Home | History | Annotate | Download | only in src
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include <math.h>
     29 
     30 #include "v8.h"
     31 #include "bignum-dtoa.h"
     32 
     33 #include "bignum.h"
     34 #include "double.h"
     35 
     36 namespace v8 {
     37 namespace internal {
     38 
     39 static int NormalizedExponent(uint64_t significand, int exponent) {
     40   ASSERT(significand != 0);
     41   while ((significand & Double::kHiddenBit) == 0) {
     42     significand = significand << 1;
     43     exponent = exponent - 1;
     44   }
     45   return exponent;
     46 }
     47 
     48 
     49 // Forward declarations:
     50 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
     51 static int EstimatePower(int exponent);
     52 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
     53 // and denominator.
     54 static void InitialScaledStartValues(double v,
     55                                      int estimated_power,
     56                                      bool need_boundary_deltas,
     57                                      Bignum* numerator,
     58                                      Bignum* denominator,
     59                                      Bignum* delta_minus,
     60                                      Bignum* delta_plus);
     61 // Multiplies numerator/denominator so that its values lies in the range 1-10.
     62 // Returns decimal_point s.t.
     63 //  v = numerator'/denominator' * 10^(decimal_point-1)
     64 //     where numerator' and denominator' are the values of numerator and
     65 //     denominator after the call to this function.
     66 static void FixupMultiply10(int estimated_power, bool is_even,
     67                             int* decimal_point,
     68                             Bignum* numerator, Bignum* denominator,
     69                             Bignum* delta_minus, Bignum* delta_plus);
     70 // Generates digits from the left to the right and stops when the generated
     71 // digits yield the shortest decimal representation of v.
     72 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
     73                                    Bignum* delta_minus, Bignum* delta_plus,
     74                                    bool is_even,
     75                                    Vector<char> buffer, int* length);
     76 // Generates 'requested_digits' after the decimal point.
     77 static void BignumToFixed(int requested_digits, int* decimal_point,
     78                           Bignum* numerator, Bignum* denominator,
     79                           Vector<char>(buffer), int* length);
     80 // Generates 'count' digits of numerator/denominator.
     81 // Once 'count' digits have been produced rounds the result depending on the
     82 // remainder (remainders of exactly .5 round upwards). Might update the
     83 // decimal_point when rounding up (for example for 0.9999).
     84 static void GenerateCountedDigits(int count, int* decimal_point,
     85                                   Bignum* numerator, Bignum* denominator,
     86                                   Vector<char>(buffer), int* length);
     87 
     88 
     89 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
     90                 Vector<char> buffer, int* length, int* decimal_point) {
     91   ASSERT(v > 0);
     92   ASSERT(!Double(v).IsSpecial());
     93   uint64_t significand = Double(v).Significand();
     94   bool is_even = (significand & 1) == 0;
     95   int exponent = Double(v).Exponent();
     96   int normalized_exponent = NormalizedExponent(significand, exponent);
     97   // estimated_power might be too low by 1.
     98   int estimated_power = EstimatePower(normalized_exponent);
     99 
    100   // Shortcut for Fixed.
    101   // The requested digits correspond to the digits after the point. If the
    102   // number is much too small, then there is no need in trying to get any
    103   // digits.
    104   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
    105     buffer[0] = '\0';
    106     *length = 0;
    107     // Set decimal-point to -requested_digits. This is what Gay does.
    108     // Note that it should not have any effect anyways since the string is
    109     // empty.
    110     *decimal_point = -requested_digits;
    111     return;
    112   }
    113 
    114   Bignum numerator;
    115   Bignum denominator;
    116   Bignum delta_minus;
    117   Bignum delta_plus;
    118   // Make sure the bignum can grow large enough. The smallest double equals
    119   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
    120   // The maximum double is 1.7976931348623157e308 which needs fewer than
    121   // 308*4 binary digits.
    122   ASSERT(Bignum::kMaxSignificantBits >= 324*4);
    123   bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
    124   InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
    125                            &numerator, &denominator,
    126                            &delta_minus, &delta_plus);
    127   // We now have v = (numerator / denominator) * 10^estimated_power.
