Home | History | Annotate | Download | only in crypto
      1 /*
      2  * MD5 hash implementation and interface functions
      3  * Copyright (c) 2003-2005, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This program is free software; you can redistribute it and/or modify
      6  * it under the terms of the GNU General Public License version 2 as
      7  * published by the Free Software Foundation.
      8  *
      9  * Alternatively, this software may be distributed under the terms of BSD
     10  * license.
     11  *
     12  * See README and COPYING for more details.
     13  */
     14 
     15 #include "includes.h"
     16 
     17 #include "common.h"
     18 #include "md5.h"
     19 #include "md5_i.h"
     20 #include "crypto.h"
     21 
     22 
     23 static void MD5Transform(u32 buf[4], u32 const in[16]);
     24 
     25 
     26 typedef struct MD5Context MD5_CTX;
     27 
     28 
     29 /**
     30  * md5_vector - MD5 hash for data vector
     31  * @num_elem: Number of elements in the data vector
     32  * @addr: Pointers to the data areas
     33  * @len: Lengths of the data blocks
     34  * @mac: Buffer for the hash
     35  * Returns: 0 on success, -1 of failure
     36  */
     37 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
     38 {
     39 	MD5_CTX ctx;
     40 	size_t i;
     41 
     42 	MD5Init(&ctx);
     43 	for (i = 0; i < num_elem; i++)
     44 		MD5Update(&ctx, addr[i], len[i]);
     45 	MD5Final(mac, &ctx);
     46 	return 0;
     47 }
     48 
     49 
     50 /* ===== start - public domain MD5 implementation ===== */
     51 /*
     52  * This code implements the MD5 message-digest algorithm.
     53  * The algorithm is due to Ron Rivest.  This code was
     54  * written by Colin Plumb in 1993, no copyright is claimed.
     55  * This code is in the public domain; do with it what you wish.
     56  *
     57  * Equivalent code is available from RSA Data Security, Inc.
     58  * This code has been tested against that, and is equivalent,
     59  * except that you don't need to include two pages of legalese
     60  * with every copy.
     61  *
     62  * To compute the message digest of a chunk of bytes, declare an
     63  * MD5Context structure, pass it to MD5Init, call MD5Update as
     64  * needed on buffers full of bytes, and then call MD5Final, which
     65  * will fill a supplied 16-byte array with the digest.
     66  */
     67 
     68 #ifndef WORDS_BIGENDIAN
     69 #define byteReverse(buf, len)	/* Nothing */
     70 #else
     71 /*
     72  * Note: this code is harmless on little-endian machines.
     73  */
     74 static void byteReverse(unsigned char *buf, unsigned longs)
     75 {
     76     u32 t;
     77     do {
     78 	t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
     79 	    ((unsigned) buf[1] << 8 | buf[0]);
     80 	*(u32 *) buf = t;
     81 	buf += 4;
     82     } while (--longs);
     83 }
     84 #endif
     85 
     86 /*
     87  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     88  * initialization constants.
     89  */
     90 void MD5Init(struct MD5Context *ctx)
     91 {
     92     ctx->buf[0] = 0x67452301;
     93     ctx->buf[1] = 0xefcdab89;
     94     ctx->buf[2] = 0x98badcfe;
     95     ctx->buf[3] = 0x10325476;
     96 
     97     ctx->bits[0] = 0;
     98     ctx->bits[1] = 0;
     99 }
    100 
    101 /*
    102  * Update context to reflect the concatenation of another buffer full
    103  * of bytes.
