string Opstr> :
    591   MipsPseudo<(outs CPURegs:$dst), (ins CPURegs:$ptr, CPURegs:$incr),
    592              !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
    593              [(set CPURegs:$dst,
    594               (Op CPURegs:$ptr, CPURegs:$incr))]>;
    595 
    596 // Atomic Compare & Swap.
    597 class AtomicCmpSwap<PatFrag Op, string Width> :
    598   MipsPseudo<(outs CPURegs:$dst), 
    599              (ins CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap),
    600              !strconcat("atomic_cmp_swap_", Width, 
    601                         "\t$dst, $ptr, $cmp, $swap"),
    602              [(set CPURegs:$dst,
    603               (Op CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap))]>;
    604 
    605 //===----------------------------------------------------------------------===//
    606 // Pseudo instructions
    607 //===----------------------------------------------------------------------===//
    608 
    609 // As stack alignment is always done with addiu, we need a 16-bit immediate
    610 let Defs = [SP], Uses = [SP] in {
    611 def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
    612                                   "!ADJCALLSTACKDOWN $amt",
    613                                   [(callseq_start timm:$amt)]>;
    614 def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
    615                                   "!ADJCALLSTACKUP $amt1",
    616                                   [(callseq_end timm:$amt1, timm:$amt2)]>;
    617 }
    618 
    619 // Some assembly macros need to avoid pseudoinstructions and assembler
    620 // automatic reodering, we should reorder ourselves.
    621 def MACRO     : MipsPseudo<(outs), (ins), ".set\tmacro",     []>;
    622 def REORDER   : MipsPseudo<(outs), (ins), ".set\treorder",   []>;
    623 def NOMACRO   : MipsPseudo<(outs), (ins), ".set\tnomacro",   []>;
    624 def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>;
    625 
    626 // These macros are inserted to prevent GAS from complaining
    627 // when using the AT register.
    628 def NOAT      : MipsPseudo<(outs), (ins), ".set\tnoat", []>;
    629 def ATMACRO   : MipsPseudo<(outs), (ins), ".set\tat", []>;
    630 
    631 // When handling PIC code the assembler needs .cpload and .cprestore
    632 // directives. If the real instructions corresponding these directives
    633 // are used, we have the same behavior, but get also a bunch of warnings
    634 // from the assembler.
    635 def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>;
    636 def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc), ".cprestore\t$loc", []>;
    637 
    638 let usesCustomInserter = 1 in {
    639   def ATOMIC_LOAD_ADD_I8   : Atomic2Ops<atomic_load_add_8, "load_add_8">;
    640   def ATOMIC_LOAD_ADD_I16  : Atomic2Ops<atomic_load_add_16, "load_add_16">;
    641   def ATOMIC_LOAD_ADD_I32  : Atomic2Ops<atomic_load_add_32, "load_add_32">;
    642   def ATOMIC_LOAD_SUB_I8   : Atomic2Ops<atomic_load_sub_8, "load_sub_8">;
    643   def ATOMIC_LOAD_SUB_I16  : Atomic2Ops<atomic_load_sub_16, "load_sub_16">;
    644   def ATOMIC_LOAD_SUB_I32  : Atomic2Ops<atomic_load_sub_32, "load_sub_32">;
    645   def ATOMIC_LOAD_AND_I8   : Atomic2Ops<atomic_load_and_8, "load_and_8">;
    646   def ATOMIC_LOAD_AND_I16  : Atomic2Ops<atomic_load_and_16, "load_and_16">;
    647   def ATOMIC_LOAD_AND_I32  : Atomic2Ops<atomic_load_and_32, "load_and_32">;
    648   def ATOMIC_LOAD_OR_I8    : Atomic2Ops<atomic_load_or_8, "load_or_8">;
    649   def ATOMIC_LOAD_OR_I16   : Atomic2Ops<atomic_load_or_16, "load_or_16">;
    650   def ATOMIC_LOAD_OR_I32   : Atomic2Ops<atomic_load_or_32, "load_or_32">;
    651   def ATOMIC_LOAD_XOR_I8   : Atomic2Ops<atomic_load_xor_8, "load_xor_8">;
    652   def ATOMIC_LOAD_XOR_I16  : Atomic2Ops<atomic_load_xor_16, "load_xor_16">;
    653   def ATOMIC_LOAD_XOR_I32  : Atomic2Ops<atomic_load_xor_32, "load_xor_32">;
    654   def ATOMIC_LOAD_NAND_I8  : Atomic2Ops<atomic_load_nand_8, "load_nand_8">;
    655   def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, "load_nand_16">;
    656   def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, "load_nand_32">;
    657 
    658   def ATOMIC_SWAP_I8       : Atomic2Ops<atomic_swap_8, "swap_8">;
    659   def ATOMIC_SWAP_I16      : Atomic2Ops<atomic_swap_16, "swap_16">;
    660   def ATOMIC_SWAP_I32      : Atomic2Ops<atomic_swap_32, "swap_32">;
    661 
    662   def ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap<atomic_cmp_swap_8, "8">;
    663   def ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap<atomic_cmp_swap_16, "16">;
    664   def ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap<atomic_cmp_swap_32, "32">;
    665 }
    666 
    667 //===----------------------------------------------------------------------===//
    668 // Instruction definition
    669 //===----------------------------------------------------------------------===//