    128   FixupMultiply10(estimated_power, is_even, decimal_point,
    129                   &numerator, &denominator,
    130                   &delta_minus, &delta_plus);
    131   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
    132   //  1 <= (numerator + delta_plus) / denominator < 10
    133   switch (mode) {
    134     case BIGNUM_DTOA_SHORTEST:
    135       GenerateShortestDigits(&numerator, &denominator,
    136                              &delta_minus, &delta_plus,
    137                              is_even, buffer, length);
    138       break;
    139     case BIGNUM_DTOA_FIXED:
    140       BignumToFixed(requested_digits, decimal_point,
    141                     &numerator, &denominator,
    142                     buffer, length);
    143       break;
    144     case BIGNUM_DTOA_PRECISION:
    145       GenerateCountedDigits(requested_digits, decimal_point,
    146                             &numerator, &denominator,
    147                             buffer, length);
    148       break;
    149     default:
    150       UNREACHABLE();
    151   }
    152   buffer[*length] = '\0';
    153 }
    154 
    155 
    156 // The procedure starts generating digits from the left to the right and stops
    157 // when the generated digits yield the shortest decimal representation of v. A
    158 // decimal representation of v is a number lying closer to v than to any other
    159 // double, so it converts to v when read.
    160 //
    161 // This is true if d, the decimal representation, is between m- and m+, the
    162 // upper and lower boundaries. d must be strictly between them if !is_even.
    163 //           m- := (numerator - delta_minus) / denominator
    164 //           m+ := (numerator + delta_plus) / denominator
    165 //
    166 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
    167 //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
    168 //   will be produced. This should be the standard precondition.
    169 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
    170                                    Bignum* delta_minus, Bignum* delta_plus,
    171                                    bool is_even,
    172                                    Vector<char> buffer, int* length) {
    173   // Small optimization: if delta_minus and delta_plus are the same just reuse
    174   // one of the two bignums.
    175   if (Bignum::Equal(*delta_minus, *delta_plus)) {
    176     delta_plus = delta_minus;
    177   }
    178   *length = 0;
    179   while (true) {
    180     uint16_t digit;
    181     digit = numerator->DivideModuloIntBignum(*denominator);
    182     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
    183     // digit = numerator / denominator (integer division).
    184     // numerator = numerator % denominator.
    185     buffer[(*length)++] = digit + '0';
    186 
    187     // Can we stop already?
    188     // If the remainder of the division is less than the distance to the lower
    189     // boundary we can stop. In this case we simply round down (discarding the
    190     // remainder).
    191     // Similarly we test if we can round up (using the upper boundary).
    192     bool in_delta_room_minus;
    193     bool in_delta_room_plus;
    194     if (is_even) {
    195       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
    196     } else {
    197       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
    198     }
    199     if (is_even) {
    200       in_delta_room_plus =
    201           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
    202     } else {
    203       in_delta_room_plus =
    204           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
    205     }
    206     if (!in_delta_room_minus && !in_delta_room_plus) {
    207       // Prepare for next iteration.
    208       numerator->Times10();
    209       delta_minus->Times10();
    210       // We optimized delta_plus to be equal to delta_minus (if they share the
    211       // same value). So don't multiply delta_plus if they point to the same
    212       // object.
    213       if (delta_minus != delta_plus) {
    214         delta_plus->Times10();
    215       }
    216     } else if (in_delta_room_minus && in_delta_room_plus) {
    217       // Let's see if 2*numerator < denominator.
    218       // If yes, then the next digit would be < 5 and we can round down.
    219       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
    220       if (compare < 0) {
    221         // Remaining digits are less than .5. -> Round down (== do nothing).
    222       } else if (compare > 0) {
    223         // Remaining digits are more than .5 of denominator. -> Round up.
    224         // Note that the last digit could not be a '9' as otherwise the whole
    225         // loop would have stopped earlier.
    226         // We still have an assert here in case the preconditions were not
    227         // satisfied.
    228         ASSERT(buffer[(*length) - 1] != '9');
    229         buffer[(*length) - 1]++;
    230       } else {
    231         // Halfway case.
    232         // TODO(floitsch): need a way to solve half-way cases.
    233         //   For now let's round towards even (since this is what Gay seems to
    234         //   do).
    235 
    236         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
    237           // Round down => Do nothing.
    238         } else {
    239           ASSERT(buffer[(*length) - 1] != '9');
    240           buffer[(*length) - 1]++;
    241         }
    242       }
    243       return;
    244     } else if (in_delta_room_minus) {
    245       // Round down (== do nothing).
