Home | History | Annotate | Download | only in crypto
      1 /*
      2  * MD4 hash implementation
      3  * Copyright (c) 2006, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This program is free software; you can redistribute it and/or modify
      6  * it under the terms of the GNU General Public License version 2 as
      7  * published by the Free Software Foundation.
      8  *
      9  * Alternatively, this software may be distributed under the terms of BSD
     10  * license.
     11  *
     12  * See README and COPYING for more details.
     13  */
     14 
     15 #include "includes.h"
     16 
     17 #include "common.h"
     18 #include "crypto.h"
     19 
     20 #define	MD4_BLOCK_LENGTH		64
     21 #define	MD4_DIGEST_LENGTH		16
     22 
     23 typedef struct MD4Context {
     24 	u32 state[4];			/* state */
     25 	u64 count;			/* number of bits, mod 2^64 */
     26 	u8 buffer[MD4_BLOCK_LENGTH];	/* input buffer */
     27 } MD4_CTX;
     28 
     29 
     30 static void MD4Init(MD4_CTX *ctx);
     31 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
     32 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
     33 
     34 
     35 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
     36 {
     37 	MD4_CTX ctx;
     38 	size_t i;
     39 
     40 	MD4Init(&ctx);
     41 	for (i = 0; i < num_elem; i++)
     42 		MD4Update(&ctx, addr[i], len[i]);
     43 	MD4Final(mac, &ctx);
     44 	return 0;
     45 }
     46 
     47 
     48 /* ===== start - public domain MD4 implementation ===== */
     49 /*	$OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $	*/
     50 
     51 /*
     52  * This code implements the MD4 message-digest algorithm.
     53  * The algorithm is due to Ron Rivest.	This code was
     54  * written by Colin Plumb in 1993, no copyright is claimed.
     55  * This code is in the public domain; do with it what you wish.
     56  * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
     57  *
     58  * Equivalent code is available from RSA Data Security, Inc.
     59  * This code has been tested against that, and is equivalent,
     60  * except that you don't need to include two pages of legalese
     61  * with every copy.
     62  *
     63  * To compute the message digest of a chunk of bytes, declare an
     64  * MD4Context structure, pass it to MD4Init, call MD4Update as
     65  * needed on buffers full of bytes, and then call MD4Final, which
     66  * will fill a supplied 16-byte array with the digest.
     67  */
     68 
     69 #define	MD4_DIGEST_STRING_LENGTH	(MD4_DIGEST_LENGTH * 2 + 1)
     70 
     71 
     72 static void
     73 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
     74 
     75 #define PUT_64BIT_LE(cp, value) do {					\
     76 	(cp)[7] = (value) >> 56;					\
     77 	(cp)[6] = (value) >> 48;					\
     78 	(cp)[5] = (value) >> 40;					\
     79 	(cp)[4] = (value) >> 32;					\
     80 	(cp)[3] = (value) >> 24;					\
     81 	(cp)[2] = (value) >> 16;					\
     82 	(cp)[1] = (value) >> 8;						\
     83 	(cp)[0] = (value); } while (0)
     84 
     85 #define PUT_32BIT_LE(cp, value) do {					\
     86 	(cp)[3] = (value) >> 24;					\
     87 	(cp)[2] = (value) >> 16;					\
     88 	(cp)[1] = (value) >> 8;						\
     89 	(cp)[0] = (value); } while (0)
     90 
     91 static u8 PADDING[MD4_BLOCK_LENGTH] = {
     92 	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     93 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     94 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     95 };
     96 
     97 /*
     98  * Start MD4 accumulation.
     99  * Set bit count to 0 and buffer to mysterious initialization constants.
    100  */
    101 static void MD4Init(MD4_CTX *ctx)
    102 {
    103 	ctx->count = 0;
    104 	ctx->state[0] = 0x67452301;
    105 	ctx->state[1] = 0xefcdab89;
    106 	ctx->state[2] = 0x98badcfe;
    107 	ctx->state[3] = 0x10325476;
    108 }
    109 
    110 /*
    111  * Update context to reflect the concatenation of another buffer full
    112  * of bytes.