    104  */
    105 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
    106 {
    107     u32 t;
    108 
    109     /* Update bitcount */
    110 
    111     t = ctx->bits[0];
    112     if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
    113 	ctx->bits[1]++;		/* Carry from low to high */
    114     ctx->bits[1] += len >> 29;
    115 
    116     t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
    117 
    118     /* Handle any leading odd-sized chunks */
    119 
    120     if (t) {
    121 	unsigned char *p = (unsigned char *) ctx->in + t;
    122 
    123 	t = 64 - t;
    124 	if (len < t) {
    125 	    os_memcpy(p, buf, len);
    126 	    return;
    127 	}
    128 	os_memcpy(p, buf, t);
    129 	byteReverse(ctx->in, 16);
    130 	MD5Transform(ctx->buf, (u32 *) ctx->in);
    131 	buf += t;
    132 	len -= t;
    133     }
    134     /* Process data in 64-byte chunks */
    135 
    136     while (len >= 64) {
    137 	os_memcpy(ctx->in, buf, 64);
    138 	byteReverse(ctx->in, 16);
    139 	MD5Transform(ctx->buf, (u32 *) ctx->in);
    140 	buf += 64;
    141 	len -= 64;
    142     }
    143 
    144     /* Handle any remaining bytes of data. */
    145 
    146     os_memcpy(ctx->in, buf, len);
    147 }
    148 
    149 /*
    150  * Final wrapup - pad to 64-byte boundary with the bit pattern
    151  * 1 0* (64-bit count of bits processed, MSB-first)
    152  */
    153 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
    154 {
    155     unsigned count;
    156     unsigned char *p;
    157 
    158     /* Compute number of bytes mod 64 */
    159     count = (ctx->bits[0] >> 3) & 0x3F;
    160 
    161     /* Set the first char of padding to 0x80.  This is safe since there is
    162        always at least one byte free */
    163     p = ctx->in + count;
    164     *p++ = 0x80;
    165 
    166     /* Bytes of padding needed to make 64 bytes */
    167     count = 64 - 1 - count;
    168 
    169     /* Pad out to 56 mod 64 */
    170     if (count < 8) {
    171 	/* Two lots of padding:  Pad the first block to 64 bytes */
    172 	os_memset(p, 0, count);
    173 	byteReverse(ctx->in, 16);
    174 	MD5Transform(ctx->buf, (u32 *) ctx->in);
    175 
    176 	/* Now fill the next block with 56 bytes */
    177 	os_memset(ctx->in, 0, 56);
    178     } else {
    179 	/* Pad block to 56 bytes */
    180 	os_memset(p, 0, count - 8);
    181     }
    182     byteReverse(ctx->in, 14);
    183 
    184     /* Append length in bits and transform */
    185     ((u32 *) ctx->in)[14] = ctx->bits[0];
    186     ((u32 *) ctx->in)[15] = ctx->bits[1];
    187 
    188     MD5Transform(ctx->buf, (u32 *) ctx->in);
    189     byteReverse((unsigned char *) ctx->buf, 4);
    190     os_memcpy(digest, ctx->buf, 16);
    191     os_memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
    192 }
    193 
    194 /* The four core functions - F1 is optimized somewhat */
    195 
    196 /* #define F1(x, y, z) (x & y | ~x & z) */
    197 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    198 #define F2(x, y, z) F1(z, x, y)
    199 #define F3(x, y, z) (x ^ y ^ z)
    200 #define F4(x, y, z) (y ^ (x | ~z))
    201 
    202 /* This is the central step in the MD5 algorithm. */
    203 #define MD5STEP(f, w, x, y, z, data, s) \
    204 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
    205 
    206 /*
    207  * The core of the MD5 algorithm, this alters an existing MD5 hash to
    208  * reflect the addition of 16 longwords of new data.  MD5Update blocks
    209  * the data and converts bytes into longwords for this routine.
    210  */
    211 static void MD5Transform(u32 buf[4], u32 const in[16])
    212 {
    213     register u32 a, b, c, d;
    214 
    215     a = buf[0];
    216     b = buf[1];
    217     c = buf[2];
    218     d = buf[3];
    219 
    220     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    221     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    222     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    223     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    224     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    225     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    226     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    227     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    228     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    229     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    230     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    231     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    232     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    233     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    234     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    235     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    236 
    237     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    238     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    239     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    240     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    241     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    242     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    243     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    244     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    245     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    246     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    247     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    248     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    249     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    250     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    251     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    252     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    253 
    254     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    255     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    256     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    257     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    258     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    259     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    260     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    261     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    262     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    263     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    264     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    265     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    266     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    267     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    268     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    269     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    270 
    271     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    272     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    273     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    274     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    275     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    276     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    277     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    278     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    279     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    280     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    281     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    282     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    283     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    284     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    285     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    286     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    287 
    288     buf[0] += a;
    289     buf[1] += b;
    290     buf[2] += c;
    291     buf[3] += d;
    292 }
    293 /* ===== end - public domain MD5 implementation ===== */
    294