    246       return;
    247     } else {  // in_delta_room_plus
    248       // Round up.
    249       // Note again that the last digit could not be '9' since this would have
    250       // stopped the loop earlier.
    251       // We still have an ASSERT here, in case the preconditions were not
    252       // satisfied.
    253       ASSERT(buffer[(*length) -1] != '9');
    254       buffer[(*length) - 1]++;
    255       return;
    256     }
    257   }
    258 }
    259 
    260 
    261 // Let v = numerator / denominator < 10.
    262 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
    263 // from left to right. Once 'count' digits have been produced we decide wether
    264 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
    265 // as 9.999999 propagate a carry all the way, and change the
    266 // exponent (decimal_point), when rounding upwards.
    267 static void GenerateCountedDigits(int count, int* decimal_point,
    268                                   Bignum* numerator, Bignum* denominator,
    269                                   Vector<char>(buffer), int* length) {
    270   ASSERT(count >= 0);
    271   for (int i = 0; i < count - 1; ++i) {
    272     uint16_t digit;
    273     digit = numerator->DivideModuloIntBignum(*denominator);
    274     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
    275     // digit = numerator / denominator (integer division).
    276     // numerator = numerator % denominator.
    277     buffer[i] = digit + '0';
    278     // Prepare for next iteration.
    279     numerator->Times10();
    280   }
    281   // Generate the last digit.
    282   uint16_t digit;
    283   digit = numerator->DivideModuloIntBignum(*denominator);
    284   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
    285     digit++;
    286   }
    287   buffer[count - 1] = digit + '0';
    288   // Correct bad digits (in case we had a sequence of '9's). Propagate the
    289   // carry until we hat a non-'9' or til we reach the first digit.
    290   for (int i = count - 1; i > 0; --i) {
    291     if (buffer[i] != '0' + 10) break;
    292     buffer[i] = '0';
    293     buffer[i - 1]++;
    294   }
    295   if (buffer[0] == '0' + 10) {
    296     // Propagate a carry past the top place.
    297     buffer[0] = '1';
    298     (*decimal_point)++;
    299   }
    300   *length = count;
    301 }
    302 
    303 
    304 // Generates 'requested_digits' after the decimal point. It might omit
    305 // trailing '0's. If the input number is too small then no digits at all are
    306 // generated (ex.: 2 fixed digits for 0.00001).
    307 //
    308 // Input verifies:  1 <= (numerator + delta) / denominator < 10.
    309 static void BignumToFixed(int requested_digits, int* decimal_point,
    310                           Bignum* numerator, Bignum* denominator,
    311                           Vector<char>(buffer), int* length) {
    312   // Note that we have to look at more than just the requested_digits, since
    313   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
    314   // Even though the power of v equals 0 we can't just stop here.
    315   if (-(*decimal_point) > requested_digits) {
    316     // The number is definitively too small.
    317     // Ex: 0.001 with requested_digits == 1.
    318     // Set decimal-point to -requested_digits. This is what Gay does.
    319     // Note that it should not have any effect anyways since the string is
    320     // empty.
    321     *decimal_point = -requested_digits;
    322     *length = 0;
    323     return;
    324   } else if (-(*decimal_point) == requested_digits) {
    325     // We only need to verify if the number rounds down or up.
    326     // Ex: 0.04 and 0.06 with requested_digits == 1.
    327     ASSERT(*decimal_point == -requested_digits);
    328     // Initially the fraction lies in range (1, 10]. Multiply the denominator
    329     // by 10 so that we can compare more easily.
    330     denominator->Times10();
    331     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
    332       // If the fraction is >= 0.5 then we have to include the rounded
    333       // digit.
    334       buffer[0] = '1';
    335       *length = 1;
    336       (*decimal_point)++;
    337     } else {
    338       // Note that we caught most of similar cases earlier.
    339       *length = 0;
    340     }
    341     return;
    342   } else {
    343     // The requested digits correspond to the digits after the point.
    344     // The variable 'needed_digits' includes the digits before the point.
    345     int needed_digits = (*decimal_point) + requested_digits;
    346     GenerateCountedDigits(needed_digits, decimal_point,
    347                           numerator, denominator,
    348                           buffer, length);
    349   }
    350 }
    351 
    352 
    353 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
    354 // v = f * 2^exponent and 2^52 <= f < 2^53.