    670 
    671 //===----------------------------------------------------------------------===//
    672 // MipsI Instructions
    673 //===----------------------------------------------------------------------===//
    674 
    675 /// Arithmetic Instructions (ALU Immediate)
    676 def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
    677 def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
    678 def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
    679 def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
    680 def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
    681 def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
    682 def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
    683 def LUi     : LoadUpper<0x0f, "lui">;
    684 
    685 /// Arithmetic Instructions (3-Operand, R-Type)
    686 def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
    687 def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
    688 def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
    689 def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
    690 def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
    691 def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
    692 def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
    693 def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
    694 def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
    695 def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
    696 
    697 /// Shift Instructions
    698 def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
    699 def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
    700 def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
    701 def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
    702 def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
    703 def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
    704 
    705 // Rotate Instructions
    706 let Predicates = [HasMips32r2] in {
    707     def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
    708     def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
    709 }
    710 
    711 /// Load and Store Instructions
    712 ///  aligned
    713 defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
    714 defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
    715 defm LH      : LoadM32<0x21, "lh",  sextloadi16_a>;
    716 defm LHu     : LoadM32<0x25, "lhu", zextloadi16_a>;
    717 defm LW      : LoadM32<0x23, "lw",  load_a>;
    718 defm SB      : StoreM32<0x28, "sb", truncstorei8>;
    719 defm SH      : StoreM32<0x29, "sh", truncstorei16_a>;
    720 defm SW      : StoreM32<0x2b, "sw", store_a>;
    721 
    722 ///  unaligned
    723 defm ULH     : LoadM32<0x21, "ulh",  sextloadi16_u, 1>;
    724 defm ULHu    : LoadM32<0x25, "ulhu", zextloadi16_u, 1>;
    725 defm ULW     : LoadM32<0x23, "ulw",  load_u, 1>;
    726 defm USH     : StoreM32<0x29, "ush", truncstorei16_u, 1>;
    727 defm USW     : StoreM32<0x2b, "usw", store_u, 1>;
    728 
    729 let hasSideEffects = 1 in
    730 def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype",
    731                     [(MipsSync imm:$stype)], NoItinerary, FrmOther>
    732 {
    733   bits<5> stype;
    734   let Opcode = 0;
    735   let Inst{25-11} = 0;
    736   let Inst{10-6} = stype;
    737   let Inst{5-0} = 15;
    738 }
    739 
    740 /// Load-linked, Store-conditional
    741 let mayLoad = 1 in
    742   def LL    : FMem<0x30, (outs CPURegs:$rt), (ins mem:$addr),
    743               "ll\t$rt, $addr", [], IILoad>;
    744 let mayStore = 1, Constraints = "$rt = $dst" in
    745   def SC    : FMem<0x38, (outs CPURegs:$dst), (ins CPURegs:$rt, mem:$addr),
    746               "sc\t$rt, $addr", [], IIStore>;
    747 
    748 /// Jump and Branch Instructions
    749 def J       : JumpFJ<0x02, "j">;
    750 let isIndirectBranch = 1 in
    751   def JR      : JumpFR<0x00, 0x08, "jr">;
    752 def JAL     : JumpLink<0x03, "jal">;
    753 def JALR    : JumpLinkReg<0x00, 0x09, "jalr">;
    754 def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
    755 def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
    756 def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
    757 def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
    758 def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
    759 def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
    760 
    761 let rt=0x11 in
    762   def BGEZAL  : BranchLink<"bgezal">;
    763 let rt=0x10 in
    764   def BLTZAL  : BranchLink<"bltzal">;
    765 
    766 let isReturn=1, isTerminator=1, hasDelaySlot=1,
    767     isBarrier=1, hasCtrlDep=1, rd=0, rt=0, shamt=0 in
    768   def RET : FR <0x00, 0x08, (outs), (ins CPURegs:$target),
    769                 "jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
    770 
    771 /// Multiply and Divide Instructions.