    113  */
    114 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
    115 {
    116 	size_t have, need;
    117 
    118 	/* Check how many bytes we already have and how many more we need. */
    119 	have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
    120 	need = MD4_BLOCK_LENGTH - have;
    121 
    122 	/* Update bitcount */
    123 	ctx->count += (u64)len << 3;
    124 
    125 	if (len >= need) {
    126 		if (have != 0) {
    127 			os_memcpy(ctx->buffer + have, input, need);
    128 			MD4Transform(ctx->state, ctx->buffer);
    129 			input += need;
    130 			len -= need;
    131 			have = 0;
    132 		}
    133 
    134 		/* Process data in MD4_BLOCK_LENGTH-byte chunks. */
    135 		while (len >= MD4_BLOCK_LENGTH) {
    136 			MD4Transform(ctx->state, input);
    137 			input += MD4_BLOCK_LENGTH;
    138 			len -= MD4_BLOCK_LENGTH;
    139 		}
    140 	}
    141 
    142 	/* Handle any remaining bytes of data. */
    143 	if (len != 0)
    144 		os_memcpy(ctx->buffer + have, input, len);
    145 }
    146 
    147 /*
    148  * Pad pad to 64-byte boundary with the bit pattern
    149  * 1 0* (64-bit count of bits processed, MSB-first)
    150  */
    151 static void MD4Pad(MD4_CTX *ctx)
    152 {
    153 	u8 count[8];
    154 	size_t padlen;
    155 
    156 	/* Convert count to 8 bytes in little endian order. */
    157 	PUT_64BIT_LE(count, ctx->count);
    158 
    159 	/* Pad out to 56 mod 64. */
    160 	padlen = MD4_BLOCK_LENGTH -
    161 	    ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
    162 	if (padlen < 1 + 8)
    163 		padlen += MD4_BLOCK_LENGTH;
    164 	MD4Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */
    165 	MD4Update(ctx, count, 8);
    166 }
    167 
    168 /*
    169  * Final wrapup--call MD4Pad, fill in digest and zero out ctx.
    170  */
    171 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
    172 {
    173 	int i;
    174 
    175 	MD4Pad(ctx);
    176 	if (digest != NULL) {
    177 		for (i = 0; i < 4; i++)
    178 			PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
    179 		os_memset(ctx, 0, sizeof(*ctx));
    180 	}
    181 }
    182 
    183 
    184 /* The three core functions - F1 is optimized somewhat */
    185 
    186 /* #define F1(x, y, z) (x & y | ~x & z) */
    187 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    188 #define F2(x, y, z) ((x & y) | (x & z) | (y & z))
    189 #define F3(x, y, z) (x ^ y ^ z)
    190 
    191 /* This is the central step in the MD4 algorithm. */
    192 #define MD4STEP(f, w, x, y, z, data, s) \
    193 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s) )
    194 
    195 /*
    196  * The core of the MD4 algorithm, this alters an existing MD4 hash to
    197  * reflect the addition of 16 longwords of new data.  MD4Update blocks
    198  * the data and converts bytes into longwords for this routine.
    199  */
    200 static void
    201 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
    202 {
    203 	u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
    204 
    205 #if BYTE_ORDER == LITTLE_ENDIAN
    206 	os_memcpy(in, block, sizeof(in));
    207 #else
    208 	for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
    209 		in[a] = (u32)(
    210 		    (u32)(block[a * 4 + 0]) |
    211 		    (u32)(block[a * 4 + 1]) <<  8 |
    212 		    (u32)(block[a * 4 + 2]) << 16 |
    213 		    (u32)(block[a * 4 + 3]) << 24);
    214 	}
    215 #endif
    216 
    217 	a = state[0];
    218 	b = state[1];
    219 	c = state[2];
    220 	d = state[3];
    221 
    222 	MD4STEP(F1, a, b, c, d, in[ 0],  3);
    223 	MD4STEP(F1, d, a, b, c, in[ 1],  7);
    224 	MD4STEP(F1, c, d, a, b, in[ 2], 11);
    225 	MD4STEP(F1, b, c, d, a, in[ 3], 19);
    226 	MD4STEP(F1, a, b, c, d, in[ 4],  3);
    227 	MD4STEP(F1, d, a, b, c, in[ 5],  7);
    228 	MD4STEP(F1, c, d, a, b, in[ 6], 11);
    229 	MD4STEP(F1, b, c, d, a, in[ 7], 19);
    230 	MD4STEP(F1, a, b, c, d, in[ 8],  3);
    231 	MD4STEP(F1, d, a, b, c, in[ 9],  7);
    232 	MD4STEP(F1, c, d, a, b, in[10], 11);
    233 	MD4STEP(F1, b, c, d, a, in[11], 19);
    234 	MD4STEP(F1, a, b, c, d, in[12],  3);
    235 	MD4STEP(F1, d, a, b, c, in[13],  7);
    236 	MD4STEP(F1, c, d, a, b, in[14], 11);
    237 	MD4STEP(F1, b, c, d, a, in[15], 19);
    238 
    239 	MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999,  3);
    240 	MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999,  5);
    241 	MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999,  9);
    242 	MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
    243 	MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999,  3);
    244 	MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999,  5);
    245 	MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999,  9);
    246 	MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
    247 	MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999,  3);
    248 	MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999,  5);
    249 	MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999,  9);
    250 	MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
    251 	MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999,  3);
    252 	MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999,  5);
    253 	MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999,  9);
    254 	MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
    255 
    256 	MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1,  3);
    257 	MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1,  9);
    258 	MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
    259 	MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
    260 	MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1,  3);
    261 	MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1,  9);
    262 	MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
    263 	MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
    264 	MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1,  3);
    265 	MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1,  9);
    266 	MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
    267 	MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
    268 	MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1,  3);
    269 	MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1,  9);
    270 	MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
    271 	MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
    272 
    273 	state[0] += a;
    274 	state[1] += b;
    275 	state[2] += c;
    276 	state[3] += d;
    277 }
    278 /* ===== end - public domain MD4 implementation ===== */
    279