    355 // v is hence a normalized double with the given exponent. The output is an
    356 // approximation for the exponent of the decimal approimation .digits * 10^k.
    357 //
    358 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
    359 // Note: this property holds for v's upper boundary m+ too.
    360 //    10^k <= m+ < 10^k+1.
    361 //   (see explanation below).
    362 //
    363 // Examples:
    364 //  EstimatePower(0)   => 16
    365 //  EstimatePower(-52) => 0
    366 //
    367 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
    368 static int EstimatePower(int exponent) {
    369   // This function estimates log10 of v where v = f*2^e (with e == exponent).
    370   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
    371   // Note that f is bounded by its container size. Let p = 53 (the double's
    372   // significand size). Then 2^(p-1) <= f < 2^p.
    373   //
    374   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
    375   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
    376   // The computed number undershoots by less than 0.631 (when we compute log3
    377   // and not log10).
    378   //
    379   // Optimization: since we only need an approximated result this computation
    380   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
    381   // not really measurable, though.
    382   //
    383   // Since we want to avoid overshooting we decrement by 1e10 so that
    384   // floating-point imprecisions don't affect us.
    385   //
    386   // Explanation for v's boundary m+: the computation takes advantage of
    387   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
    388   // (even for denormals where the delta can be much more important).
    389 
    390   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
    391 
    392   // For doubles len(f) == 53 (don't forget the hidden bit).
    393   const int kSignificandSize = 53;
    394   double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
    395   return static_cast<int>(estimate);
    396 }
    397 
    398 
    399 // See comments for InitialScaledStartValues.
    400 static void InitialScaledStartValuesPositiveExponent(
    401     double v, int estimated_power, bool need_boundary_deltas,
    402     Bignum* numerator, Bignum* denominator,
    403     Bignum* delta_minus, Bignum* delta_plus) {
    404   // A positive exponent implies a positive power.
    405   ASSERT(estimated_power >= 0);
    406   // Since the estimated_power is positive we simply multiply the denominator
    407   // by 10^estimated_power.
    408 
    409   // numerator = v.
    410   numerator->AssignUInt64(Double(v).Significand());
    411   numerator->ShiftLeft(Double(v).Exponent());
    412   // denominator = 10^estimated_power.
    413   denominator->AssignPowerUInt16(10, estimated_power);
    414 
    415   if (need_boundary_deltas) {
    416     // Introduce a common denominator so that the deltas to the boundaries are
    417     // integers.
    418     denominator->ShiftLeft(1);
    419     numerator->ShiftLeft(1);
    420     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
    421     // denominator (of 2) delta_plus equals 2^e.
    422     delta_plus->AssignUInt16(1);
    423     delta_plus->ShiftLeft(Double(v).Exponent());
    424     // Same for delta_minus (with adjustments below if f == 2^p-1).
    425     delta_minus->AssignUInt16(1);
    426     delta_minus->ShiftLeft(Double(v).Exponent());
    427 
    428     // If the significand (without the hidden bit) is 0, then the lower
    429     // boundary is closer than just half a ulp (unit in the last place).
    430     // There is only one exception: if the next lower number is a denormal then
    431     // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
    432     // have to test it in the other function where exponent < 0).
    433     uint64_t v_bits = Double(v).AsUint64();
    434     if ((v_bits & Double::kSignificandMask) == 0) {
    435       // The lower boundary is closer at half the distance of "normal" numbers.
    436       // Increase the common denominator and adapt all but the delta_minus.
    437       denominator->ShiftLeft(1);  // *2
    438       numerator->ShiftLeft(1);    // *2
    439       delta_plus->ShiftLeft(1);   // *2
    440     }
    441   }
    442 }
    443 
    444 
    445 // See comments for InitialScaledStartValues
    446 static void InitialScaledStartValuesNegativeExponentPositivePower(
    447     double v, int estimated_power, bool need_boundary_deltas,
    448     Bignum* numerator, Bignum* denominator,
    449     Bignum* delta_minus, Bignum* delta_plus) {
    450   uint64_t significand = Double(v).Significand();
    451   int exponent = Double(v).Exponent();
    452   // v = f * 2^e with e < 0, and with estimated_power >= 0.
    453   // This means that e is close to 0 (have a look at how estimated_power is
    454   // computed).