    772 def MULT    : Mult32<0x18, "mult", IIImul>;
    773 def MULTu   : Mult32<0x19, "multu", IIImul>;
    774 def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
    775 def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
    776 
    777 def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
    778 def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
    779 def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
    780 def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
    781 
    782 /// Sign Ext In Register Instructions.
    783 def SEB : SignExtInReg<0x10, "seb", i8>;
    784 def SEH : SignExtInReg<0x18, "seh", i16>;
    785 
    786 /// Count Leading
    787 def CLZ : CountLeading0<0x20, "clz", CPURegs>;
    788 def CLO : CountLeading1<0x21, "clo", CPURegs>;
    789 
    790 /// Byte Swap
    791 def WSBW : ByteSwap<0x20, 0x2, "wsbw">;
    792 
    793 /// No operation
    794 let addr=0 in
    795   def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
    796 
    797 // FrameIndexes are legalized when they are operands from load/store
    798 // instructions. The same not happens for stack address copies, so an
    799 // add op with mem ComplexPattern is used and the stack address copy
    800 // can be matched. It's similar to Sparc LEA_ADDRi
    801 def LEA_ADDiu : EffectiveAddress<"addiu\t$rt, $addr">;
    802 
    803 // DynAlloc node points to dynamically allocated stack space.
    804 // $sp is added to the list of implicitly used registers to prevent dead code
    805 // elimination from removing instructions that modify $sp.
    806 let Uses = [SP] in
    807 def DynAlloc : EffectiveAddress<"addiu\t$rt, $addr">;
    808 
    809 // MADD*/MSUB*
    810 def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
    811 def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
    812 def MSUB  : MArithR<4, "msub", MipsMSub>;
    813 def MSUBU : MArithR<5, "msubu", MipsMSubu>;
    814 
    815 // MUL is a assembly macro in the current used ISAs. In recent ISA's
    816 // it is a real instruction.
    817 def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
    818             Requires<[HasMips32]>;
    819 
    820 def RDHWR : ReadHardware;
    821 
    822 def EXT : ExtIns<0, "ext", (outs CPURegs:$rt),
    823                  (ins CPURegs:$rs, uimm16:$pos, size_ext:$sz),
    824                  [(set CPURegs:$rt,
    825                    (MipsExt CPURegs:$rs, immZExt5:$pos, immZExt5:$sz))],
    826                  NoItinerary>;
    827 
    828 let Constraints = "$src = $rt" in
    829 def INS : ExtIns<4, "ins", (outs CPURegs:$rt),
    830                  (ins CPURegs:$rs, uimm16:$pos, size_ins:$sz, CPURegs:$src),
    831                  [(set CPURegs:$rt,
    832                    (MipsIns CPURegs:$rs, immZExt5:$pos, immZExt5:$sz,
    833                     CPURegs:$src))],
    834                  NoItinerary>;
    835 
    836 //===----------------------------------------------------------------------===//
    837 //  Arbitrary patterns that map to one or more instructions
    838 //===----------------------------------------------------------------------===//
    839 
    840 // Small immediates
    841 def : Pat<(i32 immSExt16:$in),
    842           (ADDiu ZERO, imm:$in)>;
    843 def : Pat<(i32 immZExt16:$in),
    844           (ORi ZERO, imm:$in)>;
    845 
    846 // Arbitrary immediates
    847 def : Pat<(i32 imm:$imm),
    848           (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
    849 
    850 // Carry patterns
    851 def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs),
    852           (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
    853 def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs),
    854           (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
    855 def : Pat<(addc  CPURegs:$src, immSExt16:$imm),
    856           (ADDiu CPURegs:$src, imm:$imm)>;
    857 
    858 // Call
    859 def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
    860           (JAL tglobaladdr:$dst)>;
    861 def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
    862           (JAL texternalsym:$dst)>;
    863 //def : Pat<(MipsJmpLink CPURegs:$dst),
    864 //          (JALR CPURegs:$dst)>;
    865 
    866 // hi/lo relocs
    867 def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
    868 def : Pat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
    869 def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
    870 def : Pat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
    871 def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
    872           (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
    873 def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
    874           (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
    875 
    876 def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
    877 def : Pat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
    878 def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
    879           (ADDiu CPURegs:$hi, tjumptable:$lo)>;
    880 
    881 def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
    882 def : Pat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
    883 def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
    884           (ADDiu CPURegs:$hi, tconstpool:$lo)>;
    885 
    886 // gp_rel relocs
    887 def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
    888           (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
    889 def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