    455 
    456   // numerator = significand
    457   //  since v = significand * 2^exponent this is equivalent to
    458   //  numerator = v * / 2^-exponent
    459   numerator->AssignUInt64(significand);
    460   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
    461   denominator->AssignPowerUInt16(10, estimated_power);
    462   denominator->ShiftLeft(-exponent);
    463 
    464   if (need_boundary_deltas) {
    465     // Introduce a common denominator so that the deltas to the boundaries are
    466     // integers.
    467     denominator->ShiftLeft(1);
    468     numerator->ShiftLeft(1);
    469     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
    470     // denominator (of 2) delta_plus equals 2^e.
    471     // Given that the denominator already includes v's exponent the distance
    472     // to the boundaries is simply 1.
    473     delta_plus->AssignUInt16(1);
    474     // Same for delta_minus (with adjustments below if f == 2^p-1).
    475     delta_minus->AssignUInt16(1);
    476 
    477     // If the significand (without the hidden bit) is 0, then the lower
    478     // boundary is closer than just one ulp (unit in the last place).
    479     // There is only one exception: if the next lower number is a denormal
    480     // then the distance is 1 ulp. Since the exponent is close to zero
    481     // (otherwise estimated_power would have been negative) this cannot happen
    482     // here either.
    483     uint64_t v_bits = Double(v).AsUint64();
    484     if ((v_bits & Double::kSignificandMask) == 0) {
    485       // The lower boundary is closer at half the distance of "normal" numbers.
    486       // Increase the denominator and adapt all but the delta_minus.
    487       denominator->ShiftLeft(1);  // *2
    488       numerator->ShiftLeft(1);    // *2
    489       delta_plus->ShiftLeft(1);   // *2
    490     }
    491   }
    492 }
    493 
    494 
    495 // See comments for InitialScaledStartValues
    496 static void InitialScaledStartValuesNegativeExponentNegativePower(
    497     double v, int estimated_power, bool need_boundary_deltas,
    498     Bignum* numerator, Bignum* denominator,
    499     Bignum* delta_minus, Bignum* delta_plus) {
    500   const uint64_t kMinimalNormalizedExponent =
    501       V8_2PART_UINT64_C(0x00100000, 00000000);
    502   uint64_t significand = Double(v).Significand();
    503   int exponent = Double(v).Exponent();
    504   // Instead of multiplying the denominator with 10^estimated_power we
    505   // multiply all values (numerator and deltas) by 10^-estimated_power.
    506 
    507   // Use numerator as temporary container for power_ten.
    508   Bignum* power_ten = numerator;
    509   power_ten->AssignPowerUInt16(10, -estimated_power);
    510 
    511   if (need_boundary_deltas) {
    512     // Since power_ten == numerator we must make a copy of 10^estimated_power
    513     // before we complete the computation of the numerator.
    514     // delta_plus = delta_minus = 10^estimated_power
    515     delta_plus->AssignBignum(*power_ten);
    516     delta_minus->AssignBignum(*power_ten);
    517   }
    518 
    519   // numerator = significand * 2 * 10^-estimated_power
    520   //  since v = significand * 2^exponent this is equivalent to
    521   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
    522   // Remember: numerator has been abused as power_ten. So no need to assign it
    523   //  to itself.
    524   ASSERT(numerator == power_ten);
    525   numerator->MultiplyByUInt64(significand);
    526 
    527   // denominator = 2 * 2^-exponent with exponent < 0.
    528   denominator->AssignUInt16(1);
    529   denominator->ShiftLeft(-exponent);
    530 
    531   if (need_boundary_deltas) {
    532     // Introduce a common denominator so that the deltas to the boundaries are
    533     // integers.
    534     numerator->ShiftLeft(1);
    535     denominator->ShiftLeft(1);
    536     // With this shift the boundaries have their correct value, since
    537     // delta_plus = 10^-estimated_power, and
    538     // delta_minus = 10^-estimated_power.
    539     // These assignments have been done earlier.
    540 
    541     // The special case where the lower boundary is twice as close.
    542     // This time we have to look out for the exception too.
    543     uint64_t v_bits = Double(v).AsUint64();
    544     if ((v_bits & Double::kSignificandMask) == 0 &&
    545         // The only exception where a significand == 0 has its boundaries at
    546         // "normal" distances:
    547         (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
    548       numerator->ShiftLeft(1);    // *2
    549       denominator->ShiftLeft(1);  // *2
    550       delta_plus->ShiftLeft(1);   // *2
    551     }
    552   }
    553 }
    554 
    555 
    556 // Let v = significand * 2^exponent.
    557 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
    558 // and denominator. The functions GenerateShortestDigits and
    559 // GenerateCountedDigits will then convert this ratio to its decimal
    560 // representation d, with the required accuracy.
    561 // Then d * 10^estimated_power is the representation of v.
    562 // (Note: the fraction and the estimated_power might get adjusted before
    563 // generating the decimal representation.)
    564 //
    565 // The initial start values consist of:
    566 //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
    567 //  - a scaled (common) denominator.
    568 //  optionally (used by GenerateShortestDigits to decide if it has the shortest
    569 //  decimal converting back to v):
    570 //  - v - m-: the distance to the lower boundary.
    571 //  - m+ - v: the distance to the upper boundary.
    572 //
    573 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
    574 //
    575 // Let ep == estimated_power, then the returned values will satisfy:
    576 //  v / 10^ep = numerator / denominator.
    577 //  v's boundarys m- and m+:
    578 //    m- / 10^ep == v / 10^ep - delta_minus / denominator
    579 //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
    580 //  Or in other words:
    581 //    m- == v - delta_minus * 10^ep / denominator;
    582 //    m+ == v + delta_plus * 10^ep / denominator;
    583 //
    584 // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
    585 //  or       10^k <= v < 10^(k+1)
    586 //  we then have 0.1 <= numerator/denominator < 1
    587 //           or    1 <= numerator/denominator < 10
    588 //
    589 // It is then easy to kickstart the digit-generation routine.
    590 //
    591 // The boundary-deltas are only filled if need_boundary_deltas is set.
    592 static void InitialScaledStartValues(double v,
    593                                      int estimated_power,
    594                                      bool need_boundary_deltas,
    595                                      Bignum* numerator,
    596                                      Bignum* denominator,
    597                                      Bignum* delta_minus,
    598                                      Bignum* delta_plus) {
    599   if (Double(v).Exponent() >= 0) {
    600     InitialScaledStartValuesPositiveExponent(
    601         v, estimated_power, need_boundary_deltas,
    602         numerator, denominator, delta_minus, delta_plus);
    603   } else if (estimated_power >= 0) {
    604     InitialScaledStartValuesNegativeExponentPositivePower(
    605         v, estimated_power, need_boundary_deltas,
    606         numerator, denominator, delta_minus, delta_plus);
    607   } else {
    608     InitialScaledStartValuesNegativeExponentNegativePower(
    609         v, estimated_power, need_boundary_deltas,
    610         numerator, denominator, delta_minus, delta_plus);
    611   }
    612 }
    613 
    614 
    615 // This routine multiplies numerator/denominator so that its values lies in the
    616 // range 1-10. That is after a call to this function we have:
    617 //    1 <= (numerator + delta_plus) /denominator < 10.
    618 // Let numerator the input before modification and numerator' the argument
    619 // after modification, then the output-parameter decimal_point is such that
    620 //  numerator / denominator * 10^estimated_power ==
    621 //    numerator' / denominator' * 10^(decimal_point - 1)
    622 // In some cases estimated_power was too low, and this is already the case. We
    623 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
    624 // estimated_power) but do not touch the numerator or denominator.
    625 // Otherwise the routine multiplies the numerator and the deltas by 10.
    626 static void FixupMultiply10(int estimated_power, bool is_even,
    627                             int* decimal_point,
    628                             Bignum* numerator, Bignum* denominator,
    629                             Bignum* delta_minus, Bignum* delta_plus) {
    630   bool in_range;
    631   if (is_even) {
    632     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
    633     // are rounded to the closest floating-point number with even significand.
    634     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
    635   } else {
    636     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
    637   }
    638   if (in_range) {
    639     // Since numerator + delta_plus >= denominator we already have
    640     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
    641     *decimal_point = estimated_power + 1;
    642   } else {
    643     *decimal_point = estimated_power;
    644     numerator->Times10();
    645     if (Bignum::Equal(*delta_minus, *delta_plus)) {
    646       delta_minus->Times10();
    647       delta_plus->AssignBignum(*delta_minus);
    648     } else {
    649       delta_minus->Times10();
    650       delta_plus->Times10();
    651     }
    652   }
    653 }
    654 
    655 } }  // namespace v8::internal
    656