    890           (ADDiu CPURegs:$gp, tconstpool:$in)>;
    891 
    892 // tlsgd
    893 def : Pat<(add CPURegs:$gp, (MipsTlsGd tglobaltlsaddr:$in)),
    894           (ADDiu CPURegs:$gp, tglobaltlsaddr:$in)>;
    895 
    896 // tprel hi/lo
    897 def : Pat<(MipsTprelHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
    898 def : Pat<(MipsTprelLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
    899 def : Pat<(add CPURegs:$hi, (MipsTprelLo tglobaltlsaddr:$lo)),
    900           (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
    901 
    902 // wrapper_pic
    903 class WrapperPICPat<SDNode node>:
    904       Pat<(MipsWrapperPIC node:$in),
    905           (ADDiu GP, node:$in)>;
    906 
    907 def : WrapperPICPat<tglobaladdr>;
    908 def : WrapperPICPat<tconstpool>;
    909 def : WrapperPICPat<texternalsym>;
    910 def : WrapperPICPat<tblockaddress>;
    911 def : WrapperPICPat<tjumptable>;
    912 
    913 // Mips does not have "not", so we expand our way
    914 def : Pat<(not CPURegs:$in),
    915           (NOR CPURegs:$in, ZERO)>;
    916 
    917 // extended load and stores
    918 def : Pat<(extloadi1  addr:$src), (LBu addr:$src)>;
    919 def : Pat<(extloadi8  addr:$src), (LBu addr:$src)>;
    920 def : Pat<(extloadi16_a addr:$src), (LHu addr:$src)>;
    921 def : Pat<(extloadi16_u addr:$src), (ULHu addr:$src)>;
    922 
    923 // peepholes
    924 def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
    925 
    926 // brcond patterns
    927 multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
    928                       Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
    929                       Instruction SLTiuOp, Register ZEROReg> {
    930 def : Pat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
    931           (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
    932 def : Pat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
    933           (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
    934 
    935 def : Pat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
    936           (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
    937 def : Pat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
    938           (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
    939 def : Pat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
    940           (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
    941 def : Pat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
    942           (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
    943 
    944 def : Pat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
    945           (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
    946 def : Pat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
    947           (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
    948 
    949 def : Pat<(brcond RC:$cond, bb:$dst),
    950           (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
    951 }
    952 
    953 defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
    954 
    955 // setcc patterns
    956 multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
    957                      Instruction SLTuOp, Register ZEROReg> {
    958   def : Pat<(seteq RC:$lhs, RC:$rhs),
    959             (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
    960   def : Pat<(setne RC:$lhs, RC:$rhs),
    961             (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
    962 }
    963 
    964 multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
    965   def : Pat<(setle RC:$lhs, RC:$rhs),
    966             (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
    967   def : Pat<(setule RC:$lhs, RC:$rhs),
    968             (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
    969 }
    970 
    971 multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
    972   def : Pat<(setgt RC:$lhs, RC:$rhs),
    973             (SLTOp RC:$rhs, RC:$lhs)>;
    974   def : Pat<(setugt RC:$lhs, RC:$rhs),
    975             (SLTuOp RC:$rhs, RC:$lhs)>;
    976 }
    977 
    978 multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
    979   def : Pat<(setge RC:$lhs, RC:$rhs),
    980             (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
    981   def : Pat<(setuge RC:$lhs, RC:$rhs),
    982             (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
    983 }
    984 
    985 multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
    986                         Instruction SLTiuOp> {
    987   def : Pat<(setge RC:$lhs, immSExt16:$rhs),
    988             (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
    989   def : Pat<(setuge RC:$lhs, immSExt16:$rhs),
    990             (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
    991 }
    992 
    993 defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
    994 defm : SetlePats<CPURegs, SLT, SLTu>;
    995 defm : SetgtPats<CPURegs, SLT, SLTu>;
    996 defm : SetgePats<CPURegs, SLT, SLTu>;
    997 defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
    998 
    999 // select MipsDynAlloc
   1000 def : Pat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
   1001 
   1002 //===----------------------------------------------------------------------===//
   1003 // Floating Point Support
   1004 //===----------------------------------------------------------------------===//
   1005 
   1006 include "MipsInstrFPU.td"
   1007 include "Mips64InstrInfo.td"
   1008 include "MipsCondMov.td"
   1009 
   1010